
A Taxonomy of Software Bots:

Towards a Deeper Understanding of Software Bot Characteristics

by

Carlene R. Lebeuf

B.Sc., University of Victoria, 2013

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in the Department of Computer Science

© Carlene Lebeuf, 2018

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

ii

A Taxonomy of Software Bots:

Towards a Deeper Understanding of Software Bot Characteristics

by

Carlene R. Lebeuf

B.Sc., University of Victoria, 2013

Supervisory Committee

Dr. Margaret-Anne Storey, Supervisor

(Department of Computer Science)

Dr. Neil Ernst, Departmental Member

(Department of Computer Science)

Dr. Hausi A. Müller, Departmental Member

(Department of Computer Science)

iii

Supervisory Committee

Dr. Margaret-Anne Storey, Supervisor

(Department of Computer Science)

Dr. Neil Ernst, Departmental Member

(Department of Computer Science)

Dr. Hausi A. Müller, Departmental Member

(Department of Computer Science)

ABSTRACT

Software bots are becoming increasingly pervasive in our everyday lives. While bots

have been around for many decades, recent technological advancements and the adoption

of language-based platforms have led to a surge of new ubiquitous software bots. Although

many new bots are being built, the terminology used to describe them and their properties

are vast, diverse, and often inconsistent. This hinders our ability to study, understand, and

classify bots, and restricts our ability to help practitioners design and evaluate their bots.

The overarching goal of this thesis is to provide a deeper understanding of the complex-

ities of modern software bots. To achieve this, I reflect on a multitude of existing software

bot definitions and classifications. Moreover, I propose an updated definition for bots and

compare them to other bot-like technologies. As my main contribution, I formally define

a set of consistent terminology for describing and classifying software bots, through the

development of a faceted taxonomy of software bots. The taxonomy focuses on the ob-

servable properties and behaviours of software bots, abstracting details pertaining to their

structure and implementation, to help safeguard against technological change. To bridge

the gap between existing research and the proposed taxonomy, I map the terminology used

in previous literature to the terminology used in the software bot taxonomy. Lastly, to make

my contributions actionable, I provide guidelines to illustrate how the proposed taxonomy

can be leveraged by researchers, practitioners, and users.

iv

Contents

Supervisory Committee ii

Abstract iii

Table of Contents iv

List of Tables ix

List of Figures x

Acknowledgements xii

Dedication xiii

1 Introduction 1

1.1 Research Questions . 2

1.2 Contributions . 3

1.3 Structure . 3

2 Software Bot Background 5

2.1 The Evolution of Software Bots . 5

2.1.1 Daemons . 6

2.1.2 Automata . 6

2.1.3 Robots . 7

2.1.4 Chatbots . 7

2.1.5 Expert Systems . 8

2.1.6 Software Agents . 9

2.2 The AI Winter . 9

2.3 Why Now? The Re-Emergence of Software Bots 11

2.3.1 Technological Advancements . 11

2.3.2 Mainstream Adoption of Messaging Platforms 11

2.3.3 Emergence of Voice-Only Platforms 12

v

2.3.4 Transition to Service Oriented Architectures 12

2.3.5 Abundance of Public APIs and Datasets 13

2.3.6 Industry Support . 13

2.4 Summary . 14

3 Defining Software Bots 16

3.1 What Is a Software Bot? . 16

3.1.1 Proposed Definition of Software Bots 18

3.2 Comparing Software Bots and Related Technologies 21

3.2.1 Software Bots vs. Robots . 21

3.2.2 Software Bots vs. Scripts . 21

3.2.3 Software Bots vs. Programs . 22

3.2.4 Software Bots vs. Agents . 23

3.2.5 Software Bots vs. Chatbots . 24

3.3 Existing Classifications of Software Bots . 25

3.3.1 High-Level Classifications (Subtypes) 25

3.3.2 Role-Based Classifications . 26

3.3.3 Other Classifications . 27

3.4 Shortcomings of Existing Classifications . 28

3.5 Summary . 28

4 Developing a Software Bot Taxonomy 30

4.1 Taxonomy Generation Methodology . 30

4.2 Planning (Phase 1) . 33

4.2.1 Knowledge Area . 33

4.2.2 Objectives & Scope . 34

4.2.3 Subject Matter . 34

4.2.4 Classification Structure . 35

4.2.5 Classification Procedure . 35

4.3 Data Collection (Phase 2) . 36

4.3.1 Systematic Literature Search . 36

4.3.2 Backwards Snowballing . 40

4.3.3 Online Search . 41

4.4 Identification & Extraction (Phase 3) . 41

4.4.1 Term Identification & Extraction . 41

4.4.2 Term Reduction . 42

4.5 Design & Construction (Phase 4) . 43

4.5.1 Card Sorting . 44

4.5.2 Dimensions, Facets, and Relationships 45

vi

4.5.3 Drafting Definitions & Refining Dimensions 46

4.6 Summary . 48

5 A Taxonomy of Software Bot 49

5.1 Reader’s Guide . 50

5.1.1 General Usage Guidelines . 52

5.2 Environment Dimensions . 53

5.2.1 Environment Type . 53

5.2.2 Scope . 54

5.2.3 Closure . 55

5.2.4 Dynamism . 55

5.2.5 Predictability . 55

5.2.6 Permanence . 56

5.2.7 Population . 57

5.3 Intrinsic Dimensions . 58

5.3.1 Knowledge . 58

5.3.2 Reasoning . 60

5.3.3 Adaptability . 63

5.3.4 Goals . 65

5.3.5 Delegation . 67

5.3.6 Specialization . 68

5.3.7 Anthropomorphism . 68

5.3.8 Life Cycle . 72

5.4 Interaction Dimensions . 74

5.4.1 Access . 74

5.4.2 Sense . 74

5.4.3 Act . 74

5.4.4 Communicate . 76

5.4.5 Initiative . 79

5.4.6 Robustness . 80

5.4.7 Mobility . 81

5.5 Summary . 82

6 Taxonomy Validation 83

6.1 Benchmarking . 83

6.2 Subject Matter Tagging . 84

6.3 Domain Expert Tagging . 85

6.4 Summary . 86

vii

7 Discussion, Limitations, and Future Work 88

7.1 Why Another Software Bot Taxonomy? . 88

7.2 Limitations . 90

7.3 Operationalizing the Taxonomy . 93

7.3.1 Researchers . 93

7.3.2 Practitioners . 94

7.3.3 End Users . 95

8 Conclusions 96

8.1 Summary of Research . 96

8.2 Final Remarks . 97

Appendices 98

A Collection Queries 99

A.1 ACM Digital Library . 99

A.2 IEEE Xplore . 99

A.3 ScienceDirect (Computer Science section) 99

A.4 SpringerLink . 100

A.5 Wiley Online (Computer Science section) 100

B Data Extracted from Article Selection 101

B.1 Excluded Systematic Search Articles . 101

B.2 Included Systematic Search Articles . 105

B.3 Included Snowballed Articles . 107

B.4 Included Online Articles . 108

C Excluded Cards 110

D Restructuring the Taxonomy 111

E Mapped Terminology 113

E.1 Environment Dimension . 113

E.2 Intrinsic Dimension . 114

E.3 Interaction Dimension . 117

F Benchmarking Validation 119

F.1 Literature Search Articles: . 119

F.2 Snowballing Articles: . 122

F.3 Online Articles: . 123

viii

G Validation: Subject Matter Tagging 126

H Study Questions 129

H.1 Participant Background & Experience . 129

H.2 Software Bot Taxonomy Feedback . 130

I H.R.E.B. Ethics Approval 131

J Expert Tagging Session 132

Bibliography 135

ix

List of Tables

Table 4.1 Breakdown of search results by database. 38

Table C.1 Cards excluded during taxonomy generation 110

Table E.1 Terminology mappings for the environment dimension 113

Table E.2 Terminology mappings for the intrinsic dimension 114

Table E.3 Terminology mappings for the interaction dimension 117

Table J.1 Software bot tagging on the environment dimension and facets. 126

Table J.2 Software bot tagging on the intrinsic dimension and facets. 126

Table J.3 Software bot tagging on the interaction dimension and facets. 126

Table J.1 Expert tagging on the environment dimension and facets. 132

Table J.2 Expert tagging on the intrinsic dimension and facets. 132

Table J.3 Expert tagging on the interaction dimension and facets. 132

x

List of Figures

Figure 3.1 The relationship between software bot interfaces and software services. 19

Figure 3.2 The relationship between software bot interfaces and software services:

(a) software bot with external services, (b) software bot with internal

services, and (c) software bot with both internal and external services. 19

Figure 3.3 A time-line of the emergence and mainstream adoption of new user

interface paradigms, adapted from Ryan Block1. 20

Figure 3.4 The relationship between (a) software bots, (b) software services, (c)

software bots with internal services, and (d) software programs/scripts. 23

Figure 3.5 The relationship between (a) software bots, (b) software services, (c)

software bots with internal services, (d) software programs/scripts, (e)

software agents, and (f) chatbots. 25

Figure 3.6 Socio-Technical Model for Collaborative Software Development in-

cluding the (a) society’s social system, (b) team’s social system, and

three categories of friction that bots can help reduce: (b) team’s inter-

actions, (c) individual’s interactions with technology, and (d) team’s

interactions with technology. 27

Figure 4.1 Usman et al.’s methodology for taxonomy generation [1] 31

Figure 4.2 Methodology for creating the updated taxonomy, adapted from Usman

et al. [1]. The underlined/strikeout text depicts steps that were added

or removed, respectively. 32

Figure 4.3 Comparison of the structure of (a) hierarchical taxonomies and (b)

faceted taxonomies. The green boxes reflect the how a sample entity

would be classified in each taxonomy. 36

Figure 4.4 An overview of the methodology followed for the systematic literature

search data collection process. 37

Figure 4.5 The taxonomy construction methodology followed. 43

Figure 4.6 The content for the card sorting process. 44

xi

Figure 4.7 The software bot taxonomy at various stages of creation: (a) shuffled

cards ready to be sorted; (b) beginning to group similar terms; (c)

groups have been created; (d) assigning the groups dimension labels;

(e) labeling the dimensions, facets, and sub-facets; (f) the completed

initial version of the taxonomy. 46

Figure 4.8 A high level overview of the preliminary version of the Software Bot

Taxonomy using FreeMind95. 47

Figure 5.1 A high-level view of the Software Bot Taxonomy’s structure. 50

Figure 5.2 Example of the structure of the proposed taxonomy. 50

Figure 5.3 Examples of the three possible facet value types: (a) boolean sub-

facets, (b) exclusive states, and (c) ranges. 51

Figure 5.4 The Software Bot Taxonomy’s Environment Dimensions. The dimensions/facets/sub-

facets and the range of possible values which the facet can take on are

shown in the solid and dashed boxes, respectively. 54

Figure 5.5 The software bot taxonomy’s intrinsic dimensions. The dimensions/facets/sub-

facets as well as the range of possible values which the facet can take

on are shown in the solid and dashed boxes, respectively. 59

Figure 5.6 The software bot taxonomy’s interaction dimensions. The dimensions/facets/sub-

facets, as well as the range of possible values which the facet can take

on, are shown in the solid and dashed boxes, respectively. 75

Figure D.1 Version #1 of the re-ordering of dimensions, facets, and sub-facets. . 111

Figure D.2 Version #2 of the re-ordering of dimensions, facets, and sub-facets. . 111

Figure D.3 Version #3 of the re-ordering of dimensions, facets, and sub-facets. . 112

Figure D.4 Version #4 of the re-ordering of dimensions, facets, and sub-facets. . 112

xii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my supervisor Dr. Margaret-Anne Storey

for her mentorship, encouragement, enthusiasm, and patience. The insightful feedback and

guidance you provided were invaluable, and not only helped improve my research but also

shape the way I approach problems to this day. Thank you for helping me grow both

personally and professionally.

I would also like to thank my thesis committee for their insights and helping push

me to make my research better.

All of the members of the CHISEL lab (both past and present) for their support,

feedback, and laughs along the way. It wouldn’t have been the same without each and

every one of you! A special thanks to Courtney Bornholdt, Elena Voyloshnikova,

Eirini Kalliamvakou, Maryi Arciniegas-Mendez for their friendship, support, and

chats whenever I needed it the most; Alexey Zagalsky for his patience, thoughtful com-

ments on whatever I was working on, and suffering through many long rants about bots

(and many other things); Matthieu Foucault for his time and support in helping me gen-

erating and refine the taxonomy presented in this thesis; and Cassandra Petrachenko

for her sharp wit, seemingly endless help and knowledge whenever I was in a pinch, and

thoughtful editing of not only this thesis but also many other projects.

Lastly, I would like to thank my parents, sister, friends, and loved ones for believing

in me, sharing in my high points, and being there for me in the low ones. I couldn’t have

done it without you!

xiii

DEDICATION

For my family.

Chapter 1

Introduction

From the earliest days of computer programs, people have dreamed about creating programs

that could think and behave like humans. Such programs could not only automate tasks

that humans perform, but they could also work with humans to solve intellectual tasks that

cannot be entirely automated. The term “bot” was used to describe a realization of this

vision quite early on. In just the past few decades, we have witnessed a rebirth of the next

generation of software bot technologies.

