
Investigating Software Reconnaissance as a Technique to Support Feature Location

and Program Analysis Tasks using Sequence Diagrams

by

Sean Stevenson

B.Eng., University of Pretoria, 2008

B.Eng., University of Pretoria, 2010

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

c© Sean Stevenson, 2013

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Investigating Software Reconnaissance as a Technique to Support Feature Location

and Program Analysis Tasks using Sequence Diagrams

by

Sean Stevenson

B.Eng., University of Pretoria, 2008

B.Eng., University of Pretoria, 2010

Supervisory Committee

Dr. Margaret-Anne Storey, Co-Supervisor

(Department of Computer Science)

Dr. Daniel German, Co-Supervisor

(Department of Computer Science)

iii

Supervisory Committee

Dr. Margaret-Anne Storey, Co-Supervisor

(Department of Computer Science)

Dr. Daniel German, Co-Supervisor

(Department of Computer Science)

ABSTRACT

Software reconnaissance is a very useful technique for locating features in software

systems that are unfamiliar to a developer. The technique was, however, limited by

the need to execute multiple test cases and record the components used in each one.

Tools that recorded the execution traces of a program made it more practical to use

the software reconnaissance technique. Diver was developed as an execution trace

visualization tool using sequence diagrams to display the dynamic behaviour of a

program. The addition of software reconnaissance to Diver and its trace-focused user

interface feature improved the filtering of the Eclipse environment based on the con-

tents of execution traces and led to a very powerful program comprehension tool.

Myers’ work on Diver was grounded in cognitive support theory research into how to

build tools. He conducted a user study to validate the work done on Diver, but the

study’s findings were limited due to a number of issues. In this thesis, we expand on

the study run by Myers, improve on its design, and investigate if software reconnais-

sance improves Diver’s effectiveness and efficiency for program comprehension tasks.

We also analyze the influence of software reconnaissance on the interactions of Diver’s

users, which allows us to identify successful usage patterns for completing program

comprehension and feature location tasks. We research the connection between cog-

nitive support theory and the design of Diver and use the study to attempt to validate

the cognitive support offered by Diver. Finally, we present the results of a survey of

the study participants to determine the usefulness, ease of use, and ease of learning

of the tool.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables viii

List of Figures ix

Acknowledgements xi

Dedication xii

1 Introduction 1

1.1 Are Sequence Diagram Tools Helpful During Program Comprehension? 1

1.2 Solution: Evaluating software reconnaissance’s support for feature lo-

cation and program analysis . 4

2 Background 6

2.1 Program Comprehension . 6

2.1.1 Program Comprehension Strategies 7

2.1.2 Program Comprehension Tools 8

2.1.3 Cognitive Support in Program Comprehension Tools 10

2.1.4 Program Comprehension Through Dynamic Analysis 11

2.2 Software Reconnaissance . 11

2.2.1 From Theory to Practice . 11

2.2.2 Software Reconnaissance In Practice 13

2.3 Introduction to Sequence Diagrams 15

2.4 Sequence Diagrams in Diver . 16

v

2.4.1 Diver Usage Example . 17

2.5 Overview . 20

3 Cognitive Support Mapping 23

3.1 Cognitive Support and Diver’s Features 23

3.1.1 Presentation Features . 26

3.1.2 Interaction Features . 27

3.1.3 Cognitive Support Theories In Diver 29

3.2 Myers’ Software Reconnaissance User Study 30

3.2.1 Shortcomings in the Initial User Study to Evaluate Diver . . . 31

3.2.2 Improving the Study Design 33

3.2.3 Rephrasing Myers’ Research Questions based on the Problems

Uncovered . 34

3.2.4 Summary . 35

4 Empirical Study 36

4.1 Research Questions . 36

4.2 Methodology . 37

4.2.1 Tasks . 37

4.2.2 Participants . 38

4.2.3 Experimenter’s Process . 38

4.2.3.1 Task Order Selection 39

4.2.4 Participant Feedback . 42

4.2.5 Pilot Study . 42

4.2.6 Data Analysis . 43

4.3 Results and Discussion . 44

4.3.1 RQ1: Interaction and Navigation Patterns 45

4.3.2 RQ1: Interpretation of the Results 47

4.3.2.1 Program Traces window 47

4.3.2.2 Sequence Diagram window 47

4.3.2.3 Reveal In feature . 48

4.3.2.4 Jump To Code feature 48

4.3.2.5 Summary . 49

4.3.3 RQ2: Cognitive Support . 50

4.3.3.1 Redistribution Support 50

vi

4.3.3.2 Perceptual Substitution 51

4.3.3.3 Ends-means Reification 53

4.3.4 RQ2: Interpretation of the Results 53

4.3.4.1 Redistribution Support 53

4.3.4.2 Perceptual Substitution 54

4.3.4.3 Ends-means Reification 55

4.3.4.4 Summary . 56

4.3.5 RQ3: Effectiveness and Efficiency of Software Reconnaissance 56

4.3.5.1 Effectiveness . 57

4.3.5.2 Efficiency . 58

4.3.5.3 Time-To-First-Foothold Trends and Aggregates . . . 64

4.3.6 RQ3: Interpretation of the Results 65

4.3.6.1 Effectiveness . 65

4.3.6.2 Efficiency . 67

4.3.6.3 Summary . 71

4.3.7 Participant Responses . 73

4.3.7.1 Pre-study Questionnaire 73

4.3.7.2 Post-study Questionnaire 77

4.3.8 Interpretation of the Participant Responses 83

4.3.9 Limitations and Threats to Validity 83

4.3.10 Summary . 85

5 Conclusions 87

5.1 Research Questions Revisited . 87

5.2 Contributions . 89

5.3 Future Work . 89

5.4 Conclusion . 90

Bibliography 91

A User Study Consent Form 96

B Pre-study Questionnaire Form 99

C Tasks 101

D Post-study Questionnaire Form 111

vii

E General Experimenter Instructions 113

F Experimenter’s Handbook 116

G Ethics Approval Certificate 121

viii

List of Tables

Table 4.1 Task Allocation . 41

Table 4.2 Diver Usage Statistics . 46

Table 4.3 The Jump To Code feature usage for all participants 52

Table 4.4 The Reveal In feature usage data for all participants 54

Table 4.5 The task completion statistics ordered by the total number of

tasks completed successfully . 57

Table 4.6 Task 1 results . 58

Table 4.7 Task 2 results . 59

Table 4.8 Task 3 results . 60

Table 4.9 Task 4 results . 61

Table 4.10Task 5 results . 61

Table 4.11Task 6 results . 62

Table 4.12Task 7 results . 62

Table 4.13Task 8 results . 63

Table 4.14Participants’ performance correlated with their experience . . . 75

Table 4.15Summary of comments on whether the participants had enough

time or not . 77

Table 4.16Summary of positive comments on what helped complete the tasks 78

Table 4.17Summary of negative comments 78

Table 4.18Summary of suggestions to improve Diver 79

ix

List of Figures

Figure 1.1 Diver’s user interface in Eclipse 3

Figure 2.1 An example showing the various components of a sequence diagram 16

Figure 2.2 Diver records traces in the background while the Tetris program

runs . 18

Figure 2.3 The Package Explorer for the example Tetris program showing

the three different states of filtering 19

Figure 2.4 The Program Traces window displaying the recorded traces. . . 20

Figure 2.5 The Reveal In option to navigate to the sequence diagram from

a class in the Package Explorer 21

Figure 2.6 The filtering of the sequence diagram 22

Figure 3.1 Cognitive Design Elements for Software Exploration from Storey

et al. [30] . 25

Figure 4.1 Depiction of task order assignment process followed to determine

unique orders for all participants. 41

Figure 4.2 The TTFF results and their performance trends for the top six

participants. 64

Figure 4.3 The Task 1 boxplots for TTFF times under both scenarios . . . 65

Figure 4.4 The Task 2 boxplots for TTFF times under both scenarios . . . 66

Figure 4.5 The Task 3 boxplots for TTFF times under both scenarios . . . 67

Figure 4.6 The Task 4 boxplots for TTFF times under both scenarios . . . 68

Figure 4.7 The Task 5 boxplots for TTFF times under both scenarios . . . 69

Figure 4.8 The Task 6 boxplots for TTFF times under both scenarios . . . 70

Figure 4.9 The Task 7 boxplots for TTFF times under both scenarios . . . 71

Figure 4.10The Task 8 boxplots for TTFF times under both scenarios . . . 72

Figure 4.11The breakdown of academic experience 73

Figure 4.12Boxplots of the participants’ experience 76

x

Figure 4.13Boxplot of the Likert-based Questionnaire Results 80

Figure 4.14USE Questionnaire Results boxplots 81

Figure 4.15USE Questionnaire Results . 82

xi

ACKNOWLEDGEMENTS

The research and work that went into this thesis was thanks to the support pro-

vided by so many people who wre involved in various ways throughout my time in

Victoria. I would especially like to thank the following:

Cassandra Petrachenko for all the editorial help on this thesis; her input was

invaluable.

Dr. Peggy Storey for the wonderful opportunity you gave me, the guidance,

and the support.

Dr. Daniel German for the advice and knowledge he conveyed.

Brendan Cleary, Leif Singer, Christoph Treude, and Bo Fu and other

members of CHISEL for their input and advice.

Martin Salois, David Ouellet, and Phillipe Charland, and the DRDC

for their support of this ongoing research.

Del Myers for all the hard work that went into Diver and laying the foundation

for this research.

My parents, Linda and Steve, and sister, Emma, for the support offered

from so far away.

xii

DEDICATION

Frances McGregor (1914 - 2013)

For instilling a love of traveling in me that brought me on this adventure.

—

Nelson Rolihlahla Mandela (1918 - 2013)

For serving as an inspiration and role model for myself and so many others.

Chapter 1

Introduction

New software engineering tools are being developed constantly to support developers’

efforts in the design, development, and maintenance of software systems. Of all the

phases of development, maintenance takes up the most time and resources [10]. Tasks

associated with maintenance include adapting, perfecting, or correcting software sys-

tems [33]. Program comprehension forms a major part of the software maintenance

phase, and comprehension tools often use visualisations to convey information about

the system [29]. These visualisations can be manually created by developers, although

automatically-generated diagrams are much more powerful.

Reverse engineering is one method of generating these diagrams. Reverse engi-

neering extracts information from a software system that can be presented visually to

help developers understand the program. Reverse engineering tools provide avenues

to gain a better understanding of programs through information exploration, an ac-

tivity which Tilley et al. [32] argue “holds the key to program understanding.” One

visualisation that can display program behaviour is a sequence diagram.

1.1 Are Sequence Diagram Tools Helpful During

Program Comprehension?

Software architects use sequence diagrams to document system design. Kruchten’s

4+1 architecture model demonstrates the value of using sequence diagrams to create

a behavioural view of a system that brings together the other four views: Logical,

Development, Process, and Physical [16]. These documents are often out of date by

the time development reaches the maintenance phase. That is if they even exist,

2

as their usage is neither consistent nor popular according to Petre [25]. Generated

sequence diagrams sidestep this problem and provide developers with an up-to-date

and abstracted view of how a system behaves. Static or dynamic analysis can generate

these diagrams. Static analysis uses source code and other software artifacts to gather

information on a system. On the other hand, dynamic analysis gathers information

by monitoring a system’s execution.

Dynamic analysis of program execution traces can generate more accurate se-

quence diagrams than static methods. The drawback of dynamic analysis is that di-

agrams can become extremely large. Therefore, the problems of understanding large

software programs were reduced, but the problem of understanding large sequence

diagrams was introduced. Bennett et al. researched ways to solve the scalability

problems affecting extremely large sequence diagrams [4]. The main difficulty of

these diagrams was the cognitive overload experienced by users.

The subsequent research focused on solving cognitive overload with better tool

design and improved feature understanding. Bennett et al. surveyed many sequence

diagram tools to determine the features that supported better program comprehension

[5]. OASIS Sequence Explorer—developed based on earlier research by Bennett et al.

[4]—helped evaluate the research. This research bridged the areas of cognitive support

theory with sequence diagram-based tool design [3]. As a result, Bennett identified

theoretical foundations for key features that support the use of sequence diagrams.

Myers continued this line of research by focusing on improving the scalability of

large sequence diagrams [24]. He implemented a set of features based on those features

found to offer better cognitive support [3]. OASIS Sequence Explorer was developed

into a fully-fledged tool called Dynamic Interactive Views for Reverse Engineering

(Diver) that Myers used to support his research.

The tool requirements from Bennett [3] showed that developers require better cog-

nitive support for program understanding tasks such as feature location and program

analysis. Diver’s aim was to provide improved navigation of sequence diagrams, and

therefore, provide improved cognitive support for developers. Diver was developed

as a plugin for the Eclipse Integrated Development Environment (IDE) based on

requirements established in the study [5], and Figure 1.1 shows Diver’s user interface.

Diver allows developers to monitor Java applications in Eclipse and then gener-

ate sequence diagrams of the execution traces. These sequence diagrams allow easy

navigation of execution calls and links these calls to the underlying code. Myers

implemented compaction algorithms that collapsed for and while loops to simplify

3

Figure 1.1: Diver’s user interface in Eclipse

the diagrams [23]. The Mylyn task-focused user interface developed by Kersten and

Murphy [14] provided the inspiration for Diver’s trace-focused user interface feature.

This feature filtered the Eclipse IDE to reflect the contents of traces [22].

The trace-focused user interface feature implements the software reconnaissance

technique. This technique was developed by Wilde and Scully to map features to

their locations in code [39]. In Diver, the technique’s implementation filters unwanted

methods from a trace by using a second trace. This technique vastly improved the

original filtering that was only based on one trace. Myers conducted a study to

evaluate the effectiveness of software reconnaissance in Diver which he presented in his

thesis [24]. His findings appeared to confirm the usefulness of software reconnaissance

in Diver.

Unfortunately, the evaluation of software reconnaissance was undermined by the

study design. The problems with the study design were a number of weaknesses which

affected the results of the experiment. These problems were identified by the reviewers

of a conference-submitted paper based on the study [2], as well as our own analysis.

These weaknesses included: a difference in difficulty between the two tasks given to

participants, and some participants failing to use software reconnaissance during the

experiment. There was only useful data from eight participants who actually used

software reconnaissance and many of them failed to complete the more difficult task.

4

1.2 Solution: Evaluating software reconnaissance’s

support for feature location and program anal-

ysis

Diver is an important and popular academic tool that attracted over 3500 downloads

between July 2012 and June 2013 [27]. Therefore, investigating software reconnais-

sance’s support for feature location and program analysis would evaluate the work

done to improve the usefulness of the tool.

Our hypothesis is that the addition of software reconnaissance to Diver is beneficial

and should improve the efficiency of programmers performing feature location and

program comprehension tasks. We also hypothesize that software reconnaissance

should improve the cognitive support offered by the tool to programmers during

these tasks. A study of the feature is necessary to test these hypotheses.

In this thesis, we extend the evaluation of the software reconnaissance feature

implemented in Diver. We design a new user study to investigate if software recon-

naissance is of value to trace analysis tools and the tools’ users. This new study will

draw from the experience of the previous study by Myers [24] and learn from the

weaknesses in the original design. LaToza et al. argue that “the usefulness of a tool

depends both on its success in solving a problem and supporting work” as well as

the scale of the problem it addresses [17]. Therefore, it is not enough to study how

quickly and successfully users complete tasks using the feature — changes in how they

complete the tasks must also be studied. The experiment documented in this thesis

seeks to answer questions about software reconnaissance’s effect on user navigation in

Diver, changes to user effectiveness and efficiency at completing tasks, and the tool’s

ability to provide cognitive support. We developed hypotheses to help us determine

whether Diver implemented a number of cognitive support theories.

This thesis is divided into five chapters. Chapter 1 introduced the problem to

be addressed by this thesis, and the proposed solution. Chapter 2 describes the

background research and related work that this research builds upon. This chapter

highlights cognitive support theories and their implementation in software engineering

tools. We introduce Diver, its development, and features to support comprehension.

Chapter 3 describes how we investigated the links between cognitive support theories

and the features of Diver, and explains how we plan to study the cognitive support

offered by the features in the new study. This chapter presents the purpose of the

5

research on Diver and software reconnaissance, the information being sought from

the new user study, and an analysis of Myers’s previous study and its shortcomings.

Chapter 4 reports on the empirical study conducted using Diver, including the study

design, results, and discussion. Finally, Chapter 5 explains the contributions of this

thesis, future work and research opportunities, and a conclusion to the thesis as a

whole.

6

Chapter 2

Background

This chapter reviews the research of various fields, such as program comprehension

and software reconnaissance, that influenced the development of Diver. It also de-

scribes how Diver works and how a user would use software reconnaissance for a

feature location task.

2.1 Program Comprehension

Due to the increasing complexity of software, it is becoming more and more difficult for

programmers to understand unfamiliar programs. Given the importance of program

comprehension, extensive research has been done into discovering how programmers

understand programs, especially through the use of tools [31]. Storey groups program

comprehension research into two main areas: programmers’ cognitive processes to

understand programs, and technological improvements through tool support [28].

The programmer’s cognitive processes are responsible for building mental models

to represent their understanding of a program. A variety of sources, such as conver-

sations with team members or testing the program, are used to build these mental

models [18]. Cognitive models describe the creation and storage of these mental models

by programmers. Various cognitive models have been developed to explain the dif-

ferent program comprehension strategies that programmers follow. These strategies

have been identified through observing how programmers approach program compre-

hension tasks and they are explained in more detail in the next section.

7

2.1.1 Program Comprehension Strategies

Storey et al. presented a number of program comprehension strategies and talked

about the cognitive models that were associated with them [31]. The main strategies

are listed below.

Bottom-up. The programmer analyzes the source code and, possibly, control flow

information to gain a better understanding of different parts of the program. Higher-

level abstractions are built by combining the knowledge of different areas of the pro-

gram and this is repeated until a broad overview of the software is achieved.

Top-down. This strategy sees programmers starting with a global hypothesis of

the program. Application domain knowledge is used to make additional hypotheses,

which are tested as the programmer explores the system. The global hypothesis is

adjusted as the underlying code and behaviour is explored. Experienced programmers

use cues (hints that provide information about the type of architecture or possible

implementation) to speed up this process.

Knowledge-based. This strategy introduces a more practical view of program

analysis. It views programmers as being more opportunistic and less rigid in their

search for understanding a system. A programmer combines application knowledge

with programming knowledge to take cues from both bottom-up and top-down per-

spectives. These are assimilated into the mental model to improve program compre-

hension. Similar to the hypotheses/exploration process in top-down, inquiry episodes

occur when a programmers ask a question, then forms a hypothesis using previous

knowledge for the answer, and finally uses software exploration to determine if the

hypothesis is correct or not.

Systematic and as-needed. A systematic approach can be likened to a student

reading an entire textbook before completing exercises from just one chapter. The

programmer reads the source code and follows the program flow to understand the

entire system with little reliance on hypotheses and inquiry episodes. This results in

a complete understanding of the entire program, but is time intensive, especially for

large programs. The corollary to the systematic strategy is an as-needed approach,

where a programmer only focuses on the code directly related to the functionality or

8

system behaviour being investigated. This results in a narrow understanding of the

program, which saves time but risks missing important dependencies.

