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ABSTRACT

Traditional university education in computer science and software engineering fo-

cuses on teaching fundamental principles rather than developing skills with particular

technologies. The motivation for this approach is that if the student has strong fun-

damental knowledge then they can learn any technology needed on the job. However,

it is becoming increasingly common for employers to look for candidates who already

have the desired skills, and expect them to need little to no training or ramp-up

time on the job. As a result, students must develop skills with different technologies

on their own initiative. However, software development involves an overwhelmingly

large number of competing platforms which makes it difficult to decide where to focus

one’s efforts. In this project I developed a system to analyze job postings to identify

key skills, and trends in demand for these skills over time. The results are presented

for the public in a web application. The job postings used in the project were from

the VIATeC job posting site. VIATeC was supportive of the project and provided

positive feedback on the usefulness of the analysis done to date.
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Chapter 1

Introduction

The software development landscape consists of a confusingly large number of com-

peting platforms. Selecting which technologies to learn and use for development is

a challenge for software developers, whether they be developers in training or ex-

perienced professionals. Likewise, educators face a difficult decision when selecting

technologies to incorporate into the curriculum. In most institutions, the process of

selecting technologies to teach students is not closely related to industry requirements.

The mismatch between skills that employers need and those that developers obtain

from their formal education (cf., Canadian Coalition For Tomorrow’s ICT Skills [3])

has serious economic consequences. The goal of this study is to reduce the mismatch

by building a software technology analytics system to help developers in training,

practicing developers, and educators make informed choices about development tech-

nologies. It will analyze job postings and other sources published on the web to

model and predict demand for key skill sets within specific professional groups and

geographic regions.

Some related work has already been done on this topic. For example, Kanya and

Geetha [7] have developed techniques for automatically creating “information extrac-

tors” for job postings. The extractors generate structured and searchable databases

from the unstructured job information. Machine learning algorithms are then applied

to the extracted data to find association rules.

This previous work provides a good foundation, but does not directly solve the

stated problem of reducing the skills mismatch between what employers need and

what potential employees from their geographic area can provide. Therefore, this

research intends to fill this gap by meeting the following research objectives:
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1. To define a set of indicators for software development technology usage.

2. To use these indicators to identify key technical skill sets currently in high

demand in computer science and engineering jobs for specific geographic regions.

3. To track and identify changes to these required skill sets over time.

4. To present the results to educators, developers and employers through a web-

based analytics system.
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Chapter 2

Literature Review

This review focuses on the literature concerning the use of machine learning techniques

to identify critical skill sets for IT professionals. It is expected that the data will come

from online sources such as web-based job postings. This data will be in natural

language, and will be unstructured or perhaps semi-structured.

While this is a fairly specific topic, it actually spans many areas of research includ-

ing information extraction, data mining, text mining, natural language processing,

machine learning and even software engineering education.

Jiawei Han and Micheline Kamber’s textbook “Data Mining: Concepts and Tech-

niques” [6] provides a good background in data mining, text mining and information

retrieval among other topics. According to them, “simply stated, data mining refers

to extracting or ‘mining’ knowledge from large amounts of data.” The use of data

mining techniques for the purpose of automated discovery of knowledge from un-

structured text is known as text mining. Information extraction is the first step in

this process during which specific pieces of data are extracted from natural language

documents.

Yorke [13] describes university and college graduate employability as the acquisi-

tion of the “skills, understandings and personal attributes that makes graduates more

likely to gain employment and be successful in their chosen occupations, which ben-

efits themselves, the workforce, the community and the economy.” In order to gain

these benefits, it is necessary that both students and educators have a true picture of

the skill sets which will be relevant and useful in the workplace [12].

The most common way to identify employer requirements is through qualitative

methods such as surveys and interviews [12]. However, these are time consuming and

often lack consistency. Terblanche [12] suggests introducing quantitative methods by
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analyzing online job postings to develop an ontology of employer demands for different

positions (the nursing profession was the focus of that study). The author then

hopes this ontology will then enable artificial intelligence techniques to be quickly and

consistently applied to job advertisements in order to identify employer expectations

of skill sets.