Although bots have been around for years, the ease with which software bots can be

integrated into modern communication tools has created an explosion of new bots. There

has been a widespread adoption of conversational applications, both for personal use (e.g.,

Facebook Messenger,1 WhatsApp,2 Telegram,3 or Skype4) and within the software devel-

opment domain (e.g., Slack,5 Teams,6 or Stride7). Messaging applications are being used

not only to chat with friends, but also to connect users with companies, browse products,

and consume a variety of media. These once simple, text-based applications that allowed

users to send messages and share pictures, videos, and GIFs with friends have evolved into

complex ecosystems that allow developers to build custom integrations using the platforms’

APIs. These platforms now serve as a breeding ground for new, conversation-based tools

and integrations, often in the form of software bots. Although software bot technologies are

still relatively new to these platforms—most emerging within the past few years—the use of

bots continues to grow at a rapid pace. Nowadays, there exists a huge range of bots, from

small and simple apps, to huge and complex entities. They can help with almost anything

you need to get done: from reading a bedtime story,8 to booking a flight,9 to calling a

restaurant and making a reservation.10 For almost anything you can do with an app, there

is also now a bot for that.11

The use of the buzzword “bot” is continuing to grow in popularity, both in research

and industry. Despite its popularity, however, there is little consensus on what exactly

constitutes a bot. To date, there is a lack of a generally accepted definition of software

2

bots. The word “bot” is vague, but it is commonly used to describe a wide range of software

programs. Research into software bots is also quite diverse and spans many disciplines,

making it even more difficult to pinpoint one single definition for software bots. This has

led researchers and practitioners to define software bots in accordance with their unique

applications, if they define them at all.

The knowledge field of software bots, like many other areas in software engineering

research, is still relatively immature. Providing some form of consistent organization and

description of software bots can help researchers disseminate knowledge more easily, better

understand the relationships between the different properties/behaviours of software bots,

and aid in identifying gaps in the knowledge area [1]. This would also help practitioners

and end-users better understand the software bot technologies they are building and using.

1.1 Research Questions

The overarching goal of this research is to provide a deeper understanding of modern soft-

ware bots. Although software bots are widely used, there remains a lot about them that is

not well understood. More precisely, the research presented in this thesis is motivated by

three main research questions.

RQ 1: What is a software bot? With the recent explosion of new software bots, the

boundaries of what constitutes a bot continue to be blurred. As Socrates stated, “[t]he

beginning of wisdom is the definition of terms”. Thus, without first defining software bots,

you cannot meaningfully discuss them.

RQ 2: What properties of software bots can be used to classify them? Like

software systems, software bots are complex entities composed of a “purposeful collection

of interrelated components that work together to achieve some objective” [2]. Software bots

are more than simply a sum of their parts. To better understand software bots, they can

be classified through a combination of the properties or behaviours that emerge from the

system as a whole, rather than a single high-level category.

RQ 3: What existing terminology, used in previous software bot research, can

be mapped onto the new classification scheme? Since software bots are still an

emerging field of research, the terminology used to describe them is vast, diverse, and often

inconsistent. Research into them spans across and borrows from many disciplines, both in

industry and academia. This diversity, however, is an obstacle that may lead to further

division of software bot research, as well as confusion for those building or using bots.

Providing a set of consistent terminology that previous research can be mapped to would

3

be a solid step towards untangling the various terminology used to describe similar concepts

across the many domains of software bot research.

1.2 Contributions

Stemming from the research questions identified above, the work presented in this thesis

provides three main contributions to software bot research.

Defining a Software Bot: I reflect on previous descriptions of software bots and propose

an updated definition. I also examine the relationship between software bots and other

related technologies. Lastly, I reflect on existing classifications of software bots, highlighting

the shortcomings of the current ways we are trying to describe them.

Taxonomy of Software Bots: Researchers have long acknowledged the value of tax-

onomies and formally describing knowledge areas [1]. Inspired by existing classifications of

various software bot subtypes, as well as software bot technologies themselves, I produced

an updated classification of software bots in the form of a multi-faceted taxonomy. This

classification focuses on the observable properties of software bots. The proposed taxon-

omy was generated through the merging of numerous existing classifications of software

bots. This taxonomy helps to connect software bot research across multiple domains by

providing a set controlled vocabulary for discussing software bots in the future.

Software Bot Terminology Mappings: Lastly, I provide an updated mapping be-

tween the terminology used in previous software bot research and the terminology used

in the proposed taxonomy. This mapping helps connect the different domains of software

bot research by mapping the many terms used to describe the equivalent concepts to the

controlled vocabulary.

1.3 Structure

The remainder of this thesis is structured as follows:

Chapter 2: I provide a brief history of the ancestors of the modern software bot. I also

discuss the factors that may have led to the recent re-emergence and explosion of software

bot technologies.

Chapter 3: I explore some of the existing ways that software bots have been described,

provide an updated definition of software bots, and compare software bots to related tech-

nologies. Lastly, I describe some existing classifications of software bots.

4

Chapter 4: I present the methodology used to generate the new faceted taxonomy of the

observable properties and behaviours of software bots. I also discuss how the taxonomy was

validated and any implications of my approach.

Chapter 5: I introduce the proposed taxonomy of software bots and describe each of the

properties and behaviours that it includes. I also provide a guide to help readers interpret

and use the proposed software bot taxonomy.

Chapter 6: I describe the methodology used to validate the proposed taxonomy and

discuss my findings.

Chapter 7: I discuss the importance of the work presented in this thesis, reflect on its

limitations, and provide suggestions on how it can be used in the future.

Chapter 8: I conclude this thesis by reflecting on the three research questions that

sparked my exploration into software bots.

Additional documents can be found in the Appendices, including lists of the articles

used to generated the taxonomy, initial drafts of the taxonomy’s structure, materials used

in the validation of the taxonomy, and the terminology mappings.

1https://www.messenger.com/
2https://www.whatsapp.com/
3https://telegram.org/
4https://www.skype.com/en/
5https://www.slack.com/
6https://products.office.com/en-ca/microsoft-teams/
7https://www.stride.com/
8https://www.amazon.ca/Webguild-Short-Bedtime-Story/dp/B01DJCJTZ2
9https://www.hipmunk.com/tailwind/hello-hipmunk-bot-for-skype/

10https://www.androidcentral.com/google-duplex
11https://www.thereisabotforthat.com/

5

Chapter 2

Software Bot Background

This chapter provides an overview of the history of software bots and helps to ground the

re-emergence of software bots within the larger landscape of bot-like technologies. The

chapter is divided into three sections: a brief history of the technologies from which, I

believe, software bots descended; the artificial intelligence winter, which threatened research

into software bot-like technologies; and the factors contributing to the recent re-emergence

of software bots.

2.1 The Evolution of Software Bots

Humans have always been interested in intelligence: understanding it, measuring it, even

attempting to artificially create it. The field of artificial intelligence, commonly referred to

as AI, tries to do just that: build intelligent entities. Software bots have proven to be great

test-beds for researchers to experiment with many of the advancements stemming from AI

research [3]. Although the field of AI has received a lot of attention, many other software

bot-like technologies are rarely mentioned. In this section, I briefly reflect on AI and other

influential technologies that set the stage for modern software bots.

The field of artificial intelligence is still relatively new, the term itself being coined by

John McCarthy in 1956 [4]. According to Russell and Norvig [5], AI research is concerned

with creating entities that think and act humanly and rationally. Efforts towards creating

entities that think humanly and rationally focus on developing algorithmic solutions to

problems like knowledge reasoning, planning, machine learning, input processing, etc. These

problems have spurred research into techniques such as search and optimization, logic,

probabilistic methods, classifiers and statistical learning methods, and neural networks.

Efforts into creating entities that act humanly and rationally have produced many of

the technologies that I believe to be the ancestors of the modern software bot. In the

following sections, I present a brief history of many of these software bot-like technologies

6

in a roughly chronological order. Although there is some overlap between many of these

research areas and technologies, I call out each field individually as I believe they have all

contributed (in their own way) to the modern software bot ecosystem.

2.1.1 Daemons

The first known appearance of a bot-like helper was Socrates’ daimonion in 399 BC [3].

This invisible, intelligent helper offered Socrates advice and served as a voice of reason

by warning him of possible mistakes. Although Socrates’ daimonion provided him with

guidance, it never explicitly told him what to do and it allowed him to make his own

decisions. Socrates’ daimonion closely resembled the daemons found in Greek mythology:

supernatural beings (either good or evil) working in the background.

The concept of helpful daemons re-entered the scene in 1871 when physicist James

Clerk Maxwell imagined that a demon could (in theory) be used to sort molecules in order

to violate the second law of thermodynamics [6]. Maxwell claimed that the demon could

monitor a small door between two gas chambers and open/close it to allow only the fast

molecules to pass into the second chamber. This would divide the fast and slow molecules

and allow for the second chamber to warm up as the first chamber cooled down. Since

his original proposal, Maxwell’s work has been highly criticized since a “purely mechanical

Maxwell’s demon is impossible” [7]. However, the idea of having a daemon that could

silently automate tasks in the background resonated.

The first real digital daemons were created for the Multics operating system by program-

mers at Massachusetts Institute of Technology’s Project MAC in 1963 [3]. They adopted

the term of daemon, which is still used today, to describe small programs running unob-

trusively as background processes instead of being directly controlled by users on Unix-like

operating systems.

2.1.2 Automata

One of the first efforts towards building physical life-like entities, automata are self-operating

machines that follow a predetermined sequence of operations. Although automata have

taken a variety of forms, many were designed to look like they operate on their own accord,

often taking a human-like form. The idea of automata stems as far back as ancient Greek

mythology [8]: in his workshop, Hephaestus created Talos, an artificial man of bronze [8].

In the Hellenistic period, many automata were created as art, toys, tools, and even

scientific prototypes [8]. The manufacturing of small automata continued well into the 15th

century, when some of the first mechanical clocks and measuring instruments began to

appear in European towns [9]. Many other forms of automata quickly gained in popularity.

Although not re-discovered until the 1950s, Leonardo da Vinci’s 1495 mechanical man (if

7

successfully built) would have been able to move its arms, twist its head, and sit upright.

Other automaton, such as drummers and flute players, would perform in public concerts

[9]. In 1738, Jacques de Vaucanson presented the digesting duck, an automaton duck that

could eat and dispose of its waste [9, 10]. Although it was eventually revealed as a hoax, the

Mechanical Turk toured around Europe in the 18th century posing as an intelligent, chess

playing automaton [10]. A more recent application of automaton was NASA’s Automaton

Rover for Extreme Environments.12 Since the harsh climates on Venus were unfavourable

to modern robotics, NASA developed a wind-powered automaton to explore the planet.

2.1.3 Robots

The first appearance of the term robot is credited to a 1921 science fiction play entitled

Rossums Universal Robots [11] (RUR), where the author replaced the term automata with

robot. Although not exactly robots by our current standards, these RUR robots were living

creatures rather than machinery. The term robot was adapted from the Slavic word robota,

meaning “forced labourer”, and RUR’s robots were just that: synthetic, organic, human-like

beings that could work around the clock.[11]

Although the term bot originated as an abbreviation of robot, unlike software bots which

are digital, robots are mechanical. Robots are used in the physical world much in the same

way software bots are used in the digital world ; They have tangible, mechanical bodies that

perform tasks by manipulating the physical world, often helping automate repetitive tasks.

The world’s first intelligent, human-like robot was created by Japan’s Waseda University

in 1972: WABOT-1 could walk around, extend its arm, and grip objects [12]. It used its

sensors (artificial eyes and ears) to gather data about its environment, and it used its

artificial mouth to speak to users. Also in the early 1970s, researchers at the University

of Edinburgh in Scotland developed Freddy,[13] a non-verbal robot capable of assembling

simple objects without intervention. Today, robots can be found automating a variety of

real-world tasks, from assembly lines, to automatically vacuuming floors and driving cars,

to industry 4.0 robots [14].

2.1.4 Chatbots

In 1950, computer scientist and mathematician Alan Turing developed the Turing Test,

also known as the Imitation Game [15]. The game required three players: two humans

and a machine. One of the humans serves as the interrogator, and the identities of the

other human and the machine are concealed from the interrogator. By asking only text-

based questions, the interrogator must determine which of them is human. If the machine

successfully tricked the interrogator into believing it is human, then it passed the test.

8

The Turing Test sparked the development of chatbots, computer programs designed to

act humanly by talking to users [5]. Created in 1966 by MIT professor Joseph Weizenbaum,

Eliza was the first computer program that could have a conversation with humans. Eliza

attempted to cover her limited vocabulary by simulating a psychotherapist. Eliza searched

for keywords in the user’s speech and responded with preprogrammed questions, shifting

the focus of the conversation back onto the user.

Eliza inspired a variety of notable chatbots, some of which include: Perry (1972), the

paranoid schizophrenic [16]; Alice (1995), the natural language processing bot with lots of

personality [17]; and SmarterChild (2000) [18]. While these earlier chatbots’ interactions

were purely text based, advances to natural language processing allowed chatbots to begin

using spoken language or a combination of text and speech. The personal assistant chatbot

Julia (1994) was the first verbal chatbot [19]. A couple of years later, Sylvie (1997) became

the first “virtual human” with its own animated face and voice [20]. Among the thousands

of chatbots that exist today, some popular mainstream examples include: Apple’s Siri,13

Microsoft’s Cortana,37 Amazon’s Alexa,14 Google Assistant,15 Microsoft’s Tay,16 Cleverbot,
17 and IBM’s Watson.18

2.1.5 Expert Systems

Expert systems are often considered one of the first successful applications of AI [21]. The

first expert systems emerged in the 1970s and became increasingly popular during the 1980s.

