
Code, Camera, Action!

How Software Developers Document and Share Program Knowledge Using YouTube

by

Laura MacLeod

B.A., University of Victoria, 2012

A Dissertation Submitted in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in the Department of Computer Science

c© Laura MacLeod, 2015

University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

Code, Camera, Action!

How Software Developers Document and Share Program Knowledge Using YouTube

by

Laura MacLeod

B.A., University of Victoria, 2012

Supervisory Committee

Dr. Margaret-Anne Storey, Co-Supervisor

(Department of Computer Science)

Dr. Yvonne Coady, Co-Supervisor

(Department of Computer Science)

iii

Supervisory Committee

Dr. Margaret-Anne Storey, Co-Supervisor

(Department of Computer Science)

Dr. Yvonne Coady, Co-Supervisor

(Department of Computer Science)

ABSTRACT

Creating documentation is a challenging task in software engineering and most

techniques involve the laborious and sometimes tedious job of writing text. This

thesis explores an alternative to traditional text-based documentation, the screencast,

which captures a developer’s screen while they narrate how a program or software

tool works.

This thesis presents a study investigating how developers produce and share

developer-focused screencasts using the YouTube social platform. First, a set of

development screencasts were identified and analyzed to determine how developers

have adapted to the medium to meet the demands of development-related documen-

tation needs. These videos raised questions regarding the techniques and strategies

used for sharing software knowledge. Second, screencast producers were interviewed

to understand their motivations for creating screencasts, and to uncover the perceived

benefits and challenges in producing code-focused videos.

From this study a theory was developed describing the techniques used by devel-

opers in screencasts. This thesis also discusses YouTube’s role in the social developer

ecosystem, and presents a list of best practices for future screencast creators. This

work lays the groundwork for future studies exploring how screencasts can play a role

in sharing software development knowledge.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables viii

List of Figures ix

Acknowledgments xi

Dedication xii

1 Introduction 1

1.0.1 Thesis Organization . 2

2 Background and Related Work 4

2.1 YouTube . 4

2.1.1 YouTube and Learning Literature 5

2.2 Screencasts . 5

2.3 The Social Programmer Ecosystem 6

2.3.1 Developer Identity . 7

2.3.2 Awareness . 7

2.3.3 Knowledge Foraging . 8

2.3.4 Collaboration . 8

2.3.5 Sharing Knowledge . 9

3 Methodology 11

3.1 Philosophical Assumptions . 11

v

3.1.1 Constructivism . 12

3.1.2 Methods . 12

3.1.3 Personal Reflections . 12

3.2 Grounded Theory . 13

3.2.1 Foundations of Grounded Theory 13

3.2.2 Ideological Camps . 14

3.2.3 The Place of the Literature Review 15

3.2.4 Why Grounded Theory? . 15

3.2.5 Grounded Theory in Software Engineering 16

3.2.6 The Sequence of Grounded Theory 17

3.3 Research Questions . 19

3.3.1 (RQ1) What Kinds of Program Knowledge Are Captured in

Screencasts? . 19

3.3.2 (RQ2) What Techniques Do Developers Use to Document Code

in Screencasts? . 19

3.3.3 (RQ3) Why Do Developers Create Code Screencasts? 20

3.3.4 (RQ4) How Do Developers Produce Code Screencasts? 20

3.4 Phase 1: Screencast Analysis . 20

3.4.1 Screencast Selection . 20

3.4.2 Program Knowledge Analysis 22

3.4.3 Open Coding . 22

3.4.4 Coding Book . 24

3.4.5 Memoing . 25

3.5 Phase 2: Interviews . 28

3.5.1 Interviewee Selection Process 28

3.5.2 Semi-structured Interviews . 30

3.5.3 Content Analysis . 30

4 Findings 32

4.1 Research Question 1: What Kinds of Program Knowledge Are Cap-

tured in Screencasts? . 32

4.1.1 Sharing Customization Knowledge 32

4.1.2 Sharing Development Experiences 33

4.1.3 Sharing Implementation Approaches 33

4.1.4 Demonstrating the Application of Design Patterns 33

vi

4.1.5 Explaining Data Structures 34

4.2 Research Question 2: What Techniques do Developers Use to Docu-

ment Code in Screencasts? . 35

4.2.1 Codes . 35

4.2.2 Themes . 35

4.3 Research Question 3: Why do Developers Create Code Screencasts? . 36

4.3.1 To Build an Online Identity 38

4.3.2 To Promote Themselves . 39

4.3.3 As a Learning Exercise . 40

4.3.4 To Give Back . 40

4.3.5 As an Alternative to Blogging 41

4.4 Research Question 4: How Do Developers Produce Code Screencasts? 42

4.4.1 Preparing the Screencast . 42

4.4.2 Recording the Screencast . 43

4.4.3 Post-production . 43

5 Theory 46

5.1 Context . 47

5.1.1 Time . 47

5.1.2 Place . 47

5.1.3 Culture . 48

5.1.4 Situation . 49

5.2 The Theory . 50

5.3 Themes . 51

5.3.1 Goal Setting . 51

5.3.2 Referencing Different Levels of Detail 53

5.3.3 Browsing the Technical Environment 55

5.3.4 Demonstrations to Showcase Execution 56

5.3.5 Live Editing to Showcase Code Changes 57

5.3.6 Provisioning of Additional Resources 59

5.3.7 Mapping Execution to Code and Code to Code 60

6 Discussion 63

6.1 Screencast Best Practices . 63

6.2 YouTube in the Social Developer Ecosystem 65

vii

6.3 Limitations of Screencasts . 66

7 Threats to Validity and Limitations 69

7.1 Internal Threats to Validity . 69

7.2 External Threats to Validity . 70

7.3 Common Pitfalls of Applying Grounded Theory Work 71

7.3.1 The Role of the Researcher . 71

7.3.2 Coding and Collecting Data 72

7.3.3 Presenting Grounded Theory Work 72

8 Future Work 74

8.1 To what extent are screencasts used by developers? 74

8.2 Are screencasts effective? . 74

8.3 What type of comments do screencasts receive on YouTube? 75

8.4 What communities are formed around screencasts? 75

8.5 How do developers create screencasts? 76

8.6 What is the current tool support for creating screencasts? 76

8.7 What are the tool requirements for developer-focused screencasting tools? 77

8.8 Understanding program comprehension models and screencasts 77

9 Conclusions 78

Appendices 80

A Codebook 81

B Semi-Structured Interview Questions 89

C YouTube Video URLs 91

Bibliography 93

viii

List of Tables

Table 3.1 The YouTube videos analyzed. All YouTube video URLs take the

format of “https://www.youtube.com/watch?v=” plus the URL

Link. View and comment counts as of Nov 2013. *View counts

unavailable for Google Hangouts. 23

Table 4.1 A table of the motivations found from interviewing screencast

creators. 42

Table 4.2 A table showing how interviewees described producing screencasts 45

Table 6.1 A list of best practices developed from the findings of this study

and the literature. 63

ix

List of Figures

Figure 3.1 This chart shows how the researchers used various data collection

and analysis techniques to develop the findings of this work. This

research path is based on a grounded theory methodology. . . . 18

Figure 3.2 An example of the coding performed by the researchers using an

Excel spreadsheet. By coding using Excel spreadsheets, the re-

searchers could also write memos as needed. Here the coder has

written down a number of questions they have about the narra-

tor’s motivations for creating the video: “Talking about previous

coding experiences? What led them to these questions, their mo-

tivation for showing this code. Previous experiences impact the

code they built and are therefore showing??” 26

Figure 3.3 The Percentage Agreement equation used to calculate inter-rater

reliability in this study. 27

Figure 3.4 A photo of one of our concept mapping sessions. 29

Figure 4.1 This chart shows the program knowledge goals in relation to

the videos in our sample. A black dot indicates that the video

demonstrated the program knowledge goal. 34

Figure 4.2 A sample from an initial coding session. The entry at 1:12 shows

a quote from the screencast where the author describes their

motivation for creating this application. 36

Figure 4.3 The resulting map after codes where mapped for the first time.

Each code is shown in a box. Codes that shared a strong rela-

tionship are touching. Other relationships are denoted through

solid lines. 37

x

Figure 4.4 A resulting map after coding multiple times. Andreas and I

used an adjacency coding technique to map different relation-

ships between the codes. As per Charmaz, we tried multiple

organizations to distinguish underlying assumptions about each

code [17]. 38

Figure 5.1 The results from coding the set of videos for the goal setting theme. 53

Figure 5.2 The results from coding the set of videos for the referencing dif-

ferent levels of detail theme. 54

Figure 5.3 The results from coding the set of videos for the browsing the

technical environment theme. 56

Figure 5.4 The results from coding the set of videos for the demonstrations

theme. 57

Figure 5.5 The results from coding the set of videos for the live editing theme. 58

Figure 5.6 The results from coding the set of videos for the additional re-

sources theme. 60

Figure 5.7 The results from coding the set of videos for the mapping exe-

cution to code and code to code theme. 61

xi

ACKNOWLEDGEMENTS

There are many people who taught me important lessons throughout my graduate

studies. I would first like to thank Dr. Margaret-Anne Storey and Dr. Yvonne Coady

for their constant support and guidance, while I was a member of their labs. I am

a better researcher and person because of the opportunities you gave me, and I feel

very lucky to have worked with both of you.

I was lucky enough to be surrounded by an amazing group of people at the Uni-

versity of Victoria. I would like to especially thank Cassandra Petrachenko for her

vicious wit and superb editing skills, not just on this thesis but on many other projects.

Elena Volishnakova, thank you for being my lab buddy and for making me laugh. The

CHISEL lab was a great academic environment and I consider myself lucky to have

been a part of it. I will miss the Modsquad and Chisel-ers.

Finally, I owe a big thanks to Andi Bergen who gave his time and support in

analyzing the screencast data presented in this thesis.

xii

DEDICATION

I dedicate this thesis to my family.

You continually amaze me.

Chapter 1

Introduction

Software engineering is an “intellectually demanding” task and how developers un-

derstand and comprehend programs has been thoroughly studied in computer sci-

ence [28]. To support cognitive tasks, today’s developers use a variety of tools, in-

cluding those based on mass participation via the Internet.

The Internet helps developers search for, locate, and explore information [10].

This information is contributed by people from around the world. Specifically, de-

velopers use the Internet to access social media, which allows them to collaborate

with each other [76], find answers to their questions [81], and participate in online

communities [27].

Previous work has explored how developers use social media platforms to support

their work, including how developers use GitHub to collaborate on projects [27], Twit-

ter to follow thought leaders [70], Stack Overflow to ask and answer questions [81],

and profile aggregators to manage their online identity [71]. This has led to the rise

of the term “Software Developer Ecosystem” [75].

From the literature on social media and software development, we know that de-

velopers participate in diverse ecosystems, using a number of social media platforms.

What has received little attention in the literature is the role of screencasts in this

ecosystem. From the array of videos on YouTube, we know that developers use social

media platforms to share screencasts.

Screencasting is not a new phenomenon. In 2004, John Udell asked his blog

readers to submit terms for “making movies of software” [83]. From entries such as

“vidcast” and “software movie”, Udell chose the term “screencast”. In his blog posts

announcing the term screencast, Udell wrote, “I continue to be fascinated by this

medium. The ability to capture, narrate, and share software experiences ... enables

2

an important mode of communication that we’ve barely begun to exploit” [83]. De-

spite this enthusiasm, little work has been done to understand the role of screencasts

in software development. Equally lacking in the literature is work exploring how

YouTube contributes to software development.

To explore screencasts and YouTube from a software engineering perspective, this

thesis considers how developers create screencasts and share their creations with other

developers. To explore this topic, screencasts hosted on YouTube were analyzed and

interviews with screencast creators were conducted.

This work aims to uncover why these screencasts exist, to understand the processes

that lead to their creation, and the experiences of the developers who made them. By

understanding how developers share knowledge, we can better support the creation

of new tools and guidelines for developers seeking to create screencasts.

This thesis explores the processes and techniques used to create and share 20

screencasts and interviewed 10 screencast creators for additional insights. With the

assistance of a collaborator, a content analysis approach was used to analyze the

interview data, and we relied heavily on grounded theory methods to analyze the

screencasts1.

Our analysis led to the emergence of four research questions:

1. What kinds of program knowledge are captured in screencasts?

2. What techniques do developers use to explain code in screencasts?

3. Why do developers create code screencasts?

4. How do developers produce code screencasts?

The resulting theory illustrates the techniques used by developers in screencasts to

share knowledge. The theory is situated using related work on screencasts, YouTube,

and knowledge sharing practices.

1.0.1 Thesis Organization

This thesis is organized as follows. In Chapter 2, the literature on YouTube, screen-

casting, and knowledge sharing is surveyed. The chapter also presents literature on

how developers use social media platforms.

1Andreas Bergen, a current graduate student at the University of Victoria, assisted with the
screencast coding and interview transcript analysis.

3

In Chapter 3 the methodologies used to collect and analyze data are outlined.

Chapter 3 also discusses my constructivist epistemological foundations.

Chapter 4 presents the findings and answers to the research questions. Data from

the interviews and screencasts is integrated into the resulting theory, as outlined in

Chapter 5. In Chapter 6, a list of best practices for future screencast creators is pre-

sented along with a discussion on YouTube’s place in the social developer ecosystem

and challenges to screencasting.

Limitations and threats to validity are outlined in Chapter 7, followed by future

work in Chapter 8. Finally, the thesis concludes in Chapter 9. Additional documents

are found in the Appendices, including the coding handbook and interview questions.

4

Chapter 2

Background and Related Work

Software developers live and work in a social space. Recent work has termed the

phenomenon of incorporating social media into software development, “the social

programmer ecosystem” [75]. The social programmer ecosystem describes develop-

ers building support structures, “around content, technology, media...” [75] Previous

work by Storey et al. has explored how developers use multiple social media channels

to support their personal and professional goals [75]. YouTube fits into this sys-

tem by allowing developers to share video content, centered on the technologies and

tools that appeal to their programming interests. This chapter presents literature

about YouTube, screencasts and knowledge sharing practices in social programming

environment.

2.1 YouTube

Officially launched in 2006, YouTube is a social video sharing site [19]. With over

100 hours of video uploaded every minute [87], YouTube represents a rich record of

information from every corner of the globe. YouTube not only lets users upload video

easily, it also provides them with the mechanisms for providing feedback and finding

material.

As a knowledge sharing resource, YouTube provides content and social networking

mechanisms. It allows people to establish an identity and thus enables connections

between users. Users build their identity by sharing videos, following other users and

commenting on videos.

5

Through video, users share their experiences, which Wenger claims encourages

dialog among communities [86]. The experiences captured in YouTube videos con-

tribute to and provide insight into the cultural practices of a community. According

to Burgess and Green, these videos serve as a collection of social norms and opin-

ions [13]. Because of its low barrier to entry, YouTube has impacted how people

present information to the public [39]. For the software development community,

YouTube represents a medium that developers can use to share programming prac-

tices.

2.1.1 YouTube and Learning Literature

Previous work has investigated the use of YouTube in education. The studies refer-

enced below provide examples about how it can be used to support learning.

From the previous work of Duffy, we know that students like YouTube for deliver-

ing educational content as it provides a, “user guided experience” [31]. Mullamphy et

al. found that students claim they enjoy using YouTube videos to learn at their own

pace [59]. Other studies, like the work of Duncan et al., have found that YouTube

encourages students to explore topics on their own [32]. YouTube has also been used

in the medical field to teach medical students clinical skills [32] and about rare med-

ical cases [6]. These videos allow students to replay film to better understand how to

apply techniques, and to observe rare, or interesting, cases.

2.2 Screencasts

While YouTube is used to broadcast a variety videos, ranging from music videos to

gag reels, this thesis focuses on screencasts, or videos that show a person’s computer

screen. The term screencast is also used to describe, “making videos of software” [83].

Previous research has explored the techniques and strategies used in screencasts for

formal, classroom learning [79]. Other work has put forth best practices for teachers

looking to incorporate screencasts into their curriculum [61].

Sugar et al. explored educational screencasts to identify common elements and the

techniques used in them [79]. From their research, they created a list of elements and

strategies used in educational screencasts. Other work has provided guidelines and

best practices for educators who wish to create screencasts. For example, the work

of Oud et al. provides a number of best practices for creating screencasts [61]. Their

6

work also suggest including interactive components or activities for the audience.

Their work highlights the importance of feedback between the screencast creator and

the audience.

Other researchers have found that screencasts help students learn to do tasks

more effectively. For example, Tempelman-Kluit found that an audio/video tutorial

improved students’ learning [80]. Work by Kocejko used video tutorials to teach

seniors how to perform basic computer tasks, thereby helping students learn to do

tasks more effectively [46].

In classes with a laboratory component, these videos serve as a way to prepare for

the lab and troubleshoot during the task [34]. Fortino and Zhao noted that students

in a laboratory setting seem to spend more time troubleshooting their equipment

than actually performing the given task [34]. Doering and Mu described how video

tutorials allow students to pause or replay the video, which provides students with

the ability to walk through the steps at their own pace, instead of relying on an

instructor [30].

This previous work demonstrates that there is an academic interest in under-

standing screencasts. The literature has explored how screencasts are made [57],

what techniques are used in them [79], and best practices for creating them [61].

This thesis explores these issues, but from a software development perspective. This

study aims to support software developers by understanding how they can be aided

by screencasts.

The studies discussed above explored screencasts as a standalone artifact. In this

thesis, screencasts are explored in the context of a social media environment. This

work builds upon the previous research on screencasts to explore how it contributes

to the social developer ecosystem.

2.3 The Social Programmer Ecosystem

Today, developers work in a social ecosystem. Previous literature describes how social

media has led to the rise of the social programmer who participates in, “ecosystems

around content, technology, media and developers” [75]. This ecosystem is made up

of artifacts and resources accessible to developers via the Internet.

The following sections present how this social ecosystem impacts software develop-

ment, and specifically, how it affects the developer. Through the use of social media,

developers share their experiences and knowledge with others. This section will ad-

7

dress how and why developers share knowledge through social media platforms, with

a focus on software development tasks.

2.3.1 Developer Identity

As defined in previous work by Storey et al., the term “social programmer” refers to

a programmer who actively participates in online communities [75]. These developers

embrace crowd-sourced, socio-technical content, accessed through the Internet [75]

— this content comes in many forms, including blog posts and comments, and social

media platforms give developers an outlet for contributing and accessing the infor-

mation.