Kanya and Geetha [7] developed machine learning techniques for automatically

creating “information extractors” for job postings. This allowed them to automati-

cally generate structured and searchable databases with the job information. To do

this they developed a text mining framework called DISCOTEX (Discovery from Text

EXtraction). DISCOTEX first has an information extraction phase in which they

used RAPIER (Robust Automated Production of Information Extraction Rules) [2]

and BWI (Boosted Wrapper Induction) [5]. Algorithms such as APRIORI [1] and

RIPPER [4] were then applied to the extracted data in order to find association rules.

An example of a rule might be that if the job posting requires knowledge of the Perl

programming language and HTML, then the work will likely be done in a Linux en-

vironment. Interestingly, the DISCOTEX system was able to take these mined rules

and use them to improve the accuracy of its information extraction process, in a sort

of feedback loop.

Kong et al. [8] describe the implementation of a Python based system for ex-

tracting information from various job posting sites in China, and provide a unified

search and application interface for these sites. The system can also generate statis-

tics on what job positions are popular. Another system applied to Chinese job sites

is described by Zhang and Gu [14]. That system is able to classify job postings into

predetermined classes of jobs.

Once industry-required skill sets have been identified they may guide professional

development for students and those already in the workforce. Universities may also

use the information to ensure their programs offer the best preparation possible for

the local workforce. An example in a different field is given by Layton [9] in which

he describes how industry required skill sets were integrated into the bioengineering

curriculum at the University of Illinois at Chicago. This study aims to perform a

similar function by identifying skill sets required in the Victoria IT sector that can

inform developers and educators as to where to focus further skills development to

increase developers’ employability.
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Chapter 3

Methodology

This chapter describes the sources of data considered for identifying software devel-

opment technology usage. Initially we investigated open source projects on GitHub

belonging to Victoria developers. This focused on programming language usage by

local developers. However, looking at open source projects does not necessarily show

the skills that are commonly used in proprietary software development projects. To

study that, we looked at local job postings.

3.1 GitHub

GitHub is a popular platform for collaboration on open source projects. It also

provides a rich API to query various aspects of public activity. This combination of a

popular social coding website with a rich API presents an opportunity for researchers

to gather empirical data about software development practices.

I completed a project which analyzed GitHub data taking into account the devel-

opers’ location and their technology usage [11]. As part of this project I developed

a web-based tool to interact with and visualize the data. In its current state of de-

velopment, the tool summarizes the amount of code developers have in their public

repositories decomposed by programming language, and summarizes data about pro-

grammers using specific programming languages. This allows website visitors to get

an immediate picture of the programming language usage in their region. Future

research could expand this work to technologies beyond programming languages such

as frameworks and libraries.

This work will not be discussed further in this report as it has already been
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published separately [11].

3.2 Online Job Postings

My project focused on the next source of data that was considered: online job post-

ings. Skill requirements in web-based job postings were used as the predictor for

software development technology usage in the project documented by this report.

In particular, job postings from VIATec’s job board (http://www.viatec.ca/job-

board/results) were archived and analyzed. This job board is primarily for technology

jobs in the Victoria, BC area. It includes postings for software developers of all kinds

and system administrators. However, it also has postings for less technical positions

such as in management, administration, sales and marketing for companies involved

in the high technology industry.

Data collection of job postings is done by querying an RSS feed which returns

an XML document containing all currently open job postings. This data collection

was done twice a day starting on September 9, 2012. Since there were old postings

still unfilled, the earliest job postings archived in the system actually date back to

June 21, 2012, but the postings prior to September 9, 2012 are obviously incomplete.

There is a complete record of all postings from September 9, 2012 onwards to the

present day. Since the developed system (see Chapter 4) aims to be as up-to-date as

possible, data collection has recently been increased to every two hours between 7:00

am and 7:00pm.

These job postings provide both unstructured and semi-structured information

about the skills required. Some information such as the publication date of the job

posting are provided in a structured format. However, the skill requirements are

in natural language, embedded in a document which is also attempting to market

the employer to potential employees. This makes it more challenging to extract the

relevant information.

Next, Chapter 4 discusses the data wrangling, analysis and visualization per-

formed to extract meaning from this data.
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Chapter 4

Data Product

This chapter describes the “data product” created by this project. We use the term

data product to mean an interactive system which:

1. processes raw input data into a format suitable for analysis (data wrangling)

2. performs the analysis

3. visualizes the result

4. allows for the process to be repeatable

The remainder of this chapter will be structured by discussing each of these aspects

in turn.