An expert system is a computer system designed to emulate the decision-making capabilities

of human experts in a complex but narrow domain. Expert systems rely on domain experts

to provide a predefined knowledge base, which the systems analyse with their inference

engines to arrive at a solution to a domain-specific problem. These systems leverage certain

AI techniques, such as rules and cognitive models, to solve complex problems at the same

level as, or sometimes even better than, human experts.

Ted Shortliffe’s 1974 PhD thesis proposed the first use of an expert system [9]. Short-

liffe’s system, MYCIN, was used to help identify disease in patients by asking them diagnos-

tic questions and comparing answers to a knowledge base compiled by experts. Throughout

the 80s and 90s, expert systems were successfully applied in agriculture, education, law,

manufacturing, etc. However, due to their symbolic nature, many expert systems failed to

scale. As a result, expert systems quickly developed a reputation of being too brittle and

too ill-suited for more complex problem-solving tasks. Expert systems were also only as

good as their knowledge bases and the fact that data storage was expensive in the 1980s.

The systems’ knowledge bases also required continual maintenance and updating. As a

result, many expert systems were abandoned since they were too costly to maintain.

Today, expert systems can still be found in many financial institutions, manufacturing

companies, and within the medical domain. A modern example of an expert medical system

9

is DXplain [22], a system that uses clinical findings (i.e., signs, symptoms, laboratory data)

to produce ranked lists of possible diagnoses. However, since expert systems present a

strategic advantage to the companies that own and use them, they are not often discussed

outside of the companies that deploy them.

2.1.6 Software Agents

The word agent originates from the Latin word agere, meaning “to do” or “to act on

someone’s behalf” [5, 23]. The first software agents can be traced back to Hewitt’s Actor

Model [23]. In his model, Hewitt describes a software actor that is in control of its own

state and can respond to messages from similar systems:

“A self-contained, interactive and concurrently-executing object, possessing in-

ternal state and communication capability.” —Hewitt, 1977 [24]

Much of the early work on software agents, from the late 1970s to early 1990s, evolved

from multi-agent systems. Nwana [23] highlighted that much of the early work from this

period focused on the “macro aspects” of agent systems: how to design systems composed

of multiple collaborative agents [25, 26, 27], and classical theories of agent architectures

and languages [28, 29]. Research into multi-agent systems (and in turn software agents

themselves) inherited many properties from distributed AI, distributed problem solving, and

parallel AI. Software agents also inherited the benefits of modularity, speed (i.e., influenced

by parallelism), and reliability (i.e., redundancy) [23].

Software agent research began to diversify in the 1990s and a variety of agents emerged

to support a broad range of tasks across many domains. Bringing agents into the public

eye, the famous “Knowledge Navigator” video portrayed the interaction between a software

agent and its user [30]. Software agents also began to take on various names, based on

either some significant property (e.g,. collaborative, interface, mobile, internet, reactive, or

smart) or their purpose (e.g., personal assistants [31], guides [32], buying/selling [33], or

entertainment [34]).

2.2 The AI Winter

The early days of the AI boom, however, were fueled with unrealistic expectations. Many AI

researchers dramatically overestimated the future capabilities of AI systems, and inevitably

they under delivered. Although AI overhype is typically cited as the main cause of the AI

winter, it most likely stemmed from a “perfect storm” of factors [21].

For one, in the early days of AI, researchers faced issues with computing capacity. As

a result, many of the potential technological advancements (e.g., neural networks) were

never fully realized, as they required computing power far beyond the hardware capabilities

10

of the time. In fact, many of the recent advances in AI stem from decades-old research

that was never fully realized.19 Also, AI research is often multidisciplinary and faces many

of the problems that interdisciplinary fields face: unclear funding; being secondary to the

primary research; and when one discipline faces budget cuts, the entire project can suffer.

Similarly, when institutions were required to make cuts, risky non-essential ventures like AI

were usually the first to go.

One of the first major cuts to AI funding came in 1974 when Sir James Lighthill pro-

duced a report that convinced the British government to dismantle most of their AI research

objectives. The report, which came to be known as the Lighthill report, concluded that

nothing could be discovered through AI research that could not come from other scientific

disciplines. Lighthill claimed that AI research utterly failed to achieve its “grandiose ob-

jectives” and that “in no part of the field have discoveries made so far produced the major

impact that was then promised” [35]. Since then, the Lighthill report has been strongly

criticized, and many now view Lighthill’s pessimism as unfounded [21]. “The prior opinion

of many informed observers, based on decades of disappointing experimental results, was

that the problems were so hard that they would remain unsolved for many decades yet”,

Hans Moravec, a robotics researcher in the 1970s, “[b]ut now everyone knows differently”.
20 But at the time, the Lighthill report had a devastating effect on AI research, leading

to major cuts in AI research at nearly all British universities. Many of Lighthill’s claims

were also echoed in a follow-up Defense Advanced Research Projects Agency (DARPA)

report, leading to many AI-related cuts in the United States in the late 1970s [36]. Luckily,

some of the programs that had begun prior to these reports were allowed to continue. In

the late 1970s came the first wave of commercialized AI technologies in the form of expert

systems. By the mid-1980s, expert systems had begun to see promising results, and were

deployed in a variety of industry settings. However, many believed that popularity of the

new expert systems meant the end for traditional AI: many AI researchers disowned expert

systems, claiming that their rule-based logic was not true AI [21]. Though much of the

popularity that expert systems had been gaining began to fade as they failed to scale to

larger problems, the field of AI began to slip back into a second winter.

After a few decades of winter, the “AI spring” bloomed in the the early 2000s.20 The

next section discusses some of the factors commonly contributed with ending the AI winter.

There were, however, some lasting effects.

John Markoff wrote that, “[a]t its low point, some computer scientists and software engi-

neers avoided the term artificial intelligence for fear of being viewed as wild-eyed dreamers”.
20 Many avenues of research that were traditionally viewed as part of the AI space broke

off into a variety of sub-fields (e.g., computer vision, robotics, natural language process-

ing), and researchers continued to make incremental improvements on the technologies that

already existed [9].

11

2.3 Why Now? The Re-Emergence of Software Bots

What sparked the re-emergence and mainstream adoption of software bot technologies?

In the following sections, I discuss many of the factors that may have led to the recent

explosion of new software bot technologies.

2.3.1 Technological Advancements

In just the past few decades alone, there have been numerous technological breakthroughs.

When Eliza was first introduced in 1966, interactive computing was a new thing. Since

then, the invention of personal computers, the internet, smartphones, and internet of things

enabled devices (just to name a few) have completely changed the way that people interact

with technology. People have also been using these technological breakthroughs in new and

exciting ways, e.g., using the internet to perform automation through strategies such as

web-tasking [37].

We have also seen dramatic increases in the computing power available. Personal com-

puters are growing more powerful by the day, and services such as Amazon Web Services,
21 Microsoft Azure,22 Google Cloud,23 and IBM Cloud24 offer affordable access to powerful

computing capabilities. This abundance of affordable computing power has led to numerous

advances in many fields, including machine learning, natural language processing, speech

recognition, and computer vision. These advancements helped lay the groundwork for many

of the technologies that modern software bots rely on to be successful.

2.3.2 Mainstream Adoption of Messaging Platforms

Another factor that contributed to the sudden popularity of bots was the mainstream

adoption of messaging platforms. When many of the early bot-like technologies were first

introduced, they were built into platforms that were not easily accessible by the public.

Today, people are spending more time on messaging platforms than any other type of

application. They are entirely comfortable communicating via short typed interactions

and carrying out several asynchronous conversations at the same time [38]. Software bots

provide users with quick ways to get things done inside the platforms they are already using.

Furthermore, Nir Eyal pointed out that “[t]he power of the conversational interface is that

it shields the end user from having to learn anything new. We already know how to chat, so

making requests is easy”.25 Interacting with bots through messaging platforms also removes

the need to download, install, and switch between multiple applications to get things done

– helping to reduce “app fatigue” [39].

Messaging platforms are pervasive in both our personal lives and at work. Major so-

cial messaging platforms such as Apple’s Messenger,26 Microsoft’s Skype,27 WhatsApp,28

12

Telegram,29 WeChat,30 and Kik31 all not only support software bots but encourage them.

Workplace communication platforms like Slack,32 Microsoft Teams,33 Stride,34 and Flock35

also have thriving communities of helpful ready-to-integrate bots and offer software devel-

opment kits for building bots.

2.3.3 Emergence of Voice-Only Platforms

One of the members of the new wave of software bots that has been receiving a lot of

attention lately is voice-driven personal assistants. One of the first mainstream voice-

driven technologies to be made publicly available was Siri,13 a virtual assistant that lives

inside Apple’s operating systems. Originally a standalone iOS application, Siri was quickly

acquired by Apple, integrated into the iPhone, and then eventually added to almost all of

Apple’s products. Since then, many companies have released their own voice assistants,

a few prominent examples being Google Now36 (2012), Microsoft Cortana37 (2015), and

Google Assistant (2016).15

Voice technologies are also making their way into our homes. Since the introduction of

Amazon’s Alexa38 in 2014, voice-only technologies for the home have only been increasing

in popularity. Alexa serves as a central voice-operated hub for smart devices and home

automation. Since then, Google Home39 (2016) and Apple Homepod40 (2018) have also

entered the voice-driven, home automation scene. Today, an estimated 16% of Americans

(i.e., approximately 39 million people) own or use smart speakers [40]. Typically, these

devices help users by answering simple questions or performing small tasks on their behalf.

Some of the most popular uses of smart speakers include checking the weather or traffic

reports, adding things to shopping lists, finding restaurants or businesses, looking for recipes,

ordering food, and even reading bedtime stories[40].

2.3.4 Transition to Service Oriented Architectures

Another factor possibly contributing to the increasing number of bots was an overall shift in

the way that developers were thinking about and building software. Service-oriented archi-

tecture (SOA), a style of software design which promotes loose coupling between services,

began gaining popularity in the early 2000s. SOA organizes software so that logic is divided

into discrete units of functionality (i.e., services) that communicate with each other via set

protocols. By isolating core functionality into services, it becomes easier to reason about

what each component does. Many of the basic principles of SOA are echoed in the designs

of modern software bots.

13

2.3.5 Abundance of Public APIs and Datasets

Application programming interfaces (API) embrace essentially the same goals as SOA sys-

tems but are more open. Internal APIs have been a key part of software development for

many years, providing a way to develop for specific platforms (e.g., Windows operating

system APIs). Salesforce is often credited as being the first public web API, releasing an

“internet as a service’ ’-style API in the early 2000s.41 Over the next few years, many

websites, such as Ebay (2000), Del.icio.us (2003), Flickr (2004), Facebook (2006), Twitter

(2006), and Google Maps (2006), began releasing public APIs to allow developers to access

their data and/or services.41

Today, almost every online platform offers some form of web API, whether to build

integrations for their site or to grant access to the data they possess. Currently, the Pro-

grammableWeb42 directory lists over 19,000 public APIs. These APIs are easily consumable,

relatively amendable, and often support human-readable formats (e.g., JSON). API archi-

tectural styles, such as REST [41], also provide for standards for creating web services.

Since APIs can also be marketed as products themselves, third-party API companies are

fundamentally changing the way we build and sell software. Developers no longer need to

re-invent the wheel, but instead rely on APIs to provide a set of basic building blocks for

creating software, giving them more time to focus on their core features.

In the early 2000s, there was a shift of focus in AI research, from developing/optimizing

algorithms to improving the scale/quality of the data being used [5]. In recent years, there

has been a push to release large, well-curated datasets from governing bodies, research

institutions, and industry. In 2011, the Canadian federal government launched Canada’s

National Open Data website.43 Since then, Alberta,44 British Columbia,45 Ontario,46 and

Quebec47 have all launched their own provincial open data portals. In 2016, Yahoo released

a 13.5TB machine learning dataset filled with interactions from 20 million users for academic

research purposes through the Webscope48 platform. Since then, many large companies as

well as academic institutions have released a range of new public datasets for developers to

leverage. Today, Kaggle,49 a popular platform that hosts data analytic competitions, offers

over 9,000 public datasets. These public datasets (and APIs) provide much of the content,

services, and building blocks used by many of today’s popular software bots.

2.3.6 Industry Support

The re-emergence of software bot technologies has been very much fueled by industry. For

years, bots have been seen as a way for developers to “scratch their own itch” and improve

their development workflows.50 Many software bots started as small personified scripts used

to help automate part of software developers’ processes. The content was there, developers

just needed a better way to access it... bots!