Dabbish et al. described how developers participate in social ecosystems, which

leads to the development of an online identity that becomes associated with the

developer’s knowledge and skills [27]. It affords them informal membership to many

communities of practice, which Wegner describes as being built around members with

common interests and goals [86]. Other work by Capiluppi et al. suggests that users

will use this identity to evaluate the developer and shape their interactions with

them [15].

An online identity motivates developers to curate their online persona and how

they present themselves. It motivates developers to continue their participation and

share their experiences through social media [64]. As one researcher put it, “social

media has rapidly changed how programmers advertise their skills and how they

manage their time coding” [82]. This identity has also been found to influence what

projects developers choose to work on [27], and potential employers may use an online

identities to assess potential candidates [15]. Because the identity is open to the

public, developers are conscious of their work and persona.

2.3.2 Awareness

Social media has been found to not only help developers establish identities, but also

create awareness among communities about trends and cultural norms [27]. It gives

users the ability to share new developments instantaneously and inform community

members [76]. The work of Wegner described how these communities can be used for

members to determine where knowledge is located [86].

In the work of Singer et al., researchers explored how developers use Twitter

to follow trends, and stay aware of developments [71]. They found that developers

8

use Twitter to follow thought leaders and learn about the release of tools and lan-

guages [71]. In this way, they use Twitter for “just in time awareness” about the

status of a technology.

2.3.3 Knowledge Foraging

Developers also take advantage of social media to locate knowledge for software de-

velopment tasks. This has been found to include using social media to locate code

snippets and code examples [64]. Through the use of search, developers are able to

find and incorporate code snippets on the fly. Brant et al. studied this phenomenon

and called it, “opportunistic Web foraging” [10]. As another research paper described

it, with the power of search, “reusable code snippets, introductory usage examples

and pertinent libraries are often just a Web search away” [82].

An example of this is Question and Answer sites, which provide developers with

outlets to ask questions and find answers. Notable Q&A sites include Yahoo An-

swers and Stack Overflow [81]— with over 30 million unique users per month, Stack

Overflow is an example of developers using social media to share insights, and ask

questions [67]. As the literature has shown, developers use social media platforms to

support their software development processes and search for knowledge.

2.3.4 Collaboration

These social media platforms can also be used to promote collaboration amongst

developers. For example, Singer et al. describe how social media allows developers to

connect, monitor and publicize their activities in a public space [70]. By doing this,

other developers can access their work, and draw from their experiences.

For example, GitHub hosts the projects of over 3.5 million users [35]. GitHub rep-

resents a common space for developers to share their work, and provides support for

users to connect, communicate and contribute to projects. The transparency of this

social space has been found to support collaboration through increased awareness [76].

Social media platforms have also lowered the barrier for participation [70]. Pre-

vious work has shown how developers are able to engage in public conversations on

Twitter with those who have similar interests [71]. The work of Singer et al. finds

that these public conversations allow users to promote their ideas and connect with

strangers [71].

9

2.3.5 Sharing Knowledge

Through social media participation, developers both consume and produce content.

In this thesis, YouTube screencasts are explored as a method to capture developer

knowledge and experiences. Through channels in the social development ecosystem,

developers find and contribute information. For this reason, it is important to un-

derstand how knowledge is shared in these spaces. This includes knowledge that is

explicitly stated in screencasts, as well as knowledge that is tacitly conveyed through

the practices shown in screencasts.

The rise of the Internet has led to the rise of, “communities of practice” —

Wenger described these as communities that form around shared interests and com-

mon goals [86]. According to Wenger’s social learning perspective, one belongs to a

community through methods of engagement, imagination and alignment [86]. Within

these communities, participants place high value on the exchange of knowledge [55].

One of the impacts of communities of practice is that developers willingly con-

tribute their knowledge with no expectation of direct compensation [51]. In this way,

it has been suggested that social media has created a culture dedicated to sharing and

encoding knowledge [2]. Developers use these platforms to share their expert knowl-

edge, for the sake of contributing to a larger community [70]. Work by Levy suggests

that developers share their experiences on social media for “altruistic” means [50].

The knowledge shared in these communities may be explicit or tacit. Explicit

knowledge can be found in the artifacts of participants, such as blog posts or answers

to questions [64]. It has been suggested that social media support users in locating

resources [33], which in turn contain this explicit knowledge. Explicit knowledge

can be combined with other forms of knowledge and ultimately internalized by an

individual [60].

Tacit knowledge can be supported through informal mentoring, the sharing of

experiences, observations, discussions, and trust within a social media platform [63].

Dabbish et al. describe how developers are able to establish expertise and build

trust by forming an online identity [27]. Transparency and awareness in social media

communities supports the sharing of experiences and observation by other developers.

With knowledge foraging activities, developers are able to reflect on the experiences

of others. The openness of the platforms provides common spaces for discussion to

occur.

10

While participating in communities of practice, members are constantly engag-

ing in what Wenger described as “knowledge production, exchange and transfor-

mation” [86]. Members share their experiences, which Hemetsberger and Reinhardt

demonstrate leads to the sharing of tacit knowledge [42]. Wenger suggests that sharing

these experiences allows social norms and values to develop [86]. Through these com-

munities, developers can follow the work of others, while simultaneously contributing

their own work to the collective knowledge base. It allows developers to engage in

“serendipitous learning”, where they come across useful materials by accident [71].

These activities create social ties between developers, which in turn supports knowl-

edge sharing activities [47].

This section has listed some of the ways in which the social developer ecosystem

provides support to software developmental practices. The extensive participation

seen online shows that developers are comfortable using social media to locate, con-

tribute and consume knowledge. These activities support developers through the

establishment of online identities. Through participation and sharing experiences,

developers share tacit and explicit knowledge. The transparent nature of social media

supports developer awareness in their field, and helps them reflect on the experiences

of others.

In this chapter, previous work on YouTube and screencasts has been presented.

It has also shown how software developers use social media to support software de-

velopment tasks. They participate in social media ecosystems to exchange knowledge

and to find information. It allows them to connect and follow other developers, which

leads to collaboration. Through social media, developers are able to share their ex-

periences, locate knowledge and establish an identity.

11

Chapter 3

Methodology

This work began with an analysis of screencasts collected from YouTube. This was

followed by interviews with developers who had created screencasts for YouTube.

This was done to gain further insights into the screencast creation and socialization

process.

From the screencast analysis, four research questions emerged. These questions

address how and why developers share knowledge through YouTube, including the

techniques used in screencasts, the motivations developers presented for creating

screencasts, and the processes used to create them.

This chapter presents a background on the methodology, and lays the foundations

for the epistemological position taken in this work. The chapter also outlines the

procedures that were used to collect and analyze the data in this study. The findings

of this analysis are presented in Chapter 4.

3.1 Philosophical Assumptions

In this thesis, I subscribed to a constructivist epistemology. Epistemologies pro-

vide frameworks for the philosophical assumptions we make about knowledge and

research [25]. The following section outlines the epistemological assumptions I held

in this work, regarding how we can observe the world around us and construct knowl-

edge.

12

3.1.1 Constructivism

According to Creswell, constructivism holds that the world is a social construction,

interpreted by humanity [25]. Specifically, that reality, “is an evolving process, con-

crete in nature, but ever changing in detailed form” [58]. Therefore there are many

ways of knowing the world.

Drawing on the work of Morgan and Smircich, constructivism assumes that people

influence, and are influenced by, their environment through interactions [58]. Morgan

and Smircich state that people assign subjective meanings to their actions, leading

to many different interpretations of a shared experience. While conducting research,

the researcher constructs meaning against their understandings and interpretations

of the world [68].

3.1.2 Methods

For this research, qualitative methods were used. In relying on a grounded theory

approach, the researcher is able to ground their findings through the experiences of

others [25]. For this thesis, I conducted interviews and analyzed the results. My

interpretation of the results formulates the findings of this work.

The researcher is never a blank slate, but by acknowledging their biases, they can

become aware of ideas that may influence their work [78]. Based on recommendations

from the literature, my biases and assumptions are outlined in the next subsection.

By outlining my assumptions and biases, I aim to provide context for my approach

and methods. These assumptions will be addressed as limitations to this study in

Chapter 7.

3.1.3 Personal Reflections

There are numerous biases that the primary researcher brought to this work. I present

these assumptions and influences as a way of reflecting their impact.

As the primary researcher, I have a history of education in the social sciences,

specifically in political science. From this personal experience, I bring the world-view

that knowledge is multifaceted and open to interpretation. People have an individual

set of beliefs that they use to understand the world around them. I hold that there

are many interpretations that influence the understanding of a phenomenon.

13

Originally, this work began as an exploration of onboarding new contributors in

open source software projects. I was curious about how open source projects provided

information to new contributors. Embedded in this line of thought was the question,

“How do developers share knowledge with each other?” From this, I was drawn to

video in open source projects. This led to an exploration of videos describing code.

I was further drawn to the role of social media and screencasts hosted online, which

finally led us to the exploration of YouTube screencasts.

I have previously studied the impacts of social media on software development in

other work [52]. Therefore, I had existing knowledge that developers use social media

to promote themselves and find information.

A colleague assisted me in coding the screencasts and analyzing the interview

transcripts for this study. We both have knowledge of programming fundamentals,

which allowed us to analyze the screencasts. We both have experience creating pro-

grams and understand common programming concepts, such as data structures and

algorithms. This background shaped and supported our analysis.

3.2 Grounded Theory

Grounded theory is a methodology which requires the researcher to explore their data

with the goal of generating a substantive theory [77]. Specifically, the methodologies

of Charmaz were used to carry out this thesis [17]. The following section provides a

background on grounded theory and the methods that contribute to this approach.

3.2.1 Foundations of Grounded Theory

As a qualitative approach, grounded theory has been described as being especially

well suited for situations where there is little existing work on a subject [26] —it helps

answer questions about, “what is going on in an area” [56]? Grounded theory allows

the researcher to explore the data to discover meaning from it using an inductive

approach [22]. In this way, the researcher, “investigates the actualities in the real

world” and can devote their analysis to issues seen in the data [7].

This does not imply that grounded theory does not provide the researcher with

a set of guidelines. On the contrary — the work of Glaser, Strauss and Corbin has

provided researchers with rich and systematic frameworks for applying the method-

ology [1]. In a grounded theory method, both data analysis and theory construction

14

occur in a, “constant comparison” [77]. Because of this, the researcher is consis-

tently checking their analysis of the data against new and emerging ideas. Central

to the practice of grounded theory are techniques such as open coding, memoing and

theoretical sampling, with interviews being a common data source [26].

According to Creswell, the result of a grounded theory study is a theory that

describes an observed or experienced phenomenon [26]. Creswell notes that with

grounded theory, the researcher is not trying to create a broad, all encompassing

theory. Rather, they are trying to make sense of the data at hand. According

to Charmaz, these “middle range” theories are meant to address the issue at the

level the researcher is engaged with, as opposed to a theory that explains the whole

population [17]. In her writing, Charmaz advocates that the researcher not try to

be a “hero”, but rather that they formulate a theory which is appropriate for the

sample being observed [17]. The analysis in this thesis is limited to to a sample of

screencasts and interviews. These allowed the development of a theory that explains

the techniques used in screencasts and situates them in social factors.

3.2.2 Ideological Camps

Glaser and Strauss first introduced the grounded theory technique in the book The

Discovery of Grounded Theory [36]. The two authors developed the methodology

while researching hospital patients, as they reportedly wanted to better understand

the process of dying [37].

According to Charmaz, subsequent work by Corbin and Strauss created a diver-

gent approach to grounded theory [17]. The two approaches are described as having

different epistemological viewpoints, with Glasser being described as a strong posi-

tivist [44], and Strauss as a pragmatist [56].

Strauss went on to work with Corbin to develop what has been described as a more

pragmatic school of thought [45]. Glasser’s main critique of Strauss and Corbin’s

work is that the rigid procedures force data into preconceived categories, as opposed

to letting ideas emerge [17]. A critique of Glaser’s work is that it is too open, and

does not provide enough guidance to the reader [45].

Charmaz continued the grounded theory tradition through her exploration of

chronic illness. Charmaz differs from Glasser, Strauss and Corbin in her epistemo-

logical approach to grounded theory [17]. Charmaz’s school of thought founds itself

in ideas from Glasser and Strauss’ earlier work, advocating that grounded theory is

15

a flexible strategy for exploring data [17]. Her approach holds that data and theo-

ries are not discovered, but constructed. It is not surprising then that Charmaz has

been described as a constructivist [26]. We focus our approach on Charmaz’s writ-

ings, specifically her 2006 book Constructing Grounded Theory: A Practical Guide

Through Qualitative Analysis [17].

3.2.3 The Place of the Literature Review

The literature review is a controversial subject in grounded theory. Different ideologi-

cal camps have varying opinions about where it fits in the grounded theory approach.

The work of Kelle explains Glaser’s approach, which dictates that there must be no

literature review when applying a grounded theory method [45]. Strauss and Corbin

criticize this and take the stance that the literature review may happen as needed [45].

Charmaz dedicates a section of her book to explaining these different traditions, and

putting forth her own opinions [17]. She write that the literature review should not

limit or “stifle” the work of the researcher, and fear of the review biasing the final

grounded theory is not an excuse for ignoring the literature [17]. It is also important

that the literature review is done in a way that does not close off the researcher to

ideas from the data.

The literature review was performed throughout this study. Being a graduate

student, there was no way for me to begin this work without some exploration of the

state of the art. The majority of the literature review was conducted towards the

end of the study, well after themes and codes had been drawn from the data. Initial

research on program comprehension and onboarding topics was conducted at the

beginning of this study. Literature on knowledge sharing, YouTube and screencasts

was reviewed after the data had been collected and analyzed. Key pieces of literature,

such as educational work on the elements and strategies of screencasts, were discovered

towards the end of this thesis. In this way, connections were drawn between the

observed phenomena and existing work in the field.

3.2.4 Why Grounded Theory?

Grounded theory was chosen because there is little existing work on screencasts and

software developers. As Creswell explains, qualitative research aims to collect, “data

in a natural setting sensitive to the people and places under study” [24]. This thesis

poses questions of “how” and “why” by seeking to describe the experiences of devel-

16

opers in relation to screencasts. By using an inductive method like grounded theory,

the researcher is free to explore the data while looking for answers to these questions.

The Charmaz approach to grounded theory was chosen for this thesis because of

the resources available to the researchers, and because of its constructivist founda-

tions. The Charmaz tradition also provides a base of literature with guidelines and

questions for conducting grounded theory research [26]. In this way, the Charmaz

approach provides guidance to those looking to undertake grounded theory analysis.

Because of the subject area being explored, my epistemological beliefs, and the type

of data being collected, a grounded theory approach was considered to be the best

approach for this thesis.

3.2.5 Grounded Theory in Software Engineering

Grounded theory is well established in the study of software engineering. It is ap-

plied in software engineering research to understand, “social and cultural issues” that

emerge between people and computers [21]. The following paragraphs provide ex-

amples of grounded theory being used to study software engineering concepts. From

these examples, we can see how the method is used to study the dynamics of people

working with software. For example, Coleman and O’Connor explored the software

improvement practices of Irish software companies using a grounded theory methodol-

ogy [21]. They used semi-structured interviews to generate a theory about how man-

agement implements software improvement practices. Adolph et al. used grounded

theory to answer the question of, “How do people manage the process of software

development?” [4] This study put forth a list of recommendations, centered on im-

proving communication and negotiations among software development teams [5]. In

both cases, grounded theory allowed the researchers to collect data from a variety of

resources, interview direct participants about their experiences and put forth theories

based on their observations.

Grounded theory has also been used in a software engineering context to under-

stand the user experience. For example, the work of Pace used grounded theory

to understand flow, “[a] state of consciousness... when involved in an enjoyable ac-

tivity” [62]. He looked at how users experience flow while completing tasks on the

Internet. This was a scenario where a lab study would not have been appropriate.

Another example of grounded theory is the work of Ploderer et al., who examined

online and offline relationships facilitated by social media [66]. In this study, the

17

researchers looked at a “passion-centric” website for people who were bodybuilding

enthusiasts. Finally, DiMicco et al. used grounded theory to explore how people use

social media at work [29]. They were able to uncover how and what information

employees share at an enterprise company. They showed how employees’ motiva-

tions for sharing information on within their professional social network differed from

traditional social media use.

This section has outlined how grounded theory has been used to explore software

engineering practices. This thesis explore the experiences of developers who form

relationships through social media by sharing content. From the examples provided,

one can see how other researchers have used grounded theory to explore how social

media mediates relationships and tasks.

3.2.6 The Sequence of Grounded Theory

The application of grounded theory does not occur in a sequential fashion; to present

this research methodology as a linear process has been described as being misleading

to the reader [78]. According to Jones and Alony, one does not begin grounded theory

with formed research questions in mind, but with areas of interest to explore [44]. This

study presents the research questions as fully formed, when in reality, they underwent

multiple revisions.

A key principle of a grounded theory is using an inductive analysis to study

the data. This means reviewing the data multiple times to identify constructs and

ideas [26]. Creswell describes the grounded theory researcher as zigzagging between

data collection and data analysis [26]. This is contrary to other methods, where the

data collection and analysis phases are kept distinctly separate.

In collecting the data for this thesis, ideas were built up through the use of a

number of techniques described in the following sections. The results of grounded

theory work are presented to the reader after iterations of analysis and refinement. It

is important to note that the following sections have been presented in a linear fashion

for the sake of clarity for the reader. Using a grounded theory method, various stages

of this study overlapped.

Throughout this work, we constantly switched between data collection and data

analysis; Figure 3.1 provides a basic visualization of this progression. As can be seen

from the diagram, collecting and analyzing the screencasts was an iterative process

that my collaborator and I went through numerous times, in order to refine our codes.

18

Define Codes

Inter Rater
Reliability > 80%?

Axial coding

Diagramming

Memoing

Video Selection

Define Categories

 Refine Existing
Code Definitions

Researchers
Compare

Codes

Memoing

Open Coding

Focused Coding

Memoing

No
Yes

New Insights?Yes

Review Materials

No

Diagrams Memos Codes Categories

Draft Theory

Compare to Data

Does It Fit?

No

Finalize Theory

Yes

Code Remaining
Videos Separately

Memoing

Figure 3.1: This chart shows how the researchers used various data collection and
analysis techniques to develop the findings of this work. This research path is based
on a grounded theory methodology.

19

An example of the “zigzag” in this work is that only after the screencast analysis was

underway, did questions about how developers’ motivations for creating these artifacts

emerge. Later, while doing interviews, interview data was collected and analyzed at

a near simultaneous rate. Again, codes and themes were mapped and defined while

data collection was ongoing.