4.1 Data Wrangling

Data was collected from the VIATeC RSS feed (http://www.viatec.ca/job-board/feed).

Figure 4.1 shows the first fews lines of an RSS feed as an example. The feed is too

long to show in its entirety, and it is not easy for a human to read due to the job

description being in escaped HTML (i.e. it contains strings like &lt;/div&gt; which

are not part of the content of the job description, they are just for formatting rendered

versions).

The RSS feed contains a list of job postings in XML format. To get a better idea

of what information is available, Table 4.1 describes each of the elements present in

a job posting.
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Figure 4.1: First few lines of RSS feed.

Element Description
title The title of the job.
link URL to the original job posting on the VIATeC site.
description A free-form description of the job. It will contain the required

skills in natural language. It is the actual HTML from the
online job posting, so contains markup.

job category A designation such as Technical, Sales and Marketing, Man-
agement and Operations, Administrative, or Other. A job
can only be in one category.

job specialization A more specific categorization of the job, such as software
development, web development, etc. A job can only have one
specialization.

tags A job can have multiple tags to annotate it even further than
with just the category and specialization.

group A reference to the company which posted the job. VIATeC
gives them a unique id number.

pubDate A timestamp from when the job posting was created.
creator The email address of the person who created the job posting.
isPermaLink Indicates that the link to the job posting will not be perma-

nent (ex. after the job is filled). I have only ever seen the
value False.

Table 4.1: The elements that make up a job posting in XML format and their de-
scriptions.
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Parsing fields other than the description is fairly straight-forward. Sometimes

the information is awkwardly embedded in a URL that is an attribute of the XML

element, but the information is not difficult to extract. Parsing the free-form de-

scription field to extract skills is more challenging. The software system as currently

implemented only looks for programming languages. It does this by tokenizing the

description, and then searching the tokens for the names of programming languages.

For example, “Experience with Python” is tokenized to a list of tokens: [“Ex-

perience”, “with”, “Python”]. Next, when scanning the tokens, Python is identified

as one of the programming languages for which the system has been configured to

recognize. The Python Natural Language Toolkit (http://www.nltk.org/) is used

for tokenizing. A regular expression based tokenizer is used. Generally it splits on

words, but the regular expression takes into account special cases such as “Objective

C” which should be considered a single token.

As currently implemented, programming languages are found in the description

of the job posting and then associated with that job posting. The Analysis section

presented next gives more details.

4.2 Analysis

Once the job postings have been parsed, they are stored in an SQL database. Figure

4.2 shows the entity-relationship diagram for the database.

This database allows a wide range of queries to be made, facilitating any analysis

we wish to do.

Current analyses performed include:

1. programming language trends showing how many jobs required the program-

ming language over time

2. companies’ job posting trends over time

3. a summary of programming languages and the total number of job postings

they have appeared in

4. a summary of companies and the total number of jobs they have posted

5. lists of job postings by programming language or company
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Figure 4.2: The entity-relationship diagram for data stored by the job parsing system.
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Figure 4.3: A comparison of job posting trends for Python, Ruby and Perl.

In addition to these analyses, the system also simply acts as an archiving service

where the full text of old job postings can be viewed even if they are no longer

available elsewhere.

The next section discusses the visualizations related to these analyses. Chapter 6

proposes future planned analyses.

4.3 Visualization

The visualization types currently used in the project are line charts, data tables, bar

charts and tag clouds. Work on determining which visualizations work best is still

being done. The two primary visualizations currently implemented are line charts

and data tables. They will be discussed further below.

4.3.1 Line Charts

We use line charts to show time series data such as trends in programming language

popularity in Figure 4.3.

Note that individual lines can be highlighted by mousing over the label in the

legend, and hidden by clicking on the label in the legend. The values of the different

lines at any point can be found by mousing over them.
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Figure 4.4: Job posting trends for various companies.

Figure 4.4 shows another example where the number of jobs posted by different

companies is tracked over time.

4.3.2 Data Tables

Data tables in this project are simply tabular data which has been enhanced by

making the columns sortable, paginating results, and providing search capability to

filter down results. Figure 4.5 shows an example where job postings are listed, and

the user has entered “java” as a filter.

Figure 4.6 shows another example of a data table displaying the number of job

postings that each programming language has been mentioned in.