14

Recently, major software companies have begun investing heavily in software bot-like

technologies. In 2011, GitHub released a chatbot building framework, Hubot, which has

since been translated into multiple programming languages and forked over 3,000 times.
51 GitHub now also offers support documentation for bot developers and even offers a

unique user type to support bot-style integrations.52 Shortly after Alexa’s release, Amazon

announced that they would be investing $100 million into voice-related technologies to

help developers both build and use Alexa’s skills.53 In early 2016, Microsoft launched the

Microsoft Bot Framework, which allows developers to create cross-platform chatbots that

leverage Microsoft’s AI services. Microsoft’s Satya Nadella even referred to chatbots as

the next big thing.54 Later that same year, Facebook’s Mark Zuckerburg claimed that

chatbots would be the solution to app overload.55 “Bots for Messenger” was introduced at

F8 (replacing the codename “Agents for Messenger”), then Facebook launched their own

bot building service.56 IBM also released Watson Conversation, a cloud-based system that

allows developers to build custom chatbots.57

Other companies also offer a variety of bot-building services to support the increased

demand for bots [42]. These creation platforms support the design and development of

bots and provide a range of software foundations, frameworks, toolkits, APIs, and other

advanced features (e.g., natural language processing, search, or image processing). Many

vibrant online communities have also emerged to connect bot developers with expertise in

the form of tutorials, articles, discussions, and support [42].

2.4 Summary

In this chapter, I described a variety of technologies from which modern software bots have

descended and examined possible factors contributing to their sudden re-emergence and

proliferation. In doing so, it became obvious that the modern software bot has evolved

from a complex landscape of bot-like technologies. As Leonard puts it, “[t]he bot family

tree is a confused and contradictory plant, a warped and twisted structure as unlike Darwins

great Tree of Life as a blackberry bush is unlike a weeping willow” [3].

Although understanding the complex history of software bot technologies can help us

to better understand today’s software bot ecosystem, it provides little insight into the

bots themselves. What is a bot? What properties can bots have? How do bots behave?

In the remainder of this thesis, I attempt to answer these questions by exploring existing

definitions of software bots, providing an updated definition (cf. Chapter 3), and examining

their multitude of properties and behaviours as I create a taxonomy of software bots (cf.

Chapters 4-5).

15

12https://www.nasa.gov/feature/automaton-rover-for-extreme-environments-aree
13https://www.apple.com/ca/ios/siri/
14https://developer.amazon.com/alexa?cid=a
15https://assistant.google.com/
16https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
17http://www.cleverbot.com/
18https://www.ibm.com/watson
19https://www.technologyreview.com/s/608911/is-ai-riding-a-one-trick-pony/
20https://www.nytimes.com/2005/10/14/technology/behind-artificial-intelligence-a-squadron-of-bright-real-people.html
21https://aws.amazon.com
22https://azure.microsoft.com
23https://cloud.google.com
24https://www.ibm.com/cloud/
25https://www.nirandfar.com/2015/07/the-message-is-the-medium-3-reasons-apps-as-assistants-work.html
26https://www.messenger.com/
27https://www.skype.com/en/
28https://www.whatsapp.com/
29https://telegram.org/
30https://web.wechat.com/
31https://www.kik.com/
32https://www.slack.com/
33https://products.office.com/en-ca/microsoft-teams/
34https://www.stride.com/
35https://www.flock.com/
36https://www.google.com/search/about/
37https://www.microsoft.com/en-ca/windows/cortana
38https://www.amazon.ca/echofamily
39https://store.google.com/home
40https://www.apple.com/ca/homepod/
41https://history.apievangelist.com/#Understanding
42https://www.programmableweb.com/about
43https://open.canada.ca/
44https://open.alberta.ca/
45https://data.gov.bc.ca/
46https://www.ontario.ca/search/data-catalogue
47https://www.donneesquebec.ca/
48https://webscope.sandbox.yahoo.com/
49https://www.kaggle.com/datasets
50https://www.atlassian.com/atlascamp/2013/archives/thursday/scratch-your-own-itch
51https://hubot.github.com/
52https://developer.github.com/v4/reference/object/bot/
53https://developer.amazon.com/alexa-fund
54https://www.businessinsider.com.au/microsoft-to-announce-chatbots-2016-3
55https://www.wsj.com/articles/facebook-hopes-chatbots-can-solve-app-overload-1460930220
56https://techcrunch.com/2016/04/12/agents-on-messenger/
57https://www.ibm.com/watson/services/conversation/

16

Chapter 3

Defining Software Bots

In this section, I introduce some basic terminology used to describe software bots, and

provide a formal definition of software bots, which I reference and build upon for the

remainder of this thesis. I also reflect on common subtypes of software bots and compare

them to related technologies. I then explore some existing approaches for classifying software

bots.

3.1 What Is a Software Bot?

Despite their increasing popularity, there is no generally accepted definition of software

bots. Research into software bot technologies spans across multiple computer science areas

(e.g., AI, software engineering, or systems) as well as other disciplines, in particular decision

science, biology, sociology, and many others [43]. This serves to further increase the difficulty

of pinpointing what exactly constitutes a bot.

“A bot is a software version of a mechanical robot. Like a mechanical robot, it is

guided by algorithmic rules of behaviour [...] But there is no consensus on what

particular sequence of encoded ones and zeros truly classifies a bot. Bot genetic

structures remain inadequately mapped. The word bot describes everything from

a simple logon script (like one that might save a user the trouble of typing a

phone number, a password, and a user identification code every time the user

wants to go online) to complex programs written in the latest, most-advanced

programming languages and designed to execute tasks that most humans would

find impossible.”
—Andrew Leonard, 1997 [3]

In response to this ambiguity, researchers and practitioners have defined bots in accor-

dance with their specific applications of software bot technologies. Below, I highlight some

key trends in how people are describing software bots.

17

Bots as Automation: One of the more common ways of defining bots is as software

programs that automate tasks [44, 45]. The Merriam-Webster dictionary defines bots

as “a computer program that performs automatic repetitive tasks”. Similarly, “[b]ots are

software programs that perform automated, repetitive, predefined tasks. These tasks can

include almost any interaction with software that has an API.” [46] Some have taken it a

step further and defined bots by their autonomy to perform these automated tasks: “A

bot is a type of automated technology that’s programmed to execute certain tasks without

human intervention. That is, it might be prompted by a human to perform an action, but

it can carry it out on its own.”58 Others define bots by their ability to perform actions on

behalf of others: “A bot is a program that operates automatically as an agent for a user or

another program.” [47]

Bots as Malicious: Unfortunately, many people view these behaviours as being riddled

with the mal-intent of the bot’s creator [46]. The Merriam-Webster dictionary emphasizes

the term bot refers “especially” to computer programs “designed to perform a malicious

action”.59 Bruce Schneier, the founder of Counterpane Internet Security, believes that bots

“deserve special scrutiny because their risks are different than normal risks. Bots are risky

because they do what they do automatically, and lots of them can work in tandem. So the

relatively minor damage they can do—spam, worms, and so on—becomes nasty because a

lot of it happens.” [48]

Bots as Human-Like: Luckily, as bots continue to become more pervasive in everyday

life, people have started seeing bots as more than simply malicious scripts. People have

begun to enjoy interacting with bots, especially ones that have been given life-like personal-

ities. The Oxford dictionary defines bots by their ability to act and be perceived humanly:

“An autonomous program on a network (especially the Internet) which can interact with

systems or users, especially one designed to behave like a player in some video games.”60

Similarly, Maus [49] who defines bots as “automated or largely automated programs that in-

terface with online platforms in largely the same way that a typical human would be expected

to: they hold normal accounts, make connections, and post content”. Slack goes as far as

claiming that “[b]ots are like having a virtual team member—they can help you manage

tasks, run your team standup, poll the office, and more!”61

Bots as Conversationalists: Many large software companies, like IBM, Google, and

Microsoft, have also been pushing to make their bots sound more human.62 It is not

surprising that the definition of bots is often coupled with their ability to communicate

using human language. Microsoft defines bots as “an app that users interact with in

a conversational way using text, graphics (cards), or speech”.63 Similarly, Dale describes

18

the human-bot relationship as “achiev[ing] some result by conversing with a machine in a

dialogic fashion, using natural language” [38].

Bots as Interfaces: In an earlier blog post, Amir Shevat described bots as “digital users

within a messaging product. Unlike most users, they are powered by software rather than

by a human, and they bring a product or service into a given messaging product via the

conversational interface.”64 Since then, Shevat removed the requirement of conversation

from his definition of software bots: “[T]he bot itself is only an interface into the service,

in the same way a website can be used for booking a flight...exposing a service.” [39] This

approaches bots as an interface paradigm, or as Roy [50] describes them, “the bridge

between data and action”.

While a variety of definitions of software bots, there are several key features that are

consistent across many of the approaches. In the next section, I explore the similarities

between the various interpretations of software bots and propose an updated definition of

software bot-hood.

3.1.1 Proposed Definition of Software Bots

My proposed definition of software bots builds upon many of the existing definitions of

software bots described in the previous section. First and foremost, I view software bots

as a new interface paradigm. Bots connect users with software services. While bot

users are often humans, they are not required to be. Users can be programs, systems, or

even other bots. The bot is the interface that provides the services to the user, e.g., the bot

is everything required to present the service to the user. However, the bot and the service

can and should be decoupled from each other.

Software services are “a mechanism to enable access to one or more capabilities”.65

Software bots utilize software services for the raw value they provide. Services provide

software functionality (or a set of software functionalities) in a format that can be reused

by multiple clients for a variety of purposes.65 Today, services can come in many forms,

ranging from the retrieval of information to the execution of a set of operations. Often the

bot performs tasks that rely on these services repetitively, saving the user time through

automation.

Software services can be external or internal to the bot. Figure 3.1 shows the domain

of (a) software bots, (b) software services, and (c) the relationship between them. When

services are external to the bot, the bot has no ownership of the software services it requires

to perform its tasks. External services can be thought of as online services, i.e., they

are connected to something external (e.g., network or Internet). The bot must access the

external service to provide its functionality. Figure 3.1(a) shows the domain of software bots

that access (represented by the dashed arrow) external software services. When services

19

Figure 3.1: The relationship between software bot interfaces and software services.

are internal to the bot, the bot itself owns the software services that it requires to perform

its tasks. Figure 3.1(c) shows the domain of software bots that have integrated software

services. Internal services can be thought of as offline services; if disconnected from the

outside world, these bots would still be able to deliver their services. Lastly, a bot can

have a combination of internal and externally accessed services (represented by the second

dashed arrow). These bots would be able to deliver some (but not all) of their functionality

if they were disconnected from their outside services.

Figure 3.2: The relationship between software bot interfaces and software services: (a)
software bot with external services, (b) software bot with internal services, and (c) software
bot with both internal and external services.

Figure 3.2 provides another view of the same relationship between bots and services.

In this figure, we can clearly see the distinction between the software bot’s interface and

the services it provides. Figure 3.2(a) shows a software bot interface that accesses set of

external software services. An example of this type of bot is the github66 bot which accesses

GitHub’s API. Figure 3.2(b) shows a software bot with a set of integrated software services.

An example of this type of bot is Eliza as its conversational logic is internal to the bot.

Lastly, a bot can have a combination of external and internal services. Figure 3.2(c) shows

a software bot with integrated software services and a set of connected external services. An

20

example of this type of bot is poncho73, a bot that accesses weather reports (i.e., external

services) and offers a variety of games (i.e., internal services).

If software bots provide an alternative interface to services, then what exactly does the

software bot interface entail? Simply put, an interface is where two things meet [51].

The software bot interface is where the user and the bot’s services meet. The software bot

interface also usually provides some form of additional value on top of its services. This

additional value can come in many forms, from lowering the barrier of access to consolidat-

ing multiple services to providing automation. Bots often leverage the recent advances in

user interfaces to provide additional value, usually through changing the interaction style.

Figure 3.3 shows the mainstream adoption of new human-computer interface paradigms

over the past few decades. Today, users can interact with software bots via the command

line, graphical interfaces, touch interfaces, spoken/written language, or a combination of

interaction paradigms. It should be noted, however, that these interfaces are not required

to be interfaces that humans use; the software bot’s interface can be used by other bots

or other types of software systems. Another common way that software bots are provid-

ing additional value is through anthropomorphism—making the user’s interactions with the

software services more enjoyable by making it more human. There are many ways in which

people anthropomorphize software bots; giving them names, personalities, emotions, etc.

Figure 3.3: A time-line of the emergence and mainstream adoption of new user interface
paradigms, adapted from Ryan Block1.

So, what is a bot? In summary, I define a software bot as an interface that connects

users to services. These services can be internalized in the bot’s code and/or accessed exter-

nally. The bot also provides some sort of additional value (in the form of interaction style,

automation, anthropomorphism, etc.) on top of the software service’s basic capabilities.

1https://medium.com/@ryan/bots-messaging-and-the-interface-visibility-scale-c77ce56f1401

21

3.2 Comparing Software Bots and Related Technologies

In the previous section, I proposed an updated definition of software bots, however, it is

important to understand how software bots relate to other bot-like technologies to truly

understand what makes a bot, a “bot”.

“The semantics of botness are confused and have yet to be satisfactorily sorted

out [...] But whatever you call them—agents or bots or scripts or plain old

programs—they are a genus, a class of species, of their own.”67

—Andrew Leonard, 1996

It should be noted that the purpose of this section is not to universally define these bot-

like technologies themselves, but instead use these definitions to gain a better understanding

of the complexities of defining software bots. I also acknowledge that there will likely be

some technologies that fall between the definitions that I propose, which I will not be

addressing.

3.2.1 Software Bots vs. Robots

As discussed in Chapter 2, traditionally software bots and robots have been distinguished

from each other primarily by where they act: robots act in the physical world and bots

act in the digital world. However, as robots grow more sophisticated (e.g., using machine

learning or other algorithmic techniques) and bots start connecting to physical devices (e.g.,

internet of things enabled devices) the difference between robots and bots becomes more

subtle.