Integrated approaches. Von Mayrhausser and Vans observed that, in practice,

programmers switched between the first three strategies, discussed above, as needed

[33]. A mental model of the program is built at all levels of abstraction simultaneously.

This leads to the development of a model combining the three strategies and their

associated cognitive models.

Additionally, Storey et al.[31] highlights the main factors that affect a program-

mer’s choice of strategies. They include the differences in programs, tasks, and pro-

grammers.

The program comprehension strategies, mentioned above, fall under the research

area dealing with programmers’ cognitive processes. The other research area involves

finding technological advances to improving program understanding tool support.

2.1.2 Program Comprehension Tools

To facilitate the successful execution of the strategies above, program comprehension

tools are constantly being developed and improved. Cornelissen et al. listed the five

areas that cover most of program comprehension research: feature location and analy-

sis, execution trace analysis, program behavioural analysis, information visualization,

and design and architecture reverse engineering [7]. This research forms the basis for

new features to improve comprehension tool design.

Storey reviewed the body of research on program comprehension and explored the

relationship between that research and tools [28]. She presented a number of areas

where tools could support the comprehension strategies discussed above.

• Navigation support could be used to help users with both top-down or bottom-

up strategies. The top-down approach requires users to navigate from higher

level views to more detailed views and the bottom-up approach requires users

to navigate through method calls and class hierarchies. A tool that provides

an array of options to navigate between multiple views could cater for both

strategies.

• Searching and querying supports users who use inquiry episodes to explore the

program. These features can be used to create program slices or provide users

with a list of possible methods related to a keyword.

9

• Multiple views give the user the flexibility to use different strategies depending

on the type of task or program. Tool designers can increase the versatility of

their tools by catering for many different scenarios and strategies with the use

of multiple views.

• Context-driven views provide adaptive interfaces that display data relevant to

a user’s current task.

• Cognitive support helps to ease the cognitive load associated with performing

tasks using the tool.

Storey categorized program comprehension features into three broad groups: ex-

traction, analysis and presentation [28]. Tools implement one or more of these types

of features to help programmers complete program comprehension tasks.

Extraction features involve acquiring information about the program through var-

ious sources. These sources could be static, such as source code or configuration files,

or dynamic, such as program execution traces. Both static and dynamic approaches

have positive and negative implications for tools and their users. Static analysis is

much easier to automate and analyzing source code requires little input from users.

One drawback of static approaches is the limited view of the system because no run-

time behaviour is collected. On the other hand, dynamic analysis approaches usually

require more input from users, such as using the program while tracing, but collect

important information about the execution of the program. Storey mentions that

program traces can grow very large, which introduces more potential problems for

the user.

The other two feature types (analysis and presentation) are closely related. Anal-

ysis features support programmers’ activities to understand the information extracted

from the program. For example, these activities could be feature location or concept

identification and allocation. Depending on the type of analysis, more programmer

input is require than the automated static extraction processes. As a result, program-

mers require cognitive support from tools to complete these activities. Presentation

features convey information about the program to the users and examples of these

features include code editors and visualizations.

Most tools combine these three types of features to create a platform to complete

program understanding tasks, such as an IDE. Static and dynamic analysis are also

combined to create versatile tools. To effectively combine all these different features,

10

designers need to create their tools with cognitive support in mind, which is crucial

for effective tool use.

2.1.3 Cognitive Support in Program Comprehension Tools

Software comprehension tools such as Diver are built to support the problem solving

and critical thinking required to understand how a program works. Tool builders

implement best practices that are thought to rely on cognitive support theories, ei-

ther consciously or subconsciously. However, according to Walenstein [36], the best

practices being implemented may not be grounded in those theories. In his paper,

Walenstein describes three cognitive support theories: redistribution, perceptual sub-

stitution, and ends-means reification.

Redistribution: This theory deals with cognitive resources or processing being ex-

ternalized and stored outside the mind of the individual to support with organization,

remembering results, or performing complex calculations.

Perceptual Substitution: The cognitive ability to process data depends on how

the data is presented. This forms the basis of the perceptual substitution theory and

is what motivates the study of information visualization.

Ends-Means Reification: This theory relies on reifying (making concrete) the

possible states of the problem space and actions that change the states into a more

concrete structure. This strategy involves analyzing a certain state repeatedly to find

possible actions that help move towards the solution of the problem. A tool would

support this by mapping the ends to the means. The example given by Walenstein

[36] is a compiler error list. The ends are the list of errors and the means are the

interactions available to move towards the goal of solving the compiler errors. There

are various ways to apply this theory.

Bennett [3] applied this theory to sequence diagrams. He argued that mapping

the ends to the means supports the navigation of sequence diagrams because it gives

users cues on where to navigate to in a visualization.

11

2.1.4 Program Comprehension Through Dynamic Analysis

Dynamic analysis is the analysis of data acquired from the execution of a system.

Cornelissen et al. conducted a systematic survey [7] on this “common” program

comprehension technique and chronicled the research conducted over the years. Im-

portance was placed on information visualization techniques which improve the com-

munication of program information to programmers. From their survey, Cornelissen

et al. identified Unified Modelling Language (UML) diagrams as the most popular

choice for visualizing traces, however, they did mention the scalability issues that

came with using these diagrams. Previously, Cornelissen et al. conducted research

into circular views as an effective visualization for traces [8]. They point out research

that was focused on solving these issues, such as Zaidman [41] and Hamou-Lhadj et

al. [12, 11, 13]. Myers also worked on the problem of scalability [24]. A common

theme of the research in scalability by Hamou-Lhadj and Myers was trace compres-

sion and elevating the visualizations of traces to a higher abstraction level through

pattern identification. In addition to these approaches, new techniques were being

sought to help solve the scalability problems of large sequence diagrams to improve

dynamic analysis tools. One such technique was software reconnaissance.

2.2 Software Reconnaissance

Wilde and Scully created the term software reconnaissance to describe the technique

they developed to map program features to source code [39]. Software reconnaissance

can help developers locate functionality of interest by identifying the unique software

elements involved in a feature’s execution. Test cases are formulated by the developer

and used to record traces. The execution traces, based on those test cases, record

all of the software elements involved. The software elements that are unique to the

feature are found by comparing the traces of test cases that include the functionality

with those test cases that exclude the functionality.

2.2.1 From Theory to Practice

Software reconnaissance can best be described using set theory. The technique is

used to identify different sets of software elements that may be helpful for a program

comprehension task. The theory is briefly explained within the context of Diver’s

12

use of the technique for feature location tasks. The sets and subsets were defined by

Wilde and Scully [39], and Myers [24]. The main sets are as follows:

• T represents all the execution traces recorded for the program.

• F represents all the features of the program

• E represents all the software elements or methods of the program.

A feature location task requires finding methods related to feature f ∈ F. A list

of feature subsets are:

• COMMON: The elements that are common to all traces, such as utility meth-

ods.

• UNIQUE(f): The elements in E that are unique to feature f.

• SHARED(f): The elements that are indispensable to f but are not found in

UNIQUE or COMMON.

• INDISPENSIBLE(f): The elements that occur in all traces involving f.

• POTENTIAL(f): The elements that occur in some traces involving f.

• RELEVANT(f): The elements that are indispensable to f but not in COM-

MON.

To begin locating a feature, a trace t1 is recorded based on a test case involving

the functionality of interest. Trace t1 is defined as a subset of elements from E. These

elements fall into one or more of the feature subsets listed above. The classification

of these elements cannot be determined given only one trace. The set COMMON

requires all possible test cases to be recorded to determine its contents. However,

this set would be useful for determining utility methods and not methods related to

the feature f. The set INDISPENSIBLE requires all possible traces involving feature

f to be recorded to determine its contents. The sets SHARED and RELEVANT

rely on COMMON for their definition and therefore, require all possible test cases to

determine their contents. The set POTENTIAL contains elements that have nothing

to do with the feature f and is therefore, not useful. This leaves the set UNIQUE

which Wilde and Scully argued could be used to gain a “foothold” into the program

to help locate the functionality of interest.

13

Theoretically, software reconnaissance can involve any number of traces and some

subsets can only be identified when all possible traces of the functionality of inter-

est are used. Myers improved on Wilde and Scully’s formula to calculate the subset

UNIQUE so that fewer traces were needed to determine the subset. The original

practical way to determine the UNIQUE set was use a large number of test cases

to identify components only occurring in test cases involving the feature of inter-

est. In Wilde and Scully’s case study [39], anywhere from 11 to 18 test cases were

needed to identify a feature’s UNIQUE elements. Myers’ simplified formula definition

meant that two traces could effectively determine a fair representation of the subset

UNIQUE. We record a second trace, t2, based on a test case that does not use the

functionality of interest. In this case the formula is:

UNIQUE(f) = t1 − t2

Myers’s changes allowed software reconnaissance to be used together with the

degree-of-interest model used by Kersten and Murphy [14] for the Mylyn task-focused

user interface. Diver is not the only tool to have implemented software reconnaissance

and other research projects have produced tools using the technique. However, Diver

differs from the other tools due to the degree-of-interest model which allows custom

filtering of the IDE based on a trace. The other software reconnaissance projects are

discussed in the next section.

2.2.2 Software Reconnaissance In Practice

Several researchers have continued to research the software reconnaissance technique

and its practical uses. Wilde was involved with much of the subsequent research into

the technique. He and Scully conducted a limited protocol case study to understand

the ability of programmers to use their technique [39]. The two participants’ task was

to identify the code related to functionality that required changing. They were asked

to identify test cases which were used to develop a functionality-based view of the

tool. The participants were able to successfully apply the software reconnaissance

technique to complete the tasks. After the study, they agreed that the UNIQUE

subset was an “accurate and appropriate starting point” for the feature location

tasks as it contained software elements that were unique to the functionality.

The technique was verified further by Wilde and Casey [38], focusing on the C

programming language. They used an academic tool that they had developed called

14

RECON for their research. The goal of their work was to develop software recon-

naissance into a “usable industrial technique.” Software reconnaissance was used by

a knowledgeable programmer on two systems and the researchers gained new insight

into the technique. They discovered that software reconnaissance did not always iden-

tify all the software elements that the programmer thought was related to the feature.

They found that software reconnaissance could be very useful at determining all the

features that use a specific piece of code. This is important for a programmer who

is editing a feature and needs to know the ramifications of the changes. The choice

of test cases was highlighted as an important factor to using the technique success-

fully. The RECON tool was a very basic set of command-line tools and the authors

noted that the user interface was “awkward.” This underlines the fact that RECON

was purely an academic research prototype, unlike Diver which was developed for

widespread use.

Wilde et al. updated RECON and used RECON2 to conduct additional research

on the technique’s usefulness with legacy Fortran code [40, 37]. The tool features

three components: an instrumentor, trace manager, and analysis program. Their

case study [40] compared the software reconnaissance technique with the dependency

graph search method. The researchers commented that software reconnaissance could

only locate features and not “concepts” which the dependency graph method was able

to locate. Concepts were described as “human-oriented expressions of intent.” Anal-

ysis of the results showed that the two techniques had different strengths. Software

reconnaissance was deemed better for larger less frequently changed programs. The

opposite was true for the dependency graph search method.

In another paper, Rajlich and Wilde combined software reconnaissance and soft-

ware tests to research the role of concepts in program understanding [26]. Software

reconnaissance was used to analyze a program and uncover all the features that

required software tests. The authors found a number of features that were not men-

tioned in the user guide which was used develop the test set. These newly discovered

features allow for new tests to be written and the test coverage to be improved, largely

due to software reconnaissance. This showed another useful feature of the technique:

finding undocumented features.

Aside from Wilde’s research with RECON, researchers have investigated a number

of other tools using software reconnaissance. Agrawal et al. [1] conducted a software

reconnaissance study for a C project, using a commercial software suite called χSuds.

χVue, which is one of the tools of the suite, was used to locate features using the con-

15

trol graph, program execution trace, and the user’s prior knowledge of the program.

Agrawal et al. concluded that feature location techniques, such as the one used in

χVue, are helpful at understanding features, writing unit tests efficiently and quickly,

and discovering subtle bugs [1]. The product no longer exists and neither does the

company who made it, Bellcore, who were bought by another company.

Cleary et al. developed an Eclipse plugin called CHIVE that combined software

reconnaissance and static analysis to visualise reuse in systems [6]. The same research

group that made CHIVE also developed a technique called software reconn-exion

which combined software reflection with software reconnaissance [19]. CHIVE and

software reconn-exion both used software reconnaissance to identify software element

reuse instead of feature location like Diver and RECON.

Myers identified software reconnaissance as a useful technique to filter the poten-

tially huge execution traces of Diver and the subsequently large sequence diagrams

created from the traces.

2.3 Introduction to Sequence Diagrams

The +1 in Kruchten’s 4+1 architecture model represents UML sequence diagrams

and these diagrams provide a dynamic view of the system [16]. A sequence diagram

documents the behaviour of software as functionality is executed.

The sequence diagram shows how software elements such as classes and methods

are connected and call each other, see the example in Figure 2.1. The classes or

objects of a system are represented by the lifelines that appear along the top of the

diagram. The chronological order of events goes from top to bottom, and the lifelines

are represented through the diagram by vertical dashed lines.

If a class becomes active, i.e. it is called by another class method, then the dashed

line is replaced with a thicker activation bar. This denotes the length of time where

an instance of the class is doing work. Messages or calls from one lifeline to another

are represented by a horizontal dashed arrow. The arrow represents a method call

if it is pointing right, and a method return if the arrow is pointing left. A method

return would coincide with the activation box ending.

The last component of a sequence diagram is a combined fragment: a box that

logically groups messages and activation bars to improve readability. For example,

conditional statements, such as if and else, are easier to identify when grouped in a

box.

16

Figure 2.1: An example showing the various components of a sequence diagram

2.4 Sequence Diagrams in Diver

The Diver plugin is a suite of Eclipse plugins that work together and depend on

execution traces to analyze programs and their features. The execution of a Java

program through Eclipse can be recorded to create a trace. Diver records the method

calls that are executed when the user interacts with the program and stores them in a

trace file. These could be methods related to the features that were used or methods

that do background work and are not related to any one feature. Each program

thread has a sequence diagram, so one trace can generate multiple diagrams. Diver’s

functionality revolves around sequence diagrams and features to help make it easier

to use the diagrams, which can get very large.

The trace-focused user interface feature filters the IDE’s various views to only

display the software elements that appear in the trace. The feature is enabled by

activating a trace, which can be done in the Program Traces view (where traces are

managed). Only one trace can be activated at a time. When a trace is activated,

the Package Explorer only shows the classes and methods from the trace. This is

17

beneficial for feature location tasks where completely unrelated methods in the project

are filtered out. To locate specific functionality in a program, an activated trace

should only contain the relevant software elements. However, it is very difficult to

record a trace with only these elements. Typically, an activated trace will also contain

unrelated methods, which we will refer to as noise.

The software reconnaissance technique improves the trace-focused user interface

filtering by helping remove noise. The technique uses a second trace to identify and

remove the common method calls between the activated and filter traces. This trace

is called a filter trace. The efficiency of the software reconnaissance technique filtering

increases when the filter trace contains as many of the unrelated methods as possible.

If the filter trace contains all of the unrelated methods present in the activated trace,

software reconnaissance can filter all the noise. It is difficult to record all the unrelated

methods in a filter trace while, at the same time, avoiding any methods related to

the functionality of interest. For example, the functionality of interest may involve a

button click and any unrelated methods called as a result of clicking the button that

cannot be recorded separately.

Software reconnaissance filters the sequence diagram, in addition to the Package

Explorer, by colouring the common method calls light grey. The filtering is shown

in Figure 2.6. This adds emphasis to the unique calls of the activated trace without

affecting the diagram’s structure. The improved filtering by software reconnaissance

reduces the number of possible methods one has to investigate during feature location

tasks.

2.4.1 Diver Usage Example

To show how software reconnaissance is used in Diver and what participants were

required to do during the study, we will go through the steps needed to apply the

technique using a Tetris project that consists of eight packages and 56 high-level

classes. The packages and classes are shown in Figure 2.3a. In this example, we want

to identify the methods called when the Resume Game button (highlighted in Figure

2.2a) is clicked. To start with, we must record a trace of the button click.

A trace is created using Diver by executing the program in Eclipse. Recording is

paused by default when a program starts through Eclipse and can be resumed with

the Trace Record button – this button is located on the Diver control panel in Eclipse

and is circled in Figure 2.2b. Once the button is clicked, Diver starts recording the

18

Figure 2.2: Diver records traces in the background while the Tetris program runs

program’s threads. Recording can be paused and resumed at any time, and stops

when the user closes Tetris. Once the program is closed, the trace data is saved to a

database. Depending on the size of the recorded trace, this can take a few minutes.

Once the trace is saved, it is ready for use in the Program Traces view.

Saved traces are displayed as a tree, with their threads as children, in the Program

Traces view (see Figure 2.4). They are organized by date to make it easier to locate

the correct trace. Double clicking one of the threads of a trace will open its sequence

diagram. Right clicking on a trace will bring up a menu that includes options for

activating/deactivating, filtering, and deleting the trace (see Figure 2.4a). From this

view, we can start using the trace to locate the functionality of interest.

To locate the code that implements the Resume Game button, we can either open

a sequence diagram or look at the contents of the Package Explorer. If we look in the

Package Explorer, as seen in Figure 2.3a, all eight packages and 56 high-level classes

are currently visible. This presents a large number of items to search through, but

Diver’s trace-focused user interface can help with this problem.

The trace-focused user interface links the recorded trace to the source code dis-

played in the IDE. The feature can be enabled by activating the trace through the

menu shown in Figure 2.4a. An activated trace can be identified by a green dot and

open eye icon next to it in the Program Traces view. After activating the trace,

19

Figure 2.3: The Package Explorer for the example Tetris program showing the three
different states of filtering

the Package Explorer view is filtered to only display the elements recorded in the

activated trace. The filtered view is shown in Figure 2.3b and can be compared to

the unfiltered version in Figure 2.3a. As a result, the Package Explorer is easier to

navigate and search for interesting methods after activating the trace.

As a result of activating the trace, the Package Explorer only displays the contents

of the trace. However, this probably includes methods unrelated to the Resume Game

button functionality. This is where software reconnaissance can be used to improve

the filtering of the IDE. A new filter trace must first be recorded to collect as many of

the unrelated methods as possible. Once the trace is saved, software reconnaissance

is applied by clicking on the open eye icon next to the filter trace. This causes the

icon to change to a closed eye and indicates that software reconnaissance has been

applied (see Figure 2.4b).

With software reconnaissance applied successfully, a portion of the unrelated

methods are filtered from the Package Explorer and sequence diagram. Figure 2.3c

shows that the Package Explorer has few remaining classes and methods compared

to before software reconnaissance was applied (shown in Figure 2.3b). In addition to

this, the sequence diagram is filtered, as shown in Figure 2.6. Therefore, the trace-

focused user interface and software reconnaissance have transformed the IDE into a

customized, feature-focused state, and have greatly reduced the search space for the

feature location task at hand.