4.4 Repeatability

This system is constantly evolving as we try to extract more information and perform

new analyses. If we only stored the parsed results in the database, the whole database

would have to be regenerated every time we extracted some new piece of information

into a new field. This would be tedious and time consuming. Therefore the full text

of the job description is also stored in the database. Then when a new field is added

to the schema based on parsing new information, a data migration can be performed
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Figure 4.5: A data table which has been filtered to show jobs mentioning Java in the
job title.
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Figure 4.6: A data table showing how many job postings different programming
languages were mentioned in.
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to update existing entries in the database.

As will be discussed in Chapter 5, the system is implemented using the Django

web framework. As of Django version 1.7, there is a built-in database migration tool

which can be used to create schema migrations (ex: adding new fields) and data

migrations (ex: populating new fields). This tool makes it much simpler to update

the database models.
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Chapter 5

Implementation

This chapter discusses some details of the implementation of the project. Since this

was termed an “industrial project” I thought it would be appropriate to spend the

extra time to apply best practices which are widely used in industry, but generally

overlooked in academic projects. I took full advantage of this opportunity to further

my experience with test-driven development, continuous integration, configuration

management, and so on.

The project is primarily implemented in Python, using the Django web framework

(https://www.djangoproject.com/). In the past I have favoured Flask (http://

flask.pocoo.org/), but Django is arguably the most popular Python web framework

and much more mature than Flask, so I wanted to experiment with it. Additionally,

in the spirit of the project, I used the Unix utility grep to search the job postings

for Django and Flask. Flask was never mentioned, while Django had many mentions.

Therefore, it also seemed like a valuable technology to learn.

The front-end uses Bootstrap (http://getbootstrap.com/) for structure and

styling. JavaScript is used for features such as creating charts. In particular, C3.js

(http://c3js.org/) is used for creating trend charts. It is a library built on top

of D3.js (http://d3js.org/), providing a high level interface for creating a vari-

ety of common charts using SVG. The DataTables plugin for jQuery (http://www.

datatables.net/) is used to make tables, such as lists of jobs, sortable, paginated

and filterable.
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5.1 Version Control

Git was used for version control, and GitHub was used for hosting the Git repository.

The repository is currently being kept private, but I plan to make it public soon since

it contains no sensitive information. GitHub was also useful for tracking issues and

feature requests.

5.2 Testing

Test-driven development was used in this project due to its benefits such as:

1. improved design by focusing on the interface before the implementation

2. more modular code because units need to be tested individually

3. ability to break complex tasks into small incremental steps

4. ability to safely refactor

5. fewer bugs and regressions

The book Test-Driven Development with Python [10] was a great source of infor-

mation about testing a web application developed using Django. Django provides

utilities for unit testing the server-side Python code, while Selenium (http://www.

seleniumhq.org/) was used for functional testing from the site visitor’s point of view.

Jasmine (http://jasmine.github.io/) was used for unit testing the JavaScript

code.

5.3 Continuous Integration

Continuous integration is the practice of merging changes to a software project back

into the main branch as soon as possible. This avoids integration problems that

can occur if development occurs in a separate branch for a prolonged period. An

important part of continuous integration is validating code changes. This is done by

running the test suite whenever new commits are pushed to the GitHub repository.

In the past I have used Travis-CI (https://travis-ci.org/), which is a hosted

continuous integration service which is free for public repositories on GitHub. Since

this project is currently private, I instead installed and configured Jenkins (http:
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//jenkins-ci.org/) on my own server. In the event that a regression is introduced

and caught by the test suite, an email alert is sent.

The server does not have a GUI, so in order to run the Jasmine JavaScript unit

tests, a headless browser called PhantomJS (http://phantomjs.org/) is used. For

the functional tests, it was desirable to still use real web browsers to capture any

strange quirks, so a virtual display called Xvfb (X Virtual Framebuffer) was used.

5.4 Configuration Management and Deployment

Setting up servers in an automated way greatly increases reliability and reproduce-

ability of production environments. For this task, a tool called Ansible (http:

//www.ansible.com/home) was used. It installs all required software, configures the

HTTP server NGINX (http://nginx.org/), configures the Python WSGI HTTP

server Gunicorn (http://gunicorn.org/), and sets up the cron jobs for download-

ing data. Since there are multiple versions of the site (testing, staging, live), it would

be tedious and error prone to repeat this configuration manually for each one.