Both robots and software bots can perform tasks such as unlocking your front door. To

complete this task, the robot would physically make its way over to the door and turn the

deadbolt. The software bot, on the other hand, would send an unlock request to the API

of the smart-lock. Thus, the robot performed the task physically itself, while the software

bot sent a software request to another device that performed the physical action.

I imagine that as robots and software bots continue to grow more advanced, the dif-

ference between them may continue to grow more blurred. However, for the scope of this

thesis, I treat robots and software bots as two distinct technologies.

3.2.2 Software Bots vs. Scripts

Though there is no universally accepted definition of a script, they tend to be described as

small pieces of software (usually just a small set of commands) that do not perform any

significant computing on their own.68 Scripts are commonly associated with code written in

22

a scripting language (which are typically interpreted not compiled) although some excep-

tions do apply. Others define scripts by the way they behave: “A ‘script’ is code that acts

upon some system in an external or independent manner and can be removed or disabled

without disabling the system itself.”68 These types of scripts are generally associated with

automation or logging, and are typically run via the command line (i.e., shell scripts).

This ambiguity only adds to the difficulty of trying to understand the relationship

between scripts and software bots. Although domain specific scripting languages (e.g.,

IFTTT69) have been developed to help users build bots, to the best of my knowledge, the

difference between scripts and bots has never concisely been defined. I propose that some

scripts are bots, and conversely some bots are scripts. Some bots clearly do not fit within

the requirements of a script; they are large complex programs that are written in a compiled

language.

However, the difference between pure scripts and bots that are scripts is often more

subtle. I believe that the main difference stems from the intent of the developer. For

example, providing a script with some additional value in the form of anthropomorphism

(e.g., giving it a name or personality) can be the difference between a bot and a non-bot

script. There are many other small differences between scripts and bots that can also help

to distinguish between them. For example, most scripts are triggered from the command

line, however, this is less common for bots. While scripts tend to be re-executed each time

they are needed, bots tend to persist and perform tasks over a longer period of time. While

these differences are highly subjective and often quite subtle, they provide some guidance

in distinguishing between scripts and software bots.

3.2.3 Software Bots vs. Programs

Today the line between scripts and programs is blurred. Some view scripts as a small,

special subtype of computer programs.70 Others view scripts and computer programs as

two separate entities.68 Although there is no universally accepted definition of a program,

they tend to be described as larger pieces of software, written in programming languages

(i.e., compiled), that perform significant computing.68

If we consider scripts and programs to be two mutually exclusive types of software, then

some programs are bots, and conversely some bots are programs. Some types of programs

are clearly not bots (e.g., word processing software or other large desktop applications).

Figure 3.4 shows the relationship between software bots, programs, and scripts.

However, the difference between bots and programs is often more subtle. There are two

main factors that distinguish bots from non-bot software programs. The first factor that

distinguishes them is that bots must have some level of autonomy, i.e., bots must be able

to do something without the user having to use direct manipulation to perform the tasks

themselves. With the most basic of bots, autonomy is realized through automation. On the

23

other end of the spectrum, highly autonomous bots are free to act according to their own

will. Another essence of bot-hood is the anthropomorphizing of the bot interface. People

interact with bots differently than they interact with other computer systems, and bots

are seen as almost pseudo-life-like entities. While these differences are highly subjective

and often quite subtle, they provide some guidance in distinguishing between programs and

software bots.

Figure 3.4: The relationship between (a) software bots, (b) software services, (c) software
bots with internal services, and (d) software programs/scripts.

It is worth noting that computer applications (apps) are commonly seen as a subtype

of programs, and are distinguished from the larger domain of programs through being

specifically designed for a human end user (e.g., they possess things like a user interfaces)

and being operating system dependant.71 However, for the scope of this thesis, I do not

formally distinguish between apps and programs.

3.2.4 Software Bots vs. Agents

Some researchers do not distinguish between bots and agents. Wooldridge and Jennings, for

example, believe that “bot [is] another term for agent, usually one implemented in software”

[52]. Others think of software bots and software agents as two distinct software technologies.

I proposed, however, that software agents are a subtype of software bots. That is, all agents

are bots, but not all bots are agents. Then what distinguishes software agents from software

bots?

Like software bots, there is little consensus on what exactly constitutes an agent as “[t]he

term ‘agent’ has been picked up, widely appropriated, and in many cases misappropriated,

by technical publications, lay publications, and many researchers in computer science” [53].

Although there are numerous definitions of agent-hood in the previous literature, I focus

my attention on some key definitions of software agents.

Perhaps the loosest definition of agents is that of Russell and Norvig [5], who describe

an agent as any program whose outputs are determined by its inputs: “An agent is any-

24

thing that can be viewed as perceiving its environment through sensors and acting upon that

environment through actuators.” [5] Others, like Hayes-Roth, equate agents with intelli-

gence and reasoning abilities: “Agents continuously perform three functions: perception of

conditions in the environment; action to affect conditions in the environment; and reason-

ing to interpret perceptions, solve problems, draw inferences, and determine actions.” [54]

Wooldridge and Jennings attributed the following properties to agent-hood: autonomy, so-

cial ability, reactivity, pro-activeness [28]. Tosic and Agha distinguish between weak agency

(i.e., control of own state, reactivity, and persistence) and strong agency (i.e., weak agency,

goal-orientation, and pro-activeness) [55].

Since the scope of this thesis is not about defining agent-hood, I will focus on the re-

lationship between software agents and software bots. Software agents are a subtype of

software bots, that fulfill a set of minimum requirements for agency. These requirements

usually include sensing, acting, intelligence, autonomy, social-ability, however, they can vary

slightly based on the definition of software agency you choose to adopt. To realize these

requirements (specifically autonomy), software agents typically have some form of internal

services, as shown in Figure 3.5(e). An example of this type of bots are the agents that

made-up early mutli-agent systems [52]. However, with the latest advances in AI, more and

more software bots are trending towards agent-hood.

3.2.5 Software Bots vs. Chatbots

Many people commonly (yet incorrectly) use the term chatbot to refer to all software bot

technologies, and vice versa. Although many of the popular mainstream bots do in fact

have some form of language capability, possessing the ability to understand language is not

a requirement for software bots. That is, all chatbots are bots, but not all bots are chatbots.

More specifically, chatbots are distinguished from the greater domain of software bots by

their ability to use language to communicate with their users. Chatbots are also commonly

referred to as chatterbots, talkbots, or artificial conversational entities.

Not surprisingly, there is also a lack of agreement on what constitutes a chatbot. Broadly,

a chatbot can be described as any software bot with a conversational interface [46]. This

definition includes most of the common mainstream chatbots we see today, e.g., Slack’s

original helper bot, Hubot.72 More narrowly, a chatbot can be described as a software bot

that was designed purely to hold conversations with humans [46], e.g., Eliza, the original

chatbot [56]. For the scope of this thesis, I will be adopting the more broad definition of

chatbots as it is more widely used.

As shown in Figure 3.5, chatbots can either have their own internal services (e.g., Eliza

[56]) or access to external services (e.g., Poncho73). Some chatbots may also be agents

(cf. Figure 3.5e/f) when they possess the minimum requirements for agency as well as the

25

Figure 3.5: The relationship between (a) software bots, (b) software services, (c) software
bots with internal services, (d) software programs/scripts, (e) software agents, and (f)
chatbots.

ability to communicate with some form of human-understandable language, e.g., personal

assistant bots such Apple’s Siri74 or Amazon’s Alexa.75

3.3 Existing Classifications of Software Bots

The lack of consistent terminology surrounding software bots has not stopped people from

trying to make sense of them. In this section, I identify and describe some common ways

of classifying software bots.

3.3.1 High-Level Classifications (Subtypes)

One of the most common ways that people try to classify software bots is through their

set of specialized behaviours. These classifications build upon the basic requirements of

software bot-hood in one or more ways. Throughout the remainder of the thesis, I will refer

to this type of classification as software bot subtypes. Software agents and chatbots, as

discussed earlier, are good examples of enhanced bot behaviours that have earned their own

classifications. Examples of other types of high-level classifications of software bots include:

web bots, software bots that perform their tasks over the internet; embodied agents,

agents that have a life-like digital form; conversational agents, chatbots that satisfy the

requirements of agency; intelligent agents, software agents that typically include more

advanced AI capabilities; sapient agents, software agents that make informed decisions;

rational agents, software agents that do the right thing [5]; and various combinations of

these behaviours.

26

3.3.2 Role-Based Classifications

People have also tried to classify software bots through their purpose or role [57]. Many

common bot catalogues (e.g., BotList,76 Chatbottle,77 or Discord78) include some form of

role-based classification to help users browse and discover new software bots.

One common way of examining software bots’ roles is through the lens of good vs. bad

bots [46]. I introduce some common role-based classifications for both good and bad bots

below. It should be noted that these categories are not intended to be mutually exclusive,

nor are they an exhaustive list of all possible bot roles.

There are many examples of bots that work cooperatively with humans to help them

complete tasks [46]. An example of such bots are crawlers, bots which run continuously

in the background to fetch and often store data from websites, APIs, etc. Search engines

employ them to crawl the web, collecting the documents required to build a searchable index

by following the hyperlinks on each page. GoogleBot79 and BingBot80 are two prominent

examples of search engine bots. Information bots, often referred to as news bots, help

bring information to users, often in the form of notifications. Transactional bots work

on the users behalf, interacting with external systems to automatically execute transactions

when a condition is met. Productivity bots work to improve user or team productivity by

automating simple office tasks. Collaboration bots help users communicate, coordinate,

and collaborate. Other bots, such as art bots and game bots, are designed to keep users

entertained.

Unfortunately, a software bot’s role can also be bad [46]. Hacker bots were developed

to distribute malware, exploit security vulnerabilities, and organize botnets. Although not

always malicious, scrapers are used to download data from the web, sometimes with the

intention to republish the stolen content elsewhere. Spammers post promotional content

in attempts to drive traffic to a specific site. Bots can also act as impersonators, either

masking their identities to look like network traffic (e.g., for DDoS attacks) or pretending

to be someone else.

Storey and Zagalsky proposed a role-based classification to discuss how bots are being

used in software development [45]. Testing bots help detect bugs and code quality issues

in the project. Code bots help make coding activities more efficient and effective. Doc-

umentation bots produce documentation from developer artifacts. Translation bots

can generate documentation in many languages. Support bots interact with the user to

answer simple questions by consulting a knowledge base. Operations bots help automate

deployment and operations tasks. The use of bots in a development operations context is

often referred to as ChatOps.

In previous research, I explored the roles that bots can play in reducing the types of

friction software developers face when working collaboratively [58]. Using a socio-technical

27

model for collaborative work (cf. Figure 3.6, we identified three main roles that software

bots can play: reducing (a) a team’s interaction friction, (c) an individual’s interactions

with technology friction, and (d) a team’s interactions with technology friction.

Figure 3.6: Socio-Technical Model for Collaborative Software Development including the
(a) society’s social system, (b) team’s social system, and three categories of friction that
bots can help reduce: (b) team’s interactions, (c) individual’s interactions with technology,
and (d) team’s interactions with technology.

3.3.3 Other Classifications

Bots can also be classified by where they live (i.e., their hosting platforms) [42]. These

platforms dictate where and how the bots are accessed by end users. Common types

of platforms include social networking (e.g., Facebook Messenger, Microsoft’s Skype, or

WeChat) or domain-specific channels (e.g., Slack,81 Microsoft Teams, or Hipchat). Many

common bot catalogues also include some form of hosting platform-based classification.82,78

Similarly, bots can also be described by the platforms in which they were created [42].

These creation platforms (e.g., Microsoft Bot Framework,83 BotKit,84 PandoraBots,85 or

ProBot86) support the design and development of bots.

One step towards a multi-faceted classification of bots is the dimensions proposed by

Storey and Zagalsky who identified that software bots can differ across five dimensions: how

autonomous, how intelligent, how do they interact, how are they created, where do they

reside, and what do they do [59]. They also stressed the importance for examining how

the use of bots by developers benefits developers by studying bots on two main dimensions:

efficiency, supporting developers doing things faster; and effectiveness, helping developers

move towards meaningful goals.

28

3.4 Shortcomings of Existing Classifications

Much of the recent effort towards understanding software bots has been focused on clas-

sifying them by a single aspect (e.g., their role or platform). However, as software bots

continue to grow more complex, high-level classifications are likely to overlook many of the

properties that make each bot unique. For example, what features distinguish one chatbot

from another? Some classifications focus on technologies used to build bots (e.g., the al-

gorithms or communication protocols used). However, in a field that is developing rapidly,

these technology-based classifications quickly become out of date.

Existing classifications that explore a variety of properties and behaviours of software

bots do exist, which are discussed in detail in Chapters 4–7. Much of this research, how-

ever, focuses only on a specific subtype of bot (e.g., software agents) or a narrow set of

properties/behaviours. When examining only a subset of software bots, it is easy to miss

the wide range of behaviours bots can have. Although Storey and Zagalsky [59] provide a

step towards a holistic view of software bot behaviours, their proposed classification is still

very high level.

3.5 Summary

In this chapter, I explored a variety of existing trends for describing bots. Building on these

previous descriptions, I derived an updated definition of software bots and provided a com-

parison of modern software bots to a variety of bot-like technologies (i.e., scripts, programs,

applications, agents, and chatbots), highlighting both their similarities and differences.