From here, we can search the remaining methods for involvement in the Resume

20

Figure 2.4: The Program Traces window displaying the recorded traces.

Game button functionality. The Package Explorer is an attractive place to start

because so few methods remain active. When an interesting method is identified, the

user can jump from the Package Explorer to that method in the sequence diagram.

The Reveal In feature lets the user perform this navigation and can be accessed from

the method’s right click menu (see Figure 2.5). The user has the option of selecting

the thread they want to jump to, such as the AWT-EventQueue-0 thread shown

in Figure 2.5. After using the Package Explorer to find an interesting method, the

sequence diagram can be used to find out more about the method.

The sequence diagram contains information about the methods that were called

before and after the interesting method. This information helps the user decide if

the method was involved with the clicking of the Resume Game button. If not, the

user can repeat the process of searching the Package Explorer and then navigating to

the sequence diagram for more information. The addition of software reconnaissance

means that there are fewer options to search through, and locating the calls related

to the functionality of interest should be easier.

This example shows how software reconnaissance is implemented and used in Diver

for completing tasks, such as those done in Myers’ user study.

2.5 Overview

In conclusion, Diver provides a platform for the implementation of various cognitive

support theories and program comprehension models. This background work formed

the basis for the knowledge about the field and previous research done. It provided

21

Figure 2.5: The Reveal In option to navigate to the sequence diagram from a class
in the Package Explorer

a foundation for the detailed research conducted into sequence diagram tools and

cognitive support theory which is presented next.

22

Figure 2.6: The filtering of the sequence diagram

23

Chapter 3

Cognitive Support Mapping

This chapter explores the links between Diver’s features and cognitive support theory.

These links provide the basis for studying the effectiveness of the cognitive support of

Diver. This is followed by an analysis of Myers’ 2010 user study [24] that evaluated

software reconnaissance in Diver. The study contained a number of weaknesses and

these are highlighted and discussed. From there, avenues for further research, through

an improved study, are investigated.

3.1 Cognitive Support and Diver’s Features

Diver was based on the OASIS sequence explorer, which was used by Bennett for

evaluation of his research into tool features for sequence diagrams [3]. Myers used the

results of this research to implement features that provided better cognitive support

to programmers. Myers also conducted his own research into ways to reduce cognitive

overload of large sequence diagrams [24]. The research of Bennett, Myers, and many

others was used to design a program comprehension tool based on cognitive support

theory.

Bennett’s research identified features offering cognitive support for sequence di-

agram tools [3], which helped solve problems such as cognitive overload from huge

sequence diagrams. He linked cognitive support theory to these sequence diagram

tool features by mapping the features to design elements put forward by Storey et al.

[30]. Storey et al. developed these design elements, that were backed by cognitive

support theory, as building blocks for software exploration tools. The research done

by Walenstein [34] provided a number of cognitive support theories that described

24

the support provided by the design elements of Storey et al.

The connection between Walenstein’s cognitive support theories and Diver’s fea-

tures can be made as follows. Walenstein’s cognitive support theories [36] support the

cognitive models and comprehension strategies of Storey et al. [31]. These models

and strategies in turn support the design elements that Storey et al. [30] developed

for software exploration tools. These design elements map to the sequence diagram

features drawn up by Bennett et al. [5]. These features were implemented in Diver

by Myers. This connection is explained in more detail below.

Walenstein’s work [35] sought to develop “high-level cognition support terms”

instead of the complex assortment of narrowly defined task or technology dependent

design elements. He identified a gap between cognitive models and tools that seek

to implement them. Walenstein looked into the problem of gaps between cognitive

theories and their implementations in software comprehension tools [36]. He refined

three cognitive support theories and applied them to cognitive models such as the

top-down model. Walenstein’s theories of redistribution, perceptual substitution, and

ends-means reification formed the basis for adding cognitive support to tools, which

he explained in great detail in his thesis [34] and demonstrated with a tool [36].

Walenstein’s theories needed developers to design their tools effectively to success-

fully implement the cognitive support theories described. Storey et al. introduced 16

cognitive design elements, seen in Figure 3.1, that tool designers could use “to support

the construction of a mental model to facilitate program understanding” [30]. These

elements either improve program understanding or reduce cognitive overhead. There

were seven program comprehension elements that enhanced and supported the use of

two different comprehension strategies (bottom-up and top-down), which were among

the list of cognitive models Storey et al. presented in [31]. The remaining elements

reduced cognitive overload by increasing orientation cues/reducing disorientation and

improving navigation. Storey et al. [30] explained the links between these elements

and their cognitive models [31] that allowed developers to provide users with cognitive

support during program comprehension tasks. Even so, the design elements had to

be implemented correctly to be effective.

Bennett identified features used in sequence diagram-based tools that would sup-

port the development of better mental models by developers [5]. He took Storey et

al.’s cognitive framework for the design of software exploration tools and mapped

their design elements to the features he had identified [3]. He argued that their

framework was at the best level of abstraction compared to the other frameworks he

25

Figure 3.1: Cognitive Design Elements for Software Exploration from Storey et al.
[30]

investigated. Bennett relied on the work Storey et al. had done to show that the

design elements were grounded in program comprehension theories. The result was a

matrix of sequence diagram features versus cognitive design elements, with most of

the features mapped to more than one design element. Myers implemented Bennett’s

features into Diver with the goal of building a tool that provided better cognitive

support.

26

Bennett’s sequence diagram tool features are divided into Presentation Features

and Interaction Features and matched to their related Diver features below. This

list completes the connection between Diver’s features and cognitive support theories

behind their inclusion, and also, identifies theories that can be investigated using

certain features of Diver.

3.1.1 Presentation Features

Bennett’s presentation features deal with how the diagrams are displayed, how dif-

ferent views are presented, and how the user interface conveys information efficiently.

Layout: The sequence diagram follows a UML format with some extensions to

improve readability, such as coloured code blocks for loops and conditional statements.

Multiple Linked Views: The Package Explorer is linked to sequence diagrams

through the Reveal In feature. This feature allows the user to navigate from a method

in the Package Explorer to its location in the diagram. The sequence diagram is linked

to the source code through the Jump To Code feature. This feature allows the user

to navigate from a method call in the diagram to the line of code where the call was

made.

Highlighting: The elements of the sequence diagram are highlighted when the

user hovers the mouse cursor over them or clicks them. Code coverage is indicated

by highlighting relevant lines of code with a blue line.

Hiding: Different parts of the sequence diagram can be hidden from view using

various features. The Focus On feature hides all method calls that are not associated

with an activation bar. Unwanted Java class life lines can be collapsed. Sections of

the diagram can also be collapsed so that sub-message calls are not displayed. Lastly,

filtering the Package Explorer hides uninteresting methods.

Visual Attributes: Colour is used to differentiate between static and dynamic

activation boxes. The code blocks are also colour-coded with blue highlighting for

loops, red showing exception handling, and green indicating conditional statements.

27

Labels: The method call arrows are labelled with the method’s name on the se-

quence diagram, as are the return types.

Animation: The only animation in Diver is performed when sections are collapsed

or expanded.

3.1.2 Interaction Features

Interaction features include ways that the diagrams can be navigated, configured and

customized, and automatically searched using queries.

Selection: Sequence diagram elements, such as method calls and activation bars,

are selectable and turn bold when clicked.

Component Navigation: When the Program Traces view is in focus, the arrow

key changes the selection of one thread to another.

Focusing: The Focus On and Focus Up features implement focusing on a section of

a large trace. The Focus On method focuses on a method call and removes all parts

of the diagram not involved with the call. The Focus Up feature involves navigating

from focusing on the current method call to focusing on the preceding method call.

Zooming and Scrolling: Scrolling is implemented for the sequence diagram. Zoom-

ing is only partially implemented in Diver’s Outline view of the sequence diagram,

which provides a zoomed out perspective.

Queries and Slicing: Diver provides search functionality in traces. Slicing is im-

plemented using the software reconnaissance technique to isolate a certain part of the

program by filtering one trace with another.

Grouping: The life line filtering feature implements grouping by collapsing the

classes of a Java package and grouping their life lines into a single life line.

Annotating: Although not a major feature, Diver allows users to make notes that

are associated with objects, such as traces. The notes are saved and viewable later.

28

Saving Views: Traces are saved and can be opened at any time. The sequence

diagram view is saved on close and restored when the trace is reopened.

Saving State: This feature relies on storing the history of actions performed on

the diagram so that a previous state can be accessible. Diver does not include this

functionality and neither did any of the other tools Bennett surveyed. This feature

can be complex to implement and require large amounts of storage space. This made

it unattractive to implement. A screen capture feature was added to Diver that saved

an image of the current state of the sequence diagram.

29

3.1.3 Cognitive Support Theories In Diver

Based on the discussion of theories in Section 3.1, the cognitive support theories of

redistribution, perceptual substitution, and ends-means reification can be identified

in Diver’s features.

The redistribution support theory covers all features in Diver that store infor-

mation for the users, such as method calls from program executions. Without this,

a developer would have to remember these events while stepping through the code

line by line. Additionally, Diver provides filtering that turns the Package Explorer

into a list of methods of interest for the user to reference while completing the task;

focusing and hiding work the same as filtering. The cognitive support provided by

redistribution can, therefore, be measured by the users’ perceptions of the sequence

diagram and filtering features.

Perceptual substitution deals with displaying data in a way that takes advantage

of the user’s ability to process visual information better and quicker than text-based

data. This is why a sequence diagram is used in Diver instead of a list of method

calls. It shows the flow of the program, including class and method names, with the

aim of providing better understanding of the program’s behaviour. During feature

location and program comprehension tasks, a user would be expected to rely on the

sequence diagram more than the source code if it provides better cognitive support

for completing the tasks.

Ends-means reification is a more complex theory involving reifying (making con-

crete) certain states in a tool that a user can move between while solving a task, such

as feature location. These states give the user a better idea of the problem space

as well as providing options or steps to solve the problem. One set of states would

be the filtered Package Explorer and its methods, and the sequence diagram and its

information about the methods. Thanks to filtering, the list of methods from the

trace are potential solutions to the feature location task. The user can move from the

Package Explorer to the sequence diagram using the Reveal In feature to determine

if a selected method is the one being sought. Moving from one state (the Package

Explorer) to the other (the sequence diagram) and back again, repeating the steps

until an interesting method is found, constitutes the behaviour expected when the

ends-means reification theory is put into practice. The use of the Reveal In feature

is key to this type of cognitive support in Diver.

30

3.2 Myers’ Software Reconnaissance User Study

To evaluate the software reconnaissance feature implemented in Diver, Myers ran a

study featuring an experimental simulation [21] using professional programmer par-

ticipants to solve tasks using Diver [24]. Myers explained that an experimental sim-

ulation was used so that a balance was achieved between realism and control of the

experiment. The professional programmers and realistic tasks were used to make the

context as close to a real feature location and program understanding task as pos-

sible. Myers reported that ten professional developers were recruited to participate

in the study. The participants were required to complete two large feature location

tasks that were coupled with five program comprehension questions based on those

developed by Ko et al. [15].

The three research questions that the initial study tried to answer were:

1. Does the use of software reconnaissance improve the efficiency of feature location

in Diver?

2. Does the use of software reconnaissance reduce frustration during feature loca-

tion tasks?

3. How does the use of software reconnaissance influence navigation patterns through

the various views in Diver?

It was decided that Diver’s own source code would be used in the study as it was

the required size, had sufficient complexity, and was unknown to all the users. Myers’

knowledge of the code also helped with the selection of the two tasks.

To account for differences in experience between users, the study used a within

subjects approach; one task was performed using software reconnaissance and one

without. The performance of each participant using software reconnaissance was

compared with them not using it. A drawback of a within subjects approach is

learning bias which could result in the second task being easier due to the experience

gained completing the first one. To ensure software reconnaissance was not favoured

due to this phenomenon, the first task used the software reconnaissance scenario and

the non-software reconnaissance scenario was applied for the second task. The order

of the two tasks was alternated over the course of the study. After a training session,

the users had 40 minutes to complete each task and the accompanying questions, and

the entire study took two hours per user.

31

An interview was conducted afterwards to gain insight into the users’ experiences.

In addition to the interview, data was collected through screen and video recordings,

and observations were written down by the experimenter. The users were asked to

think out loud to aid the understanding of their thought processes and stumbling

blocks. Together with the time measurements, the quantitative and qualitative data

collected made it possible to use a mixed-methods methodology to analyze the results.

The first research question was answered by timing the participants. The initial

metric of how long it took to complete an entire task was replaced with a time to first

foothold (TTFF). This adjustment was made because the experimenter observed that

after finding the feature, participants leisurely answered the questions, using all of

the remaining time available. The TTFF started once the participant had completed

tracing and ended when a method was found that resulted in gaining a foothold.

The second research question was answered by analyzing the participants’ utter-

ances recorded on video and by the experimenter. The frustration utterances were

coded and then sorted into three categories. The number of occurrences during the

software reconnaissance scenario was compared to the occurrences during the non-

software reconnaissance scenario, and then results were discussed.

The third research question on participant interactions was answered by analysing

the Diver usage data that was recorded. The use of different features is compared

between scenarios. Myers used the differences in Package Explorer usage to show that

software reconnaissance provided better ends-means reification support.

3.2.1 Shortcomings in the Initial User Study to Evaluate

Diver

The initial study had a number of problems identified by reviewers of a submitted

(but not published) paper on the study and through our own analysis of the design

and results.

• Problem 1: Not all the participants used software reconnaissance during the

session even though they were instructed to do so. As the study relied on

comparing the data from tasks being completed using the feature versus not

using the feature, their data was not useful and excluded for analysis. Of the ten

participants, two did not follow the instructions to use software reconnaissance

so the data from eight participants could only be used.

32

• Problem 2: After the study, a mismatch was discovered in terms of difficulty

between the two tasks. One task was much more difficult to complete than the

other task, especially without the use of software reconnaissance. With only

two tasks, this had a noticeable affect on the results because many participants

were unable to finish the problem task, especially without the help of software

reconnaissance.

• Problem 3: There was confusion with Diver being used to trace itself. As two

instances of Eclipse were open during tracing, participants were often unsure

which instance of Eclipse was recording the other instance. A study participant

said that the confusing multiple instances of Eclipse led to waste time during

the tasks.

• Problem 4: The think-aloud method did not result in some participants voic-

ing many frustrations. The results showed that half the participants made less

than 10 frustrating comments each in an 80 minute period. It could be seen

that some participants were more inclined to utter frustrations than others.

One reviewer pointed out that it was hard to separate frustration caused by

the tool and frustration caused by the process. Because of this flaw, the second

research question could not be adequately answered.

• Problem 5: The study tried to evaluate the efficiency of software reconnais-

sance using the TTFF metric. Measuring of the TTFF was started once the

user completed tracing. This is a problem because software reconnaissance takes

longer to record the necessary traces. The software reconnaissance technique

requires at least two traces to be recorded, but only one trace is necessary when

the technique is not used. The time taken to record traces is, therefore, relevant

to the study. By ignoring the tracing time, there was a bias towards software

reconnaissance.

• Problem 6: Two reviewers pointed to the confounding effect of having partic-

ipants use software reconnaissance in the first session and then taking it away

in the second session. This potentially biased the participant frustration that

Myers was measuring.

33

3.2.2 Improving the Study Design

Based on these identified problems and lessons learnt from the initial study, we de-

signed a new study with a number of significant changes to try to improve the exper-

iment. These changes are listed below.

The methodology was changed from an experimental simulation to a laboratory

experiment. A laboratory experiment takes place in an artificial laboratory setting but

this methodology involves more precise measurements being taken for a narrow scope.

This change allowed a number of other changes be made that were not compatible

with an experimental simulation.

Problem 1, dealing with participants not using software reconnaissance, was ad-

dressed by reminding participants to use software reconnaissance during the SR sce-

nario if they initially failed to do so.

To address Problem 2, which involved differences in the task difficulties affecting

analysis, a within subject approach was not used in favour of comparing subjects’

performances with a mixed model design. To this end, a larger number of participants

was needed and, given the difficulty of recruiting professionals, student participants

were used instead. This allowed for more quantitative analysis of the data, but

introduced the potential problem of using inexperienced students.

One of the causes of Problem 2 was the complexity of the tasks; hence simpler

tasks that required less time were selected. Simpler tasks meant that participants

with less programming experience could be used, thus reducing the risk of using

inexperienced students. Following the decision to use simpler tasks, the number of

tasks was increased to eight. This change mitigated the risk of a task being biased

towards one of the scenarios and provided more data for analysis.

Due to the potential of inexperienced students and differences in experience be-

tween participants, a pre-study questionnaire was introduced to get more information

about their backgrounds. This information could be used in the analysis of the data

to determine if experience played a significant part in the results. The questionnaire

asked for information on academic background, general and specific programming

experience, and exposure to Tetris. The complete pre-study questionnaire form can

be found in Appendix B.

Problem 3, related to the confusion around tracing Diver with Diver, was ad-

dressed by changing the software project under analysis from Diver to a Tetris game.

Also, a simple Sudoku game was introduced for training. This avoided the confusion

34

created by tracing Diver using Diver.

Problem 4 and 6, about measuring the participants’ frustrations, was addressed

by moving away from investigating participants’ frustration utterances during the

sessions and the research question was dropped.

To solve Problem 5, where the TTFF was only measured after tracing had been

completed, the TTFF start time was changed to when the participant started the

task, and not when the tracing was finished. The end time remained when a foothold

related to the feature was established in the code. The drawback is that participants

who take a long time tracing will take longer to complete the tasks than those who

find it easy to trace. However, the change leads to an improved reflection of the time

it takes to complete a task.

For the initial study, five program comprehension questions were included as part

of each task. For this study, the questions were reduced to three to simplify the tasks

and save time. Each task involved finding where certain functionality occurs in the

Tetris code and then answering three program comprehension questions explaining

how and why that functionality was executed.

3.2.3 Rephrasing Myers’ Research Questions based on the

Problems Uncovered

Myers’ research questions were reconsidered due to the problems and subsequent

changes to the study. For example, question two on frustration was not included due

to the difficulties associated with accurately measuring participant frustration. With

all the experience gained from the initial study, analysis of the participants’ navigation

trends resulted in some important observations. The cognitive support of Diver and

software reconnaissance was only briefly touched on in Myers’ study. We believe this

topic was important enough to have its own research question. The question on the

efficiency of software reconnaissance is still important and the TTFF measurements

can be used to answer it. We decided to also investigate the effectiveness of completing

tasks using software reconnaissance. The statistics on how many tasks were completed

using software reconnaissance can be used to measure effectiveness. The efficiency

and effectiveness concepts were combined into one broader research question. These

questions are presented in detail in the next chapter.

35

3.2.4 Summary

This chapter described the relationship between cognitive support theory and Diver’s

features. It then presented the problems with Myers’ 2010 study and proposed

changes that would hopefully result in a new, improved study. The research questions

were reconsidered and set the foundation for the new study design, which is presented

in the next chapter.