3.3 Research Questions

From the analysis of the data, four research questions were formed that provide

clarification for the goals of this research. As previously mentioned, screencast data

was used to answer research questions one (RQ1) and two (RQ2), while interviews

were used to answer research questions three (RQ3) and four (RQ4).

3.3.1 (RQ1) What Kinds of Program Knowledge Are Cap-

tured in Screencasts?

From the literature, we know that some developers rely on screencasts (and podcasts)

to learn technical information [75]. This led to the question of what high-level goals

lie behind the screencasts of code implementations. This exploration focused on what

is shown in these videos and what problems the creators are trying to solve. These

goals were determined by analyzing a sample of videos hosted on YouTube.

3.3.2 (RQ2) What Techniques Do Developers Use to Docu-

ment Code in Screencasts?

This work focused on videos that showed a completed project or code snippet. The

benefit of these videos is that they present working examples instead of content aimed

at teaching the fundamentals of programming. The wording of this research question

was iterated on a number of times to reflect the themes emerging from the data. An

early form of this research question was, “How do developers describe code in these

videos?” It was later changed to, “What techniques do developers use to explain code

in screencasts?” before setting on the final question presented here. This iteration was

done in an attempt to be open to the data and follow the guidelines of Charmaz [17].

20

3.3.3 (RQ3) Why Do Developers Create Code Screencasts?

From analyzing the screencasts, one could see that developers would often produce

more than one screencast. They also interacted with their audience via YouTube

comments. These were the first indicators of social activities and prompted ques-

tions about developers’ motivations for creating screencasts. The question of why

developers create these screencasts also addresses how screencasts fit into the larger

developer social ecosystem.

The question’s phrasing was also iterated upon and at one point was, “Why do

developers make code walkthrough videos?” The wording, “walkthrough videos”

reflects the focus (at the time) on the developer guiding the audience through the

code. The interviews conducted in Phase 2 of this study explored what motivated

developers to create screencasts, share them on YouTube, and the feedback they had

received from their audiences.

3.3.4 (RQ4) How Do Developers Produce Code Screencasts?

Finally, the actual practices of creating these videos were explored. The question of

how developers produce screencasts allowed me to focus on the tools and processes

that they used. This question was designed to help investigate the current state of

practice. By investigating the processes developers’ use, common techniques were

identified, as well as areas of friction expressed by the interviewees.

3.4 Phase 1: Screencast Analysis

With the research questions outlined, this section presents the steps taken to gather

and analyze the data. The findings from this data are addressed in Chapter 4. The

following sections outline the procedures and provides literature on the specific meth-

ods we used.

3.4.1 Screencast Selection

This study began with the gathering a sample of videos from YouTube. YouTube

videos were chosen because they are openly available, multimedia resources, which

convey technical information. They tell the user how the code works and provide

insight into the structure of the program. These artifacts contain socio elements,

21

such as attitudes or cultural values, and they are a persistent, computer-based media

item that also serve as documentation. YouTube allowed us to explore these artifacts

as they relate to social media and software development.

In order to select videos for my sample, a list of inclusion criteria was created.

This list included:

1. The video was available on YouTube from November 2013 until March

2014, which was the data collection phase of this study.

2. The video presented a completed code base or code snippet. The

scope of this research did not include tutorial screencasts, or screencasts that

teach the fundamentals of programming. It is assumed that the audience has

some preexisting knowledge about programming concepts. Acquiring knowledge

through code walkthroughs is applicable to other software engineering tasks.

Brooks explains that it also applies to maintenance, debugging, testing and

alteration of software [12].

3. The video description or title contained a form of the term “Code

Walkthrough” or “Code Tour”. The videos collected were limited in that

they had to contain the words “Tour” or “Walkthrough” in the title or video

description. These terms were chosen as the most efficient way of finding videos

that met our research goals. In collecting the videos, I searched YouTube for

videos that contained either of these words plus additional descriptors such

as “Program”, “Software”, “Code”, “Java”, “Python”, “Ruby” and “Unity”.

These descriptors focused the results on videos about software material. The

terms “walkthrough”, “tour” and subsequent descriptors had an impact on the

types of videos chosen for this thesis. The terms were chosen to focus our search

on videos that showed completed code and because the terms imply guidance

through a project.

4. The video contained an audio description with screencapture of the

narrator’s computer. In this thesis, the term screencast is used to describe

the video under analysis. With this in mind, it was required that the videos

analyzed show the narrator’s screen and relevant code. All of the videos had an

audio narration component, as well as screen-captured video.

Screencasts that focused on explaining programming fundamentals were excluded,

as screencasts aimed at teaching the basics of programming have a very different

22

purpose. Rather, this work focuses on videos a developer would use to learn about

unfamiliar technologies or libraries. A standard YouTube search was used with no

filter options on a clean browser. By default, YouTube sorts these results by relevance.

In order to select videos for the set, I went through the search results and watched

the first few seconds of each video, to see if it met the requirements. Videos that

did not meet the criteria were excluded from the set. The data set was capped at

21 videos, when my collaborator and I deemed our observations as being saturated.

A video was removed from this set later, after it was found to not meet the initial

criteria. The final data set represented over eight hours of footage. Though this

represents a fraction of the possible screencasts hosted on YouTube, my findings were

well saturated using this sample.

Table 3.1 provides further details on the characteristics of the screencasts we

selected. The topics of these videos range from Arduino projects to Django, the

Corona SDK and Unity. Note that the videos range in length: the longest is over 90

minutes and the shortest is 3.

3.4.2 Program Knowledge Analysis

To answer RQ1, I watched the screencasts. I recorded who made the screencast (a

company or a person), as well as details about the goal of the screencast. From

this, it was determined why developers created the screencast, and what knowledge

they were trying to share. Through analyzing and discussing our records, RQ1 was

answered.

3.4.3 Open Coding

Charmaz suggests that the researcher ask, “What is this data a study of?” [17]. The

screencast data is a study of code being presented in video format by developers, and

more specifically, videos of a narrator explaining a program that they are familiar

with. With this in mind, the video analysis began using an open coding technique, as

suggested by Charmaz [17]. Open coding involves reviewing the gathered data sys-

tematically with the goal of discovering common trends or ideas [4]. Using grounded

theory, my collaborator and I created codes, and wrote memos to supplement our

thinking while analyzing the data.

23

Number Title URL Links Length Views Comments

V1 Simple Chat Walkthrough with Unity 0d-wY65uVGw 14:51 3184 7

V2 Code Walkthrough - Cafe Townsend Robotlegs for Corona SDK 6MpuB654 hM 59:15 658 12

V3 Minecraft Launcher - Code Walkthrough UiST0tcOWvU 35:07 6339 93

V4 Django - high level walkthrough qUpiWWjOfRw 12:21 263 2

V5 Addressbook: A walkthrough of a simple AppEngine application nwn3YY6cyEQ 11:09 25848 2

V6 Ruby and Rails Code-Walkthrough/Tutorial djApduemlf4 56:33 3251 3

V7 Asteria Plugin Source Code Tour jGR0EVYc Bo 23:43 84 1

V8 Asteria World Generator Tour mn wW8uZ6eQ 05:59 50 0

V9 Tour of Mega Happy Sprite source Code G1DbLOVs7UM 14:44 138 1

V10 A High Level Cruise Through Ruby MRI’s Source Code 0npv906IQag 33:20 7419 21

V11 Arduino Code Walkthrough for the Talking Breathalyzer Portable Mode Part 1 wg gNs3Xxq4 14:00 726 1

V12 Arduino Code Walkthrough for the Talking Breathalyzer Portable Mode Part 2 UdDr9QquiLc 04:39 455 0

V13 Intro to Cocos2d Tutorial Part 2: Code Walkthrough T1-yARGKhXU 92:53 8616 16

V14 3 Minute Code Walk through of Part 1 of the AR Programming Series kwY-8mAyixU 03:04 507 1

V15 Arrow M2M kit - node code walkthrough Part 1 WCuQOjD8w E 06:06 46 0

V16 Blackberry MBO Application Code Walkthrough T1f4xXoRDG8 07:36 104 0

V17 OpenDaylight OVSDB Developer Getting Started - Code Walkthrough 2 (Java APIs) 3-jCTvNRJS0 26:20 * 0

V18 Flocking Code Walkthrough OPuYYLEyz-A 15:46 41 0

V19 VB.Net Web Crawler/Spider Source Code Walkthrough iep-z1KXRN8 08:19 6334 7

V20 Corona Geek #49 - Creating A Simple Game (Code Walkthrough) O130d8ioFS4 64:15 * 4

Table 3.1: The YouTube videos analyzed. All YouTube video URLs

take the format of “https://www.youtube.com/watch?v=” plus the

URL Link. View and comment counts as of Nov 2013. *View

counts unavailable for Google Hangouts.

https://www.youtube.com/watch?v=0d-wY65uVGw
http://www.youtube.com/watch?v=6MpuB654_hM
http://www.youtube.com/watch?v=UiST0tcOWvU
http://www.youtube.com/watch?v=qUpiWWjOfRw
https://www.youtube.com/watch?v=nwn3YY6cyEQ
https://www.youtube.com/watch?v=djApduemlf4
https://www.youtube.com/watch?v=jGR0EVYc_Bo
https://www.youtube.com/watch?v=mn_wW8uZ6eQ
https://www.youtube.com/watch?v=G1DbLOVs7UM
https://www.youtube.com/watch?v=0npv906IQag
https://www.youtube.com/watch?v=wg_gNs3Xxq4
https://www.youtube.com/watch?v=UdDr9QquiLc
https://www.youtube.com/watch?v=T1-yARGKhXU
https://www.youtube.com/watch?v=kwY-8mAyixU
https://www.youtube.com/watch?v=WCuQOjD8w_E
https://www.youtube.com/watch?v=T1f4xXoRDG8
https://www.youtube.com/watch?v=3-jCTvNRJS0
https://www.youtube.com/watch?v=OPuYYLEyz-A
https://www.youtube.com/watch?v=iep-z1KXRN8
https://www.youtube.com/watch?v=O130d8ioFS4

24

During the initial stage, we coded for what we saw or heard in the videos. We

wrote memos as needed, noting similarities and repetitive processes shown in the

videos. At this stage, Charmaz suggests that the codes should be precise to preserve

meaning and clarity [17]. Using paper and pencil, we first coded a set of videos

separately. After this, we met to compare findings and begin developing codes.

From our initial codes, we began the process of creating a coding book to out-

line definitions. This set of codes are examples of what Charmaz terms “focused

codes” [17]. At this point, the researcher moves a step away from coding every oc-

currence and begins seeing larger trends within the data.

For this stage, we used Excel spreadsheets to code the data. The first column

of the spreadsheet contained time stamps, increasing incrementally by five seconds.

Figure 3.2 shows an example of a coding spreadsheet. We decided to use five-second

increments, because keeping track of events to the second proved to be too time

consuming. The second, third and fourth columns were used for codes and memos

as needed. This allowed us to quickly combine and compare the coding done by each

researcher.

Figure 3.2 shows an example of our coding method. The example shows code

C1 starting at 0:00 and continuing until 0:30. A second code, B1, begins at 0:30.

Codes were given shorthands to make coding easier for the coders. As we continued

to explore the data, we combined codes and dropped others. The final codes are

presented in Chapter 4.

3.4.4 Coding Book

To formalize the codes a coding book was created. An initial set of four videos was

coded over four sessions. In each session, two of our researchers separately coded

two videos. Multiple sessions allowed us to refine definitions in the codebook. The

codebook served as documentation for the formal definitions of codes during the

video analysis phase. Each entry in the coding book was given a descriptive title, a

formal definition, an example, and space for any further notes or thoughts from the

researchers. The final version of the codebook can be found in Appendix A.

The book was used to note the methods of interpretation by the researchers during

the initial coding phases. Over time, codes were combined or removed based on our

analysis. The book also allowed us to track disagreements or misunderstandings over

time and this helped clarify the definition and scope of the codes.

25

Inter-rater Reliability

Inter-rater reliability refers to the accuracy with which a group of researchers code the

same body of evidence [17]. Based on guidelines for conducting qualitative research,

the level of inter-rater reliability for coding was set at 80% [53]. An agreement

formula was used to calculate the level of inter-rater reliability [72]. Figure 3.3 shows

this formula. All the instances where the coders agreed were calculated against all

the instances where they disagreed.

Other statistical approaches were considered, but decided to be impractical based

on the format and goals of our coding process (discussed further as a limitation in

Chapter 7). Inter-rater reliability was used to provide guidance and measure our

coding agreement process.

There are acknowledged limitations to using a simple percentage agreement calcu-

lation. For example, the high occurrence of one variable that the coders agree upon,

may increase the resulting percentage, thus hiding more infrequent but consistent

areas of disagreement [72].

It is uncommon in the grounded theory literature to use inter-rater reliability.

This is because inter-rater reliability is a quantitative approach. In this thesis, I

argue that it was appropriate to use a calculation because it did not constrict our

coding. In fact, it forced us to have meaningful discussions about our coding and the

assumptions we made about the codes. Any disagreements were noted in the coding

book and these led to more refined codes. Noting where we disagreed provided insights

into the assumptions made while coding. Once the inter-rater reliability threshold

was reached, we coded the remaining videos separately. It took two sessions to pass

this threshold.

3.4.5 Memoing

Memoing is the technique of writing down ideas while analyzing data [25]. These

memos may take the form of paragraphs or short ideas.

In the screencast analysis, memos were written in the Excel spreadsheet next to

the applicable codes as the researcher coded. According to Charmaz, these notes

act as a way of capturing the researcher’s thinking in the moment of analysis [17].

Memos were made asking questions about what the presenters were doing in their

videos and noting common trends. For example, in Figure 3.2 the researcher wrote a

memo asking questions about the narrator’s motivations for creating the video.

26

F
ig

u
re

3.
2:

A
n

ex
am

p
le

of
th

e
co

d
in

g
p

er
fo

rm
ed

b
y

th
e

re
se

ar
ch

er
s

u
si

n
g

an
E

x
ce

l
sp

re
ad

sh
ee

t.
B

y
co

d
in

g
u
si

n
g

E
x
ce

l
sp

re
ad

sh
ee

ts
,

th
e

re
se

ar
ch

er
s

co
u
ld

al
so

w
ri

te
m

em
os

as
n
ee

d
ed

.
H

er
e

th
e

co
d
er

h
as

w
ri

tt
en

d
ow

n
a

n
u
m

b
er

of
q
u
es

ti
on

s
th

ey
h
av

e
ab

ou
t

th
e

n
ar

ra
to

r’
s

m
ot

iv
at

io
n
s

fo
r

cr
ea

ti
n
g

th
e

v
id

eo
:

“T
al

ki
n

g
ab

ou
t

pr
ev

io
u

s
co

di
n

g
ex

pe
ri

en
ce

s?
W

ha
t

le
d

th
em

to
th

es
e

qu
es

ti
on

s,
th

ei
r

m
ot

iv
at

io
n

fo
r

sh
ow

in
g

th
is

co
de

.
P

re
vi

ou
s

ex
pe

ri
en

ce
s

im
pa

ct
th

e
co

de
th

ey
bu

il
t

an
d

ar
e

th
er

ef
or

e
sh

ow
in

g?
?”

27

Figure 3.3: The Percentage Agreement equation used to calculate inter-rater reliabil-
ity in this study.

28

Concept Mapping

After a set of codes had been established, my collaborator and I experimented with

categorizing the codes in a variety of ways to establish connections. For exploring

the relationships between codes, a mapping activity was performed throughout the

data analysis. Charmaz describes concept mapping as a method that helps the re-

searcher “organize and conceptualize” their collected data [18]. Following the advice

of Charmaz, we used this method to determine the relationships between codes and

categories [17].

During the mapping activities, we took Post-it notes with the codes on them

and arranged them on a board. We put them into groups spatially and lines were

used to denote relationships. An example of this process can be seen in Figure 3.4.

Throughout this activity, we tried to group codes in different ways to bring out

assumptions about the codes not yet captured in the codebook definitions.

3.5 Phase 2: Interviews

Phase two of this research relied on interviews as a data source. This data was used

to answer RQ2, “Why do developers create code screencasts?” and RQ3, “How do

developers produce code screencasts?”

A total of 10 semi-structured interviews were conducted for this research. The

length of the interviews ranged from 20 to 40 minutes. Skype and Google Hangouts

were used in 9 out of 10 interviews, with the last interview taking place in person.

3.5.1 Interviewee Selection Process

The interviewees were discovered based on similar criteria used to determine the

videos in the analysis. While authors from the set of analyzed videos were contacted,

only two responded. A number of the screencasts in the sample were under corporate

accounts, or accounts that had not been active for a long period of time; these authors

were not contacted. Other video creators were contacted on the criteria that they

had created a public video that contained the terms “Code walkthrough” or “Code

Tour” in the video description. In total, 15 developers were contacted. Those who

responded to email or social media requests for interviews were included in this study.

The participants in this study were all English speaking, males, with some edu-

cation in Computer Science. All had programming experience outside of academia,

29

Figure 3.4: A photo of one of our concept mapping sessions.

30

though not all were active developers at the time of the interviews. Participants came

from Europe, North America and Australia. Three of the participants were educators

(formally or currently).

3.5.2 Semi-structured Interviews

The interviews were conducted in a semi-structured style. Semi-structured interviews

are made up of, “a mixture of open-ended and specific questions, designed to elicit

not only the information foreseen, but also unexpected types of information” [69].

Interviews began with an explanation of the research at hand and a verbal confir-

mation that the participants consented to having audio recorded during the session.

Audio was recorded using an iPhone4, and was later transcribed for analysis. The

questions used to guide these interviews can be found in Appendix B.

Participants were asked how they began making screencasts, and their production

process. They were also asked about their background and opinion of screencast

characteristics.

At the end of the interview, participants were asked if they had any further ques-

tions, which I answered to the best of my ability. Instructions were given to the

participants to contact me by email, if they had any follow up questions or concerns.

3.5.3 Content Analysis

My collaborator and I transcribed the resulting interview audio files. This text was

then analyzed using a content analysis approach. Based on the work of Krippendorff,

content analysis is described as a “research technique for making replicable and valid

inferences from data to their context” [48]. Using this method, researchers identify

themes that run throughout multiple interviews [38].

We individually analyzed an initial set of four interviews, identifying categories.

We went through looking for common ideas and experiences. We then presented our

findings to each other. A set of categories was established, through discussion and

iteration. The categories can be found in Section 4.2.2 of this thesis.

As the data was collected and analyzed, findings began to emerge. This chap-

ter has outlined the methodology used in this thesis. Relying heavily on Chamaz’s

grounded theory methods, 20 screencasts from YouTube were analyzed and coded.