To further understand what is a software bot, I also explored previous ways of classifying

bots. The remainder of this thesis describes the creation of a new taxonomy of software

bots, aimed at exploring the emergent behaviours and properties of software bots as a whole.

The work presented in this thesis builds upon these existing classifications of software bot

sub-types to develop a more holistic classification of modern software bots.

58https://blog.hubspot.com/marketing/where-do-bots-come-from
59https://www.merriam-webster.com/dictionary/bot
60https://en.oxforddictionaries.com/definition/bot
61https://slack.com/apps/category/At0MQP5BEF-bots
62https://www.theverge.com/2018/5/21/17375482/microsoft-semantic-machines-acquisition-bots-cortana-human
63https://docs.microsoft.com/en-us/azure/bot-service/bot-service-overview-introduction?view=azure-bot-service-3.0
64https://venturebeat.com/2018/05/21/researchers-use-vr-to-train-ai-drones-cutting-autonomous-vehicle-crashes/
65https://www.oasis-open.org/committees/soa-rm
66https://www.slack.com/apps/A8GBNUWU8-github
67https://www.wired.com/1996/04/netbots/

29

68http://preserve.mactech.com/articles/mactech/Vol.15/15.09/ScriptingLanguages/index.html
69https://ifttt.com/
70https://whatis.techtarget.com/definition/script
71https://www.pcmag.com/encyclopedia/term/37919/application-program
72https://hubot.github.com/
73http://www.poncho.is
74https://www.apple.com/ca/ios/siri/
75https://developer.amazon.com/alexa?cid=a
76https://botlist.co/
77https://chatbottle.co/
78https://discordbots.org/tags
79https://www.google.com/search/howsearchworks/crawling-indexing/
80https://www.bing.com/webmaster/help/which-crawlers-does-bing-use-8c184ec0
81http://www.slack.com
82https://botlist.co/
83https://dev.botframework.com/
84https://www.botkit.ai/
85https://www.pandorabots.com/
86https://github.com/probot

30

Chapter 4

Developing a Software Bot

Taxonomy

Classification is a powerful tool. Through the development of a software bot taxonomy, I aim

to provide a set of consistent terminology for understanding the observable properties and

behaviours of software bots. This taxonomy views software bots from multiple perspectives,

rather than classifying them by a single property (e.g., their role or purpose). This allows

for the flexible comparison of bots, as well a taxonomy that can easily be updated/extended

in a rapidly changing field.

This chapter describes the generation of the software bot taxonomy. Throughout this

process, I reflected and built upon past research on software bots and their predecessors.

Although the taxonomy I generated provides a set of consistent terminology for future

work in the field of software bots, I also include a mapping of alternate terminology for

understanding past work.

4.1 Taxonomy Generation Methodology

This section provides a high-level overview of the methodology I used to generate the tax-

onomy of software bots that I propose in this thesis. I adapted Usman et al.’s taxonomy

development methodology [1]. As shown in Figure 4.1, their suggested methodology is com-

prised of four phases: (a) planning, (b) term identification and extraction, (c) design and

construction, and (d) validation.

The taxonomy generation methodology I followed deviates slightly from the methodology

proposed by Usman et al. [1], as shown in Figure 4.2. My adapted methodology expands the

original four into six distinct phases: (a) Planning (b) Data collection (c) Term identification

and extraction (d) Design and construction (e) Validation (d) Usage guidelines A description

31

of the changes made to the methodology, as well as the reasons for the adaptations, are

described below.

Figure 4.1: Usman et al.’s methodology for taxonomy generation [1]

The first phase was the planning phase (Figure 4.2A). Similar to Usman et al.’s orig-

inal methodology, this phase included identifying the taxonomy’s (i) software engineering

knowledge area, (ii) scope and objectives, (iii) subject matter, (iv) classification structure,

and (v) classification procedure. However, in Usman et al.’s original methodology, data

identification and collection is a single step in the planning phase. Since data collection

was a complex, multi-stage process in my taxonomy generation, I divided it into its own

distinct data collection phase (Figure 4.2B). To get a robust set of articles from which to

extract terms, I conducted a (i) systematic literature search, (ii) search results snowballing,

and an (iii) online search for recent bot-related articles.

This was followed by the identification and extraction phase (Figure 4.2C). Simi-

lar to Usman et al.’s original methodology, the first step in this phase was also (i) term

extraction. However, in their original methodology, redundancy and inconsistency removal

were performed in the same step. In my methodology, these are broken into two distinct

steps. First, (ii) redundancies were removed by grouping like terms or synonyms together.

Then, any (iii) inconsistencies or terms not satisfying the goals of the taxonomy were re-

moved. It should be noted that steps (ii) and (iii) were performed iteratively and continued

throughout the remainder of the taxonomy generation process.

The fourth phase was design and construction (Figure 4.2D). Usman et al.’s original

methodology suggests a top-down approach for taxonomy generation. Since I had few

insights on how the taxonomy should look, I used a bottom-up approach to help reveal

which higher level categories would best capture the range of software bot behaviours. For

this reason, I included an additional (i) card sorting step which allowed the basic structure

32

Figure 4.2: Methodology for creating the updated taxonomy, adapted from Usman et al.
[1]. The underlined/strikeout text depicts steps that were added or removed, respectively.

of the taxonomy to emerge. Next, I identified and described the (ii) top-level dimensions,

the (iii) categories for each dimensions, and any (iv) relationships between dimensions. I

also included an additional iterative (v) refining the taxonomy step. At this point, Usman

et al. included a step for generating usage guidelines; however, I decided to move this step

later in the process. This allowed me to tailor the usage guidelines to better fit the needs

of potential users based on the results of the validation phase.

The fifth phase, validation (Figure 4.2E), had three steps. First, I performed (i) bench-

marking by comparing the proposed taxonomy against existing software bot taxonomies.

Next, I conducted an (ii) expert tagging session where a software bot developer used the

proposed taxonomy to tag their own bot. Lastly, I performed (iii) subject matter tagging

with three software bots. Throughout the validation phase, I iterated on and updated the

taxonomy as required.

The final phase was the creation of usage guidelines (Figure 4.2F). The usage guide-

lines describe the structure of the proposed taxonomy and identify how it can be used.

33

In the following sections, I describe each of the six taxonomy generation phases in greater

detail.

4.2 Planning (Phase 1)

Prior to beginning the taxonomy construction, the planning phase helped define the context

of the new taxonomy [1]. In this phase, I describe the basic taxonomy design decisions: the

knowledge area (Section 4.2.1); taxonomy objectives (Section 4.2.2); subject matter (Section

4.2.3); classification structure (Section 4.2.4); and classification procedure (Section 4.2.5).

4.2.1 Knowledge Area

Identifying the knowledge area helps describe the context of the taxonomy [1]. I used the

Software Engineering Body of Knowledge (SWEBOK) to determine the knowledge area

which the taxonomy contributes to [2]. The SWEBOK divides the discipline of software

engineering into fifteen distinct knowledge areas [2], each of which is further broken down

into multiple subareas and sub-subareas.

Software bots, like any software system, fall within the scope of the Computing Foun-

dations knowledge area in SWEBOK-V3 [2].

13: “The scope of the Computing Foundations knowledge area (KA) encom-

passes the development and operational environment in which software evolves

and executes. [2]”

Specifically, software bots can be viewed as a set of components that, when combined

together, achieve some purpose or goal. I identified the sub-knowledge area for the software

bot taxonomy as being the SWEBOK’s Basic Concept of a System.

13.8: “A system is a purposeful collection of interrelated components that

work together to achieve some objective. A system can be very simple and include

only a few components, like an ink pen, or rather complex, like an aircraft. [2]”

Software bots, like many other software systems, are also more than simply a sum of

their parts and exhibit specific behaviours and properties as a result of the entire system

working together as a whole. Based on this, I further refined the knowledge area to be the

Emergent System Properties of the software bots systems:

13.8.1: “A system is more than simply the sum of its parts. Thus, the prop-

erties of a system are not simply the sum of the properties of its components.

Instead, a system often exhibits properties that are properties of the system as

34

a whole. These properties are called emergent properties because they develop

only after the integration of constituent parts in the system. Emergent system

properties can be either functional or non-functional. Functional properties de-

scribe the things that a system does. Non-functional properties describe how the

system behaves in its operational environment. [2]”

Thus, the taxonomy proposed in this thesis contributes to the SWEBOKs Computing

Foundations: Basic Concept of a System: Emergent System Properties, as it describes

emergent properties (both functional and non-functional) of software bots [2].

4.2.2 Objectives & Scope

Since previous literature on software bots failed to adequately define modern software bots,

the main objective of this taxonomy was to provide an up-to-date, non-prescriptive de-

scription of the range of possible software bot properties. Thus, the main objectives of the

software bot taxonomy were to provide:

1. a set of consistent, updated terminology to describe the properties of bots;

2. the range of values for each of the identified properties; and

3. the mappings between the updated terminology and the terminology used in existing

literature.

The taxonomy was designed with researchers, practitioners, and end-users in mind. By

organizing and describing software bots, the taxonomy can help researchers advance the

knowledge area by providing a set of a common terminology to ease the sharing of knowledge.

This enables a better understanding of the interrelationships between the various properties

of bots, and aids in identifying gaps in the knowledge area [1]. Practitioners can use the

properties defined in the taxonomy to better understand the variety of design choices when

building software bots so they can make informed decisions when developing bots. Software

bot end-users can also leverage this taxonomy to better understand the technologies they

are interacting with, the possible risks associated with bots, and make informed decisions

on which bots to adopt.

4.2.3 Subject Matter

While the knowledge area describes the broad area, the subject matter describes what is

being classified. The subject matter for this taxonomy is the observable properties and

behaviours of software bots. The taxonomy treats software bots as systems that can be

understood by their inputs (i.e., what they understand) and outputs (i.e., behaviours, prop-

erties, characteristics), without requiring any knowledge of their internal workings. More

35

specifically, the subject matter for this taxonomy can be classified through observing and

interacting with the bots.

I purposefully excluded implementation details to allow the taxonomy to be more easily

maintained and expanded upon. To understand software bots, one does not require a de-

tailed understanding of how the bots are built. In addition, the technologies and algorithms

used to build software bots are constantly changing and being updated. Thus, including

implementation details would more quickly render the taxonomy out of date.

4.2.4 Classification Structure

Taxonomies are most commonly structured as hierarchies; however, taxonomies can also

be trees, paradigms, or facet based [1]. Hierarchical taxonomies have a single top-level

dimension and a set of inheriting subclasses (i.e., has an “is-a” relationship with the parent

class). Hierarchical taxonomies ensure mutual exclusivity, so each entity can only belong

to a single subclass, as shown in Figure 4.3(a).

Software bots, however, are complex entities that can be viewed and classified by more

than one perspective. For this reason, the software bot taxonomy employs faceted clas-

sification. As shown in Figure 4.3(b), faceted taxonomies allow for the subject matter,

in this case software bots, to be independently classified across multiple properties, called

facets. Each of the facets may be either decomposed into further sub-facets, or contain a

set of mutually exclusive values for classifying the software bot. The facets can be either

independent, or relationships can be defined between them.

Whereas hierarchical classifications are fixed and unchanging, faceted taxonomies allow

for greater flexibility and expandability. Faceted taxonomies are also well suited for emerg-

ing or evolving areas, such as software bots, since they do not require complete knowledge of

the area beforehand [1]. Additional facets, sub-facets, or facet values may be easily added,

allowing them to evolve smoothly over time.

An example of a faceted taxonomy is the Art & Architecture Thesaurus (AAT)87, which

classifies art based on seven facets: concept, physical attributes, styles/period, agents,

activities, materials, and objects. Faceted taxonomies are also commonly used for organizing

web content. For example, an online marketplace that allows customers to filter based on

price, colour, material, etc.

4.2.5 Classification Procedure

Since each facet or sub-facet in a taxonomy has a set of possible values, the classification

procedure describes the way in which the subject matter will be assigned to a facet value.

In the proposed taxonomy, the properties software bots are classified either nominally or

ordinally. Nominal facets have two or more categories, but there is no clear ordering between

36

Figure 4.3: Comparison of the structure of (a) hierarchical taxonomies and (b) faceted
taxonomies. The green boxes reflect the how a sample entity would be classified in each
taxonomy.

them. Ordinal facets have two or more options, but there is a clear ordering between the

options. However, both nominal and ordinal require the user to somewhat subjectively

assign bots to the appropriate value for the facet.

4.3 Data Collection (Phase 2)

Due to the variety of research, articles, and other media on software bots, the primary

data I used to generate the taxonomy was previous literature that classified software bots.

To retrieve the articles, I employed three main data collection methods: a systematic

literature search (Section 4.3.1), backwards snowballing (Section 4.3.2), and an online

search (Section 4.3.3).

In the following sections, I describe each of these three data collection methods and the

articles collected.

4.3.1 Systematic Literature Search

One of the main goals for the creation of the software bot taxonomy was to consolidate the

terminology used in existing classifications of software bots. To find these existing classifi-

cations schemes, I conducted a systematic literature search for taxonomies that focused on

the observable behaviours of software bots, following Kitchenham et al. [60] methodology.

As shown in Figure 4.4, the systematic literature search had five main phases, as described

below.

4.3.1.1 Selecting Terms

I identified two search terms, software bots and taxonomy, and a series of synonyms to

guide the initial article collection process.