36

Chapter 4

Empirical Study

This chapter describes the design, results, and observations of our empirical study

investigating if the use of Diver’s software reconnaissance feature helps improve the

user’s ability to locate features and perform program comprehension tasks. The re-

search questions are presented and discussed, after which the study design is explained

in detail. The results are presented, with observations provided in the discussion sec-

tions after each research question.

4.1 Research Questions

The research questions for this new study were adjusted based on problems with

the results from the initial Diver study. The second research question was removed

because no suitable changes to the study design could be found to acquire useful

data regarding user frustration. A new research question based on Diver’s cognitive

support was added, which queried the ability of software reconnaissance to improve

the support provided by Diver during program understanding tasks. The new research

questions are:

1. How does the use of software reconnaissance influence navigation and interaction

strategies in Diver? (RQ1)

2. Does the use of software reconnaissance improve the cognitive support of Diver

during program understanding tasks? (RQ2)

3. Does the use of software reconnaissance in Diver improve a user’s efficiency at

feature location tasks? (RQ3)

37

The data collected from the study will help answer the three questions. RQ1 will

be answered by investigating the user navigation data and searching for recurring

patterns and trends. Successfully completed program comprehension tasks will be

compared to incomplete tasks across the two scenarios. We will present the Diver

usage differences that resulted in the feature location tasks being completed success-

fully.

RQ2 involves considering the three main cognitive support theories mentioned by

Walenstein [34] and identifying whether the support offered by their implementation

in Diver is improved with software reconnaissance. Analysis of user perceptions of

the features of Diver as well as their interactions with the tool will help us to answer

this research question.

RQ3 questions the performance of the participants and how successfully com-

pleted tasks differ depending on whether or not software reconnaissance is used. This

question will be answered by measuring the time taken by users to complete program

comprehension tasks in Diver.

In the Discussion section, the results are analyzed to find answers to the research

questions above.

4.2 Methodology

This section describes the study design and how participants and tasks were selected.

The processes followed during the study are outlined and the pilot study that was

used to refine the process is discussed. In preparation for conducting the study, ethics

approval was sought from and granted by the University of Victoria Ethics Committee

and the approval certificate can be found in Appendix G.

4.2.1 Tasks

The tasks required participants to conduct feature location and program comprehen-

sion activities using Diver. These activities simulated program comprehension tasks

performed in the real world and supplied data to answer the three research questions.

Participants were asked to complete eight tasks, which were based on the different

features of Tetris. The following criteria were used to select the features for the tasks:

• Each task should be simple enough to be completed in approximately 10 min-

utes.

38

• The features being located should be visible and easy to trace.

• The features should be spread throughout the software project.

• The features should involve different execution flows such as setter methods or

GUI interactions.

The objective for each task was to locate a method related to the feature of

interest and then investigate how the functionality was executed. Based on their

investigations, participants had to answer three program comprehension questions

which were based on questions developed by Ko et al. [15]. The questions were:

• In which thread is the functionality primarily executed?

• Please describe the program flow that preceded the execution of the function-

ality.

• What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

Appendix C includes the task description forms that explained the eight features

that were used for the study. Participants completed these forms for each task.

4.2.2 Participants

We recruited participants using posters and email advertisements. 16 participants

volunteered for the study. The participants varied from undergraduates to post-

doctoral researchers. They were required to have Java programming experience and

all 16 met this criteria although the amount of experience differed. This is discussed

in Section 4.3.8. At the end of the experiment, participants were given a $20 stipend

for their participation.

4.2.3 Experimenter’s Process

The experimenter (and author of this thesis) referenced a handbook that listed the

steps needed to run the experiment. After the design was finalised, the handbook

was created to outline the process followed for each participant. The handbook was

used as a check-list to make sure that all equipment and forms were ready beforehand

and all instructions about Diver and the study were explained to the participant. A

39

training script was followed to explain Diver’s features. The handbook can be found

in Appendix F.

All the equipment was prepared in the laboratory. Participants were provided

with an installation of Eclipse with Diver installed and the Tetris project open. The

participants’ activities were recorded by a video camera, a screen recorder, and on

paper based on the observations of the experimenter.

The study was two hours in length and consisted of a number of sections involving

different duties for the experimenter to perform.

1. In the Orientation section, after giving an overview of the study and explaining

the data usage and privacy policies, the experimenter provided a consent form

for the participant to sign. Next, a pre-study questionnaire was given to the

participant to fill out. (5 minutes)

2. In the Training section, the experimenter introduced Diver and trained the

participant to conduct feature location and program comprehension activities.

The scripted training took the form of a guided tour around Diver as the par-

ticipant completed a sample task, called Task 0, involving an example Sudoku

project. (25 minutes)

3. In the Experimentation section, the experimenter provided the participants

with instructions for the tasks and then assigned them one task at a time to

complete. This section was divided into two 40 minute sessions with a five

minute break in-between. The experimenter instructed the participants to use

software reconnaissance in the first session and not to use it in the second session.

The participants were asked to verbalize their thoughts, problem solving ideas,

and processes using a think-aloud technique [9]. The experimenter took note of

these verbalized thoughts as well as other observations while the participants

completed the tasks. (85 minutes)

4. In the Conclusion section, the experimenter handed out the post-study ques-

tionnaire to complete, and thereafter, gave the stipend to the participant. (5

minutes)

4.2.3.1 Task Order Selection

Eight tasks were performed under two different scenarios (four tasks each). The soft-

ware reconnaissance (SR) scenario had no restrictions: participants could use all of

40

Diver’s features including the sequence diagram, trace activation, navigation between

views, and trace filtering to implement the software reconnaissance technique. The

non-software reconnaissance (NSR) scenario had only one restriction: participants

could use all of Diver’s features except for trace filtering, which was the key feature

used to implement software reconnaissance (and had no other uses). The participants

were told that software reconnaissance was the focus of the study and they were en-

couraged and reminded to use the technique for the SR scenario. These two scenarios

were arranged so that the SR scenario was applied to the first four tasks attempted,

and the NSR scenario to the last four tasks attempted.

The order in which a participant executed the eight tasks was determined as

follows:

1. A unique order for the eight tasks was selected for each participant.

2. The tasks were divided into two groups of four tasks each: task group A and

task group B.

3. For tasks in task group A, participants performed the SR scenario; for task

group B, the NSR scenario.

Figure 4.1 displays how the order of the tasks was determined. For each odd

numbered participant, the experimenter selected a sequence that was unique. Some

combinations of tasks may have had unknown dependencies or links between them,

and selecting different orders mitigated this risk. The eight tasks were then divided

into the two task groups and assigned the SR or NSR scenario. For each even num-

bered participant, the two task groups were swapped so that they were assigned the

other scenario. Ideally, an even number of participants was required so that each

task group was attempted for each scenario. A task group could contain unknown

dependencies just like the overall order, and these dependencies could affect how easy

the tasks were under one scenario versus the other. To check that the assignment

of the tasks was evenly distributed, the frequency of the tasks in each of the eight

positions was monitored.

The participants’ task orders used in the study are shown in Table 4.1

41

Figure 4.1: Depiction of task order assignment process followed to determine unique
orders for all participants.

Participant Tasks
SR Non-SR

P1 1 2 3 4 5 6 7 8
P2 5 6 7 8 1 2 3 4
P3 6 1 8 3 2 5 4 7
P4 2 5 4 7 6 1 8 3
P5 3 8 1 5 7 4 6 2
P6 7 4 6 2 3 8 1 5
P7 5 2 1 6 8 3 7 4
P8 8 3 7 4 5 2 1 6
P9 6 7 2 1 4 8 5 3
P10 4 8 5 3 6 7 2 1
P11 2 4 8 7 1 3 6 5
P12 1 3 6 5 2 4 8 7
P13 3 5 2 6 8 1 4 7
P14 8 1 4 7 3 5 2 6
P15 4 6 3 1 7 2 5 8
P16 7 2 5 8 4 6 3 1

Table 4.1: Task Allocation

42

4.2.4 Participant Feedback

The participants were required to fill in two questionnaire forms, which can be found

in Appendix B and D. A pre-study questionnaire was administered to gain a better

understanding of the study participants. The questions inquired about the partici-

pants’ educational and technical experience. It also ascertained if they had knowledge

of the game Tetris, which was being used in the study.

A post-study questionnaire was administered to collect feedback on the partici-

pants’ experiences with Diver and software reconnaissance. The questions were di-

vided into free-form and multiple choice answers. The questions with free-form an-

swers asked participants about the helpful and unhelpful aspects of the tool and their

impressions of the study. The multiple choice questions were based on a USE ques-

tionnaire [20] to gauge the usefulness, ease of use, ease of learning, and satisfaction

of Diver and software reconnaissance.

4.2.5 Pilot Study

A pilot study was conducted to test the experiment and see if any problems occurred.

It also allowed the experimenter to practice conducting the experiment. Three par-

ticipants were recruited to take part in the pilot study. One participant was an

undergraduate, one was a Masters student, and one was a PhD student. They were

all familiar with Tetris and had played it before. In addition, they had all programmed

in Java, and while only one had never used the Eclipse IDE, this participant had pre-

viously used a similar IDE called Netbeans. The first participant was only able to do

one hour of the study, but he provided valuable advice and insights into the process.

The pilot participants completed the study and provided input on the process.

All the tasks were finished successfully and no major problems were discovered

with the limited pilot data. The NSR scenario had the quickest completion time

for five of the eight tasks. For most tasks, the pilot participants’ times were closely

grouped together. This indicated that no tasks were likely biased towards one scenario

or the other. The pilot participants’ completion times also varied over the course of

the two scenarios and did not show a decreasing trend, which would have indicated

a learning curve.

Nonetheless, we identified a number of slight improvements for the study:

1. The training script needed improvement as some pilot participants requested

43

better explanations of features and their uses. The training script was changed

to better highlight Diver’s functionality and explain some use cases.

2. Based on the suggestion of the first pilot participant, a sample task (T0) was

introduced for participant training. The goal of the tasks was to help partici-

pants understand the process involved with solving the tasks. This change was

introduced for the final pilot participant.

3. A few of the participants were unsure of the level of detail required for an-

swering the program understanding questions. Therefore, an explanation of the

questions was added to the tutorial script along with the T0 sample task.

4. The participant instructions were updated to inform the participants that Diver

is in beta and crashes on occasion. They were instructed to be patient while the

traces were saving as Diver sometimes crashed when the user tried to interact

with a trace before it had finished saving.

The pilot successfully highlighted ways to improve the study. The data from the

three pilot participants was not used in the final study as the subsequent changes

may have affected the results.

4.2.6 Data Analysis

The study followed a mixed-methods methodology with both quantitative and quali-

tative data being collected and analyzed by the researchers. The data collected from

the pre-study questionnaire was used to compare experience with performance and

discard outliers with too little or too much experience if necessary. This is discussed

in Section 4.3.8.

For the first research question on navigation and interaction strategies (RQ1), the

participants’ activities were analyzed and their interactions with Diver were recorded.

From this data, navigation patterns could be identified for both the successful and

unsuccessful completion of the program understanding tasks. The differences between

the patterns have lead to usage pattern recommendations for users.

The second research question on cognitive support (RQ2) was answered by using

data from a number of sources. To analyse redistribution support, we looked at the

participants’ positive and negative feature feedback to determine their perceptions of

the sequence diagram. For perceptual substitution theory support, we hypothesize

44

that participants will navigate to and read the code less often. We can compare dif-

ferences in the Jump To Code feature usage between the two scenarios to determine

if software reconnaissance improves support for the theory. Software reconnaissance

filters the sequence diagram to only display unique method calls related to the func-

tionality being sought. If the sequence diagram did not provide enough information

or cues, a participant would need to jump to the code to read it in order to gain a

better understanding of the program.

Ends-means reification can be studied by observing if the participants use the

Package Explorer’s filtered elements as the ends, and the navigation options to the

sequence diagram or source code as the means. If Diver successfully maps the ends

to the means by implementing a concrete structure, we hypothesize that the Package

Explorer will be used more during the Software Reconnaissance scenario. The Package

Explorer should have had more items filtered out, making it a good starting point for

finding interesting methods. Participants would search through the Package Explorer

looking for interesting methods, and then use the Reveal In functionality to jump to

the sequence diagram. Information about related methods could be discovered in the

sequence diagram and the method related to the functionality found. If the method

was not found, the participant would go back to the Package Explorer and continue

searching.

The final research question on efficiency and effectiveness (RQ3) was answered in

two parts. The first part answered the efficiency question by using data from the time-

to-first-foothold (TTFF) metric. TTFF measures how long it took the participants

to discover one of the main software elements related to the functionality sought

(see Section 3.2 for more detail). The time was recorded by the experimenter and

then confirmed from the recordings. The second part of the answer addressed the

effectiveness part of the research question. Effectiveness was evaluated by examining

the number of tasks completed successfully for both scenarios. In addition to the

performance data, the data from the post-study questionnaire about the participants’

experience with Diver was used.

4.3 Results and Discussion

In this section, we present the results of the user study and the data collected from

the sessions. We present the data on the cognitive support offered, navigation and

interaction strategies used, and the task times and success rates of the participants.

45

This data was collected from a number of sources: video recordings, application logs,

experimenter’s observations, and the participants’ questionnaire responses. After

explaining the results, we interpret the results and discuss our findings.

The 16 participants attempted the tasks assigned them with varying levels of

success. Success was evaluated on the basis of them finding a method related to the

functionality identified by the task. Although at least one participant struggled due

to lack of experience, all participant data was used during the analysis of the study

and no outliers were discounted. Tasks were either completed correctly, completed

incorrectly, or not completed. All participants followed the instructions and used

software reconnaissance during the SR scenario.

4.3.1 RQ1: Interaction and Navigation Patterns

The first research question, which deals with the interaction and navigation patterns

in participants’ Diver usage, was answered by analyzing Diver’s data logs. This anal-

ysis involved extracting the relevant entries from the logs, categorizing and compiling

the data, and then comparing the usage patterns.

Four events related to Diver’s various features were selected to analyze partici-

pants’ navigation and interaction with the tool. The four events were: navigating

to the Program Traces window, navigating to the Sequence Diagram window, using

the Jump To Code feature, and using the Reveal In feature. Entries related to these

four events were extracted from the log files. The extracted entries were categorized

into four groups according to the scenario associated with the task attempt and the

outcome of the attempt. The rate per minute for these events was determined by

dividing the number of entries by the total time taken to complete the tasks.

Task attempts were classified as successful (SUC), incorrect (INC), did not finish

(DNF), and did not attempt (DNA). DNF was for all incomplete tasks attempts,

including when a participant ran out of time at the end of a session or chose to move on

to another task. INC represented incorrectly completed tasks, which occurred when a

participant mistakenly thought they had found a method related to the functionality

being sought. Participants may have been on the right track and just selected an

unrelated method or they could have been completely on the wrong track. As a

result, the data from the few task attempts classified as INC were not included in

the navigation analysis of this study.

Table 4.2 show the data for the four events divided into the four groups, which

46

are determined by task outcome and scenario type.

The Program Traces section of Table 4.2 shows how many times per minute the

participants navigated to the Program Traces window. The Program Traces features,

such as switching threads or activating traces, were accessed slightly more during the

SR scenario for both SUC and DNF tasks. Incomplete task attempts saw an increase

in navigation to the window irrespective of the scenario.

Event SR NSR

Program Traces
SUC 6.59 5.39
DNF 9.67 6.17

Sequence Diagram
SUC 10.36 9.13
DNF 8.42 12.00

Jump To Code
SUC 10.93 12.24
DNF 6.33 13.50

Reveal In
SUC 1.41 1.63
DNF 1.67 1.50

Table 4.2: Diver Usage Statistics

The navigation data for the Sequence Diagram window is also presented in Ta-

ble 4.2. The data shows the average number of times per minute that participants

navigated to the window to exploring the sequence diagram. The participants nav-

igated from the Package Explorer, source code, and Program Traces window 10.36

times per minute for successfully completed tasks under the SR scenario. The average

was slightly less under the NSR scenario, measuring 9.13 for successful tasks. There

was a decrease under the SR scenario for incomplete tasks compared to those com-

pleted successfully. However, under the NSR scenario, there was a slight increase in

navigation to the Sequence Diagram window during tasks that were not completed.

The Jump To Code section of Table 4.2 shows the usage data for the Jump To

Code feature. The feature was used less under the SR scenario compared to the the

NSR scenario for both successful and incomplete tasks. Successful tasks had higher

usage rates under the SR scenario, however, the incomplete tasks had a slightly higher

rate under the NSR scenario.

The Reveal In section of Table 4.2 shows how often the Reveal In feature was

used on average. The feature usage was similar throughout the four groups, however,

successful task attempts under the SR scenario had the lowest rate.

47

4.3.2 RQ1: Interpretation of the Results

The participants’ interactions highlighted what navigation strategies were used to

successfully complete the tasks. Once classified, INC task attempts were not included,

as explained in Section 4.3.1. By combining the navigation data with observations

made by the experimenter, a more complete view of participants’ interactions with

Diver can be created.

4.3.2.1 Program Traces window

The results in Table 4.2 show that the program traces window was used more during

the SR scenario than the NSR scenario for both SUC and DNF tasks. This was ex-

pected because the software reconnaissance technique required participants to record

and manage two traces. The TTFF measurement includes the time taken to record

the traces, as this differentiated the SR scenario. The data confirms that the addi-

tion of another trace under the SR scenario results in an increase in Program Traces

window usage.

The data also showed an increase in the use of the program traces window dur-

ing unsuccessful task attempts, especially a 47% increase under the SR scenario.

Two possible reasons for the increase, which the experimenter observed, were tracing

problems and trouble identifying the correct thread. The main causes of the tracing

problems were recording a trace that was either too large or did not contain the cor-

rect methods. For instance, P4 recorded an extremely large trace for Task 4 after a

lengthy attempt to complete one line in Tetris. As mentioned in the training, such a

large trace would be difficult to use in Diver. P4 had to eventually record another,

smaller trace, and therefore used the Program Traces window again. The mistake

tracing lead to increased use of the Program Traces window and contributed to an

unsuccessful task attempt.

These observations identify navigation patterns that highlight areas where users

can negatively affect their program comprehension tasks and lose their way with

Diver.

4.3.2.2 Sequence Diagram window

We hypothesized that software reconnaissance was better at supporting ends-means

reification and that participants would use the sequence diagram as the means to

identify a method related to the functionality being sought. The participant behaviour

48

we expected was a hypothesis and confirmation approach where participants would

look for possible interesting methods in the Package Explorer and then try to confirm

their relevance in the sequence diagram and code.

The data found in Table 4.2 in the Sequence Diagram section shows increased

navigation to and from the sequence diagram for successful and SR scenario tasks.

This increase can be explained by various possible navigation patterns. One pattern,

related to the ends-means reification hypothesis mentioned above, has participants

navigating to and from the Package Explorer more for successfully completed tasks

using software reconnaissance. The Reveal In feature data found in Table 4.2 would

need to match the navigation increase seen by the sequence diagram window to sup-

port this navigation pattern.