31

I then interviewed 10 developers with screencast creation experience. Data was col-

lected in order to answer the four research questions concerning screencasts for de-

velopers.

32

Chapter 4

Findings

This chapter presents the findings of the techniques used by developers in screencasts.

These are supported by observations from screencasts and interviews with developers.

Chapter 5 brings together the findings in a theory which explores the techniques

developers use to create screencasts.

4.1 Research Question 1: What Kinds of Program

Knowledge Are Captured in Screencasts?

Developers create screencasts to convey and share technical information. Different

underlying goals were found in the screencasts analyzed for this work. Developers were

observed creating screencasts to share insights into how the code could be customized,

to reflect on their development experiences with the program, and to demonstrate

interesting implementations. It was also observed that developers created screencasts

to share technical data structure and language-specific knowledge.

4.1.1 Sharing Customization Knowledge

Five screencasts in the sample showed how programs could be customized. The

purpose of these screencasts was to explain the functionality of the program to the

audience. This provided the audience with development details that could be used to

repurpose the code.

33

Narrators were observed pointing out features and variables that could be changed

to meet the audience’s needs. For example in V11, the narrator showed how other

developers could change the sound files used by the program.

4.1.2 Sharing Development Experiences

In 8 of the sample videos, narrators shared their development experiences by dis-

cussing the development process used to create the program. This included features

that the narrator had not yet implemented or ways of improving performance. For ex-

ample, narrators described where the audience could expand upon a programV 01,V 02,V 03,

V 7,V 8,V 11,V 19,V 20.

In V19, the narrator explained while executing the program:

“I didn’t use multithreading. At first I didn’t have time for it, and then I didn’t

feel like it was quite necessary. I mean, if you want to add that functionality,

you can.”

Here the narrator acknowledges that he didn’t have time to implement a feature.

He also recognizes that multithreading may improve performance. This provides

context to the audience about the program’s development history.

4.1.3 Sharing Implementation Approaches

Narrators use screencasts to share problem solving solutions with developers that may

face similar situations. For example, V18 presents an implementation of an artificial

intelligence animation behavior using JavaScript and HTML. This video serves as

both a demonstration and documentation of the narrators approach. Throughout

the video, the narrator shares his inspiration and the challenges he faced.

In another example, V03 demonstrates a custom Minecraft launcher developed

by the narrator. The narrator seemed proud of his program and wanted to share

his approach with the Minecraft community. He explained the challenges he faced

creating the user interface.

4.1.4 Demonstrating the Application of Design Patterns

Screencasts are used to demonstrate how design patterns are used for implementing

solutions. In V02, the narrator states that he made the video to demonstrate how to

34

implement responsive design principles in Lua. His goal was also to share language-

specific knowledge through a screencast. The video demonstrates design principles

that rely on an understanding of the programming language, Lua. A video approach

allows the narrator to demonstrate the implementation of these design patterns while

executing a finished, real world solution.

4.1.5 Explaining Data Structures

Other technical screencasts allow developers to explain language-specific data struc-

tures. The goal of these videos is to impart technical knowledge about the language

itself, as opposed to implemented programs or patterns.

This technical knowledge helps the audience utilize and understand the program-

ming language. For example, V10 provided a walkthrough of the Ruby programming

language. In this video, the narrators walk through the low-level implementation of

Ruby data structures. The video shows the language’s internal structure and com-

monly used components. In order to create these technical screencasts, the narrators

show a deep level of understanding of the subject matter.

Video/'Program'Knowledge
Sharing'
Customization'
Knowledge

Sharing'Development'
Experiences

Sharing'
Implementation'
Approaches

Demonstrating'the'
Application'of'Design'
Patternss

Explaining'Data'
Structures

V1 1 1 0 0 0
V2 0 1 0 1 0
V3 0 1 1 0 0
V4 0 0 1 0 1
V5 1 0 0 1 0
V6 0 0 1 0 0
V7 0 1 0 0 0
V8 0 1 0 0 0
V9 0 0 1 0 0
V10 0 0 0 0 1
V11 1 1 0 0 0
V12 1 0 0 0 0
V13 0 0 1 0 0
V14 0 0 1 0 0
V15 1 0 0 0 0
V16 1 0 0 0 0
V17 0 0 1 0 0
V18 0 0 1 0 0
V19 0 1 0 0 0
V20 0 1 0 0 0

Figure 4.1: This chart shows the program knowledge goals in relation to the videos in

our sample. A black dot indicates that the video demonstrated the program knowl-

edge goal.

35

From analyzing the set of screencasts, five goals were distilled that these screen-

casts aimed to fulfill. Figure 4.1.5 shows an overview of these findings. This research

question provides insight into the types of screencasts that developers create to share

technical knowledge.

4.2 Research Question 2: What Techniques do De-

velopers Use to Document Code in Screen-

casts?

Screencasts were analyzed in this study to understand the techniques developers use

to present code through video. In this study 20 screencasts hosted on YouTube were

analyzed to distill these results. The codes developed from analyzing the screencasts

are defined in Appendix A. Both these codes and the following themes were refined

using diagramming activities. The codes and themes are discussed in further detail

in Chapter 5.

4.2.1 Codes

Chapter 3 described how a codebook was created for the screencast analysis phase.

The codes in the codebook were developed over many sessions — Figure 4.2 shows

my notes after an initial coding session. Originally, each code had a letter-number

pair which was used to make coding the screencasts easier. For example, “Defining

the video purpose or goal” was originally given the code of A1. In the final version,

these letter-number pairs were removed and all codes had descriptive names.

After iterating on the codes and definitions, a diagramming exercise was used to

explore relationships between the codes. Figure 4.3 shows the results of an early

diagramming process. The image shows codes that occur together, or rely on each

other to share information. For example, the code “Draws connection between demo

and code” is linked to both the “Demo” and “Picks identifier with type.”

4.2.2 Themes

After the codes were refined, they were grouped into themes. Figure 4.4 shows one

instance where codes were mapped into themes, again using a diagramming activity.

In this way, we built off previous analysis to refine the results.

36

Figure 4.2: A sample from an initial coding session. The entry at 1:12 shows a
quote from the screencast where the author describes their motivation for creating
this application.

The final themes and their corresponding codes can be seen in Chapter 5. They

are presented here to show the relationship between the coding and categorization

phases of this study.

4.3 Research Question 3: Why do Developers Cre-

ate Code Screencasts?

The third research question focused on why developers create screencasts. From

the interviews, it was found that developers created screencasts for a number of

different reasons. Creating screencasts contributed to a developer’s online identity and

credibility. It also allowed them to promote themselves and their work. Interviewees

spoke of using screencasts as a way to teach themselves new material. YouTube was

37

Demo

Linking Code
Segments

Draws Connection
Between Demo

and Code

Focus on line of
Code

Technical
Environment

Web Pages

Diagrams

Prepping the user/
setting

epxectations

Introduce Bugs

Alter Variable or
control flow

Defining videos
purpose or goal

Live Code Changes

High Level Code
Purpose

Code
 break Down

Picks out Identifier
with type

Referencing
Project Structure

Navigating File
Explorer

Opening the file
explorer

Return Type/
Parameters

Line Number
Visual

Annotations

Figure 4.3: The resulting map after codes where mapped for the first time. Each
code is shown in a box. Codes that shared a strong relationship are touching. Other
relationships are denoted through solid lines.

found beneficial by some interviewees because it allowed them to reach a greater

audience.

38

Demo

Linking Code
Segments

Draws Connection
Between Demo

and Code
Focus on line of

Code

Technical
Environment

Web Pages Diagrams

Prepping the user/
setting

epxectations

Introduce BugsAlter Variable or
control flow

Defining videos
purpose or goal

Live Code Changes

High Level Code
Purpose

Code
 Break Down

Picks out Identifier
with type

Referencing
Project Structure

Navigating File
Explorer

Opening the file
explorer

Return Type/
Parameters Line Number

Visual
Annotations

Figure 4.4: A resulting map after coding multiple times. Andreas and I used an
adjacency coding technique to map different relationships between the codes. As
per Charmaz, we tried multiple organizations to distinguish underlying assumptions
about each code [17].

4.3.1 To Build an Online Identity

By crafting an online identity, Begel et al. found that developers use social media

outlets to promote themselves and build a presence [8]. As previously mentioned in

the literature, developers also use social media to evaluate other programmers and

projects [27]. Among the developers we interviewed, a common theme emerged of

using YouTube to contribute to their existing online identity.

39

For example, P07 reported that making videos made him more credible to poten-

tial employers. P05 reported that screencasts provided him with a type of authority

on the subject matter:

“The biggest impact those videos had was on credibility; the fact that they

exist was a sign that I’m serious and I should be taken seriously.”

For P06, YouTube videos not only let him establish his work through content, but

also gave him a way to create relationships with his audience:

“And teaching people builds trust like I said and you’re kind of giving them

something for free in a sense where that’s a nice thing and then they feel like

they know you. It’s much more natural relationship with your audience.”

It has been shown that developers choose to share content that will enhance their

online image [70]. A similar trend was found in two of the interviewees in our study.

These two developers shared how they had created screencasts, but not released them.

They cited not doing so because of issues with the quality of the screencastsP08, or

because they felt the topic would attract negative attentionP07. As P07 explained:

“So I’ve done that a couple times, where I’ve recorded the video, I felt really

good, [but] I never released it. It was four hours and I was ready to go and

I thought this sucks, or I don’t like it because I know all the trolls on Reddit

will have issue with it. . . So I have to be very careful about what I release out

there.”

In this way, the developers in our study were actively curating their online image

through what they chose to share (or not share) via YouTube.

4.3.2 To Promote Themselves

During the interviews, developers spoke of using YouTube to promote themselves for

personal or financial gainP03,P10,P05,P04. In the case of P10, he had begun by posting

his videos on Udemy as a way to make money. YouTube gave him a way to reach a

greater audience, as opposed to a closed, paid model. When he posted his videos on

YouTube, he explained:

“It went wild. Like I got tens of thousands of people viewing these videos and

sending me personal messages about how amazing the course is and they want

more... I have a lot of blog followers now and I have a couple thousand YouTube

subscribers [up] from thirty.”

40

Four other interviewees used YouTube to broadcast their companies or products

P04,P06,P07,P10. In this way, YouTube was used as a promotion tool.

4.3.3 As a Learning Exercise

Interviewees spoke of how creating videos forced them to better understand the topic

at handP02,P03,P07. P01 described how creating screencasts forced him to sit down and

improve his skills every week: he created a video once a week to stay up to date on

developments in the Blender community. By creating screencasts, interviewees also

described feeling more confident in their understanding of the materialP07,P03. P07

explained:

“I mean in creating it you have to know something well enough to articulate

it. So I’ll record myself ... and I’ll re-watch it and I’ll say dude I don’t know

what I’m talking about! So I’m going to go research again ... and people will

go like “yeah you must have been doing this for years.” And really it took me

an hour to learn that.”P07

By doing this, developers used screencasts as a way to build upon existing knowl-

edge.

4.3.4 To Give Back

A common finding was that developers made videos to address what they wish they

had known when they started programmingP01,P03,P07,P08. Developers described this

phenomenon in terms of the amount of time they could have savedP03,P07. This

has been noted in other studies where developers feel that they need to record their

experiences to keep others from going through the same struggles [71].

Three of the interviewees were teachers and two of them spoke of how they started

creating videos to help their classes. P03 talked about how his screencasts impacted

his class:

“They said it was really helpful ... and I actually saw it reflect in the way

they were writing their code, so these are the things I wish I had when I went

through the same thing, and that’s my guide in how I teach.”

By creating these screencasts, developers reflected on their personal experiences

and tried to help other programmers. Developers do this for altruistic means with

41

the aim of helping people in their community [50]. From this study, interviewees

discussed sharing knowledge by codifying their experiences through screencasts.

4.3.5 As an Alternative to Blogging

Four interviewees discussed how they felt that creating a screencast was a better use

of their time than bloggingP01,P07,P08,P09. P08 stated his preference:

“I know that like 10 or 15 minutes is still going to be faster than actually going

in and editing, at least for me.”P08

As video creators, they felt that they knew the information well enough that it

was easier for them to record and capture their screen, than to go through the writing

process. P03, P07 and P08 described that, as viewers, they also preferred to learn

from video over static text. As P03 stated:

“If I had the choice to watch a video I’ll definitely watch the video. It’s way

faster and a better, smoother, learning curve.”

However, not all interviewees felt this way. P05 talked about how he created

videos for a year before deciding that it was not worth the effort put into creating

them and that he didn’t find them useful for learning. He said:

“I can read much faster than most people can speak. I would watch tool

demos— how do I make the tool do this thing. I wouldn’t watch it for factual

content because I can read.”

Video is not the ideal learning medium for everyone, but these interviews show

that there is a community who uses this method for acquiring and sharing knowledge.

Through the interviews, participants described creating code screencasts for a

number of reasons. It helped them establish their credibility and identity online. It

provided them an alternative to blogging by sharing information through video, and

it allowed them to promote their projects and skills. YouTube screencasts allowed our

participants to build relationships with an audience. Interviewees reported screencasts

as having positive effects on their career or developer identity.

42

Why do Developers Create Code Screencasts? Interviewees
To Build an Online Identity P05, P06, P07, P08
To Promote Themselves P03, P04, P05, P07, P10
As a Learning Exercise P02, P03, P07
To Give Back P01, P03, P07, P08
As an Alternative to Blogging P01, P07, P08, P09

Table 4.1: A table of the motivations found from interviewing screencast creators.

4.4 Research Question 4: How Do Developers Pro-

duce Code Screencasts?

In the interviews, participants were asked about their creation processes. Here, the

findings on the screencast creation process are presented in three common stages:

preparation, recording and post-production.

4.4.1 Preparing the Screencast

Before recording, the interviewees stressed the importance of organizing their thoughts

and sources. Almost all of the interviewees, with the exception of P03, spoke of using

an outline to note important points they wished to address in their videos:

“I did write... basically just an outline, like a markdown outline, with headers

and sub-points and then I didn’t actually even end up referencing it, it was

more just the thing where I wrote it all out, so then I had all my thoughts

organized” P06

Here, P06 used an outline as an initial planning tool. He did not actually use

the outline while recording the video. It served him as an organizational tool. In-

terviewees also spoke of also writing the code they were going to use in the video,

or gathering images and diagramsP01,P07,P08. The planning stage consisted of partici-

pants identifying key information, and gathering materials for recording. Interviewees

reported using outlines to organize their thoughts and highlight important pieces of

information.

Interviewee descriptions of the planning processes resemble the findings of edu-

cational research on screencasting [79]. Previous work describes the planning stage

as forcing the creator to focus their ideas and goals [57]. By planning ahead, the

43

literature suggests that screencast creators can tailor their video to meet the needs

of their audience [61].

4.4.2 Recording the Screencast

When recording video, the participants used a variety of screen capture tools. Tools

used for recording included Quick Time, Camtasia and Screenflow, though no one tool

dominated in the sample. While recording, the interviewees stressed the importance

of breaking clips into short segmentsP03,P04,P05,P06. This seemed to be for two reasons:

it limited the possibility of mistakes, which would require to a retakeP05,P08; and, it

forced them to articulate their ideas clearly and quicklyP02,P03,P04,P06,P08.

When interviewees did encounter mistakes during recording, some noted interest-

ing coping strategies. In this situation, interviewees explained that instead of turning

off the camera, they simply debugged liveP01,P08,P10. As P01 explained:

“I just live type and if it doesn’t work it’s really awkward, but we fix it then

because they learn debugging.” P01

Thus, programming mistakes are used as teachable moments that interviewees

use to show the viewer how to get around problems that they also might experience

while following the screencast. This is a unique situation to programming, where by

capturing the execution of a program live, one can turn errors into teachable moments.

In this way, developers can give their audience real insights into the functionality of

the program.

4.4.3 Post-production

After recording, interviewees took the time to edit their screencast. Out of ten people,

seven told me that they edited their workP01,P04,P05,P06,P07,P09P10. This ranged from

adding effects, to reworking the audio. For example, P01 put hours of effort into

editing his work. He said:

“I’ll come over to the audio and spend 2 hours just combing through getting

rid of clicks” P01

Of those who edited their work, interviewees stressed the importance of high

production qualityP04,P05,P07,P10. For example, P10 shared the story of how a man

with a hearing disability was able to understand P10’s screencasts because of the

audio quality. In an interview P10 said:

44

“it was really cool to know that my courses were also accessible to disabled

people simply because of the effort I put into the quality.” P10

Alternatively though, a group of participants expressed that they did not do

any editing and simply watched their videos for clarity before putting them on

YouTubeP08,P02,P03. One example was P08, who said:

“I have full respect for the people who actually go in and edit their video,

because that to me is just so painful. I find it quicker just to do a good take.”

P08

The majority of people I interviewed reported doing some form of editing as a qual-

ity measure. High production quality was important to these individualsP04,P05,P07,P10.

Others felt that editing was not necessary.

Those who were comfortable with their editing tools demonstrated a number of

different techniques they used to edit out errors. P07 explained how he accepted

the fact that he would make mistakes and how he had strategies to compensate.

This included using YouTube comments or annotations on the screen recording. P10

described how he adapted to his software support to identify errors quicker in the

post-production phase:

“I’ll snap my fingers and stop talking, so it will peak the sound wave, so when

I am editing I can see where I snap my fingers and I’ll know that I made a

mistake there.”P10

Others mentioned recording in short segments to reduce the chance of making

an errorP06, and hiding the clock on their desktop to make editing clips together

easierP04.

A common theme in the transcripts was participants expressing frustration with

the tools they used to create videosP01,P04,P06,P07,P08,P09. Sources of frustration in-

cluded editing and recording software, upload times, quality, as well as adjusting to

screen resolutions. Interviewees reported that they spent the most amount of time

in post-production improving the quality of their workP01,P04,P07. Though many dif-

ferent tools were used in the sample, none of them were found to be ideal by our

participants.

45

How Do Developers Produce Subtopics Interviewees
Code Screencasts?
Preparing the Screencast

Used an Outline P01, P02 ,P04, P05 ,P06,
P07, P08, P09, P10

Recording the Screencast
Importance of Breaking Clips P03, P04, P05, P06
into Short Segments

Debugged live P01, P08, P10
Post-production

Edited Their Screencasts P01, P04, P05, P06, P07,
P09, P10

Did Not Edit Their Screencasts P02, P03, P08

Stressed the Importance of P04, P05, P07, P10
Production Quality

Frustration with Software P01, P04, P06, P07, P08,
P09

Table 4.2: A table showing how interviewees described producing screencasts

In this chapter, the findings from our analysis of the data were presented. From

analyzing YouTube screencasts and interviews, the four research questions were an-

swered. From these questions, a number of themes emerged, addressing how develop-

ers present code in video. These themes are outlined and drawn together in the next

chapter, Chapter 5.