Virtualenv (https://virtualenv.pypa.io/en/latest/) is used to create an iso-

lated Python environment where libraries used by the site are installed. This helps

greatly in managing dependencies and versions.

The actual deployment of the code is automated using Fabric (http://www.

fabfile.org/en/latest/). It performs operations such as generating the secret

key for the application and injecting Google Analytics for the appropriate host. In

the future deployment may also be done with Ansible to streamline things further.

5.5 User Feedback

The system has been shown to some VIATeC employees and mentioned on the

CHISEL blog and Twitter account. The VIATeC employees were positive about

the value of the project. One individual was involved in teaching women how to

program, and she said a frequent question from students was which programming

languages should they prioritize learning in order to get a job. This system directly

addresses that issue. As more of the currently planned features are implemented,

further feedback will be collected.
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5.6 Google Analytics

Google Analytics was installed on the website to gather quantitative data for evaluat-

ing the project. It was added on November 6, 2014. As of the morning of December

2, 2014 there were 96 recorded sessions across 33 users resulting in 470 page views.

There were 4.90 pages viewed in the average session which lasted 7 minutes and 19

seconds. The bounce rate (sessions where the user left the site without exploring)

was 33.33%.

These statistics suggest that a high percentage of users do not know what they

can do with the site when they see it and simply leave. However, those who do stay

tend to explore a reasonable amount, staying over 7 minutes on average. Future work

should try to address this by making the user interface more engaging for visitors,

and providing better direction to the content relevant for their use case.
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Chapter 6

Future Work

This project is rich in possibilities for future development. One of the most important

for widespread adoption of the tool would be improvements to the user interface (UI)

which draw the visitor in to explore site content. As the application is now, the visitor

may not realize what can be done with the system. Dr. Margaret-Anne Storey and

PhD student Alexey Zagalsky have lent their expertise in human-computer interaction

(HCI) to provide feedback in this area. Essentially they recommend the user interface

should present the main use cases for the visitor to choose between, and then guide

them to the parts of the site which are relevant for their use case. Work in this

area will continue throughout the remainder of the academic term. Google Analytics

was installed on the site so after reworking the UI various metrics, such as bounce

rate, can be compared before and after changes to measure whether the changes were

effective.

Another important area for further development is expanding the technologies

which can be parsed from the job postings. Technologies other than programming

languages should be recognized, such as libraries, frameworks, databases, operating

systems, version control systems, and so on.

There are also many more analyses and visualizations that would be interesting

to provide. For example, analyzing the technologies used by a specific company so

that site visitors can get an idea of the technology stack used at companies in which

they are interested.
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6.1 Commercialization

If this project were to become more than a master’s degree project, one potential way

for it to make money would be to offer a job posting service itself. This could be

done in such a way that skills are entered explicitly, rather than having to be parsed.

In order to be viable, the site would have to stand out as the best available service

to match up your skill set with job postings. Therefore, perhaps users should have

a profile where they can list their skills, or import them from another service like

LinkedIn. Then job posting reports and notifications can be generated, tailored to

users’ interests.

The domain name GoodJobs4U.com was registered for this project and a cloud

server on Linode (https://www.linode.com/) was set up for development and project

deployment. The DNS entry for GoodJobs4U.com resolves to this server. In the future

it would be easy to deploy more sites such as http://vancouver.goodjobs4u.com,

http://seattle.goodjobs4u.com, etc. if the project was found to be commercially

viable.
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Chapter 7

Conclusion

In this project I built a system for automatically archiving and analyzing job postings

from the VIATeC job board. These job postings serve as an indicator of skills that

are in demand in the local job market. A web application has been developed to

display the results to the public. It provides visualizations such as charts showing

trends in programming language popularity. This information can help students and

educators make informed decisions about which technologies to learn. Feedback from

employees at VIATeC about the project have been very positive. They indicated

they would like to support future development by providing an API to query for data

instead of parsing the RSS feed. They may also be able to provide further historical

data for trend analysis. The two years of job posting data currently available is too

short to see significant changes in the programming language skill sets currently being

monitored. However, analyzing popular programming libraries, which will be added

soon, is more likely to show trends over shorter time periods because new libraries

appear regularly.
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