4.3.2.3 Reveal In feature

Taking into account the Reveal In feature data, the pattern of frequent navigation

between the Package Explorer and sequence diagram can be ruled out as a possible

navigation pattern. For successfully completed tasks under the SR scenario, the

feature was never used more than twice per minute on average, well below the average

of around ten times per minute for the sequence diagram.

This statement is backed up by observations that saw participants find an inter-

esting method with the help of software reconnaissance and searching the Package

Explorer. The most successful participants, like P1, easily found relevant methods

in the Package Explorer and then only used the Reveal In feature once to find where

the method was called in the sequence diagram. This is discussed further in Section

4.3.4.

4.3.2.4 Jump To Code feature

The data from the Jump To Code feature section in Table 4.2 completes the picture of

the participants’ interactions with Diver. The data shows that there was an increase

in the use of the Jump To Code feature for the tasks successfully completed under SR

scenario tasks, similar to the Reveal In usage. This indicates that participants were

moving to and from the sequence diagram and source code to gain an understanding

of the program and methods of interest. This proved successful for the SR scenario

but not for the NSR scenario.

The usage under the NSR scenario shows that participants were less successful

49

when they frequently navigated between the sequence diagram and source code. The

experimenter observed that participants who struggled to gain a foothold in the se-

quence diagram through the Package Explorer were more likely to get lost in the

sequence diagram. This lead to them switching between exploring the diagram and

the source code, often with little success. Some of the successful tasks attempts were

solved by participants reading through the code, but mostly they included use of the

sequence diagram as well.

4.3.2.5 Summary

Software reconnaissance was found to influence navigation and interaction patterns

in a number of different ways. The Program Traces window was used more frequently

for tasks involving software reconnaissance. The Reveal In feature was used less, con-

trary to what was expected, as a result of software reconnaissance effectively filtering

the Package Explorer and allowing footholds to be gained in the sequence diagrams.

The Reveal In feature was used the least for successfully completed tasks using soft-

ware reconnaissance — a fact, that together with observations of the participants

success, indicates that the Reveal In method was more effective with the software

reconnaissance technique.

More frequent navigation between the sequence diagram and source code was seen

by participants using software reconnaissance. This was attributed to short enquiry

episodes to confirm the operation of methods, as opposed to participants without

software reconnaissance who lingered on a specific window for a longer period of

time. In response to the research question, these results put forward navigation and

interaction patterns that were linked to a higher chance of success completing tasks.

The data and observations also found navigation patterns that led to slower, less

successful task attempts. All of these patterns can be used to train future users of

the tool and help improve the design of Diver.

50

4.3.3 RQ2: Cognitive Support

The second research question on whether improved cognitive support is offered by

software reconnaissance can be ascertained by exploring participants’ interaction be-

haviour and feedback about the tool. The logging of the interactions showed the

use of various pieces of functionality within the Eclipse IDE. The observations of

the participants and their responses to the questionnaire were used to create a bet-

ter picture of the experience of using Diver with and without the aid of software

reconnaissance. We investigate the three main cognitive support theories (redistribu-

tion support, perceptual substitution, and ends-means reification) and how software

reconnaissance influences their implementation in Diver.

4.3.3.1 Redistribution Support

As mentioned in Chapter 2, the redistribution support theory involves when a person

stores data externally from the mind to solve a problem. For example, the user can

use the sequence diagram to store the method calls of a trace. The trace-focused

user interface also stores information about a trace’s unique method calls. The aim

of these two features was to solve cognition overload, especially with large traces [22].

Diver was designed to provide redistribution support for users so that they could

complete feature location and program comprehension tasks. Software reconnais-

sance was introduced to improve this support. By analyzing the perceptions of the

participants, we can determine if software reconnaissance does improve the support.

Our analysis of the participants’ opinions of Diver’s sequence diagrams and related

features revealed three main themes related to the problems they experienced:

1. Size and complexity

2. Navigation

3. Awareness

There were both positive and negative comments from the participants’ experience

using Diver with and without software reconnaissance. Many participants complained

about the size and complexity of the diagrams that they had to work with during

the study. These complaints were mentioned without talking about the presence of

software reconnaissance; however, the positive comments below do make specific men-

tion of the software reconnaissance features. P8 was “overwhelmed” by the amount

51

of data, and P7 found the diagrams intimidating and very “dense” with information.

For navigation, P2, P4, and P14 had problems navigating and scrolling around the

diagram view. P10 admitted to getting “lost” in the large diagrams. Awareness

was not mentioned as much, but P7 complained about not being able to zoom to

get a better perspective. P5 had a similar problem with the long horizontal arrows

that connected to artifacts that were not being displayed. P13 made the point that

the tool was “rough around the edges which takes additional cognitive capacity away

from the already complicated task.”

Software reconnaissance did feature in much of the positive participant feedback,

which focused on the features involving the technique. Most participants mentioned

that using software reconnaissance to filter the Package Explorer and sequence dia-

gram was the most helpful technique for completing the assigned tasks. This filtering

of the IDE based on the contents of the trace is, in part, based on the redistribution

support theory. Of the 16 participants, 13 pointed to the filtering of the IDE being the

most useful feature, especially with the help of software reconnaissance. For instance,

P8 was only “overwhelmed” by the sequence diagram when software reconnaissance

filtering was not applied. P3, P6, and P15 all agreed that the filtering provided by

software reconnaissance made the sequence diagram usable and helpful when com-

pleting the feature location and program understanding tasks. The remaining three

participants, who did not list filtering as the most useful feature, mentioned the Re-

veal In and/or Jump To Code features. The Reveal In feature is the basis for our

hypothesis on perceptual substitution and the Jump To Code feature is the basis for

our hypothesis on ends-means reification — both of which are discussed below.

4.3.3.2 Perceptual Substitution

The perceptual substitution theory was defined in Chapter 2 as a way of transform-

ing how data is displayed to support better cognitive processing and, therefore, un-

derstanding. A simple example is replacing a data table in favour of a chart when

displaying data. Similarly, Diver was built around the idea of visualising an execution

trace as a sequence diagram. The sequence diagram provides a visual substitute for

the textual information recorded by tracing a program’s method calls. As discussed

previously, Diver’s sequence diagram enables users to visually process data instead of

having to analyze the source code.

In this study, we investigated the effect that software reconnaissance has on using

52

Diver. To measure the perceptual substitution support offered, we looked at the Jump

To Code feature usage data. We hypothesized that if software reconnaissance resulted

in participants reading less code and using the sequence diagram more, it supported

perceptual substitution better than Diver without software reconnaissance.

Every participant used the Jump To Code feature at least once for both the

SR and NSR scenarios. Table 4.3 shows the usage of the Jump To Code feature by

participants. The mean number of times the Jump To Code feature was used per task

is displayed for both SR and NSR scenarios. Alongside the averages is the percentage

difference between SR and NSR. The mean number of times Jump To Code was used

for SR was 9.82 times compared to 11.86 for NSR. The difference represents a 20.78%

increase in use with a standard deviation of 8.64.

A hypothesis t-test was performed and the p-value was calculated to be 0.195,

meaning that the chance of getting an mean of 11.86 or more was 19.5%. The null

hypothesis, which stated that the NSR scenario has no effect on the Jump To Code

feature usage, could not be rejected as the high p-value indicated the mean was

statistically insignificant.

Participant SR NSR Diff (%)
P1 1.5 2 33.33
P2 21.5 8.5 -60.47
P3 2 0.67 -66.67
P4 5.33 18.5 246.88
P5 13.33 33 147.50
P6 19 17.33 -8.77
P7 1.33 0.5 -62.50
P8 5.33 3.33 -37.50
P9 12.5 24.67 97.33
P10 16 7 -56.25
P11 4.67 19 307.14
P12 5.33 12 125.00
P13 1.33 4.33 225.00
P14 28 16.67 -40.48
P15 6 11 83.33
P16 14 11.33 -19.05

Ave 9.82 11.86 20.78

Table 4.3: The Jump To Code feature usage for all participants

53

4.3.3.3 Ends-means Reification

Chapter 2 explains the complex ends-means reification theory in detail. In Diver,

ends-mean reification is applied when the filtered Package Explorer is used as a nav-

igation start point when searching for a method in a sequence diagram. It is also

applied when using a compiler list to jump to places in the code where errors occurred

in order to fix them. The Reveal In feature in Diver constitutes the participant ap-

plying the ends-means reification theory. We can compare the usage of the feature

from one scenario to the other to determine which scenario provides better support

according to the theory.

The feature usage was analyzed to find out which scenario favoured the Reveal In

feature. Table 4.4 displays the Reveal In usage statistics for each participant. The

mean number of times Reveal In was used per task is shown for the SR and NSR

scenarios. The percentage differences of NSR versus SR are included as well. P1 and

P2 showed no difference in their usage between scenarios. They both used Reveal In

once per task (on average) regardless of the scenario. P4 never used the feature at

all, and P7 and P11 only used it for one of the scenarios. The NSR scenario mean

was 1.73 times per task and the SR scenario mean was 1.42 per task. The difference

of -18.32% had a standard deviation of 1.17.

A hypothesis t-test was performed and the p-value was calculated to be 0.105,

meaning that the chance of getting an mean of 1.42 or less was 10.5%. The null

hypothesis, which stated that the SR scenario has no effect on the Reveal In feature

usage, could not be rejected as the high p-value indicated the mean was statistically

insignificant.

4.3.4 RQ2: Interpretation of the Results

The three cognitive support theories, introduced in Chapter 2, and their support in

Diver were investigated by analyzing the data presented above.

4.3.4.1 Redistribution Support

The participants’ positive perceptions of the tool offered overwhelming support for

the software reconnaissance filtering of the Package Explorer and sequence diagram.

Participants used software reconnaissance to filter out the noisy methods from the two

windows and more easily complete the feature location and program understanding

54

Participant NSR SR Diff (%)
P1 1 1 0
P2 1 1 0
P3 3.67 1.75 -52.27
P4 0 0 0
P5 3.25 2.67 -17.95
P6 0.33 2 500
P7 1 0 N/A
P8 0.67 0.33 -50
P9 2.33 0.75 -67.86
P10 2 1 -50
P11 0 0.67 N/A
P12 3 2.67 -11.11
P13 0.67 1.67 150
P14 2.33 2.5 7.14
P15 4.5 2 -55.56
P16 2 2.67 33.33

Ave 1.73 1.42 -18.32

Table 4.4: The Reveal In feature usage data for all participants

tasks. The participants’ negative perceptions included many complaints about the

sequence diagrams containing too much information and being difficult to navigate.

Based on these perceptions, the filtered Package Explorer and sequence diagram were

a welcome improvement as a useful storage mechanism for the unique method calls

in the main trace. Participants would otherwise have had to keep track of these

calls in their memory. The observations of the participants showed that they quickly

navigated the filtered method calls without having to identify or analyse them. This

allowed the participants to focus their attention on the remaining unfiltered method

calls, which represented a smaller, more manageable search space. However, the sup-

port voiced for software reconnaissance filtering was not conclusive. The ordering of

the SR and NSR scenarios could have affected the feedback given by the participants.

Taking away software reconnaissance could have frustrated them, and therefore, the

sequence diagram and lack of filtering could have been negatively biased.

4.3.4.2 Perceptual Substitution

We hypothesized that participants would use the Jump To Code feature less (clicking

on a method in the sequence diagram and opening the related source code) when

55

there was an increase in the cognitive support provided by the sequence diagram.

The mean average increase in difference (20.78%) between SR and NSR scenarios

supports our hypothesis. Some participants were observed failing to gain a useful

foothold in the sequence diagram due to the lack of filtering provided by software

reconnaissance. This resulted in them unsuccessfully navigating around the sequence

diagram without a clear search strategy. As the data shows, they were more likely to

click on methods and navigate to the code to try and understand what the method

did. However, the results are statistically insignificant according to the calculated

p-value.

We discovered some themes behind the usage of the various features, such as

sticking with tried and tested methods of solving the tasks. In the questionnaires, P2

and P4 mentioned finding it hard to overcome old habits, such as reading code snip-

pets, to understand the program better. P2 did say that after a while she overcame

the sequence diagram learning curve and started using it more. Other users could

also have reverted to old habits by using Jump To Code more than users who were

able to use the sequence diagram effectively. P6 highlighted that the sequence dia-

gram learning curve was a hindrance, and so the large differences in Jump To Code

use could indicate how participants overcame the learning curve at different rates.

Another theme that was observed was forgetting about features: some participants

forgot about certain available features either in the beginning or at some time during

the experiment. This problem lead to the sequence diagram being more difficult to

use and reading the code being a more attractive option. In almost all cases, the

sequence diagram was used to identify interesting methods to navigate to in the code

and was never completely circumvented.

4.3.4.3 Ends-means Reification

Our hypothesis on the support for ends-means reification is based on the Reveal

In feature which provides navigation between the Package Explorer and sequence

diagram windows in Eclipse. Our hypothesis is that the Reveal In functionality

would be used more for the SR scenario. Use of the Reveal In feature varied from

one participant to the next, which can be explained by participants using different

strategies to complete the tasks. The difference in the mean values of the SR and

NSR scenario usage does not support the hypothesis stated above. However, the

p-value was 0.105 from a t-test, and therefore, the results are deemed insignificant.

56

This shows that it is possible that the hypothesis might have been incorrect to begin

with.

Given that Tetris was not a large or complex program, using Reveal In was still a

viable strategy without software reconnaissance. The experience gained by completing

tasks for the SR scenario first could have given the participants knowledge about the

various classes that encouraged them to use the Package Explorer, and accordingly,

they used the Reveal In feature more. With that in mind, having Reveal In used less

during the SR scenario could point to the effectiveness of the filtering of the Package

Explorer. The participants had a smaller list of possible options; their searches would

typically take less time and the chance of finding the correct method using Reveal

In would be much higher. P1 and P2 were the most successful participants as they

finished all eight tasks. They both averaged one use of Reveal In per task for both

SR and NSR scenarios. Again, this points to the fact that using Reveal In less was

responsible for a more effective performance.

4.3.4.4 Summary

The investigation into the support for the three cognitive support theories produced

results in response to the second research question. Redistribution support was shown

by the participants’ positive perceptions of Diver with software reconnaissance and the

support offered with the improved filtering that the technique provided. Perceptual

substitution support was shown for software reconnaissance through the increased use

of the sequence diagram instead of reading the source code. The results, however,

were not statistically significant. Ends-means reification support was not supported

by the results. The results were the opposite of the expected outcome, as the Reveal

In feature was used less with software reconnaissance. Again, this result was not

statistically significant due to a high p-value.

4.3.5 RQ3: Effectiveness and Efficiency of Software Recon-

naissance

The effectiveness and efficiency of the software reconnaissance technique in Diver was

investigated by collecting task completion metrics as well as timing data for all the

tasks attempted. The completion metrics are tabulated for each participant in Table

4.5. The timing results per task can be seen below in Tables 4.6 - 4.13.

57

4.3.5.1 Effectiveness

Table 4.5 contains each participant’s task completion results from the study. The

data is divided into the two scenarios — SR and NSR — and shows the number of

successes and failures. The Tried column contains the number of tasks attempted.

The tasks were classified as either successful (SUC), incorrect (INC), or did not finish

(DNF).

Table 4.5 shows that an almost identical number of tasks were attempted under

each scenario (50 for SR versus 49 for NSR). For SR, 39 out of the 50 (78%) were

completed successfully, and for NSR, 34 out of 49 (69.4%) were completed successfully.

Participant SR Tasks NSR Tasks Total
Tried SUC DNF INC Tried SUC DNF INC SUC

P1 4 4 0 0 4 4 0 0 8
P2 4 4 0 0 4 4 0 0 8
P7 4 3 1 0 4 4 0 0 7
P13 3 3 0 0 3 3 0 0 6
P9 4 3 1 0 3 3 0 0 6
P12 3 3 0 0 2 2 0 0 5
P15 3 3 0 0 2 1 1 0 4
P16 3 1 2 0 3 3 0 0 4
P5 3 2 1 0 4 2 2 0 4
P3 4 3 0 1 3 1 1 1 4
P10 2 2 0 0 2 1 1 0 3
P6 2 2 0 0 3 1 2 0 3
P11 3 2 1 0 2 1 1 0 3
P8 3 2 1 0 3 1 1 1 3
P14 2 2 0 0 3 1 1 1 3
P4 3 0 1 2 4 2 2 0 2

Tot 50 39 8 3 49 34 12 3 73

Table 4.5: The task completion statistics ordered by the total number of tasks com-
pleted successfully

58

4.3.5.2 Efficiency

We measured task completion efficiency using the TTFF results by comparing the

times recorded from the two scenarios. Tables 4.6 - 4.13 contain each task’s TTFF

results. Each table entry contains a participant code, scenario code, order number

of task for the participant, and the time-to-first-foothold. The results are ordered by

the TTFF times from shortest to longest.

Task 1: Task 1 was completed successfully by 11 out of the 13 participants that

attempted it. The best time for this task was 02:10 by P2 using the NSR scenario.

The average time for task 1 using the NSR scenario was 02:45, and for the SR scenario,

it was 04:35.

P. Code Scenario Attempt TTFF

P2 NSR 5th 02:10
P1 SR 1st 02:42
P13 NSR 6th 02:45
P5 SR 3rd 03:00
P4 NSR 6th 03:01
P8 NSR 7th 03:03
P9 SR 4th 03:30
P14 SR 2nd 03:35
P7 SR 3rd 05:38
P12 SR 1st 06:10
P3 SR 2nd 07:27
P6 NSR 7th DNF
P11 NSR 5th DNF
P10 NSR 8th DNA
P15 SR 4th DNA
P16 NSR 8th DNA

Table 4.6: Task 1 results

Task 2: Out of the 11 participants that completed the task, only P4 completed it

incorrectly. The best time of 01:40 was recorded by both P12 and P3 during the

NSR session. The average time for task 2 using the NSR scenario was 03:34, and for

the SR scenario was 05:53.

Task 3: Only 1 of the 14 participants who attempted the task did not complete it

successfully. This task produced the quickest TTFF of the entire study; 01:02 by P2

59

P. Code Scenario Attempt TTFF

P12 NSR 5th 01:40
P3 NSR 5th 01:40
P2 NSR 6th 01:45
P9 SR 3rd 02:25
P15 NSR 6th 02:45
P1 SR 2nd 04:35
P13 SR 3rd 05:30
P11 SR 1st 08:13
P7 SR 2nd 08:40
P5 NSR 8th 10:00
P4 SR 1st INC
P8 NSR 6th DNF
P16 SR 2nd DNF
P14 NSR 7th DNF
P6 SR 4th DNA
P10 NSR 7th DNA

Table 4.7: Task 2 results

under the NSR scenario. The average time for the NSR scenario was 02:28, and for

the SR scenario was 05:44 (more than double the length).

Task 4: Four participants did not finish task 4. The remaining 10 of the 14 partic-

ipants were successful as no one completed the task incorrectly. The best time was

03:00 by P2 under the NSR scenario. The average times were high: 07:19 for NSR

and 10:44 for SR.