46

Chapter 5

Theory

“The result of a constructivist grounded theory study is more seldom

presented as a theory than as a story or a narrative, including categories,

told by the researcher with a focus on understanding of social processes”

Lillemor Hallberg, 2006 [40].

After applying grounded theory, one is expected to produce a theory encapsulating

the observations and insights they have gleaned from analyzing the data. As Charmaz

describes, through grounded theory we theorize how meaning, actions and social

structures are constructed [20].

As a result of my constructivist approach, this thesis does not present a traditional,

positivist theory— variables and processes are not an output. On the contrary, this

theory presents groupings of analytic statements, supported by description and illus-

tration from the data. What is presented in the following section is a description of

categories based on an interpretation of screencasts and interviews. This interpreta-

tion explores the experiences of developers who share screencasts via YouTube.

In this theory, screencasts and interviews are defined as data. The data was

analyzed using a qualitative approach. Themes were interpreted from the data and

seen as indicators of shared experiences. This work seeks to situate screencasts in the

social ecosystem that developers use to share knowledge. Through this, the thesis

aim to provide context for screencasts, as well as insight into how and why developers

create them.

47

5.1 Context

The next subsections provide an overview of the context of the findings. By drawing

together observations from the findings the time, place, culture, and situation that

the theory occurs in is described.

5.1.1 Time

YouTube is a popular online video sharing platform that contains a social media

features that allow people to communicate and share ideas. In temporal terms, this

theory applies to one of the most popular, contemporary social video sharing sites.

The screencasts we studied were created within the last six years. The technology

for creating videos has become drastically more accessible in recent years. Many

computers and phones now come with entry-level hardware and software for video

recording.

Since its launch eight years ago, YouTube has become extremely popular. Over

100 hours of film are uploaded to the site every minute on a range of topics [87].

For example the interviewees mentioned using YouTube not only to post their own

videos, but also to find entertainment and educational materialP01,P02,P08.

5.1.2 Place

When posting on YouTube, one must choose to make their video public or private.

For this study, public videos were analyzed. It is assumed that the creator wanted

others to be able to view their work.

Whether consciously or not, the interviewees held assumptions about their in-

tended audience. Sometimes these assumptions were explicit. For example, P02 and

P03 described making videos for a classroom setting, assuming that their audience

had a very basic understanding of programming concepts. In that case, they had a

clear understanding of the background and needs of their audience.

Other times, interviewees described having no particular audience in mind, but

that their screencasts focused on topics based on their programming experiencesP07,P08.

In this case, the video creator still has assumptions about the audience’s skill level

and background.

These assumptions can cause problems for the screencast creator. For example,

P01 began creating screencasts videos for “beginners and beyond.” When he made an

48

advanced series, he found that audience members struggled with the more advanced

topics.

“But I’ll get questions from people who are clearly new to it but they have

seen the rest of my channel and they have seen the easier tutorials I have done,

where I say every click, ‘now we press the left mouse button, now we press these

keys.’ And they assume I am going to do that for the harder things too.” P01

When he began creating videos for a higher skill level, he received questions from

audience members who didn’t have the skills needed to follow the video. They weren’t

the audience he had in mind.

The openness of social media means that anyone can access public content. Con-

tent creators need to be aware of this and communicate their intent when posting

public videos on YouTube. For developers, the platform they use to share their knowl-

edge impacts who can access their work. As the example of P01 demonstrates, when

content creator and audience expectations do not align, this creates friction.

5.1.3 Culture

Social media has been described as contributing to the rise of a participatory cul-

ture [75]. By participating in social media, one subscribes to the cultural values and

social norms of the platform. This shapes how one participates in this space.

According to Dabbish et al., by sharing their work, developers are contributing to a

larger social community [27]. Through a participatory culture, people are encouraged

to share their ideas and believe that their contributions are important [86]. Users have

been found care about how they are perceived in this space and act in accordance

with what they believe to be the cultural norms [27].

Singer et al. put forth the idea that through social media, developers have formed

communities of practice [70]. These communities are built around software, tools

and shared interests [70]. As Wenger describes, there are three ways for a person

to show their competence in a community of practice: they need to understand the

community well enough to contribute to it; they need to interact with other members

and demonstrate their understanding of the community; and they need to show that

they understand the “language, routines, sensibilities artifacts, tools, stories, styles,

etc.” of the community [86]. By demonstrating these, a person can establish that

they belong to the community. Programming communities influence the experiences

49

developers share in screencasts and how they do so. For example as previously men-

tioned in Chapter 4, interviewee P07 explained how he has created screencasts, but

never released them because of the negative attention he thought the topics would

attract online. P07 later stated:

“I realized that if I’m gonna explode on the Javascript scene, I have to work

really hard to stay up there, to stay relevant. ” P07

In this way, P07 had taken and internalized social cues from members of the

Javascript community. His previous interactions with the community guided what

and how he contributed. He wanted to make videos that fit what he perceived to be

the social norms and views of the community. Based on his previous experiences, P07

had formed ideas of the types of content that would attract negative attention.

The interviewee demonstrated that he cares about this identity within the com-

munity. He wants to be known as an expert and identifies how he needs to act in order

to achieve this. His perception of the expectations and behaviors of the Javascript

community impacted his choices and shaped his participation.

Developers who share screencasts via YouTube are not only part of a participatory

culture that urges them to contribute their knowledge, but also part of communities of

practice, with social norms they must navigate. Wenger states that these communities

influence the language, behavior and actions taken by members of the community [86].

5.1.4 Situation

This work explores the experiences of people who have developed software and chosen

to share their experiences through a screencast hosted on YouTube. They may or may

not have written the code in the screencast, but they have some knowledge of the

program. It is assumed that, through screencasting, the screencast creator will share

their experiences and understanding of the program. This does not mean that their

understanding of the program is correct. One assumes that sharing these experiences

imparts knowledge on the audience in the form of explicit or tacit declarations.

A number of reasons may motivate the screencast creator to share their experiences

through YouTube, such as the desire to establish an online identity and wanting to

give back to their community. In this thesis, screencasts are observed as an artifact

of the developer experience and support this study’s analysis of these artifacts with

insights from screencast creators. The following sections blends an analysis of real

50

world screencasts with interviewee data to describe the techniques used in screencasts

hosted on YouTube.

The techniques described in this section apply to situations where one uses screen-

casts to share their knowledge about a computer program, specifically in the YouTube

environment. These make up a theory that describes the techniques developers use

in these videos.

From the analysis, it was found that developers use a variety of techniques to

document and describe their code. These techniques are used in conjunction with

each other to allow the narrator to share their knowledge, while interacting with the

program.

The narrator of a screencast is understood to be a developer who has knowledge

of the program at hand and can refer to someone who has actively developed or

maintained the program. Situations might arise where one has detailed knowledge of

the program without this development experience.

Ultimately, the screencast under analysis explains the functionality of a completed,

non-trivial program or code snippet. In creating the screencast, the narrator formal-

izes their knowledge of the screencast—they walk through the screencast to build an

overarching explanation of the program.

5.2 The Theory

To begin a screencast, the narrator starts by defining the video’s goal for the audience.

They communicate their intent and explain what will (and perhaps will not be)

covered in the screencast. Through this, they communicate the subject and purpose

of the screencast.

As the narrator moves through the program, they make references to the code: its

architecture, how the files are arranged, and how data flows. They focus on specific

functions, explaining purpose and parameters. They link parts of the code together

by moving from one section to the next and explaining relationships.

Eventually, the narrator decides to execute the program. They do this to show the

audience the final output. They draw attention to features seen in the demonstration

and link them back to references in the code. Through the act of linking, they build

up the audience’s mental model of the program.

51

But maybe all the answers aren’t found in the code? The narrator may provide

the audience with knowledge of related documentation and where to find it. These

are references to external resources for the audience members to refer to.

It is possible that the program crashes during the demonstration. The narrator

begins live debugging to fix the issue. They manipulate the code to show the audience

where variables need to be changed and relaunch the program to demonstrate the

correct execution.

The narrator may use many different techniques to the showcase the program.

From the analysis, seven themes emerged.

5.3 Themes

The following subsections explain the themes of this theory. The themes are made up

codes. Themes are presented in italics and as subsections in the following pages. The

codes of each category are presented in bold. From the codes and themes, this work

described how developers use a number of different techniques to document code in

screencasts.

5.3.1 Goal Setting

Goal Definition requires the narrator to explain their intent for the screencast. This

includes who the screencast is for, and what topics the screencast will cover. The

narrator sets the stage for the audience by communicating what to expect in the

video. In a screencast, these messages are typically communicated verbally, but they

can also be inferred from video descriptions or images.

This technique allows the audience to decide if the screencast suits their needs.

The theme Goal Setting was used to describe this phenomenon. From the interviews,

it was found that narrators used this technique not only to help audience members,

but also to help themselves. They explained how defining the purpose of the video

helped them focus their videos.

Every screencast began with a statement of the goal of the video. The code

verbally defining the video’s purpose was used to capture this. From RQ1 it

was determined that narrators make videos to achieve a number of different goals.

Narrators set up audience expectations by providing an explanation of the

limitations (i.e., the scope) of the video and its intended audience. For

52

example, the narrator of V01 remarked how the project relied on a specific server, but

that instructions on how to set up the server would not be covered in the video. This

allows the audience to determine if the screencast suits their needs. The interviewed

developers expressed that focusing the goal or point of the video helped them focus

their creation processP02,P05,P06,P07,P08,P09,P10. As P09 explained:

“They can just refer to that little video that covers that topic... I like splitting

up the video into bite size pieces that can just cover what they are gonna cover,

so [that] you can just navigate to the video that covers that bit of information.”

P09

The interviewees described how their audience members became frustrated when

the purpose of a screencast was unfocused or not clearly communicated. P05 noted

that there is no way for the audience to skip to the relevant part of a video on

YouTube. Because of this, interviewees tried to help their audience find knowledge

by making their videos shorter:

“I’m trying to refine it to literally have videos as short as possible. If they can

be two minutes perfect, so some of my videos are literally one minute to the

most” P10

Research on software engineering documentation has found that developers avoid

documentation that is, “complex and time consuming” [49]. They are drawn to

artifacts that are easy to understand and straight to the point [49]. Our screencast

creators comments echo this and show that they are aware of how it impacts their

audience.

Audience members need to know if a screencast will helpful to them, and may not

have time to watch the entire video. Audiences will instead watch parts of multiple

resources quickly, before deciding to focus on one that may suit their needs [11].

Similarly, developers need to quickly judge if a resource is relevant to the task at

hand.

Defining the screencast purpose is similar to ideas from the literature about an,

“overview strategy” which provides, “the necessary background information that

learners need in order to understand the context and/or the purpose of the screencast-

ing topic” [79]. Outlining what will be covered in a screencast sets up the audience’s

expectations. From the interviewee’s perspective, having a focused video is one way

in which screencast creators can tailor their approach to help their audience.

53

Theme:
Goal*Setting

Video*#

Code:
Explaining*the*limitations*(i.e.,*
the*scope)*of*the*video*and*its*
intended*audience

Verbally*defining*
the*video’s*
purpose

V1 1 1
V2 1 1
V3 1 1
V4 1 1
V5 1 1
V6 1 1
V7 1 1
V8 1 1
V9 0 0
V10 1 1
V11 1 1
V12 0 0
V13 1 1
V14 1 0
V15 1 1
V16 1 1
V17 1 1
V18 1 1
V19 0 1
V20 1 1

Figure 5.1: The results from coding the set of videos for the goal setting theme.

5.3.2 Referencing Different Levels of Detail

Narrators were observed describing features and components using various levels of

detail. For example, features that ran across many files might be summarized by

the narrator using high-level descriptions. In V02, the narrator described how the

program handled views:

“When the user successfully logs in, I need to react to it, Cafe Townsend

needs to orchestrate something to happen. That is ... show the employee

view. It doesn’t tell the employee to load anything, it’s assumed that view

will take care of all it needs to handle.”

Narrators provided high-level overviews of program structure and features, but

also described code in terms of functional groupings. This work took a pragmatic

approach and used the term medium-level for descriptions of blocks of code, such

as a logical sequence, that spanned multiple lines. Narrators used this level of detail

to summarize sections of code quickly, while still providing some technical details.

For example, the narrator of V03 briefly described the control flow of four lines in an

if statement:

54

“First I want to make sure that the directory exists for where we are going

to install [the launcher].”

This was contrasted by narrators describing low-level, or in-line, language-specific

information. Frequently this meant reading the code aloud, verbatim. For example,

the code in V01:

private Room currentRoom = null;

was read aloud:

“There is also a current room property with the data type of room and

it’s set to null.”

Within these low-level descriptions, narrators also referenced specific element

identifiers, such variable names or types, and explain their functionality to the au-

dience. They also picked out return types, parameters and line numbers. For

example, the narrator of V04 picked out the variables “Name”, “User” and “Pass-

word”, to explain how to set up the connection to a local database. These techniques

were used to explain software features and functionality.Theme:

Video*#

Code:

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20

Referencing*Different*
Levels*of*Detail

HighElevel*code*
overview

MediumElevel*focus*
on*subEblock*of*code

LowElevel*focus*on*a*
single*line*of*code

Picks*out*element*
identifier

Return*types/*
parameters Line*numbers

1 1 1 1 1 1
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 1
1 1 1 1 1 1
1 1 0 1 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 0 0
1 0 1 1 1 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 1 1 0

Figure 5.2: The results from coding the set of videos for the referencing different
levels of detail theme.

55

5.3.3 Browsing the Technical Environment

Narrators also used screencasts to explain the structure of a programV 1,V 2,V 4,V 6,

V 7,V 10,V 13,V 14,V 16,V 17,V 18,V 20. For example, the narrator of V04 provided a general

overview the setting.py file’s purpose:

“This top-level settings file is just the top-level routing so its saying any-

thing that isn’t oautho2 or admin send it off to media urls file and it will

handle that.” V 04

For the following lines of code:

local loadingView = LoadingView:new(self)

self.loadingView = loadingView

This section of code acted as beacon to the developer about where a particular

feature was instantiated.

Commonly, the file explorer was used to describe where code fit within the

program’s structure. Narrators visually outlined the structure of their programs and

provided audio descriptions. These techniques provide context to the audience, which

Sugar et al. suggests establishes links between code and features of the program [79].

By making references to the code, narrators choose where to focus the audience’s

attention. The narrator chooses part of the code as examples of “beacons” that Storey

describes as “recognizable, familiar features in the code that act as cues to the presence

of certain structures” [73]. Brooks writes that in order to understand a program, the

audience must be able, “to create mappings from problem to code” [12]. To do this,

previous work shows how narrators can use indicators in the text to navigate the

program and identify features [74].

The idea of beacons is reflected similarly in the work of Pennington, who describes

how developers build up a structural, mental, model of a program. This model relies

on knowledge taken from the structure of text, and the “program plan” [84]. By

understanding the relationships within a program, one develops their mental model

of it [65]. In the example above, the narrator’s program plan maps code to a feature–

they create connections between the two.

References to the code are used in screencasts to focus the audience’s attention.

They are a way for the narrator to highlight parts of the program they feel are

important and explain the program’s structure.

56
Theme:

Video*#

Code:

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20

Browsing*the*
Technical*
Environment

Make*use*of*file*
explorers

Explaining*the*
program*structure

Explaining*the*technical*environment*
(including*libraries,*servers)

1 1 1
1 1 1
0 0 1
1 1 1
1 0 1
1 1 1
1 1 0
0 0 1
1 0 0
0 1 1
1 0 1
0 0 1
1 1 1
0 1 1
0 0 0
0 1 1
1 1 1
0 1 0
0 0 0
0 1 1

Figure 5.3: The results from coding the set of videos for the browsing the technical
environment theme.

5.3.4 Demonstrations to Showcase Execution

The theme of referring to the executable came from our screencast observations. Nar-

rators executed the program to demonstrate the output to the audience. Sometimes

the narrator would run the program multiple times to show the audience how different

inputs, or changes to the code, impacted the program. The majority of screencasts

in our sample executed a program to demonstrate features to the audience

V 1,V 2,V 3,V 5,V 6,V 9,V 13,V 16,V 17,V 18,V 19,V 20.

Narrators used demonstrations as an opportunity to explain software functionality

V 01,V 02,V 13,V 18,V 19,V 20. Demonstrations were also used to explain specific use cases

and data flows within a programV 01,V 02,V 16,V 20. Some screencasts with a graphical

component made use of demonstrations to explain how a program manipulated user

inputV 05,V 06,V 13. In these ways, narrators were mapping references to the code, the

executable and external resources to share information. By connecting these different

sources, they shared their understanding of the program.

57

This technique allows the audience to analyze, “the properties of a running soft-

ware system” [9]. Through screencasts, narrators show both the program output and

the code. With this information, the audience creates reference points between the

two.

By running a program, the developer gains insights into details of software be-

havior [23]. In this study, narrators used this technique to communicate information

about their code to the audience. Video provides alternative insights into the coding

process over static text. Having source code available, in conjunction, provides the

audience with a working example to manipulate.
Theme:

Video*#

Code:

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20

Demonstrations*to*showcase*
the*execution*of*the*program

Executing*the*program*to*
demonstrate*features*to*the*
audience

1
1
1
0
1
1
0
0
1
0
0
0
1
0
0
1
1
1
1
1

Figure 5.4: The results from coding the set of videos for the demonstrations theme.

5.3.5 Live Editing to Showcase Code Changes

A key advantage of screencasts over static documentation is that the audience can vi-

sually follow changes made to the code. It was observed that live code changesV 2,V 3,V 5,

V 6,V 7,V 8,V 10,V 11,V 13,V 14,V 19,V 20 were performed for two main reasons. One was to change

58

a program’s control flow or variablesV 2,V 13,V 19,V 20, and the other was to introduce

the audience to examples of increasing difficultyV 13.

Narrators also introduced bugs into the program, either intentionally or inten-

tionally V 2,V 3,V 5,V 13,V 15,V 20. For example, in V05 the narrator created an error and

explained to the audience how to read the error output. In V20, an error occurred

after the narrator had changed a variable—the situation was turned into a live de-

bugging exercise. Live editing also offers the audience a glimpse into the narrator’s

coding style, but it can also be used to manipulate the output of a program.