37

Figure 4.4: An overview of the methodology followed for the systematic literature search
data collection process.

Software Bots: The subject matter of interest, software bots, are commonly referred to by

many different names: chatbots, chatterbots, agents, artificial agents, autonomous

agents, etc. For this reason I included the synonyms agent*, chatbot*, and

chatterbot*, along with bot* in the initial search.

Taxonomy: The classification of knowledge can be described in many different ways: tax-

onomy, ontology, classification, characterization, etc. For this reason I included the

synonyms classif* and character*, alongside taxonom* in the initial search. I

opted to exclude the term ontology from the search as it returned an excessive num-

ber of unrelated results (e.g., bots using ontologies in their decision making processes)

that would have been infeasible to handle.

4.3.1.2 Select Sources

Five prominent digital libraries were selected for the systematic literature search: ACM

Digital Library,88 IEEE Xplore,89 Science Direct,90 SpringerLink,91 and Wiley Online.92

These databases were selected since they are widely used, well established in the domain of

software engineering and computer science, and cover a broad range of article types (e.g.,

journals, proceedings, magazines, books, courses, or reference work).

4.3.1.3 Generate Search Strings

Search strings were generated for each of the five databases selected. The two search terms

were linked with their synonyms (OR) and then joined together (AND) to generate the

search strings. The search strings were applied only to the titles of the papers (due to the

volume of papers), and no article publication date restrictions were used. A copy of the

search strings used for each of the databases is provided in Appendix A.

38

4.3.1.4 Query Sources

Each of the five databases were queried in early April 2018, returning a total of 1,462

articles. At this point, Google Scholar,93 a popular meta-search engine, was used to check

the thoroughness of the search results and retrieve any articles not included the databases.

I repeated the same queries and examined the first two pages of results for each term

1 (agent*, chatbot*, chatterbot*, bot*) and term 2 (classif*, character*,

taxonom*) pairing. These queries returned one grey paper that was not included in our

previous search results [61]. An overview of the distribution of articles returned from each

of the digital libraries is shown in Table 4.1.

Table 4.1: Breakdown of search results by database.

Database Search Results

ACM Digital Library 567
IEEE Xplore 198
ScienceDirect 39
SpringerLink 91
Wiley Online 577

Total 1,462 (databases) + 1 (meta-search) = 1,463

4.3.1.5 Article Selection

Querying the databases returned a total of 1,463 articles that satisfied the search strings.

Due to the number of articles returned and the fact that many of them were unrelated

to the software bots or did not focus on their observable properties, I generated a set of

selection criteria to determine which articles should be used to create the taxonomy.

Selection Criteria: The selection criteria took two forms: inclusion and exclusion crite-

ria. Articles had to satisfy the following inclusion criteria to be included:

I1: The article’s title contains the keywords defined in the search string: (agent or bot

or chatbot) and (taxonomy or classification or characterization);

I2: the article’s main subject matter is software bots or bot subtypes, evidenced by being

mentioned in title or abstract of the publication;

I3: the article examines or provides some classification, characterization, or taxonomy of

the properties, dimensions, or functionality of bots;

I4: the article falls within SWEBOK (IEEE) Computing Foundations: Basic Concept of

a System: Emergent Properties (13.8.1) [2];

39

I5: the article is published in a peer-reviewed journal, conference proceeding, workshop,

book, magazine, or as grey literature (e.g., technical reports, graduate thesis); and

I6: the article is written in English.

Inclusion criteria 1 & 2 checked that the database queries returned the correct articles

based on our search terms. Criteria 3 & 4 ensured that the articles that fit our knowledge

area and subject matter, as described in Section 4.2. Lastly, criteria 5 & 6 ensured that

high-quality articles were selected.

The exclusion criteria determined if the articles contained anything that should dis-

qualify them from being used. The following exclusion criteria helped determine which

articles should not be included:

E1: The article only focuses on a high-level role or behaviour-based classification of bots

(e.g., the article doesn’t examine any lower-level properties of bots);

E2: the article only focuses on the algorithmic classification of bots;

E3: the article only focuses on the application of bots in other domains (e.g., biology,

chemistry, or medicine);

E4: the article only focuses on the classification of a very specific subtype of bots, which

could not be applied to the domain of bots as a whole (e.g., botnets); or

E5: the full article was not available online (e.g., only the abstract or slides were available).

Exclusion criteria 1 ensured that the author’s classification scheme was not too broad/high-

level. Criteria 2, 3, & 4 checked that the articles were not too specific be applied to the

entire field of software bot research. Lastly, criteria 5 ensured that the article could be

accessed.

Since articles that failed to fulfill all of the inclusion criteria or that satisfied any of the

exclusion criteria were not included in the term extraction phase, each of the articles was

put through a primary and secondary selection process.

Preliminary Selection (Title and Abstract): In the preliminary selection phase, the

titles and abstracts (when available) for each of the articles were carefully read. Papers

that failed to meet all of the selection criteria (i.e., they violated an inclusion criterion or

satisfied an exclusion criterion) were removed immediately. If it was unclear whether the

article would satisfy the selection criteria based on the title and abstract alone, I erred on

the side of caution and tentatively included the article in the secondary selection phase.

Duplicate papers were also removed, leaving a total of 60 potential articles to be analyzed

in the secondary selection phase.

40

Secondary Selection (Full Paper): In the secondary selection phase, each of the re-

maining articles was read in full to determine if they satisfied all of the selection criteria

and to extract the following meta-data:

• Title: The full title of the article.

• Author(s): The article author’s full names.

• Publication Venue: The type of venue that the article was published.

• Publication Date: The year article was published.

• Exclusion Reason: The selection criteria the paper failed to meet, if any.

45 articles failed to satisfy at least one of the selection criteria and were excluded. A list

of these articles, including their extracted meta-data and reason for exclusion, is provided

in Appendix B.1.

15 articles fulfilled all of the selection criteria and were included in the next phase of

the taxonomy generation. For each of these articles, the following additional meta-data was

extracted:

• Subject Matter: The type subject matter (e.g., bots, agents, agent subtype).

• Classification: The classification structure (e.g., taxonomy).

• Methodology: The methodology used to derive the classification.

• Validation: The classification validation method, if any.

A list of the articles that satisfied all of the selection criteria, including their extracted

meta-data, is provided in Appendix B.2.

4.3.2 Backwards Snowballing

A round of backwards snowballing was also conducted to identify articles that were not

returned in the database queries but still satisfied the remaining selection criteria. Snow-

balling helped identify papers that still focused on classifying the properties of software

bots, but may have used slightly different terminology. Therefore, the snowballed articles

still had to pass all of the selection criteria except for inclusion criteria I3 (i.e., keywords in

the title).

I performed a single iteration of backwards snowballing using the methodology outlined

by Wohlin [62]. The “start set” for the snowballing procedure was the 15 articles collected

in systematic literature search phase, see Appendix B.2. While the list of articles cited by

the start set (i.e., backwards snowballing) was manageable (100s), the list of papers citing

the start set (i.e., forwards snowballing) was massive (1000s). Furthermore, examining a

subset of the forward snowballing papers showed that most of the papers were focused

on designing software bots, not classifying or understanding them. The papers that the

41

start set of articles referenced were often used to build upon or inspire the classifications,

making them much more relevant. For these reasons, I opted to conduct only backwards

snowballing.

I examined the title of each article in the reference lists and the place that the article was

referenced in the paper. If it appeared as though it may pass the selection criteria, I read the

full paper to determine its eligibility. I identified nine additional articles using this method-

ology and extracted the following meta-data from each: Title Author(s) Publication

venue Publication date Subject matter Classification Methodology Validation A

list of these articles and their extracted meta-data is provided in Appendix B.3.

4.3.3 Online Search

Since research into modern software bot technologies is still relatively new, the majority

of the articles collected from the systematic literature search and backwards snowballing

phases focused on software agents. For this reason, I conducted an informal online search for

recent work (e.g., papers, blog posts, books) on software bots to get a fresh perspective on

the latest trends. I selected high-quality articles that focused on the observable properties

and behaviours of software bots. For this phase, I did not employ a rigorous methodology

but instead relied on my personal expertise to identify 16 articles to be included in the next

phase of the taxonomy generation. The following meta data was extracted from each of the

articles: Title Author(s) Publication venue Publication date Subject matter A

list of these articles, their meta-data, and reason for inclusion is provided in Appendix B.4.

4.4 Identification & Extraction (Phase 3)

The identification and extraction phase involved extracting and controlling the terminology

that would be used to generate the new taxonomy. This phase had two main stages, term

identification and extraction (Section 4.4.1) and term reduction (Section 4.4.2), which

are described in the following sections.

4.4.1 Term Identification & Extraction

Terms that described an observable property or behaviour of software bots were extracted

from the articles identified in the data collection phase, see Section 4.3. Since the terms that

I extracted from the articles had to fall within the taxonomy’s knowledge area, objectives,

and subject matter of the software bot taxonomy (see Section 4.2), I derived a set of

extraction requirements. The terms needed to be included as part of the article author’s

classification of bots or clearly stated as being a property that the authors associated with

bots (e.g., not simply in the background or related work sections). The terms extracted

42

also had to describe the observable properties or behaviours of software bots and not purely

an implementation detail. To ensure these requirements were satisfied by the terms to be

extracted, I identified the following term extraction criteria:

R1 The author(s) clearly defines the term as a property of bots.

R2 The term describes an observable property or behaviour of bots.

Each of the articles was re-read and any terms that satisfied these requirements were

extracted. If the author provided a simple definition for the term in the article, that was

extracted in addition to the term itself. This resulted in a list of extracted terms for each

of the articles identified in the data collection phase. All of the extracted terms were

collected in an anonymized spreadsheet containing a list of paper IDs, extracted terms, and

definitions (when available). Approximately 400 individual articleId-term-definition tuples

were extracted during this stage.

It should be noted that, during this step, the main goal was to extract terms for gen-

erating the new taxonomy rather than evaluating the taxonomies presented in the articles.

For this reason, I attempted to ignore the structure of the taxonomies while still extracting

meaningful terms. This was done in an attempt to reduce biasing the structure of the new

taxonomy.

4.4.2 Term Reduction

Since taxonomies are useful for organizing knowledge areas that lack common terminology,

it is expected that many terms may be used to describe the same property, or that some

terms may have multiple meanings [1]. For this reason, it is critical to reduce redundancies

and remove inconsistencies when generating a new taxonomy.

I used two strategies to reduce redundancy throughout the taxonomy generation process:

merging and mapping. Merging taxonomies is the process of bringing together different tax-

onomies on the same subject.94 If multiple terms are used to describe the same concept,

redundancies are merged together under a preferred term [63]. The result of merging tax-

onomies is a new, improved taxonomy that is a combination of the concepts from all of the

taxonomies. Mapping involves identifying the alternate terms, often called variant terms

[63], used to describe identical concepts across different taxonomies.94

Digital Reduction: Once the initial term extraction was complete, I checked the spread-

sheet for exact terminology matches and merged them together. It should be noted that

this step did not remove any terms, but instead grouped together exact matches. After this

initial digital reduction, approximately 350 unique terms remained.

43

Sorting Reduction: Term reduction continued throughout the remainder of the taxon-

omy generation process. Any term merges that were missed in the digital reduction step, for

example “[64] age” and “[39] age”, were stapled together. Potential terminology mappings

and/or mergings, for example “[65] Learning (adaptive): changes its behavior based on its

previous experience”, “[66] Amenability: ability to adapt behavior to optimize performance”,

and “[44] Flexible”, were tentatively clipped together and revisited later in the taxonomy

generation process.

Inconsistency Removal: If I was unsure if a term satisfied the extraction criteria during

the identification step, I erred on the side of caution and over-extracted terms. I did this

since the terms would be revisited in the term reduction step, as well as throughout the

remainder of the taxonomy generation process. Thus, if I found any cards that did not

satisfy the term extraction requirements or the goals of the taxonomy, they were removed

from the taxonomy generation process. A full list of excluded cards and their reasons for

exclusion is provided in Appendix C.

4.5 Design & Construction (Phase 4)

This section describes how the taxonomy’s top-level dimensions, facets, sub-facets, and

facet values were selected in the design and construction phase. As shown in Figure 4.5, I

employed a highly iterative process of taxonomy generation which included six main steps:

card sorting (Section 4.5.1), identifying top-level dimensions (Section 4.5.2), identifying

facets/sub-facets (Section 4.5.2), describing relationships (Section 4.5.2), refining dimen-

sions (Section 4.5.3), and validation (Chapter 6).

Figure 4.5: The taxonomy construction methodology followed.

44

4.5.1 Card Sorting

Card sorting is a fast, inexpensive, and reliable method to derive an initial foundation for

structuring vast amounts of data [67, 68]. For these reasons, I employed card sorting to

identify patterns and create a rough taxonomy structure from the extracted terms. The

two common card sorting methodologies are open sorting, where subjects can define their

own top-level categories, and closed sorting, where top-level categories are already defined

[67, 68]. Since I had few insights on how the taxonomy should be structured, I used open

card sorting to help reveal the categories that would best capture the range of properties

and behaviours of software bots. Below, I briefly describe the card sorting process that was

followed.

Content: Good content for the card sort should come from a variety of sources [67].