Task 5: Task 5 was attempted by 10 participants and only five participants finished

it successfully. A further four completed the task unsuccessfully, the most for any

task in the study. The remaining person was unable to complete the task. The lowest

TTFF recorded was 02:25 under the NSR scenario by P1. The average time for the

two successful tasks under the NSR scenario was 05:47, and the three tasks under the

SR scenario had an average of 05:13. This was the only task where the average for

the SR scenario was lower than the average for the NSR scenario.

Task 6: Out of the 11 participants that attempted the task, 9 completed it suc-

cessfully and 2 did not finish. The best time for this task was 02:00 by P1 under

the NSR scenario. The average time for the NSR scenario was 04:27, and for the SR

60

P. Code Scenario Attempt TTFF

P2 NSR 7th 01:02
P7 NSR 6th 01:05
P16 NSR 7th 01:19
P12 SR 2nd 01:50
P1 SR 3rd 01:50
P14 NSR 5th 02:05
P3 SR 4th 02:50
P11 NSR 6th 03:25
P13 SR 1st 03:40
P8 SR 2nd 04:28
P6 NSR 5th 05:50
P15 SR 3rd 11:54
P5 SR 1st 13:35
P4 NSR 8th DNF
P9 NSR 8th DNA
P10 SR 4th DNA

Table 4.8: Task 3 results

scenario was 05:32.

Task 7: Task 7 had 6 successful participants, only slightly better than task 5. A

further four participants did not complete the task. The best time for this task was

02:35 by P1 under the NSR scenario (almost half the next closest time of 05:00). The

average time for the NSR scenario was 04:28, and for the SR scenario was 09:03.

Task 8: Task 8 was completed by 9 out of the 13 participants that attempted it.

An additional participant completed the task but did so incorrectly. The remaining

3 participants were unable to finish the task. The best time for the task was 03:10 by

P1 under the NSR scenario. The average time for the NSR scenario was 04:32, and

for the SR scenario was 08:21.

61

P. Code Scenario Attempt TTFF

P2 NSR 8th 03:00
P7 NSR 8th 03:55
P1 SR 4th 05:45
P9 NSR 5th 07:37
P16 NSR 5th 08:25
P15 SR 1st 08:52
P12 NSR 6th 09:40
P10 SR 1st 10:38
P13 NSR 7th 11:15
P6 SR 2nd 17:40
P3 NSR 7th DNF
P4 SR 3rd DNF
P5 NSR 6th DNF
P11 SR 2nd DNF
P8 SR 4th DNA
P14 SR 3rd DNA

Table 4.9: Task 4 results

P. Code Scenario Attempt TTFF

P1 NSR 5th 02:25
P2 SR 1st 03:20
P7 SR 1st 04:53
P13 SR 2nd 07:25
P9 NSR 7th 09:10
P3 NSR 6th INC
P4 SR 2nd INC
P8 NSR 5th INC
P14 NSR 6th INC
P16 SR 3rd DNF
P5 SR 4th DNA
P6 NSR 8th DNA
P10 SR 3rd DNA
P11 NSR 8th DNA
P12 SR 4th DNA
P15 NSR 7th DNA

Table 4.10: Task 5 results

62

P. Code Scenario Attempt TTFF

P1 NSR 6th 02:00
P12 SR 3rd 02:45
P16 NSR 6th 03:00
P2 SR 2nd 03:05
P5 NSR 7th 03:30
P9 SR 1st 05:05
P15 SR 2nd 08:20
P3 SR 1st 08:27
P4 NSR 5th 09:17
P7 SR 4th DNF
P10 NSR 5th DNF
P6 SR 3rd DNA
P8 NSR 8th DNA
P11 NSR 7th DNA
P13 SR 4th DNA
P14 NSR 8th DNA

Table 4.11: Task 6 results

P. Code Scenario Attempt TTFF

P1 NSR 7th 02:35
P7 NSR 7th 05:00
P10 NSR 6th 05:50
P2 SR 3rd 06:15
P16 SR 1st 08:06
P6 SR 1st 12:48
P5 NSR 5th DNF
P8 SR 3rd DNF
P9 SR 2nd DNF
P15 NSR 5th DNF
P4 SR 4th DNA
P11 SR 4th DNA
P12 NSR 8th DNA
P13 NSR 8th DNA
P14 SR 4th DNA
P3 NSR 8th DNA

Table 4.12: Task 7 results

63

P. Code Scenario Attempt TTFF

P1 NSR 8th 03:10
P9 NSR 6th 03:20
P2 SR 4th 04:10
P11 SR 3rd 04:40
P7 NSR 5th 05:35
P13 NSR 5th 06:05
P8 SR 1st 06:51
P10 SR 2nd 12:35
P14 SR 1st 13:30
P3 SR 3rd INC
P4 NSR 7th DNF
P5 SR 2nd DNF
P6 NSR 6th DNF
P12 NSR 7th DNA
P15 NSR 8th DNA
P16 SR 4th DNA

Table 4.13: Task 8 results

64

4.3.5.3 Time-To-First-Foothold Trends and Aggregates

Figure 4.2 shows the TTFF results of the participants with the most successfully-

completed tasks. The best fit trend lines are included to show the trends of the most

successful participants’ times over the course of the study. The graph has the TTFF

times plotted in the order they were attempted. The first four TTFF times were

accomplished under SR and the last four under NSR. The results are not normalized

and differences in the difficulties of the tasks could easily affect the trend lines, but

the graph serves to show that there was no extreme bias showing a learning effect

that affected the later tasks.

Figures 4.3 - 4.10 plots the TTFF results as boxplots for each task, with the

averages for both scenarios, side by side. This chart shows the range of TTFF times

for both scenarios and makes it easier to see which tasks favoured one scenario over

the other.

Figure 4.2: The TTFF results and their performance trends for the top six partici-
pants.

65

Figure 4.3: The Task 1 boxplots for TTFF times under both scenarios

4.3.6 RQ3: Interpretation of the Results

4.3.6.1 Effectiveness

The participants’ effectiveness at completing tasks while using software reconnais-

sance can be measured by comparing the successfully completed tasks under the SR

scenario to those completed under the NSR scenario. Table 4.5 shows the completion

statistics for each participant as well as the totals. Based on tasks successfully com-

pleted, the top six participants were P1, P2, P7, P13, P9, and P12. P1 and P2

completed all the tasks in the given time, and between the two of them, shared seven

out of the eight fastest TTFF times for the tasks. The least successful participant

was P4 who completed only two tasks successfully. The averages show 78% of tasks

were completed successfully under SR compared to 69.4% under NSR. This shows an

8.6% improvement in the effectiveness of completing the tasks successfully while using

software reconnaissance. The standard deviation was 29.5% for all the participants

and the p-value was 0.122 from a t-test, which makes the improvement insignificant.

This can be attributed to there being only 16 participants and a sample size of 99

attempted tasks. From the totals, it can also be noted that only three tasks were

completed incorrectly in each of the scenarios.

While the statistics could not confirm the effectiveness of software reconnaissance,

the SR scenario did see more tasks being completed successfully in spite of it being

scheduled first. As the study was investigating software reconnaissance, placing the

SR scenario first put it at a disadvantage due to the learning effect. For example, P4

did not complete any tasks during SR but completed two during NSR. She specifically

66

Figure 4.4: The Task 2 boxplots for TTFF times under both scenarios

mentioned the new tool and old habits as affecting her performance. She first relied

heavily on reading the code and only started to use the sequence diagram later on.

While the order of the scenarios put software reconnaissance at a disadvantage, it did

not help NSR dominate the effectiveness statistics; many of the top participants were

able to effectively complete tasks under SR. This could point to some participants

being slower to acclimatise to the new tool than others. Having a set time for training

and practice could have left some participants without enough time to get to know

the tool. In some cases, participants forgot about certain features such as collapsing

the Java classes’ life lines in the sequence diagrams.

The counterargument to the learning effect is that, by putting the SR scenario

first, the participants were taught how to use Diver with software reconnaissance in a

specific way. Once software reconnaissance was removed, they continued trying to use

Diver the same way, to their detriment. This is not the case for Diver and software

reconnaissance because the improvements added by the technique were incremental.

With the exception of sequence diagram filtering, software reconnaissance improves

the filtering of features already in Diver; no new features were added to change the

possible ways to use Diver. Software reconnaissance did, however, make some options

more appealing to use. It improved the filtering of the Package Explorer so that fewer

classes and methods were displayed. It also greyed out those filtered methods in the

sequence diagram to improve the visibility of the unique method calls. With these

enhancements removed, the Package Explorer was still filtered by activating a trace

67

Figure 4.5: The Task 3 boxplots for TTFF times under both scenarios

and was a viable option for searching for interesting methods. Likewise, the sequence

diagram was still useful for finding out what happened during the trace, even if it

was less readable due to a lack of greying out of noisy methods.

4.3.6.2 Efficiency

The time taken to locate the functionality being sought in each task represents the

metric for measuring efficiency of completing the tasks. The time-to-first-foothold was

recorded to measure how long it took participants to locate a key method related to

the feature under investigation. Overall, Tables 4.6 - 4.13 show that footholds were

gained the fastest under NSR for all eight tasks. NSR tasks also had lower TTFF

averages for all tasks except one (T5). Despite this, some tasks saw smaller differences

than others between NSR and SR. T2, T3, and T7 saw the three fastest TTFFs come

from NSR. T2 and T3 were easier tasks with the features being easy to isolate and

having well-named methods. The NSR average for T3 was half that of SR, which is

understandable given that the feature — setting the game speed through the menu

— involved few noisy methods, making software reconnaissance less useful. T7 was

more difficult, as the averages of 04:28 for NSR and 09:03 for SR show. This task

required the participants to search for where the Weighted Score was calculated. This

score represented how close the game was to ending. The score was calculated every

time a Tetris block would land, but the score did not necessarily change for the first

few blocks that landed. This caused a problem for some participants using software

68

Figure 4.6: The Task 4 boxplots for TTFF times under both scenarios

reconnaissance who mistakenly recorded the method in their filter trace, thus filtering

all of the interesting methods out of the IDE. For T5, SR had a slightly lower average

than NSR (05:13 versus 05:47), but as with all the results plotted in Figures 4.3 -

4.10, there are overlaps with the times and NSR is not clearly superior to SR.

We observed that discovering an interesting method could happen just as easily

through thorough searching as random discoveries. The nature of the software re-

connaissance technique requires the recording of two traces, which puts it at a time

disadvantage from the beginning. In addition to the time taken running Tetris and

saving a second trace, the participants had to strategize how to isolate the functional-

ity and record an effective filtering trace. From the results, this could have contributed

to NSR being responsible for quicker TTFF times. Software reconnaissance empha-

sized the usefulness of the Package Explorer for uncovering interesting methods very

quickly and navigating from there to the sequence diagram. Participants used this

same technique for NSR and were able to discover well-named methods quickly. Two

factors could have helped with this.

The learning effect mentioned above could have played a part in the lower NSR

TTFF times achieved in the second session after participants had gained knowledge

of the project and its classes. This knowledge was seen to direct participants to

potentially interesting classes that they had seen before, such as the Game or Player

69

Figure 4.7: The Task 5 boxplots for TTFF times under both scenarios

classes.

Another factor for the lower overall NSR times was the size and complexity of

the Tetris project. The study contained eight tasks to be completed with a Java

implementation of Tetris. The expected result was that SR was more efficient and

effective than NSR as it represents an improvement on the features offered by Diver.

These results could point to the tasks being too simple and the project too small to

allow the benefits of software reconnaissance to be seen. The time taken recording

the second trace plays a much bigger role when tasks are short, as was the case here.

This highlights an important point that the benefits of software reconnaissance may

be realised only when you have a project of sufficient size and complexity.

Mistakes with tracing were a common occurrence. For instance, P16 forgot to

start recording a trace at the beginning of the program execution. As the button for

starting and stopping recording is the same, he clicked to stop recording and instead

started recording for a short time until he exited Tetris. This was his main trace for

software reconnaissance and so when he applied the filtering to the blank trace, his

Package Explorer and the sequence diagram were empty. The added complexity of

recording two traces instead of one could have been a contributing factor to the poor

SR results.

As mentioned in the Effectiveness section, some participants were just slower than

others due to a variety of reasons. Some were hindered by old habits that were at

odds with how Diver is used. Some participants used a Bottom-up program compre-

70

Figure 4.8: The Task 6 boxplots for TTFF times under both scenarios

hension strategy and tried to read code and look through the sequence diagram to

build an understanding of the program. This resulted in some participants getting

’lost’ in the diagrams as P10 described. It should be noted that P10 was very me-

thodical while attempting to complete the tasks and used a Systematic approach to

understanding the program. He used a Top-down strategy to learn about the dif-

ferent classes which other participants also followed, using the Package Explorer to

understand the components of the program and then navigating to the sequence dia-

gram to understand how it worked. He did not complete the program understanding

tasks as quickly as the other participants, and in the end, was only able to attempt

four tasks given the limited time; he successfully completed three of those. From his

thinking out loud, however, he very clearly gained an understanding of the system

that the other participants did not. Most other participants used an As-needed pro-

gram comprehension strategy to complete the questions as they quickly searched for

the required functionality without stopping to understand the program as a whole.

Some of them made wrong assumptions about aspects of the program, such as which

threads were responsible for what functionality, causing them not to complete some

tasks. The use of Diver and the Trace-focused UI effectively means that users auto-

matically follow an As-needed strategy by only looking at components related to the

task at hand. Top-down, Bottom-up, Systematic, and As-needed strategies were used

by participants while still following an overall As-needed approach.

71

Figure 4.9: The Task 7 boxplots for TTFF times under both scenarios

4.3.6.3 Summary

The results of the effectiveness and efficiency analysis was mixed. For efficiency,

the non-software reconnaissance scenario produced the lowest TTFF times for both

single quickest and average quickest times, with one exception. There were various

reasons why this was the case and went against the hypothesis that software recon-

naissance does improve the efficiency of task completion. Software reconnaissance did

fair better for effectiveness, however, the 9% improvement in task completion was not

statistically significant.

72

Figure 4.10: The Task 8 boxplots for TTFF times under both scenarios

73

4.3.7 Participant Responses

4.3.7.1 Pre-study Questionnaire

The pre-study questionnaire was administered to allow us to understand the back-

grounds and technical experience of the participants of the study. Participants were

recruited using various communication channels at the University of Victoria. Figure

4.11 shows the clustering of the participants based on their educational backgrounds.

Seven were current undergraduates, six were current or recently graduated postgrad-

uates, two were on post-doctoral fellowships, and the remaining participant had a

Computer Engineering diploma.

Figure 4.11: The breakdown of academic experience

Figure 4.12 shows the boxplots for the four types of technical experience asked

about in the questionnaire. One of the requirements for the study was that the par-

ticipants must have experience with Java; shows the distribution of Java experience.

P1 was the most experienced by far, with 15+ years of Java programming experience.

The mean general programming experience was just under five and a half years and

the median is five years. For Java experience, the mean was around two years and

eight months and the median was two and a half years.

To understand what experience participants had with program comprehension

tasks, we asked how much experience they had maintaining someone else’s code. The

mean was just over two years with a median of two years, indicating that participants

had much less experience maintaining someone else’s code compared to programming.

74

Participants’ experience with Eclipse and UML was determined as both of these

skills were helpful during the experiment, which involved using Eclipse and UML

sequence diagrams during the tasks. The responses are plotted in Figure 4.12. Ex-

perience was low for both and many participants answered in months rather than

years. The mean for participants’ Eclipse experience was 22 months and the median

was 12 months. The mean for UML experience was 15 months and the median was 6

months. The standard deviation for the UML experience was extremely large at over

24 months. P6, P8, P11, and P12 did not have any experience creating or using

UML diagrams. P5 and P6 did not have any Eclipse experience. P5 also stated that

he did not have any experience with other IDEs, unlike P6 who had.

Finally, participants were asked to specify the size of the largest project they

had worked on. They could answer in lines of code (LOC), number of files, or time.

In terms of LOC, P2 had experience with the largest project (1M LOC), and P1’s

largest project was second (100K LOC). P13 worked on a project that spanned one

year of development time. The participant that worked on the smallest project was

P8 who had only worked on 300 lines of code.

The experience of the participants was correlated to their performance, and re-

sults showed mostly weak correlations between the different types of experience and

participants’ average TTFF times or number of tasks completed. Table 4.14 shows

the results of the correlated data.

For average TTFF times, all the correlation coefficients indicated a weak, negative

correlation. Experience with Eclipse had the strongest correlation with a coefficient

of −0.473. For tasks completed, there was a wider range of correlation values, but

programming, maintenance, and UML experience were all considered weakly corre-

lated. While programming experience garnered a coefficient of 0.463, experience with

Java had the highest correlation coefficient of 0.617. However, the result was still not

high enough to be considered strongly correlated.

75

Performance Experience Correlation

Average TTFF

Programming -0.221
Java -0.363

Maintenance -0.098
Eclipse -0.473
UML -0.337

Tasks Completed
Programming 0.463

Java 0.617
Maintenance 0.299

Eclipse 0.512
UML 0.335

Table 4.14: Participants’ performance correlated with their experience

76

Figure 4.12: Boxplots of the participants’ experience

77

4.3.7.2 Post-study Questionnaire

Regarding the post-study questionnaire, some of the responses were mentioned in

Section 4.3.3 for the Cognitive Support research question. Various positive remarks

were mentioned such as “Easy to use”, “Great tool”, “Useful visual aid”, “Cool”, and

“Mostly simple and straight forward to use” by P1, P3, P5, P10, and P11. P15

said “I liked it, very helpful in finding methods even when I had zero knowledge of the

source code.” Overall, only P4 and P13 did not have positive general experiences with

the tool. P4 response focused on Diver’s lack of search functionality. P13 mentioned

being frustrated by the experience, but admitted that completing the same tasks

without Diver would have been even more frustrating.

When asked whether they had enough time to complete all the tasks, participants

provided a range of answers. The answers are summarised in Table 4.15. P1, P5, and

P12 thought they had enough time for all the tasks, however, most other participants

mentioned reasons why their progress had been slowed down.

Time Comments Participants
Had enough time P1, P5, P12
Needed more practice P2, P8, P16
Practice was enough to the tasks P7
Old habit of reading code slowed progress P2, P4
Single task slowed progress P7, P13
Methodical planning habit slowed progress P10
Slow due to lack of software reconnaissance under NSR scenario P6, P15

Table 4.15: Summary of comments on whether the participants had enough time or
not

Participants were asked “What helped you complete the tasks?” and “What tool

features did you find most useful?” A combined summary of the responses can be seen

in Table 4.16. Filtering of the Package Explorer and sequence diagram using software

reconnaissance was the most commonly mentioned set of features. 10 participants

made mention of these features and another three mentioned software reconnaissance

by name. The sequence diagram was the second most cited feature that participants

felt helped them to complete the tasks. There were some participants who disagreed

with this, as we discuss below.