Because these videos present code, there is the possibility that bugs will appear

unexpectedly. As mentioned, interviewees explained that instead of turning off the

camera, they simply debugged liveP01,P08,P10. Thus, programming mistakes are used

as teachable moments that the audience might experience while following the screen-

cast. Live editing lets the narrator expand the audience’s understanding of the pro-

gram.
Theme:

Video*#

Code:

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20

Live*Editing*to*
Showcase*Code*
Changes

Live*code*changes Changing*control*
flow*or*variables

Introducing*
bugs

0 0 0
1 1 1
1 0 1
0 0 0
1 0 1
1 0 0
1 0 0
1 0 0
0 0 0
1 0 0
1 0 0
0 0 0
1 1 1
1 0 0
0 0 1
0 0 0
0 0 0
0 0 0
1 1 0
1 1 1

Figure 5.5: The results from coding the set of videos for the live editing theme.

59

5.3.6 Provisioning of Additional Resources

Not all information about a program is stored in its code. Developers frequently use

other sources of information to support their work. This includes design documents,

APIs, libraries and Websites. We observed developers make use of these resources in

our analysis.

Screencasts exist as one type of knowledge documentation accessible to software

developers via the Internet. Narrators frequently referenced other forms of documen-

tation and external resources. This included Webpages, where audience members

could find additional documentation, and diagramsV 16,V 17,V 18.

To correct mistakes, narrators were also observed using the visual annotation

boxes provided by YouTube to share links or commentsV 01,V 03,V 06,V 10,V 11. These tech-

niques let the narrator provide the audience with text and video resources that sup-

plement each other.

Source code was also frequently made publicly available and referenced in the

videosV 1,V 2,V 4,V 6,V 9,V 10,V 13,V 18,V 19,V 20. As P02 explained, he felt that source code was

beneficial to the audience:

“..but if you already understand the syntax and you’re really just trying to

learn how to use that technology, it’s a lot slower to go type that stuff in than

it is to download a repository from GitHub and get the source code, dig into

it, and sort of watch along with the person and the video. That’s kind of how

I structure my videos, as almost all have a source code component that goes

with it.”P02

This quote from P02 distinguishes between learning the fundamentals of a pro-

gramming language and learning how to use it.

Interviewees reported providing source code for audience members to expand and

build upon. An exception to this was V03, where the narrator explained how he

specifically did not make his source code available. Interviewees stressed the impor-

tance of providing source code to the audienceP03,P04,P08,P09. This finding reflected

what we had observed in the screencasts, where seven screencasts provided links to

source code and frequently referenced it.

The linking of screencasts to external resources demonstrates that knowledge is

held in many different resources. Distributed Cognition is the theory that cognitive

processes are spread across a number of artifacts [43]. For example, a user many rely

on to-do lists or written information, to support understanding a program [85]. In a

60

screencast, these sources of information are not only contained in the program’s code,

but also within Websites, APIs and other documentation. The developer is also a

source of information for the audience.

The theory of distributed cognition is referenced because screencasts act as an

artifact for developers to store knowledge. By creating a screencast, developers are

also storing their cognitive process within a video. They make references to source

code, diagrams and other documentation, which supports the development of a mental

model.
Theme:

Video*#

Code:

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20

Provisioning*of*
Additional*Resources

Webpages Diagrams Source*Code Visual*Annotations
1 0 1 1
1 0 1 0
0 0 0 1
1 0 1 0
0 0 0 0
1 0 1 1
0 0 0 0
0 0 0 0
0 0 1 0
1 0 1 1
1 0 0 1
0 0 0 0
1 0 1 0
0 0 0 0
0 0 0 0
1 1 0 0
0 1 0 0
0 1 1 0
1 0 1 0
1 0 1 0

Figure 5.6: The results from coding the set of videos for the additional resources
theme.

5.3.7 Mapping Execution to Code and Code to Code

Mapping plays an integral role in the screencasting process. It is a way of logically

moving through complexity, in order for the audience to make sense of the code. Link-

ing together segments allows developers to connect concepts together within the pro-

gram. Through mapping developers move between low and high-level explanations.

The work of Von Mayrhauser and Vans refers to this cross-referencing as “relating dif-

61

ferent abstraction levels...by mapping program parts to functional descriptions” [84].

By linking beacons, narrators navigate the program’s code.

Narrators were observed creating mappings between features and segments of soft-

ware. Narrators were observed making connections between the execution and

the code, to demonstrate where a feature residedV 2,V 5,V 6,V 9,V 13,V 15,V 16,V 17,V 18,V 19,V 20.

They also moved between segments of code to explain relationships V 1,V 2,V 3,V 5,V 7,V 9,V 10,

V 11,V 12,V 13,V 15,V 16,V 17,V 18,V 19,V 20. In the screencasts, narrators used these mapping

techniques to connect concepts within the program.

Building on the previously mentioned beacons, Brooks hypothesizes that text and

documentation serve as a “collection of indicators to be assembled into beacons” which

developers assemble to form their understanding of a program [12]. This mapping

builds not just between parts of the text, but also on the conditional implementation

of the text. As described previously, screencasts let the narrator reference the control

flow and structure of a program. By looping these beacons together, a narrator shares

their comprehension of the code.Theme:

Video*#

Code:

V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20

Mapping*Execution*to*Code*
and*Code

Connection*between*the*
demonstration*and*the*code

Linking*code*segments*
together

0 1
1 1
0 1
0 0
1 1
1 0
0 1
0 0
1 1
0 0
0 1
0 1
1 1
0 0
1 1
1 1
1 1
1 1
1 1
1 1

Figure 5.7: The results from coding the set of videos for the mapping execution to
code and code to code theme.

62

Developers use a variety of techniques to communicate knowledge through screen-

casts. 20 YouTube screencasts were analyzed to understand the techniques developers’

use and from this analysis developed a set of themes. It was found that developers

define the purpose of their videos, talk about code in various levels of detail and ex-

plore the project’s structure. They also share information about how to adapt their

programs through demonstrations, live editing, and by providing resources.

63

Chapter 6

Discussion

This chapter discusses the screencasts studied for this thesis in relation to the litera-

ture and the observations. Based on the literature and findings, the chapter presents

a number of guiding best practices for creating screencasts aimed at developers, the

place of YouTube in the social developer ecosystem and the challenges of screencasts

as a medium.

6.1 Screencast Best Practices

Based on the observations, a list of best practices for developers wishing to create

screencasts was developed. Interviewees were asked what they thought were good

and bad characteristics of screencasting. This line of questioning heavily influenced

the list below.

Screencasting Best Practices
1. Plan Ahead
2. Short and Focused
3. Provide the Source Code
4. Speak Clearly
5. Execute the Code

Table 6.1: A list of best practices developed from the findings of this study and the
literature.

Plan Ahead: As shown in Chapter 4, interviewees described using a planning

mechanism to organize their ideas. Planning helps the screencast creator focus their

64

goals, and allows them to reflect on the audience’s needs. Research suggests that this

is the most important stage, when producing a screencast [57]. Planning helps tailor

content for the audience’s, “level of knowledge” [61]. Previous work suggests that

noise, or confusing information, be filtered out at this stage [61].

Short and Focused: The interviewees spoke of the need for short and clear

screencasts. They discussed the importance of not rambling, and that screencasts

need to be on topicP02,P05,P06,P08,P10.

The educational literature suggests “minimizing the memory load” when creating

screencasts [61]. This means not overwhelming the audience with too much informa-

tion. Therefore, screencasts should be to the point and on topic.

As previously mentioned, the interviewees felt that it’s easier to edit or re-record

short video segments. Interestingly, the videos in my sample ranged from 3 minutes

to over an hour. Just because interviewees stressed the importance of brevity does

not mean that they practiced it:

“I’m sure I’ve been guilty of it. But that’s definitely something that when I’m

watching a video, if I got the point the point in the first few seconds I really

don’t want to have another three minutes of the guy kind of explaining the

same thing over and over again.” P02

Provide the Source Code: Developers stressed the importance of providing

source code to the audienceP03,P04,P08,P09. This reflected what was observed in the

screencast analysis. These screencasts provided links to source code and frequently

referenced it. From the literature, it is known that “learning enough to apply new

knowledge usually requires active engagement or practice in a realistic context” [61].

The source code provides a real example which the audience can use to experiment

and build upon.

Speak Clearly: All of the videos in the screencast sample contained narration.

Interviewees stressed the importance of being able to understand the person speaking

in the screencast. Narration allows for both explicit and implicit description of the

actions on the screen [79]. These audio clues, coupled with visual representations,

help audience members learn and internalize information from the screencast [61].

65

Execute the Code: As shown in Chapter 4, nearly all of the videos in the screen-

cast sample showed the program under discussion being executed. Audience members

need to make connections between the program and the source code. According to

Brooks, executing the code allows the audience to create mappings between the code

and the problem it solves [12]. Previous work also suggests that it provides context,

and sets audience expectations as to what the program does [61].

These best practices address common concerns that were brought up in the inter-

views with screencast creators. Unlike the previous cited educational literature, there

are a number of challenges unique to the developer screencasting experience that

these practices address. Unique to software development, screencast creators must be

aware of the possibility of programming errors and formulate strategies to deal with

them. This study shows that developers have found inventive ways to take these er-

rors and turn them into teachable moments. Through planning ahead and executing

the code, developers can mitigate or incorporate these bugs into their screencasts.

Additionally, creating a screencast requires domain specific programming knowl-

edge. This extends not only to programming languages, but also to programming

tools. Developers can use screencasts to share their insights into multiple aspects

of programming. They can do this in screencasts by capturing footage of tool use,

providing source code for the audience to follow along with, and by executing the

code for demonstrations. By providing the audience with a clear, well-planned video,

it is hoped that these guidelines provide support to future screencast creators.

6.2 YouTube in the Social Developer Ecosystem

YouTube was used by interviewees to share insights, and to build an online reputation.

In alignment with the literature, the interviewees reinforced that developers shape

their online identity by choosing to share content [70]. This was done for a number

of reasons, including altruistic and economic motivations.

From this study, it was found that developers use YouTube to supplement their

activities on other platforms. For example, interviewees spoke of how social media

impacted their screencast creation process. Many described how being active on other

social media channels provided them with insights for their contentP01,P02,P03,P04,P06,P07,

P09,P10. In this way, interviewees remained aware of programming-related news and

developments.

66

From these insights, we know that the interviewees used YouTube in conjunction

with other social media platforms. Six of the interviewees referenced other screencast

channels, which they used as inspiration for their own workP02,P04,P05,P06,P07,P08. In-

terviewees indicated that they draw ideas from different sources to create social media

content. In addition, interviewees described how their previous work and audience

interactions gave them inspiration for future contentP02,P04,P06. For example, as P02

described,

“A lot of it comes out of someone requesting for help, where I’ll go on later on

down the road to make those videos, I have planned to do a couple others that

I’ve gotten requests for.”

The degree to which interviewees received, and interacted with, this feedback var-

ied. One developer explained that he stopped monitoring comments on YouTube

after they became overwhelmingP08. Others expressed disappointment at the lack of

feedback they receivedP04,P05. Those who I interviewed were surprised by the posi-

tive feedback they received, which congratulated them on their videos, or expressed

how helpful they had beenP04,P06,P07,P08,P10. Interviewees described that this pro-

vided them with validation for their workP06,P07. Interviewees also received feedback

from people reaching out for programming helpP01,P02,P05,P08, but reported minimal

negative feedback or trollingP01,P04,P07,P08.

YouTube allows the audience a way of interacting with the content creator. As the

interviews showed, screencast creators become a contact point for struggling learners.

One can see that YouTube is used in conjunction with other media platforms to

connect developers, and share content.

6.3 Limitations of Screencasts

As a medium, there are a number of limitations surrounding the use and creation of

screencasts. Screencasts are limited by the effort required to update or alter them,

the platforms on which they are hosted and the degree to which they help users locate

relevant information.

As was mentioned by the participants, recording and editing is not an easy task.

For the screencast creator, once they have finished recording, it may be difficult

to reshoot and add in any missing information. Reshooting requires recreating the

technical environment, project and code structure shown in the screencast. There

67

could be many scenarios where this is not feasible or possible. Therefore without

action on the creator’s part, screencasts may be incomplete or out of date.

In order to reach a large audience, screencast creators are reliant on the use of

online video sharing platforms. While YouTube is arguably the most popular of these,

there are many video sharing platforms on the Internet. These platforms operate with

their own rules and requirements for posting and accessing video content. This leads

to variations in the accessibility and permanence of screencasts, which affects who

and how audience members access online video. Screencasts are therefore limited to

where the creator posts them online, and the terms of use for that specific platform.

For example, currently YouTube requires users to have an account if they want to post

comments in response to a video. This limits and shapes the interactions screencast

creators have with their audience.

Additional, information openly available on the Internet is no help to anyone if it

cannot be found. Unfortunately video itself is not easy to search. This means audience

members must watch them to determine if the video suits their needs. For long

videos, this is not efficient. Screencasts and videos as knowledge resources are limited

in that they require this additional data in order to communicate their contents to

the audience.

Video sharing platforms help audience members find the correct content through

the use of a number of features like search, tags and creator supplied meta data.

Meta data can outline the purpose and contents of a screencast to the audience. I

observed creators using meta data to point audience members to additional resources,

like source code and written tutorials. The interviewees stressed that in addition to

meta data, creating focused videos is very important in helping audience members

find relevant information.

Finally, the participants frequently expressed frustration with the tools they used

to create screencastsP01,P04,P06,P07,P08,P09. Sources of frustration included editing and

recording software, upload times, video quality, and adjusting to screen resolutions.

Interviewees reported that they spent the most amount of time in post-production

improving the quality of their workP01,P04,P07.

From the interviewees, it was identified that a large amount of the screencast

creator’s time is spent in post-production. Interviewees expressed frustration with

the tool support for creating screencasts. From this work, it has been identified that

there are opportunities for improvements to better support this type of work.

68

This thesis has looked at YouTube videos “in the wild”, created by developers

with informal learning objectives. From this work, it has been shown that YouTube

is used by developers to share information through video. Not only does video allow

developers to explain the functionality of their program, but it also allows them to

share their programming environment and style. This can be done through techniques

such as debugging, and showing the tools they use for software development.

Screencasts can be used to share information, but this work has also highlighted

the contemporary limitations of screencasting. For example, the interviewees demon-

strated how updating screencasts is a cumbersome task. Based on the findings of this

work, it has been found that there are also technological limitations to screencasts

that make it difficult to locate information.

69

Chapter 7

Threats to Validity and Limitations

In this section, the threats to the validity of this study are outlined. This chapter also

discuss the challenges of applying a grounded theory methodology by showing how

best practices from the literature were incorporated into the approach of this study.

7.1 Internal Threats to Validity

Internal validity is concerned with the extent of bias within a study [26]. The re-

searcher’s actions and biases play a large role in the internal validity of a grounded

theory project. Therefore, there are threats to the quality of the work that the re-

searcher must be watchful for throughout the process.

In this study, my biases may have impacted my analysis of the data. The back-

ground of those involved in analyzing the study’s data was outlined in Chapter 3. I

reiterate though, that, as researchers, my collaborator and I have an English speaking

background with educational experience in computer science. This background might

have biased who, and what, was chosen for this study.

The data selection methods (as explained in Chapter 3) could have introduced

selection bias. A systematic YouTube search was conducted for this study, paired

with a set of selection criteria. The search terms used impacted the videos repre-

sented in the set. For example, the search terms “Walkthrough” and “Tour” were

chosen to reflect the line of questioning at the time, which focused on understanding

walkthrough methods. This influenced the videos that appeared in the search results

and therefore the data set. The search results were ranked by popularity. Choosing

screencasts based on date, or including different search terms, would have affected

70

the outcome of this work. The data set is therefore biased towards popular videos,

as ranked by a standard YouTube search.

This work relied on YouTube for the data set, which contains a bias for videos

showing programs with a graphical element. For example, a number of screencasts in

the data set focused on programs with user interfaces. Other types of programs might

be difficult to present through video, and are therefore not represented in the sample.

Given the number of videos on YouTube, there is no way to know how representative

the sample is. Regardless, the codes and themes were well saturated after 20 videos,

which provides confidence in the sample.

In analyzing the screencasts, a percentage agreement calculation was used to de-

termine inter-rater reliability. As previously noted, using inter-rater reliability is a

quantitative method, and not traditionally used in grounded theory. Using a percent-

age agreement calculation has its own limitations, which were discussed in Chapter 3.

The calculation was a methodological guide for the study, not a statical finding, and

therefore, deemed appropriate for the study’s goals. A similar use of this approach

can be found in previous work by Creswell [25].

The methods used to contact developers for interviews, could also have been

influenced by biases. Those contacted had accounts in the screencast sample which

had been recently active, or did not belong to a large, multi-national corporation.

While initially accounts with these characteristics were contacted, no responses were

received from accounts with these characteristics and the approach was refined to

exclude them. It was assumed that these accounts would not be available for the

study. Individuals were contacted through their YouTube accounts and publicly listed

contact information.

Those who create screencasts are assumed to have a more positive attitude towards

screencasts. Previous work shows that content creators typically make up the minority

of a social media platform [54]. Therefore, one cannot assume that the views of the

interviewees in this study represent the majority of YouTube users. The interviewees

might hold a unique view of screencasting and of YouTube. This might have biased

their responses, ultimately affecting the findings on screencasts for developers.

7.2 External Threats to Validity

External validity is the extent to which the findings of a study can be generalized to

other populations or settings [14]. It is a known limitation of grounded theory that

71

the theory cannot be considered generalizable, until further evaluations have been

conducted [44].

Grounded theory is concerned with exploring the experiences of those being stud-

ied [17]. For this reason, the findings are only applicable to the set of videos and

interviews analyzed in this thesis. The findings of this study are not generalizable to

the population of all developers who create screencasts. This does not mean that work

cannot be done to determine to what extent the findings apply to a larger population.

7.3 Common Pitfalls of Applying Grounded The-

ory Work

As Charmaz describes, sometimes the, “weaknesses in using the method may become

equated with weaknesses inherent in the method...” [16]. While grounded theory has

been described as a deceptively simple methodology [3], to do it well requires constant

vigilance and awareness of the data. There is a large body of work addressing common

mistakes from researchers applying the method, including work by Suddaby [78],

Adolph et al. [3], and Jones and Alony [44]. This section will highlight some common

issues, and address how we overcame them.

7.3.1 The Role of the Researcher

Because the researcher’s role is to interpret the data, Creswell writes that they must

put aside preconceived ideas and come to the data with an unbiased mind [26]. Char-

maz’s opinion is that theory is “constructed” by the researcher through their, “past

and present involvements and interactions with people, perspectives and researcher

practices” [17]. The researcher is never a blank slate, but by acknowledging their

biases the literature suggests that they can disclose ideas that might influence their

work [78].

The literature suggests that to combat this problem one must be cognizant of

their preexisting knowledge of the subject area, which I disclosed in Chapter 3 [78].

Researcher bias is another reason why some suggest doing the literature review

after data analysis [17]. While I was familiar with the program comprehension litera-

ture before the start of this study, the literature review woven into the findings of this

paper occurred after the data collection and analysis phases. Furthermore, literature

on education, knowledge sharing, and screencasts was woven into the thesis after the

72

findings of the paper had been established. In this way, attempts were made to limit

the influence of the literature on interpreting the data.

7.3.2 Coding and Collecting Data

A common mistake in grounded theory is committing to a set of codes or categories

“prematurely” [16]. By doing this, the researcher jumps to conclusions, and stops

being open to the data [78]. This is a danger of letting preexisting biases influence

the data analysis.

Through the use of team-based coding, an effort was made to reduce the degree

of bias in the data analysis. Both my colleague and I held our own set of experiences

and biases coming to the study. When we began coding the screencasts, I told the

secondary researcher to code, “what they saw” in the screencasts. This description

was intentionally vague and left open to interpretation, and the phrase shaped our

coding process. With both the screencast and interview data, we began by exploring

the data alone, before coming together to discuss our ideas. We did not always agree,

and spoke through our different interpretations of the screencasts.

7.3.3 Presenting Grounded Theory Work

Grounded theory work is presented to the reader as a linear process. This is a known

issue in the literature [41]. For the writer, there is a tension between presenting

the methodology in a way that is understandable, but still truthful to the disjointed

process.

This thesis aims to present the process as clearly as possible, and avoid confus-

ing the reader. The descriptions and diagrams in Chapter 3 give an idea of how

we analyzed the data multiple times to redefine codes and themes. Discussions and

thoughts about the codes were recorded, which allowed us to reflect upon our ideas

over time. As researchers, we repeatedly pushed ourselves to explore the data in new

ways. Multiple methods were used over time to conduct this grounded theory study.

It was not a linear process, but an emerging exploratory study.

This chapter has outlined threats to the validity of this work. The main threat

to this work is the biases introduced by the researchers. The limitations of this work

stem from the participants interviewed and the generalizability of the findings. To

73

address these issues, future work must be done to explore the experiences of other

screencast creators.

74

Chapter 8

Future Work

In studying how software developers use YouTube, this work raises a number of ques-

tions for future work. It has been shown how developers create screencasts and share

content via social media. Based on the findings, this work identified the practices and

tools used by a subset of screencast creators. The following subsections outline areas

for future work, based on the findings.

8.1 To what extent are screencasts used by devel-

opers?

The participants reported that they received feedback from their audience, through a

number of channels. This feedback not only validates the screencast creator’s work,

but also helped them gauge the degree to which people found their content useful. By

looking at the view counts of YouTube videos, one can infer that people watch these

screencasts. What is not known is how many people watch these types screencasts,

and how this type of information is integrated into the development process. To

address this question, survey techniques can be used to understand how, on a large-

scale, developers use screencasts. In order to understand how developers integrate

this information, one could us observational techniques and interview sessions.

8.2 Are screencasts effective?

Building on the previous question, another line of inquiry that emerged from the study

was to what extent developers find screencasts effective. Specifically, for what goals

75

and tasks do they find them effective? By exploring the effectiveness and usefulness

of screencasts for developers, one can build on the screencast techniques identified

in this thesis. This would allow us to evaluate their appropriateness for screencast

audiences. This line of questioning could also be investigated via survey, observa-

tional and interview techniques. Developers could be asked for examples of effective

screencasts and what situations they are best suited for.

8.3 What type of comments do screencasts receive

on YouTube?

While collecting screencasts, it was observed that viewers used YouTube’s comment-

ing feature to interact with the screencast creator. This was also noted in the inter-

views: interviewees reported receiving comments and questions from audience mem-

bers through YouTube.

Audience members write a comment to ask questions related to the screencast.

This suggests that comments play a role in helping the audience utilize screencasts.

Future work should explore how the commenting feature is used by audience members

and content creators, to understand how both types of users interact. This research

would help us understand the type of support viewers receive through this commenting

structure, and what questions users ask. This could be studied through an analysis of

YouTube video comments and follow up interviews with commenters and screencast

creators. Comments on other video platforms could also be analyzed to explore any

differences between the cultures of users on these hosting sites.

8.4 What communities are formed around screen-

casts?

Building off the previous question, it was also observed that screencasters interacted

with their audience through YouTube’s commenting features. From the interviews, we

know that that these interactions create relationships. Future work should consider

this aspect.

The popular streaming platform, Twitch, has recently launched a ‘game develop-

ment’ channel where developers stream themselves developing software and answer

76

questions from the audience, in real time1. A number of the interviewees also spoke

of popular developer-focused screencasting sites that influenced their work.

From this, it is known that there are communities built around producing and

sharing developer knowledge through screencasts. In the future, work may wish to

explore these emerging communities and the relationships between content producers

and audience members. Ethnographic and other qualitative methods can be used to

better understand these communities.

8.5 How do developers create screencasts?

The interview findings are based on self-reported data. In future studies, work should

be done using real world observation techniques to understand the process behind

creating screencasts. This would further establish the techniques used by developers

and the friction points they encounter in the process. A study of this would allow us

to understand the developer’s thought process when creating a screencast.

8.6 What is the current tool support for creating

screencasts?

As reported in the findings, interviewees expressed frustration with their current

tool support. For this study 10 screencast creators were interviewed, which is a small

sample size. So, this findings may not reflect the actual practices of screencast creators

on a larger scale.

In order to help screencast creators further though, one must understand their

current state of tool support. Identifying the current tools being used and the tool

needs of developers, would be one approach for better understanding the current state

of practice. This can be done through collecting data from screencast creators about

what tools they use, and analyzing the features of these tools.

1http://www.twitch.tv/directory/game/Game%20Development

77

8.7 What are the tool requirements for developer-

focused screencasting tools?

After one understands the current tool support, future work could contact screencast

creators to understand what requirements a screencast creation tool needs. One could

also dig deeper into the friction points they experience.

By understanding these tool friction points, future work can create a list of tool

requirements for screencast creation software. An area for future work should look

at applying the lessons learned in this study to create tool support requirements.

The hope of these tool requirements would be to inform future screencast creation

software.

8.8 Understanding program comprehension mod-

els and screencasts

In order to create a screencast, the creator must understand the program. To do

this, they need to create their own mental model. By explaining the software, they

explain their mental model of the program. Therefore, the screencasting literature

shares commonalities with the study of program comprehension.

In the program comprehension literature, there are a number of models, which

explain how developers understand software [84]. In future work, it is hoped that a

set of screencasts can be analyzed using these model to evaluate the role of mental

models in creating screencasts.

As an outcome of this study, there is a better understanding of how and why

developers create screencasts for YouTube. The exploratory approach raised multiple

questions for future work. There are interesting questions about how these screencasts

are used by audience members, as well as how the creators can be better supported

through software and tools.

78

Chapter 9

Conclusions

This thesis began by exploring screencasts for developers hosted on YouTube. Soft-

ware development is an intellectually challenging task, and screencasts serve as a way

to document knowledge. Coupled with audio, screencasts allow people to provide

a rich description of the content on their screens. The YouTube platform situates

these videos in a social ecosystem, and provides content creators with mechanisms

for community engagement.

Developers use these videos to share their software development experiences. From

the analysis in this thesis it was shown that developers create videos on a range of top-

ics. These videos demonstrate how to solve novel problems. By hosting these videos

on YouTube, developers disseminate information and contribute to a larger selection

of content. The videos encapsulate knowledge, and serve as a persistent record of the

developer’s insights. Because they are tied to the creator’s online identity, the videos

become a part of the creator’s presence on social media platforms.

This work adds to the literature on software development and screencasting prac-

tices. Through analysis, I explored how developers use video to share knowledge.

This work looked at the specific techniques they used in the YouTube videos, and

categorized those techniques.

The videos studied represent artifacts for developers to engage in spontaneous

learning. This refers to learning that takes place outside of a formal classroom, in a

real world setting. This work focused on the unique developer experience for sharing

domain specific information through screencasts, and how these experiences differ

from the existing screencast literature.

The findings showed many similarities to the screencast literature, but also ob-

served developer specific challenges. For example, bugs in computer programs created

79

complications for developers while filming. These bugs can be tailored to be teachable

moments for the audience, or seen as errors in the video production process that need

to be addressed. However, in order to create screencasts, developers need to have

domain specific knowledge of tools and languages, which they share during the video

creation process.

This research also addressed why developers created these screencasts, and there-

fore interviewed 10 screencast creators. From the interviews, they suggest that de-

velopers create screencasts because of a number of motivating factors. One of these

was for personal benefit or to give back to their community. Emergent details sug-

gest that screencasters tailor their content for their audience, and that some prefer

screencasts over blogs. For the screencast creation process, this work suggests that

the interviewees experienced a level of frustration with their current tool support.

From the interviews and observations, a list of best practices for screencast cre-

ation was put forth. The findings stressed the importance of short, focused videos,

as this helps overcome some of the limitations of video.

The main contribution of this work is a first look at how YouTube is used by

developers to share knowledge. Current screencasts aimed at developers use a number

of different approaches to communicate information, and exist in a complex, social

setting.

80

Appendices

81

Appendix A

Codebook

Code, Camera, Action:How Software Developers Document and
Share Program Knowledge Using YouTube

Explanation
Videos will be coded by the researchers in 5 second increments using a spreadsheet. Multiple codes can occur at once. If an
instance of a code continues for a length of time, the coder will note this in the table. Below is an example of our earlier coding
using older codes.

Codes
Goal setting
Defining the video's purpose

Definition: The presenter explains to the audience what the goal of the video is. What task or program is the presenter
trying to show to the viewer? The goal should be explicitly stated. Typically the goal will be stated in the beginning of the
video. Think of this as the definition or topic of the video, the problem the speaker is going to address.

Example:

“In this video I'm going to show you the simple chat example that comes with the Electro server...

-Simple Chat Walk-through with Unity

Explaining the video's limits and audience

Definition: The presenter is telling the user what they are going to see in an upcoming segment of the video. Could be
something they will see in the next two seconds or minutes from now. Importantly, the presenter is setting limits for the
viewer, indicating what they may be leaving out of the film or skipping over.

Example:

82

“So, I'm just going to show you the Electro Server API pieces and, um, pretty much just skip over any of the unity
stuff that you probably already know

-Simple Chat Walk-through with Unity

Live editing
Making live code changes

Definition: When the presenter makes changes to the body of code during the video.

Changing control flow variables

Definition: When the presenter alters the logic or flow of the code during the video.

Introducing bugs

Definition: When the presenter makes a code change in order to introduce a bug. Can be explicitly or accidentally done.
Example:

Demonstrations to showcase the execution of the program
Executing the program to demonstrate features to the audience

Definition: Occurs when the presenter runs the program to communicate to the viewer what the expected output or
resulting functionality is. Shows the user the end product.

Referencing different levels of detail
High level code description

Definition: Talking about the purpose of code, without discussing the technical details. Abstracting away from the low
level code.

Example:

“
"When the user successfully logs in, I need to react to it, Cafe Townsend needs to orchestrate something to
happen. That is ... show the employee view. It doesn't tell the employee to load anything, it's assumed that
view will take care of all it needs to handle." from Code Walkthrough - Cafe Townsend Robotlegs for
Corona SDK

83

Medium level code description

Definition: Functional discussion of more than one line of code. Can be a technical discussion of a sub block of code.

Example: "First I want to make sure that the directory exists for where we are going to install [the launcher]." from
Minecraft Launcher - Code Walkthrough

Low level code description

Definition: When the presenter describes the functionality of a specific line. Think of it as the opposite of a high level
code purpose.

Example: The presenter said, "There is also a current room property with the data type of room and it's set to null" when
reading the following code out loud:

private Room currentRoom = null;

Pointing out element identifiers

Definition: Depending on the language an identifier may be a class, function, or variable name. I1 is used whenever the
presenter references a specif <variable, method, type> in the code base. They highlight this identifyer for a specific
reason. _Note: _
Example: a = foo.bar('43') If the presenter makes a point of describing a, foo, bar and "43", then it is an instance
of this code.

Referencing line number

Definition: The presenter includes the line number in their specific verbage. Not to be confused with explaining the
functionality of a line.

Referencing return types and parameters

Definition: When the presenter explains or mentions the return value of a function or the needed parameter of a function.

Browsing the technical environment
Making use of the file explorers

Definition: The presenter navigates around the file explorer showing folders or files relevant to the project being
presented. Imparts a sense of the project structure onto the viewer. Also provides them with knowledge of where to find
resources and important files. When using this tag, indicate the length of the task.

Example:

84

Explaining the program structure

Definition: Used when the presenter explains or mentions the project setup to the viewer. This could include showing the
folder layout in an IDE.

85

Example:

“When you first go through the tutorial, there is a couple of commands in Django that will actually create a skeleton for
an application, and basically the skeleton is what you see here. I don't think I added any files...

-Django - high level walkthrough

Explaining the technical environment

Definition: Many times, running a program or programming in a particular language requires some technical setup of the
environment. This code refers to those instances. Used when the presenter shows or references a prerequisite for the
program to run or to be developed.

Example: Software Libraries, IDE, Server installed and running or explaining what dependencies are needed for the
project.

Provisioning of additional resources
Webpages

Definition: Narrators may mention or explicitly link to other webpages where the audience can find relevant information.
This includes supplemental materials and written versions of the screencast.

Diagrams

Definition: Visual images used to explain the program to the audience
Example:

86

Source code

Definition: Sometimes the creator of the video will include a reference to the source code being shown in the video. This
code describes when the source code is made available to the audience. This could be through GitHub, Dropbox or
some other method.

Visual annotations

Definition: Typically textual boxes added to the video in postproduction to supply the user with additional information
about either to project or the developer. Does not include advertisements of YouTube.
Example:

87

Mapping execution and code to code
Connection between the demonstration and code

Definition: The presenter references a demoed or not demoed feature of the final running application that is directly
related or effect by the code segment.

Linking code segments together

Definition: When the presenter is discussing identifiable segments or lines of code that are separated, and one of which
is in the view of the presenter. The separation does not have to be above or below the code since the linked segment
could be located in another file.

Example: "This code is connected to this code"

88

89

Appendix B

Semi-Structured Interview

Questions

1. Tell me a bit about yourself.

2. What do you do for a living?

3. (If not obvious from the above:) Would you consider yourself a developer?

4. Where are you located?

5. As a contributor how do you use YouTube?

6. How many videos do you have on YouTube?

7. What prompted you to start posting on YouTube?

8. How do you decide to make a video?

9. Think about the last video you made, can you describe the process?

10. Were these any different than other videos you have made?

11. If you have many videos, has your process changed over time?

12. Who do you think your audience is?

90

13. How do you picture them?

14. What do you think your audience is trying to get out of your videos?

15. What tools/ software do you use to make your videos?

16. Do you edit your videos?

17. If so, how long does it take?

18. Have you received any feedback from your videos?

19. If so what has it been like? What have people said?

20. What do you think makes a good code walkthrough video?

91

Appendix C

YouTube Video URLs

1. https://www.youtube.com/watch?v=0d-wY65uVGw

2. http://www.youtube.com/watch?v=6MpuB654_hM

3. http://www.youtube.com/watch?v=UiST0tcOWvU

4. http://www.youtube.com/watch?v=qUpiWWjOfRw

5. https://www.youtube.com/watch?v=nwn3YY6cyEQ

6. https://www.youtube.com/watch?v=djApduemlf4

7. https://www.youtube.com/watch?v=jGR0EVYc_Bo

8. https://www.youtube.com/watch?v=mn_wW8uZ6eQ

9. https://www.youtube.com/watch?v=G1DbLOVs7UM

10. https://www.youtube.com/watch?v=0npv906IQag

11. https://www.youtube.com/watch?v=wg_gNs3Xxq4

12. https://www.youtube.com/watch?v=UdDr9QquiLc

13. https://www.youtube.com/watch?v=T1-yARGKhXU

14. https://www.youtube.com/watch?v=kwY-8mAyixU

15. https://www.youtube.com/watch?v=WCuQOjD8w_E

16. https://www.youtube.com/watch?v=T1f4xXoRDG

https://www.youtube.com/watch?v=0d-wY65uVGw
http://www.youtube.com/watch?v=6MpuB654_hM
http://www.youtube.com/watch?v=UiST0tcOWvU
http://www.youtube.com/watch?v=qUpiWWjOfRw
https://www.youtube.com/watch?v=nwn3YY6cyEQ
https://www.youtube.com/watch?v=djApduemlf4
https://www.youtube.com/watch?v=jGR0EVYc_Bo
https://www.youtube.com/watch?v=mn_wW8uZ6eQ
https://www.youtube.com/watch?v=G1DbLOVs7UM
https://www.youtube.com/watch?v=0npv906IQag
https://www.youtube.com/watch?v=wg_gNs3Xxq4
https://www.youtube.com/watch?v=UdDr9QquiLc
https://www.youtube.com/watch?v=T1-yARGKhXU
https://www.youtube.com/watch?v=kwY-8mAyixU
https://www.youtube.com/watch?v=WCuQOjD8w_E
https://www.youtube.com/watch?v=T1f4xXoRDG

92

17. https://www.youtube.com/watch?v=3-jCTvNRJS0

18. https://www.youtube.com/watch?v=OPuYYLEyz-A

19. https://www.youtube.com/watch?v=iep-z1KXRN8

20. https://www.youtube.com/watch?v=O130d8ioFS4

21. https://www.youtube.com/watch?v=wIodpWdvqaU

https://www.youtube.com/watch?v=3-jCTvNRJS0
https://www.youtube.com/watch?v=OPuYYLEyz-A
https://www.youtube.com/watch?v=iep-z1KXRN8
https://www.youtube.com/watch?v=O130d8ioFS4
https://www.youtube.com/watch?v=wIodpWdvqaU

93

Bibliography

[1] Grounded Theory: An Exploration of Process and Procedure, author=Walker,

Diane and Myrick, Florence. Qualitative Health Research 16, 4 (2006), 547–559.

[2] Adamic, L. A., Zhang, J., Bakshy, E., and Ackerman, M. S. Knowledge

Sharing and Yahoo Answers: Everyone Knows Something. Proc. of the 17th Intl

Conference on World Wide Web (2008), 665–674.

[3] Adolph, S., Hall, W., and Kruchten, P. A Methodological Leg to Stand

on: Lessons Learned Using Grounded Theory to Study Software Development.