In contrast, two questions were asked to find out what hindered the participants

and which features were found to be the least helpful. Table 4.17 contains the sum-

marised results of these questions. 10 participants thought that the sequence diagrams

78

Positives Participant
Filtering of Package Explorer P1, P2, P3, P4, P6, P7, P8
and sequence diagram with SR P9, P10, P15
Sequence Diagram P3, P4, P7, P8, P10, P14
Jumping to code and reading it P2, P3, P5, P11, P13
Navigating to sequence diagram with Reveal In P11, P13, P14, P15
Software Reconnaissance P12, P14, P15, P16
Searching the Package Explorer P12, P14
Filtering sequence diagram classes P8
Timeline P15

Table 4.16: Summary of positive comments on what helped complete the tasks

were too large from lengthy traces and they were difficult to use and understand.

Lengthy traces also contributed to the second most cited hindrance: slow save times

for traces. This frustrated some participants and led to some time being wasted.

Negatives Participant
Large, complex sequence diagrams P2, P3, P5, P6, P7, P8, P11, P13, P14, P16
Slow trace save times P1, P7, P8, P9
Lack of programming experience P3, P7, P16
Lack of tool experience P10, P12, P15
Expanding and collapse diagram P3, P4
Time/frustration P9, P12
Focus On/Up features complicated P15, P16
Multiple threads P1
SD class filtering not automatic P2
No breakpoints P5
No zooming in sequence diagram P7
Only one SD open at a time P11

Table 4.17: Summary of negative comments

When asked about the eye tracking, most participants did not see it as a distrac-

tion. P2 said it was no more distracting than the video camera and thinking aloud

process. P12 was a little nervous about it, but soon forgot it was there.

The post-study questionnaire was useful, not just to solicit participants’ percep-

tions and experience with the tool, but also to gather their opinions on the tool’s

future development. Given their limited experience with the tool, the participants

were asked about what improvements to Diver they would like to see. Some were

feasible and others not. Many were related to automating manual activities, such as

79

automatically collapsing the Java classes’ lifelines by default. The suggestions can be

seen in Table 4.18. One participant mentioned wanting to view traces in real-time.

This would be an extremely useful feature but it technically not possible given the

design and limitations of the system. Two people wanted the slow save times for

traces improved, which was mentioned as a hindrance in Table 4.17.

Suggestions Participants
Automatically collapsing the lifelines P1
View traces in real-time P2
Automatically close program when pausing trace P2
Search sequence diagrams P4
Faster trace saving times P6, P8
Link code to sequence diagram P6
Rename traces in the Program Traces view P9
Better highlighting in sequence diagrams P10
Multiple sequence diagrams open at once P11

Table 4.18: Summary of suggestions to improve Diver

The second section of the post-study questionnaire asked the participants to use

a Likert scale to rate how much they agreed with certain statements. The responses

ranged from 1 (representing I strongly disagree) to 7 (representing I strongly agree).

The first five statements were specific to Diver and software reconnaissance and how

it helped them to complete the tasks. The rest of the questionnaire measured gen-

eral usability with a USE questionnaire [20]. USE questionnaires are used to rate

products based on four categories: usefulness, ease of use, ease of learning, and sat-

isfaction. Participants were required to rate how much they agreed with statements

based on Diver’s usefulness, ease of use, ease of learning, and satisfaction. The first

five statements are listed below.

1. Diver was very helpful for completing the feature location and program under-

standing tasks and questions.

2. Software reconnaissance was very helpful for completing the program under-

standing tasks.

3. Diver with software reconnaissance made it much easier to know the steps re-

quired to locate a feature and understand the functionality.

4. Diver with all its features helps to inform the user about what needs to be done

next to move towards completing the program understanding tasks.

80

5. Diver makes it much easier to know when you are close to completing the task.

The answers to the non-USE questionnaire statements were plotted on boxplots

in Figure 4.13

Figure 4.13: Boxplot of the Likert-based Questionnaire Results

The USE questionnaire results are represented by a radar chart in Figure 4.15

and boxplots in Figure 4.14. The four areas can be grouped into two by their similar

ratings. Usefulness and Satisfaction scored highest. Usefulness scored a mean of 5.91

and a median of 6. Satisfaction had a mean of 5.86 and a median of 6. The group

with the two lower averages included Ease of Use and Ease of Learning. Ease of Use

had a mean of 4.90 and median of 5. Ease of Learning was close behind with 4.89 for

the mean and 5 for the median.

81

Figure 4.14: USE Questionnaire Results boxplots

82

Figure 4.15: USE Questionnaire Results

83

4.3.8 Interpretation of the Participant Responses

The participants’ responses give a very clear picture that while they thought Diver

was very useful, they did struggle with the new tool. The pre-study and post-study

questionnaires were useful, showing the experience of the participants, or lack thereof,

as well as their opinions of Diver after the study.

The most successful participant was P2 as he completed all eight tasks and did

so with lowest average of anyone: 03:06. This is understandable given that P2 had

plenty of experience: over 15 years of Java programming, ten years of Eclipse, and

eight years of UML diagrams. Besides that example, there were no noticeable trends

between experience and performance. The correlation of the results with experience

showed no strong linear relationships between the various types of experience and

performance metrics. For instance, second place P1 had less programming and UML

diagram experience than the least successful participant, P4. The least experienced

participant was P8, a first year student whose only programming experience was one

Java programming course. Despite that, he was able to complete three tasks and

had the third lowest TTFF average for those results. A lack of UML experience was

a potential problem as Diver’s sequence diagram is a fundamental part of the tool.

There were four participants who had no UML diagram experience. Three of them

ended up in the bottom six for number of tasks completed, however, two were ranked

third and fourth for their TTFF averages. The lack of any strong correlation between

tasks completed or average TTFF times and experience discounts the argument that

the participant’s performances were primarily dependent on experience and not task

difficulty and effective use of Diver.

Despite participants performing better under NSR, the general perception from

the participants was that the filtering of the Package Explorer and sequence diagram

using software reconnaissance was useful and very effective for feature location tasks.

The perception was so strong that P6 commented that the tasks with “software

reconnaissance went faster,” even though he took much longer to complete his tasks

using the technique.

4.3.9 Limitations and Threats to Validity

This section discusses the limitations of the study and the results presented above.

Some of the limitations of Myers’ study were mitigated in this study, but some limi-

tations were shared and others were introduced with the new study design.

84

As LaToza et al. [17] and Myers [24] mention, conducting empirical research into

software tools and their features can be difficult, especially program comprehension

tools where understanding is difficult to measure effectively. We conducted a labora-

tory experiment and compared the 16 participants’ results with each other.

One limitation was the low number of participants, given the relatively small mar-

gins associated with the short tasks. All the results that were checked for statistical

significance failed to have p-values below the threshold of 0.05. As a result, the quan-

titative analysis did not lead to definitive support for software reconnaissance while

answering RQ2 and RQ3. The 8 tasks, which each participant had to complete, did

increase the amount of data and observations available for analysis, and thus allowed

for richer user stories that supplemented the quantitative analysis. The increased

data also increased the reliability of the study.

Using simpler tasks and a small project like Tetris could have lessened the useful-

ness of software reconnaissance. As the data did not definitively show the effectiveness

and efficiency of the technique, this could explain the results especially since it was

observed that participants were able to use the Package Explorer effectively without

software reconnaissance.

Placing the SR scenario first, followed by the NSR scenario, was brought up as

a problem by the reviewers of the paper submitted on Myers’ study. The reviewer

in question argued that it was problematic to allow participants the use of software

reconnaissance in the first session and then take it away in the second. Myers’ was

measuring the frustration exhibited by participants and the scenario order could have

biased participants’ perceptions. The new study did not measure frustration to mit-

igate this problem.

We decided to keep the same order in this study for a number of reasons. One of

the reasons was that the research question on participant frustration was removed for

this study. Also, participants were new to Diver and the Tetris project, so learning

effects were expected to influence participants’ performances. As participants com-

pleted the tasks and learnt more about the project, the knowledge they gained helped

them in the later tasks without software reconnaissance. Consequently, the scenario

order acted against the hypothesis that software reconnaissance was an effective and

efficient technique for program comprehension using Diver.

An alternative approach of splitting the participants into two groups to study both

scenario orders would have weakened the quantitative analysis, which would have been

restricted to the two groups of eight participants instead of one group of 16. The focus

85

on recruiting more participants and gathering more data with additional tasks would

have been undermined if this approach had been followed.

The transferability of the results is limited by using student participants. Sim-

pler tasks were used to account for the lack of real world programming experience.

However, the use of students did provide insight into the experiences of new and

inexperienced Diver users, so the results of the study could be used to help novices

learn to use Diver more effectively.

The evidence to support the hypotheses on activities that reflected cognitive sup-

port relies on cognitive support theory. The research that was done on this topic was

presented in Chapters 2 and 3. The observations did show that in most cases these

hypotheses may be valid. The one observation that definitely countered a hypothesis

was regarding ends-means reification and the use of the Reveal In feature. The fea-

ture was so effective at finding a foothold, during the SR scenario, that participants

only needed to use Reveal In once in many tasks instead of repeatedly using it, as

hypothesized.

Credibility was sought though an array of data sources that brought multiple

perspectives on the experiences of the participants to the study. Unfortunately, the

nature of the study limited the interactions with the participants to the two hours

that they conducted the experiment. This was a limited view of using Diver, which

would be used regularly by programmers. Also, the Likert questions may have been

biased in the post-study questionnaire towards Diver’s features.

4.3.10 Summary

In this chapter, we present the research questions and explain the methodology and

design that we used for the study. Next, we report on the results, and then discuss

them in the context of the research questions. Finally, we discussed the limitations

to the study.

The study resulted in the three research questions being answered with varying

degrees of certainty. The first research question led to the identification of a number

of navigation and interaction patterns that influenced the successful completion of a

task. The second research question was answered with data showing that the redistri-

bution and perceptual substitution cognitive support theories were mildly supported

by Diver. Support for the ends-means reification theory could not be found, but this

may have been due to our hypothesis about the Reveal In feature being incorrect.

86

The last research question addressed the performance of participants using software

reconnaissance compared to not using the technique. Software reconnaissance was

found to help participants be more effective at completing tasks successfully, but not

more efficient at completing them successfully. The limitations were discussed to

provide additional context for the results.

87

Chapter 5

Conclusions

This thesis, and the study it describes, investigated the effectiveness and efficiency

of Diver with software reconnaissance, and how the technique influences Diver’s use.

This chapter concludes the thesis by discussing how the research questions were ad-

dressed, the contributions of the research, and possible future work.

5.1 Research Questions Revisited

The core theme of the research questions was software reconnaissance and whether

or not its implementation had a positive impact on Diver’s usability and usefulness.

The study gathered the data necessary to address these questions.

The first research question (RQ1) asked whether or not software reconnaissance

influenced participants’ interactions with Diver and lead to different navigation pat-

terns. This question was addressed by analyzing Diver’s logs and identifying how

often various features were used for successful and unsuccessful tasks under both

scenarios. We added insights, discovered through observing the participants, to the

analysis to determine what navigation and interaction patterns were followed.

In the feature usage statistics for different combinations of task scenario and task

success, we found that the Reveal In feature was used less for successfully completed

tasks using software reconnaissance than tasks completed successfully without it.

This was contrary to the hypothesis that software reconnaissance encouraged the use

of the Reveal In feature. While the data was not statistically conclusive, we did

theorize that, given the observation data, participants used the feature less because

it was more effective at gaining a foothold with software reconnaissance. This meant

88

participants had to use the feature more to find a foothold without the help of software

reconnaissance.

Another pattern that emerged was that the sequence diagram was used slightly

more for successful tasks under the SR scenario than the NSR scenario. Additionally,

the Jump To Code feature was used more often under the NSR scenario. Again, the

differences were not significant, but they did point to participants having to read the

code because software reconnaissance was not available to help them gain a foothold.

The second research question (RQ2) was “Does the use of software reconnaissance

improve the cognitive support of Diver during program understanding tasks?” We

approached this question by considering research by Walenstein [34], Storey et al.

[30], and Bennett [3]. We connected Walenstein’s cognitive support theories to the

cognitive support features proposed by Bennett for use with sequence diagrams. We

then developed hypotheses for the three cognitive support theories of redistribution,

perceptual substitution, and ends-means reification.

For redistribution, we analyzed participants’ perceptions of the tool and found the

features related to software reconnaissance were most helpful and provided the best

support to complete the program comprehension tasks, according to the participants.

For perceptual substitution, we investigated how dependent the participants were

on reading code, as opposed to understanding the program through the sequence

diagram. The 20% increase in Jump To Code usage offered some support to our

hypothesis, but the results were not statistically significant. For the ends-means

reification, we looked at the Reveal In usage and found that the -18% difference in

usage between the NSR and SR scenarios confounded our hypothesis, but that it too

was statistically insignificant.

The third research question (RQ3) was addressed by measuring the effectiveness

and efficiency of software reconnaissance using data on task times and task success.

In all of the eight tasks, the NSR scenario produced the quickest TTFF time. The

NSR scenario also produced the quickest average TTFF times in all but one task.

The results pointed to software reconnaissance making participants less efficient at

the program comprehension tasks. Responses from the participants and observations

during the study did point to the learning effect playing a role in the results. Software

reconnaissance was found to be more effective at completing the tasks, as more tasks

were completed successfully with it. Again however, the results were not statistically

significant.

The responses of the participants were analyzed to help gain insight into how

89

the participants experienced the experiment and Diver. The general tone was very

positive and most were impressed by Diver, even if they were frustrated with issues

such as extremely large sequence diagrams. The USE questionnaire showed that Diver

was both useful and satisfactory, but not as easy to use or learn as expected.

Overall, the results that came out of the study led to a number of contributions

that are discussed in Section 5.2.

5.2 Contributions

The research conducted for this thesis lead to a number of contributions:

• Built a cognitive support map from the three cognitive support theories to

Diver’s features.

• Hypotheses on the cognitive support theories present in Diver were developed

or refined.

• The design of Myers’ study was analyzed and its shortcomings were discussed.

• A new study was designed to try to overcome the problems with the previous

study.

• The study contributed data on how Diver is used by new users of Diver.

• The responses to the post-study questionnaire contributed user feedback to the

Diver development effort.

5.3 Future Work

The study highlighted various places where Diver can be improved. Some of the

complaints are effectively feature requests, and some of these are for features present

in the system but not used during the study. P4 wanted to search the sequence

diagram and P5 wanted to use break points, both of which already exist in Diver but

were not utilized for the study.

Another feature not used during the study was the sequence diagram outline view.

This provides an overview of the sequence diagram with a zoomed-out representation

of the diagram and a box showing what area of the diagram is being viewed. This

90

feature was not working for the study and could have answered the needs of P7 who

asked for zooming capabilities for the sequence diagram. Software reconnaissance is a

standard feature of Diver and so the requests for various improvements to the sequence

diagram based on the participants’ experience using Diver without the technique are

somewhat weakened.

Most of the participants were very impressed with the tool and so further devel-

opment is important. The aim was to improve Diver to produce a stable version that

could attract more users who could become future experienced participants in further

studies. This is a goal worth working towards and further studies could be performed

to analyze how experienced users use Diver. Such studies would further inform the

design of Diver.

The evaluation of such studies would have to include both quantitative and qual-

itative data, as timing and usage metrics only tell part of the story. The time frame

of these studies could be extended and the collection of the data could take place

while Diver is being used for understanding problems in a real project. The problem

with this approach would be that the realism would limit how the data from different

tasks could be compared. A more extensive laboratory experiment could follow on

from this study to evaluate the findings that this thesis uncovered.

5.4 Conclusion

Diver represents a huge undertaking consisting of solid design and development, and

grounding in program comprehension and cognitive science research. This thesis took

on the difficult task of trying to measure the effectiveness of such a tool to continue the

effort of improving users’ experience with program comprehension tools. Diver with

software reconnaissance is a very useful tool according to many of the participants who

used it during the study. The positive responses support the statement that Diver

should be part of every Java developers toolkit. Continued research and development

will work to realise this goal and help programmers maintain ever more complex

software systems.

91

Bibliography

[1] Hira Agrawal, James L Alberi, Joseph R Horgan, J Jenny Li, Saul London,

W Eric Wong, Sudipto Ghosh, and Norman Wilde. Mining system tests to aid

software maintenance. Computer, 31(7):64–73, 1998.

[2] Anonymous. Review of ”supporting navigation in large sequence diagrams using

software reconnaissance”, 2011.

[3] C. Bennett. Tool features for understanding large reverse engineered sequence

diagrams. Master’s thesis, University of Victoria, 2008.

[4] C. Bennett, D. Myers, M.A. Storey, and D. German. Working with monster-

traces: Building a scalable, usable sequence viewer. In In Proceedings of the 3rd

International Workshop on Program Comprehension Through Dynamic Analysis

(PCODA), Vancouver, Canada, pages 1–5, 2007.

[5] C. Bennett, D. Myers, M.A. Storey, D.M. German, D. Ouellet, M. Salois, and

P. Charland. A survey and evaluation of tool features for understanding reverse-

engineered sequence diagrams. Journal of Software Maintenance and Evolution:

Research and Practice, 20(4):291–315, 2008.

[6] B. Cleary, A. Le Gear, C. Exton, and J. Buckley. A combined software reconnais-

sance & static analysis eclipse visualisation plug-in. In Visualizing Software

for Understanding and Analysis, 2005. VISSOFT 2005. 3rd IEEE International

Workshop on, pages 1–2. IEEE, 2005.

[7] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke. A

systematic survey of program comprehension through dynamic analysis. Software

Engineering, IEEE Transactions on, 35(5):684–702, 2009.

92

[8] Bas Cornelissen, Andy Zaidman, Danny Holten, Leon Moonen, Arie van Deursen,

and Jarke J van Wijk. Execution trace analysis through massive sequence and

circular bundle views. Journal of Systems and Software, 81(12):2252–2268, 2008.

[9] K.A. Ericsson and H.A. Simon. Verbal reports as data. Psychological review,

87(3):215, 1980.

[10] Virginia R Gibson and James A Senn. System structure and software mainte-

nance performance. Communications of the ACM, 32(3):347–358, 1989.

[11] A. Hamou-Lhadj and T.C. Lethbridge. A survey of trace exploration tools and

techniques. In Proceedings of the 2004 conference of the Centre for Advanced

Studies on Collaborative research, pages 42–55. IBM Press, 2004.

[12] Abdelwahab Hamou-Lhadj and Timothy C Lethbridge. Compression techniques

to simplify the analysis of large execution traces. In Program Comprehension,

2002. Proceedings. 10th International Workshop on, pages 159–168. IEEE, 2002.

[13] Abdelwahab Hamou-Lhadj, Timothy C Lethbridge, and Lianjiang Fu. Challenges

and requirements for an effective trace exploration tool. In Program Comprehen-

sion, 2004. Proceedings. 12th IEEE International Workshop on, pages 70–78.

IEEE, 2004.

[14] M. Kersten and G.C. Murphy. Mylar: a degree-of-interest model for ides. In

Proceedings of the 4th international conference on Aspect-oriented software de-

velopment, pages 159–168. ACM, 2005.