Proc. of the 2008 Conference of the Center for Advanced Studies on Collaborative

Research: Meeting of Minds (2008), 13.

[4] Adolph, S., Hall, W., and Kruchten, P. Using Grounded Theory to

Study the Experience of Software Development. Empirical Software Engineering

16, 4 (2011), 487–513.

[5] Adolph, S., Kruchten, P., and Hall, W. Reconciling Perspectives: A

Grounded Theory of How People Manage the Process of Software Development.

Journal of Systems and Software 85, 6 (2012), 1269–1286.

[6] Agazio, J., and Buckley, K. M. An Untapped Resource: Using YouTube

in Nursing Education. Nurse Educator 34, 1 (2009), 23–28.

[7] Allan, G. A Critique of Using Grounded Theory as a Research Method. Elec-

tronic Journal of Business Research Methods 2, 1 (2003), 1–10.

[8] Begel, A., DeLine, R., and Zimmermann, T. Social Media for Software

Engineering. Proc. of the FSE/SDP Workshop on Future of Software Engineering

Research (2010), 33–38.

94

[9] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. The Concept

Assignment Problem in Program Understanding. Proc. of the 15th Intl Confer-

ence on Software Engineering (1993), 482–498.

[10] Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer, S. R.

Example-Centric Programming: Integrating Web Search into the Development

Environment. Proc. of the SIGCHI Conference on Human Factors in Computing

Systems (2010), 513–522.

[11] Brandt, J., Guo, P. J., Lewenstein, J., Dontcheva, M., and Klem-

mer, S. R. Two Studies of Opportunistic Programming: Interleaving Web

Foraging, Learning, and Writing Code. Proc. of the SIGCHI Conference on

Human Factors in Computing Systems (2009), 1589–1598.

[12] Brooks, R. Towards a Theory of the Comprehension of Computer Programs.

Intl Journal of Man-Machine Studies 18, 6 (1983), 543–554.

[13] Burgess, J., and Green, J. YouTube: Digital Media and Society Series.

Polity, Cambridge, 2009.

[14] Calder, B. J., Phillips, L. W., and Tybout, A. M. The Concept of

External Validity. Journal of Consumer Research (1982), 240–244.

[15] Capiluppi, A., Serebrenik, A., and Singer, L. Assessing Technical Can-

didates on the Social Web. IEEE Software 30, 1 (2013), 45–51.

[16] Charmaz, K. Discovering Chronic Illness: Using Grounded Theory. Social

science & Medicine 30, 11 (1990), 1161–1172.

[17] Charmaz, K. Constructing Grounded Theory: A Practical Guide Through

Qualitative Analysis. Sage, London, 2006.

[18] Charmaz, K., and Belgrave, L. Qualitative Interviewing and Grounded

Theory Analysis. In The Sage Handbook of Interview Research: The Complexity

of the Craft, J. F. Gubrium, Ed., vol. 2. Sage Publications, London, 2002.

[19] Chenail, R. YouTube as a Qualitative Research Asset : Reviewing User Gen-

erated Videos as Learning Resources. The Qualitative Report 1, 4 (2011), 18–24.

95

[20] Chtouki, Y., Harroud, H., Khalidi, M., and Bennani, S. The Impact of

YouTube Videos on the Student’s Learning. 2012 Intl Conference on Information

Technology Based Higher Education and Training (2012), 1–4.

[21] Coleman, G., and O’Connor, R. Using Grounded Theory to Understand

Software Process Improvement: A Study of Irish Software Product Companies.

Information and Software Technology 49, 6 (2007), 654–667.

[22] Coleman, G., and OConnor, R. Investigating Software Process in Practice:

A Grounded Theory Perspective. Journal of Systems and Software 81, 5 (2008),

772–784.

[23] Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., and

Koschke, R. A Systematic Survey of Program Comprehension Through Dy-

namic Analysis. IEEE Transactions on Software Engineering 35, 5 (2009), 684–

702.

[24] Creswell, J. W. Research Design: Qualitative, Quantitative, and Mixed Meth-

ods Approaches. Sage Publications, London, 2009.

[25] Creswell, J. W. Qualitative Inquiry and Research Design: Choosing Among

Five Approaches. Sage Publications, 2012.

[26] Creswell, J. W. Research Design: Qualitative, Quantitative, and Mixed Meth-

ods Approaches. Sage Publications, 2013.

[27] Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. Social Coding in

GitHub: Transparency and Collaboration in an Open Software Repository. Proc.

of the ACM 2012 Conference on CSCW (2012), 1277–1286.

[28] Détienne, F. Software Design–Cognitive Aspect. Springer, London, 2002.

[29] DiMicco, J., Millen, D. R., Geyer, W., Dugan, C., Brownholtz, B.,

and Muller, M. Motivations for Social Networking at Work. Proc. of the

2008 ACM Conference on CSCW (2008), 711–720.

[30] Doering, E., and Mu, X. Circuits Learned by Example Online (CLEO): A

Video-Based Resource to Support Engineering Circuit Analysis Courses. Fron-

tiers in Education Conference (2009), 1–4.

96

[31] Duffy, P. Engaging the YouTube Google-Eyed Generation: Strategies for

Using Web 2.0 in Teaching and Learning. European Conference on ELearning

(2007), 173–182.

[32] Duncan, I., Yarwood-Ross, L., and Haigh, C. YouTube as a Source of

Clinical Skills Education. Nurse Education Today 33, 12 (2013), 1576–1580.

[33] Ellison, N. B., Steinfield, C., and Lampe, C. The Benefits of Facebook

friends: Social Capital and College Students Use of Online Social Network Sites.

Journal of Computer-Mediated Communication 12, 4 (2007), 1143–1168.

[34] Fortino, V., and Zhao, W. Video Tutorials that Enhance Laboratory Learn-

ing. Frontiers in Education Conference (2012), 1–2.

[35] GitHub. Five Years (blog post), 2013.

https://github.com/blog/1470-five-years.

[36] Glaser, B., and Strauss, A. The Discovery of Grounded Theory: Strategies

for Wualitative Research. Aldine Publishing Company, New York, 1967.

[37] Glaser, B. G., and Strauss, A. L. Awareness of Dying. Transaction Pub-

lishers, New Jersey, 1966.

[38] Gubrium, J. F., Ed. The Sage Handbook of Interview Research: The Complexity

of the Craft. Sage Publications, London, 2012.

[39] Gueorguieva, V. Voters, Myspace, and YouTube the Impact of Alternative

Communication Channels on the 2006 Election Cycle and Beyond. Social Science

Computer Review 26, 3 (2008), 288–300.

[40] Hallberg, L. R. The Core Category of Grounded Theory: Making Constant

Comparisons. Intl Journal of Qualitative Studies on Health and Well-being 1, 3

(2006), 141–148.

[41] Harry, B., Sturges, K. M., and Klingner, J. K. Mapping the Process:

An Exemplar of Process and Challenge in Grounded Theory Analysis. Educa-

tional Researcher 34, 2 (2005), 3–13.

[42] Hemetsberger, A., and Reinhardt, C. Sharing and Creating Knowledge in

Open-Source Communities: The Case of KDE. The Fifth European Conference

on Organizational Knowledge, Learning, and Capabilities (2004), 1–4.

https://github.com/blog/1470-five-years

97

[43] Hollan, J., Hutchins, E., and Kirsh, D. Distributed Cognition: Toward a

New Foundation for Human-Computer Interaction Research. ACM Transactions

on Computer-Human Interaction 7, 2 (2000), 174–196.

[44] Jones, M., and Alony, I. Guiding the Use of Grounded Theory in Doctoral

Studies, An Example from the Australian Film Industry. Intl Journal of Doctoral

Studies 6 (2011), 95.

[45] Kelle, U. Emergence vs. Forcing of Empirical Data? A Crucial Problem of

Grounded Theory Reconsidered. Historical Social Research/Historische Sozial-

forschung (2007), 133–156.

[46] Kocejko, T. The Influence of Multimedia Based E-Learning Techniques for the

Capability of Adopting the Knowledge by Senior Students. 14th Intl Conference

on Interactive Collaborative Learning (2011), 237–240.

[47] Kotlarsky, J., and Oshri, I. Social Ties, Knowledge Sharing and Successful

Collaboration in Globally Distributed System Development Projects. European

Journal of Information Systems 14, 1 (2005), 37–48.

[48] Krippendorff, K. Content Analysis: An Introduction to Its Methodology.

Sage Publications, London, 2012.

[49] Lethbridge, T. C., Singer, J., and Forward, A. How Software Engineers

Use Documentation: The State of the Practice. IEEE Software 20, 6 (2003),

35–39.

[50] Levy, M. WEB 2.0 Implications on Knowledge Management. Journal of Knowl-

edge Management 13, 1 (2009), 120–134.

[51] Lindvall, M., and Rus, I. Knowledge Management in Software Engineering.

IEEE Software 19, 3 (2002), 26–38.

[52] MacLeod, L. Reputation on Stack Exchange: Tag, You’re It! 28th Intl

Conference on Advanced Information Networking and Applications Workshops

(2014), 670–674.

[53] MacQueen, K. M., McLellan, E., Kay, K., and Milstein, B. Code-

book Development for Team-Based Qualitative Analysis. Cultural Anthropology

Methods 10, 2 (1998), 31–36.

98

[54] Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., and Hartmann,

B. Design Lessons from the Fastest Q& A Site in the West. Proc. of the SIGCHI

Conference on Human Factors in Computing Systems (2011), 2857–2866.

[55] McLure Wasko, M., and Faraj, S. It is What One Does: Why People

Participate and Help Others in Electronic Communities of Practice. The Journal

of Strategic Information Systems 9, 2 (2000), 155–173.

[56] Moghaddam, A. Coding Issues in Grounded Theory. Issues in Educational

Research 16, 1 (2006), 52–66.

[57] Mohorovicic, S. Creation and Use of Screencasts in Higher Education. 35th

Intl Convention on Information and Communication Technology, Electronics and

Microelectronics (2012), 1293–1298.

[58] Morgan, G., and Smircich, L. The Case for Qualitative Research. Academy

of Management Review 5, 4 (1980), 491–500.

[59] Mullamphy, D., Higgins, P., Belward, S., Ward, L. M., et al. To

Screencast or Not to Screencast. Anziam Journal 51 (2010), 446–460.

[60] Nonaka, I. The Knowledge-Creating Company. Harvard Business Review 69,

6 (2007).

[61] Oud, J. Guidelines for Effective Online Instruction Using Multimedia Screen-

casts. Reference Services Review 37, 2 (2009), 164–177.

[62] Pace, S. A Grounded Theory of the Flow Experiences of Web Users. Intl

Journal of Human-Computer Studies 60, 3 (2004), 327–363.

[63] Panahi, S., Watson, J., and Partridge, H. Social Media and Tacit Knowl-

edge Sharing: Developing a Conceptual Model. World Academy of Science, En-

gineering and Technology, 64 (2012), 1095–1102.

[64] Parnin, C., Treude, C., Grammel, L., and Storey, M.-A. Crowd Doc-

umentation: Exploring the Coverage and the Dynamics of API Discussions on

Stack Overflow. Georgia Institute of Technology, Tech. Report (2012).

[65] Pennington, N. Stimulus Structures and Mental Representations in Expert

Comprehension of Computer Programs. Cognitive Psychology 19, 3 (1987), 295–

341.

99

[66] Ploderer, B., Thomas, P., and Howard, S. Being Online, Living Offline:

The Influence of Social Ties over the Appropriation of Social Network Sites.

Proc. of the 2008 ACM conference on CSCW (2008), 333–342.

[67] Quantcast. Quantcast Stack Overflow Statistics, 2014.

https://www.quantcast.com/stackoverflow.com.

[68] Schwandt, T. A. The Sage Dictionary of Qualitative Inquiry. Sage Publica-

tions, London, 2007.

[69] Seaman, C. B. Qualitative Methods in Empirical Studies of Software Engi-

neering. IEEE Transactions on Software Engineering 25, 4 (1999), 557–572.

[70] Singer, L., Figueira Filho, F., Cleary, B., Treude, C., Storey, M.-

A., and Schneider, K. Mutual Assessment in the Social Programmer Ecosys-

tem: An Empirical Investigation of Developer Profile Aggregators. Proc. of the

2008 ACM Conference on CSCW (2013), 103–116.

[71] Singer, L., Figueira Filho, F. M., and Storey, M.-A. D. Software

Engineering at the Speed of Light: How Developers Stay Current Using Twitter.

Proc. of the 36th Intl Conference on Software Engineering (2014), 211–221.

[72] Stemler, S. E. A Comparison of Consensus, Consistency, and Measurement

Approaches to Estimating Interrater Reliability. Practical Assessment, Research

& Evaluation 9, 4 (2004), 66–78.

[73] Storey, M.-a. Theories, Methods and Tools in Program Comprehension: Past,

Present and Future. 13th Intl Workshop on Program Comprehension (2005),

181–191.

[74] Storey, M.-A., Cheng, L.-T., Bull, I., and Rigby, P. Waypointing and

Social Tagging to Support Program Navigation. Proc. of the 20th Conference on

CSCW (2006), 1367–1372.

[75] Storey, M.-A., Singer, L., Cleary, B., Figueira Filho, F., and Za-

galsky, A. The R Evolution of Social Media in Software Engineering. Proc. of

the on Future of Software Engineering (2014), 100–116.

[76] Storey, M.-A., Treude, C., van Deursen, A., and Cheng, L.-T. The

Impact of Social Media on Software Engineering Practices and Tools. Proc. of

https://www.quantcast.com/stackoverflow.com

100

the FSE/SDP Workshop on Future of Software Engineering Research (2010),

359–364.

[77] Strauss, A., and Corbin, J. Grounded Theory Methodology. Handbook of

Qualitative Research (1994), 273–285.

[78] Suddaby, R. From the Editors: What Grounded Theory is Not. Academy of

Management Journal 49, 4 (2006), 633–642.

[79] Sugar, W., Brown, A., and Luterbach, K. Examining the Anatomy of

a Screencast: Uncovering Common Elements and Instructional Strategies. The

Intl Review of Research in Open and Distance Learning 11, 3 (2010), 1–20.

[80] Tempelman-Kluit, N. Multimedia Learning Theories and Online Instruction.

College & Research Libraries 67, 4 (2006), 364–369.

[81] Treude, C., Barzilay, O., and Storey, M.-A. How do Programmers

Ask and Answer Questions on the Web? Proc. of the 33rd Intl Conference on

Software Engineering (2011), 804–807.

[82] Treude, C., Figueira Filho, F., Cleary, B., and Storey, M.-A. Pro-

gramming in a Socially Networked World: The Evolution of the Social Program-

mer. The Future of Collaborative Software Development (2012), 1–3.

[83] Udell, J. Name that Genre: Screencast, 2004.

http://jonudell.net/udell/2004-11-17-name-that-genre-screencast.

html.

[84] Von Mayrhauser, A., and Vans, A. M. Program Comprehension During

Software Maintenance and Evolution. Computer 28, 8 (1995), 44–55.

[85] Walenstein, A. Foundations of Cognitive Support: Toward Abstract Pat-

terns of Usefulness. Interactive Systems: Design, Specification, and Verification

(2002), 133–147.

[86] Wenger, E. Communities of Practice and Social Learning Systems. Organiza-

tion 7, 2 (2000), 225–246.

[87] YouTube. YouTube Press Statistics , 2013.

https://www.youtube.com/yt/press/statistics.html.

http://jonudell.net/udell/2004-11-17-name-that-genre-screencast.html
http://jonudell.net/udell/2004-11-17-name-that-genre-screencast.html
https://www.youtube.com/yt/press/statistics.html

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	Introduction
	Thesis Organization

	Background and Related Work
	YouTube
	YouTube and Learning Literature

	Screencasts
	The Social Programmer Ecosystem
	Developer Identity
	Awareness
	Knowledge Foraging
	Collaboration
	Sharing Knowledge

	Methodology
	Philosophical Assumptions
	Constructivism
	Methods
	Personal Reflections

	Grounded Theory
	Foundations of Grounded Theory
	Ideological Camps
	The Place of the Literature Review
	Why Grounded Theory?
	Grounded Theory in Software Engineering
	The Sequence of Grounded Theory

	Research Questions
	(RQ1) What Kinds of Program Knowledge Are Captured in Screencasts?
	(RQ2) What Techniques Do Developers Use to Document Code in Screencasts?
	(RQ3) Why Do Developers Create Code Screencasts?
	(RQ4) How Do Developers Produce Code Screencasts?

	Phase 1: Screencast Analysis
	Screencast Selection
	Program Knowledge Analysis
	Open Coding
	Coding Book
	Memoing

	Phase 2: Interviews
	Interviewee Selection Process
	Semi-structured Interviews
	Content Analysis

	Findings
	Research Question 1: What Kinds of Program Knowledge Are Captured in Screencasts?
	Sharing Customization Knowledge
	Sharing Development Experiences
	Sharing Implementation Approaches
	Demonstrating the Application of Design Patterns
	Explaining Data Structures

	Research Question 2: What Techniques do Developers Use to Document Code in Screencasts?
	Codes
	Themes

	Research Question 3: Why do Developers Create Code Screencasts?
	To Build an Online Identity
	To Promote Themselves
	As a Learning Exercise
	To Give Back
	As an Alternative to Blogging

	Research Question 4: How Do Developers Produce Code Screencasts?
	Preparing the Screencast
	Recording the Screencast
	Post-production

	Theory
	Context
	Time
	Place
	Culture
	Situation

	The Theory
	Themes
	Goal Setting
	Referencing Different Levels of Detail
	Browsing the Technical Environment
	Demonstrations to Showcase Execution
	Live Editing to Showcase Code Changes
	Provisioning of Additional Resources
	Mapping Execution to Code and Code to Code

	Discussion
	Screencast Best Practices
	YouTube in the Social Developer Ecosystem
	Limitations of Screencasts

	Threats to Validity and Limitations
	Internal Threats to Validity
	External Threats to Validity
	Common Pitfalls of Applying Grounded Theory Work
	The Role of the Researcher
	Coding and Collecting Data
	Presenting Grounded Theory Work

	Future Work
	To what extent are screencasts used by developers?
	Are screencasts effective?
	What type of comments do screencasts receive on YouTube?
	What communities are formed around screencasts?
	How do developers create screencasts?
	What is the current tool support for creating screencasts?
	What are the tool requirements for developer-focused screencasting tools?
	Understanding program comprehension models and screencasts

	Conclusions
	Appendices
	Codebook
	Semi-Structured Interview Questions
	YouTube Video URLs
	Bibliography