[15] Andrew J Ko, Robert DeLine, and Gina Venolia. Information needs in collocated

software development teams. In Proceedings of the 29th international conference

on Software Engineering, pages 344–353. IEEE Computer Society, 2007.

[16] Philippe B Kruchten. The 4+ 1 view model of architecture. Software, IEEE,

12(6):42–50, 1995.

[17] Thomas D. LaToza and Brad A. Myers. Designing useful tools for developers. In

Proceedings of the 3rd ACM SIGPLAN workshop on Evaluation and usability of

programming languages and tools, PLATEAU ’11, pages 45–50, New York, NY,

USA, 2011. ACM.

93

[18] Thomas D LaToza, Gina Venolia, and Robert DeLine. Maintaining mental mod-

els: a study of developer work habits. In Proceedings of the 28th international

conference on Software engineering, pages 492–501. ACM, 2006.

[19] A. Le Gear, J. Buckley, JJ Collins, and K. O’Dea. Software reconnexion: un-

derstanding software using a variation on software reconnaissance and reflexion

modelling. In Empirical Software Engineering, 2005. 2005 International Sympo-

sium on, pages 10–pp. IEEE, 2005.

[20] Arnold M Lund. Measuring usability with the use questionnaire. Usability in-

terface, 8(2):3–6, 2001.

[21] Joseph E McGrath. Methodology matters: doing research in the behavioral

and social sciences. In Human-computer interaction, pages 152–169. Morgan

Kaufmann Publishers Inc., 1995.

[22] D. Myers and M.A. Storey. Using dynamic analysis to create trace-focused user

interfaces for ides. In Proceedings of the eighteenth ACM SIGSOFT international

symposium on Foundations of software engineering, pages 367–368. ACM, 2010.

[23] D. Myers, M.A. Storey, and M. Salois. Utilizing debug information to com-

pact loops in large program traces. In Software Maintenance and Reengineering

(CSMR), 2010 14th European Conference on, pages 41–50. IEEE, 2010.

[24] Del Myers. Improving the scalability of tools incorporating sequence diagram

visualizations of large execution traces. Master’s thesis, University of Victoria,

2011.

[25] Marian Petre. Uml in practice. In Proceedings of the 2013 International Confer-

ence on Software Engineering, pages 722–731. IEEE Press, 2013.

[26] V. Rajlich and N. Wilde. The role of concepts in program comprehension. In

Program Comprehension, 2002. Proceedings. 10th International Workshop on,

pages 271–278. IEEE, 2002.

[27] Sourceforge. Diver’s download statistics.

[28] M.A. Storey. Theories, tools and research methods in program comprehension:

past, present and future. Software Quality Journal, 14(3):187–208, 2006.

94

[29] M.A.D. Storey. A cognitive framework for describing and evaluating software

exploration tools. PhD thesis, Simon Fraser University, 1998.

[30] M.A.D. Storey, F.D. Fracchia, and H.A. Müller. Cognitive design elements to

support the construction of a mental model during software exploration. Journal

of Systems and Software, 44(3):171–185, 1999.

[31] M.A.D. Storey, K. Wong, and H.A. Muller. How do program understanding tools

affect how programmers understand programs? In Reverse Engineering, 1997.

Proceedings of the Fourth Working Conference on, pages 12–21. IEEE, 1997.

[32] Scott R Tilley, Santanu Paul, and Dennis B Smith. Towards a framework for

program understanding. In Program Comprehension, 1996, Proceedings., Fourth

Workshop on, pages 19–28. IEEE, 1996.

[33] A. Von Mayrhauser and A.M. Vans. Program comprehension during software

maintenance and evolution. Computer, 28(8):44–55, 1995.

[34] Andrew Walenstein. Cognitive support in software engineering tools: A dis-

tributed cognition framework. PhD thesis, Simon Fraser University, 2002.

[35] Andrew Walenstein. Foundations of cognitive support: Toward abstract patterns

of usefulness. Interactive Systems: Design, Specification, and Verification, pages

133–147, 2002.

[36] Andrew Walenstein. Theory-based analysis of cognitive support in software com-

prehension tools. In Program Comprehension, 2002. Proceedings. 10th Interna-

tional Workshop on, pages 75–84. IEEE, 2002.

[37] N. Wilde, M. Buckellew, H. Page, V. Rajlich, and L.T. Pounds. A comparison

of methods for locating features in legacy software. Journal of Systems and

Software, 65(2):105–114, 2003.

[38] N. Wilde and C. Casey. Early field experience with the software reconnaissance

technique for program comprehension. In Software Maintenance 1996, Proceed-

ings., International Conference on, pages 312–318. IEEE, 1996.

[39] N. Wilde and M.C. Scully. Software reconnaissance: mapping program features

to code. Journal of Software Maintenance: Research and Practice, 7(1):49–62,

1995.

95

[40] Norman Wilde, Michelle Buckellew, Henry Page, and Vaclav Rajlich. A case

study of feature location in unstructured legacy fortran code. In Software Main-

tenance and Reengineering, 2001. Fifth European Conference on, pages 68–76.

IEEE, 2001.

[41] A. Zaidman. Scalability solutions for program comprehension through dynamic

analysis. In Software Maintenance and Reengineering, 2006. CSMR 2006. Pro-

ceedings of the 10th European Conference on, pages 4–pp. IEEE, 2006.

96

Appendix A

User Study Consent Form

Introduction

Thank you for offering to participate in our user study. It is our hope that the data

collected in this study will help us and others to develop tools that will support

developers in their software development, maintenance, and evolution tasks. The

study is being conducted by Sean Stevenson of the CHISEL group at the Univer-

sity of Victoria under the supervision of Dr. Margaret-Anne Story. The results of

this study will be published in confidential form in scholarly publications including,

but not limited to, conference proceedings, journal articles, and in a Masters the-

sis. If you have any questions, you may contact Dr. Margaret-Anne Storey or Sean

Stevenson. For more information about our research group, please see our website:

http://www.thechiselgroup.org.

What is Involved

This study involves the performance of 8 feature location and analysis tasks. You

will be asked to analyze a piece of software using the tools provided, and to answer

some questions about the software under analysis. You will also be asked to complete

a pre-study and post-study questionnaire. Participation will involve approximately 2

hours of your time.

Voluntary Participation

Your participation in this study is completely voluntary. Declining participation

carries no professional or employment consequences. You may choose to end the

97

study at any time. If you choose, we can also withdraw you completely from the

study so that all data collected during your session will be destroyed and disregarded.

If you would like to withdraw from the study after your session has been completed,

please contact Sean Stevenson.

Risks

You may experience some frustration while performing the tasks involved in this

study. You may choose to withdraw from the study at any time.

Confidentiality

The data collected in this study will be internal to the CHISEL group at the University

of Victoria. Your participation in the study will be recorded in audio/visual format

using a video camera. Your interactions with the software tools involved in this

study will also be automatically recorded by the software, in addition to your eyes

being tracked. No identifying information will be shared outside of the individuals

involved in conducting this study. All data will be anonymized before being shared

or published in order to protect your confidentiality.

Compensation

You have been offered a stipend in the amount of $20 for your participation in this

study. This is a free gift and should have no impact on your willingness to perform

this study. In other words, if you feel that you would not participate unless you were

offered this gift, then you should withdraw from the study.

Benefits

The tool under investigation is free and Open Source. If you like the tool, you may

download it from the web site http://eclipsediver.wordpress.com. Your participation

may lead to improvements in this tool as well as add to general knowledge about how

to develop software tools for software development, maintenance, and reengineering.

More Information If you have any questions about the study, you may contact Sean

Stevenson or Dr. Margaret-Anne Storey. If you have questions or concerns about the

ethical implications of this study, you may contact the University of Victoria Human

98

Research Ethics Office. This study is part of a larger research investigation titled

Reverse Engineered Sequence Diagrams to Support Software Evolution.

__________________ __________________ __________________

Participant Name Signature Date

99

Appendix B

Pre-study Questionnaire Form

Date:

User Code:

This questionnaire asks you for information concerning your previous program-

ming experience specifically with Eclipse and Java. Previous programming experience

and domain knowledge (knowledge about the program you will be examining) will

affect the results in this experiment.

You do not have to answer any questions you do not want to.

1. What degree, program and academic year of university are you in?

2. Are you familiar with the game Tetris?

3. How many years/months of programming experience do you have in total?

100

4. How many years/months have you spent working on code written by someone

else?

5. How many years/months of creating and using UML diagram do you have?

6. Which programming languages/scripting languages have you programmed in?

7. How many years/months of programming experience in Java do you have?

8. How many years/months of programming experience using the Eclipse IDE do

you have?

9. Have you used any other IDEs before? Which ones?

10. What development tools have you used before (IDE plugins, reflection tools,

code coverage, UML generators etc)?

11. What is the largest program you have written or maintained (lines of code,

number 0f files, time length of development)?

101

Appendix C

Tasks

Task 0

Date:

Subject Code:

Task Order:

Software Reconnaissance:

Task Instructions

In the training Sudoku game there is the Solve button. Using Software Reconnais-

sance, determine what method in the game is called to solve the puzzle. Once found,

answer the questions below.

Questions

1. In which thread is the functionality primarily executed?

2. Please describe the program flow that preceded the execution of the function-

ality.

102

3. What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

103

Task 1

Date:

Participant Code:

Task Order:

Software Reconnaissance:

Task Instructions

To start a new game the button labelled Start Game must be clicked. Find the

method in the game code that starts a new game. Then answer the questions below.

Questions

1. In which thread is the functionality primarily executed?

2. Please describe the program flow that preceded the execution of the function-

ality.

3. What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

104

Task 2

Date:

Participant Code:

Task Order:

Software Reconnaissance:

Task Instructions

The Up arrow key is used to rotate a Tetris piece. Find what method is called to

change the rotatation of the piece. Once found, answer the questions below.

Questions

1. In which thread is the functionality primarily executed?

2. Please describe the program flow that preceded the execution of the function-

ality.

3. What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

105

Task 3

Date:

Participant Code:

Task Order:

Software Reconnaissance:

Task Instructions

The speed of the game can be adjusted by the player through the Options menu.

Using the menu to select a new speed, find out where the speed of the game is set in

the code and answer the questions below.

Questions

1. In which thread is the functionality primarily executed?

2. Please describe the program flow that preceded the execution of the function-

ality.

3. What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

106

Task 4

Date:

Participant Code:

Task Order:

Software Reconnaissance:

Task Instructions

In the Score panel on the right hand side is a number of counters. There is a group of

counters that track how much Single, Double or Triple lines are completed. Find the

method that increments the count for the single lines completed. Once the method

is found, answer the questions below.

Questions

1. In which thread is the functionality primarily executed?

2. Please describe the program flow that preceded the execution of the function-

ality.

3. What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

107

Task 5

Date:

Participant Code:

Task Order:

Software Reconnaissance:

Task Instructions

A new player can be created in the game by selecting Change Player → New. Find

out where the new player information is stored and then answer the questions below.

Questions

1. In which thread is the functionality primarily executed?

2. Please describe the program flow that preceded the execution of the function-

ality.

3. What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

108

Task 6

Date:

Participant Code:

Task Order:

Software Reconnaissance:

Task Instructions

If a player wants to know the Tetris Scoring information they can go to Help→ Tetris

Scoring and a window will open. Find out what method displays this window and

then answer the questions below.

Questions

1. In which thread is the functionality primarily executed?

2. Please describe the program flow that preceded the execution of the function-

ality.

3. What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

109

Task 7

Date:

Participant Code:

Task Order:

Software Reconnaissance:

Task Instructions

The percentage bar below the scores on the right of the screen shows the Weighted

Score, i.e. how close a game is to ending. Find out where the Weighted Score is

calculated and then answer the questions below.

Questions

1. In which thread is the functionality primarily executed?

2. Please describe the program flow that preceded the execution of the function-

ality.

3. What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

110

Task 8

Date:

Participant Code:

Task Order:

Software Reconnaissance:

Task Instructions

The Game Over message is displayed when the game ends in the centre of the playing

area. Find where this message is displayed and then answer the questions below.

Questions

1. In which thread is the functionality primarily executed?

2. Please describe the program flow that preceded the execution of the function-

ality.

3. What are the classes and methods involved in the execution of the functionality

and describe how they interact to perform the functionality?

111

Appendix D

Post-study Questionnaire Form

Date:

User Code:

1. Describe your general experience using the tools to carry out the assigned tasks.

2. Did you have enough time to finish the tasks? If no, why not?

3. What helped you to complete the tasks?

112

4. What hindered you from completing the tasks?

5. What tool features did you find most useful?

6. What tool features did you find to be a hindrance?

7. Did the eye tracker affect your performance?

8. Any suggestions for improvement?

9. Closing remarks?

113

Appendix E

General Experimenter Instructions

Introduction

Each experiment involves you as the experimenter and one user. This document gives

an overview of the experiment procedures and study design.

The handbook explains the various phases of the experiment and what is required

from the experimenter. The phases are:

1. Setting up the Usability Lab

2. Setting up the workstation being used

3. Initial instructions to the subject

4. Consent Form instructions and signing

5. Pre-Study Questionnaire completion

6. Study instructions

7. Tool training

8. Task instructions

9. Post-Study Questionnaire completion

10. Final instructions

114

Experiment Goal

The purpose of this experiement is to study how the use of the Software Reconnais-

sance feature of Diver helps improve the ability for users to find features and improves

analysis and navigation of code. The experimenter is their to aid the user but not

directly help achieve the answer. The study will use a Java implementation of Tetris.

To get the user familiar with the application and terminology they will be given the

opportunity to play the game during the training and practice phase.

Phases

Each experiment is designed to not take more than 2 hours. The time limits in

minutes for the phases are in brackets.

1. Setting up (Done in advance)

2. Pre-study Orientation (5)

3. Training and Practice (25)

4. Software Reconnaissance Tasks (40)

5. Break (5)

6. Non-Software Reconnaissance Tasks (40)

7. Post-Study Questionnaire and Experiment Finalising (10)

The time limit for the tasks is generous and although 10 minutes a task is the

average, some tasks will take less time and some might take more than 10 minutes.

The Study Design

Research Questions

The tasks assigned to the user shall be divided into 2. One half will be performed with

the aid of the software reconnaissance feature in Diver and the other half without.

The tasks shall be randomly split in half and used for two subjects to assign them

tasks. This will be done so that each half is performed with and without software

reconnaissance. The tasks involve finding where certain events happen in the code

115

and to then answer questions explaining the details about the execution of the code.

This is an in person study and the software reconnaissance tasks will be completed

first to account for learning bias.

The subjects will fill in a pre-study questionnaire gathering information about

their experience. The experiment will be recorded both on the workstation and

by a video camera. The experimenter will also note observations while the user is

performing the task. The user will be asked to verbalise their thoughts, ideas and

processes. There will be a post-study questionnaire to end the experiment.

Experimenter Behaviour

The experimenter will be required to:

1. Go through all forms given to the user and explain them

2. Give the user a demonstration of the tool and allow them to practice what they

have learnt.

3. Help the user while completing the tasks with minor problems with using the

tools unrelated to the core problem finding the so.

4. Inform the user when a task is taking to long

5. Make observations based on the subjects actions, talking and mood. Take notes

of all these observations.

6. Follow the procedures laid down in the handbook and mark them as complete.

116

Appendix F

Experimenter’s Handbook

Date:

Participant Code:

A fresh copy of this handbook should be used in each experiment. Tick off items as

they are covered in the experiment. Attach this form to the forms and questionnaires

filled in by the participant as well as your observation notes after the experiment is

completed.

Set Up

Setting up the Usability Lab:

1. A study pack ready consisting of the:

• Experimenter’s Handbook (this document)

• User Consent Form x 2

• Pre-study Questionnaire Form

• User Instructions

• Task Forms

• Post-study Questionnaire Form

• Paper for observations

• 2 pens

• $20 stipend

117

2. The video camera has a new tape in and is ready to record the session. Another

tape ready to change after an hour.

Setting up the workstation:

1. The workstation has Eclipse open with Diver installed and Tetris and the train-

ing projects loaded.

2. ClearView is running and ready to record with the participant profile created.

Pre-study Orientation

Time limit: 5 min.

1. Introduce yourself. Help the participant get comfortable.

2. Explain the consent form. Highlight the fact that the session will be video taped

and the particpant’s eyes will be tracked.

3. Give them the Pre-study Questionnaire Form and briefly explain its aim. Pro-

vide guidance where necessary.

4. Inform them of the purpose of the experiment: ’This study is aimed at helping

us determine the usefulness of the software reconnaissance feature in Diver.’

5. Explain that the test is about the difference between using the software recon-

naissance feature and doing similar tasks without it, not the subjects perfor-

mance.

6. Detail how the rest of the study will be conducted. Highlight the time limit:

• Training and Practice (25)

• Software Reconnaissance Tasks (40)

• Break (5)

• Non-Software Reconnaissance Tasks (40)

• Post-Study Questionnaire and Experiment Finalising (10)

118

Training and Practice

Time limit: 25 min. Sample Program: Sudoku

• Tell the participant to ask questions at any time.

• Explain that Diver is beta software and that they may come across bugs while

using it.

• Introduce the participant to training software which will be used for training

and practice.

• Explain the following functionality:

1. Recording a trace.

2. Opening the sequence diagram for the trace.

3. Basics of sequence diagrams.

4. User object and lifelines.

5. Expanding and collapsing sections.

6. Expand All Children.

7. Code blocks and colour coding: red for error handling blocks, blue for

loops and green for conditional blocks.

8. Activation boxes.

9. Show grouping of lifelines in package overview.

10. Show Focus On/Focus Up and breadcrumb functionality

11. Jumping to the source code.

12. Code coverage

13. Activate trace

14. Reveal In

15. Explain Timeline.

16. Software Reconnaissance

• Show participant Task 0 and explain the questions

• Let participant practice using Diver

• Introduce Tetris

119

Software Reconnaissance Tasks

1. Go through the Instructions with the participant.

2. Explain the eye tracking requirements.

3. Emphasize that the object is to use Diver as much as possible to complete the

tasks and not to use searching.

4. Remind the participant that this set of tasks should be done using the Software

Reconnaissance feature specifically.

5. Remind the participant that they have 40 minutes to complete the 4 tasks and

should be averaging 10 minutes a task.

6. Remind the participant to talk out loud while completing the tasks.

7. While the participant is completing the tasks you should take notes on your

observations of them.

8. After completing all the tasks or at the end of the 40 minutes stop the partici-

pant and let them have a 5 minute break.

Non-Software Reconnaissance Tasks

1. Remind the participant that for this set of tasks they will be able to use all the

features of Diver except for Software Reconnaissance.

2. Once again while the participant is completing the tasks you should take notes

on your observations of them.

3. After completing all the tasks or at the end of the 40 minutes stop the partici-

pant and then move on the the Post-Study Questionnaire.

Post-Study Questionnaire and Experiment Finalis-

ing

1. Go through the questions with the participant and record their responses to

questions.

120

2. After finishing the questionnaire let the participant know that the study is over

and thank them for particpating.

3. Give them the stipend and have them initial the consent form by the paragraph

talking about the stipend.

121

Appendix G

Ethics Approval Certificate

122