The content used for the sort were the terms extracted (cf. Section 4.4) from the articles

collected during the systematic literature search, results snowballing, and online search

(cf. Section 4.3). The extracted terms were printed on 11cm by 2.5cm cards, as shown in

Figure 4.6. Each of the cards contained a single term, its definition (if available), and the

article ID(s).

Figure 4.6: The content for the card sorting process.

Number of Cards: A total of 338 cards were sorted. While we were well over Spencer

and Warfel [68]’s recommended maximum number of cards (30-200), these guidelines are

only a recommendation since it can be time consuming and tiresome for the participants

[67]. Since our card sorting was completed over multiple sessions and we were familiar with

the subject matter, we chose to take on a larger sort.

45

Duration: The card sorting process was not limited by time, but rather until consensus

was reached. The preliminary card sorting was conducted in a series of short sessions which

spanned over a consecutive two-week period. Each of the sessions ranged from one to four

hours in length.

Participants: The card sorting was performed by myself and a collaborator. Although

it is generally recommended to have more than two participants [67], due to the number of

cards and the time requirements for the sort, it was not feasible to perform the sort with

more than two participants. Although I believe that the thoroughness of the card sort,

completing multiple iterations of the taxonomy, and validating it makes up for only having

two participants. All of the sorting was completed with both of us present.

Prior to the card sorting process, my collaborator was familiar with bots but had not

studied them directly. They were not involved in the article selection or extraction processes,

had not read the articles from which the terms were extracted, and had no prior experience

with software bot classifications.

Card Sorting Process: Prior to beginning the card sort, all of the term extraction

cards were shuffled and stacked in a pile on the table (Figure 4.7a). My collaborator and I

examined each of the cards and worked together to group similar terms (Figure 4.7b).

The card sorting process was iterative. Each of the groupings were revisited multiple

times and cards were re-assigned to different groups as required. Any terms that were found

to be duplicates, redundancies, or synonyms were reduced using the methodology described

in Section 4.4.2. If we were unsure of the meaning of any terms, I referred to the original

article and updated the card as required.

We continued the sort until the structure of the groups remained relatively stable upon

re-examination (Figure 4.7c). The cards were laid out according to their groupings and we

identified the rough dimensions, facets, and the relationships between the dimensions with

sticky notes (Figure 4.7d).

4.5.2 Dimensions, Facets, and Relationships

Faceted taxonomies have a set of dimensions at the top level that represent the main

categories under which the bots can be classified [1]. The initial version of the taxonomy’s

dimensions emerged during the card sorting process, as described above.

Once the initial top-level dimensions were identified, the cards corresponding to each di-

mension were re-examined to determine the appropriate facets, sub-facets, and facet values.

When facets began to emerge from the terms in the dimension card grouping, we identified

them as possible facets and gave them a label.

46

Figure 4.7: The software bot taxonomy at various stages of creation: (a) shuffled cards
ready to be sorted; (b) beginning to group similar terms; (c) groups have been created; (d)
assigning the groups dimension labels; (e) labeling the dimensions, facets, and sub-facets;
(f) the completed initial version of the taxonomy.

Since the taxonomy focused on the emergent properties of software bots, it is likely that

all of the properties had some form of relationship between each other. Thus, for the scope

of the taxonomy, we focused only on the most prominent relationships. When we identified

key relationships between facets during the card sorting process, we recorded them on sticky

notes and pinned them next to the dimensions.

4.5.3 Drafting Definitions & Refining Dimensions

A digital version of the card sorted taxonomy was created using the FreeMind95 mind

mapping software. Using this tool, I drafted the initial set of definitions for each of the di-

mensions, facets, and sub-facets based on the definitions extracted from the original articles.

The relationships between dimensions were captured with arrows.

A high-level copy of the initial version of the taxonomy is shown in Figure 4.8. The

first version of the taxonomy had 13 top-level dimensions and over 40 sub-facets. This

created an extremely broad but shallow faceted taxonomy, which would make it difficult

for users to leverage potions of. For this reason, I decided to reduce the number of top-

level dimensions and create a slightly narrower and deeper taxonomy structure. I tested

a variety of arrangements for the top-level dimensions, facets, and sub-facets, as shown in

Appendix D. I settled on three top-level dimensions (environment, intrinsic, and interaction)

47

Figure 4.8: A high level overview of the preliminary version of the Software Bot Taxonomy
using FreeMind95.

and the remainder of the facets/sub-facets were placed under the appropriate dimension.

This was an extremely iterative process, and multiple incremental versions of the taxonomy

were created.

Facet Values: At this point, I also identified the possible classification values for each of

the facets/sub-facets. When describing these values, I looked back at the articles that the

terms were extracted from. When the values were not adequately defined in the literature,

I used my knowledge of the subject matter to help identify related work that could expand

the definitions.

Revisiting Merged & Mapped Terms: Once the taxonomy’s structure was relatively

stable, I re-read each of the articles that were used to generate the taxonomy to ensure that

the terms had been correctly merged and mapped. I corrected any errors, added any missed

references, and ensured that no term mappings had been lost in the process. If I was unsure

if two terms were exact mappings (i.e., proper variant terms), I erred on the side of caution

and did not map them together.

48

A summary of the term mappings that I identified when building the proposed taxonomy

is provided in Appendix E.

Collaborator Consensus: My collaborator reviewed the changes that I made to the

overall structure of the taxonomy, as well as the definitions I drafted for each dimension,

facet, sub-facet, and facet value. This helped ensure that the changes I made were in line

with the initial card stored version of the taxonomy.

In the next Chapter, I present the finalized version of the proposed taxonomy of software

bots, and provide a guide to help readers interpret and use the taxonomy.

4.6 Summary

In this chapter, I described the iterative methodology used to generate my updated taxon-

omy of the observable properties and behaviours of modern software bots. I adapted Usman

et al.’s software engineering taxonomy generation methodology to ensure rigor and allow

to a multi-stage data collection, term extraction, taxonomy construction, and validation

process. I collected articles that discussed the characteristics of software bots from three

data sources (i.e., systematic literature search, literature search snowballing, and online

search), and extracted any terms used to describe the observable properties and behaviours

of software bots. The extracted terms were then reduced (through mapping and merging

variant terms), and card sorted to allow the new taxonomy’s dimensions, facets, and facet

values to naturally emerge from the data.

In the next chapter, I present the resulting holistic taxonomy of software bots and

provide a guide to help users interpret the taxonomy. I describe each of the three top-level

dimensions (environment, intrinsic, and interaction), the facets/sub-facets that fall under

each of the dimensions, and the range of values for each facet. I also discuss the taxonomy’s

validation process (cf. Chapter 6) and explore the implications of the proposed taxonomy

(cf. Chapter 7).

87http://www.getty.edu/research/tools/vocabularies/aat/
88http://dl.acm.org.ezproxy.library.uvic.ca/dl.cfm
89http://ieeexplore.ieee.org.ezproxy.library.uvic.ca/Xplore/home.jsp
90http://www.sciencedirect.com.ezproxy.library.uvic.ca/science/search
91https://link-springer-com.ezproxy.library.uvic.ca/
92http://onlinelibrary.wiley.com.ezproxy.library.uvic.ca/advanced/search
93https://scholar.google.ca/
94https://www.slideshare.net/HeatherHedden/mapping-merging-multilingualtaxonomies
95http://freemind.sourceforge.net/

49

Chapter 5

A Taxonomy of Software Bot

In this chapter, I introduce a taxonomy of the observable properties and behaviours of

software bots, which I refer to as “bots” for brevity. At the top level, the taxonomy has

three dimensions. These dimensions describe the first level of the taxonomy and provide an

overview of the taxonomy at a broader level:

(a) The bot’s environment. These facets describe the environment(s) that the bot

operates in.

(b) The intrinsic properties of bot itself. These are the facets that the bot designer has

complete control over when building the bot.

(c) The bot’s interactions within its environment. These facets describe the ways in

which bots interact with their environment and those operating within it.

Figure 5.1 provides an overview of the taxonomy’s dimensions and the top-level facets.

Each of the taxonomy’s dimensions, facets/sub-facets, and facet values will be discussed in

greater detail later in this chapter. Before presenting the taxonomy, I first provide a general

guide to help readers and users interpret the proposed taxonomy and understand its basic

usage.

50

TAXONOMY OF SOFTWARE BOTS

Environment
Dimension

Intrinsic
Dimension

Interaction
Dimension

Knowledge

Reasoning

Adaptability

Goals

Delegation

Specialization

Anthropomorphism

Lifecycle

Mobility

Type

Cardinality

Closure

Dynamism

Determinism

Permanence

Population

Access

Sense

Act

Communicate

Initiative

Robustness

Figure 5.1: A high-level view of the Software Bot Taxonomy’s structure.

5.1 Reader’s Guide

This taxonomy presents a faceted classification of the emergent properties and behaviours

of software bots to allow for flexible classification in a consistently changing field. Faceted

taxonomies allow for the subject matter (in this case software bots) to be classified from

multiple, independent perspectives called facets. Each of these facets are combined to create

a full classification of a software bot.

(a) DIMENSION

(c) Facet

(d) Sub-Facet (e) facet values

(d) Sub-Facet (e) facet values

(b) Facet (e) facet values

Figure 5.2: Example of the structure of the proposed taxonomy.

51

Dimensions: The facets describing the observable properties and/or behaviours of soft-

ware bots are organized under three high-level dimensions: the properties describing the

environment in which the bot is situated, the intrinsic properties of the bot, and the

behaviours of the bot as it interacts within its environment. Each of these three high-level

dimensions is decomposed into facets, sub-facets, and facet values, as shown in Figure 5.2

Facets and Sub-Facets: Facets (Figure 5.2b/c) describe the various properties that

software bots can exude for the corresponding dimension (Figure 5.2a). Facets can either

be decomposed further into sub-facets (Figure 5.2d) or they can have a set of possible values

(Figure 5.2e).

Facet Values: Each lowest level facet or sub-facet (Figure 5.2b/d) has set of values for

classifying the bot for the property or behaviour (Figure 5.2e). A bot should be able to be

classified with the facet values. The facet values can be one of three types: independent

boolean sub-facets, mutually exclusive states, or ranges.

Figure 5.3: Examples of the three possible facet value types: (a) boolean sub-facets, (b)
exclusive states, and (c) ranges.

If the values are boolean sub-facets, then they are actually condensed sub-facets with

two possible values, either true or false. The bot should be classified on each boolean sub-

facet independently. Boolean values are represented with an
⊕

icon beside facet values,

as shown in Figure 5.3(a).

If the values are mutually exclusive states, then the bot should fall under exactly one

of the values, as shown in Figure 5.3(b). These values are either nominal or ordinal with

discrete states.

If the values are a range, then the bot should be positioned somewhere along the range

of values, as shown in Figure 5.3(c). These values are ordinal and the bot can lie anywhere

along the range of values represented with an arrow icon (↓).

Relationships: Since the taxonomy is faceted, relationships can exist between facets

and/or sub-facets. Although many of the facets are independent and have no meaningful

relationships between them, many of the facets are related to each other (i.e., the values

52

on some facets can influence or restrict the values on other facets). In the following taxon-

omy, we identify some key relationships between the many of the facets and/or sub-facets.

However, it is likely that many other interrelationships exist.

5.1.1 General Usage Guidelines

This taxonomy, first and foremost, presents an attempt to update and organize the emergent

properties of software bots. More specifically, this taxonomy presents a controlled vocabulary

(i.e., preferred terms [63]) for discussing the observable properties and behaviours of software

bots. Secondly, this taxonomy provides a range of possible values for each category of

properties or behaviours. Lastly, the taxonomy also provides a set of alternative terminology

(i.e., variant terms [63]) that map between the controlled vocabulary and terms used to

describe the same content in previous research. Below, I discuss some general considerations

when using the software bot taxonomy.

Non-Prescriptive: This taxonomy attempts to present an unbiased look at the variety

of observable properties and behaviours of software bots. The goal of this taxonomy is

to provide a deeper understanding of existing software bots as a whole. Therefore, this

taxonomy does not provide guidelines nor recommendations for selecting between the range

of possible values for a property or behaviour of bots.

Due to the taxonomy’s non-prescriptive approach, it should be noted that this taxonomy

also does not focus on privacy, security, or ethics related considerations. It is the

taxonomy’s user’s responsibility to carefully consider these factors when interpreting and

using this taxonomy.

Flexible Usage: Since the taxonomy supports faceted analysis, users can utilize as many

or as few facets as they require for their given task. Furthermore, the facets/sub-facets are

organized under three high-level dimensions, so users can use the facets from one dimension

or a combination of dimensions. Users also do not need to know the name of the categories

for which the bot is being classified prior to using the taxonomy, since a bot should be able

to be classified by all the dimensions.

Expanding the Taxonomy: Although this taxonomy presents an initial effort towards

classifying the observable properties and behaviours of software bots, it should not be

considered complete. The taxonomy should be continuously re-evaluated to accommodate

shifting research goals, new developments, and emerging ideas in software bots. In the

taxonomy itself, some opportunities for future expansions are highlighted.

Since the taxonomy is multi-faceted, it allows for graceful expansion as each facet is

independent. This allows additional facets/sub-facets, facet values, and/or term mappings

53

to be added where required. Before a new facet is added, the user should carefully consider

if it fits within the knowledge area (i.e., emergent systems) and is classifying the correct

subject matter (observable properties/behaviours) of the software bot taxonomy, as shown

in Section 4.2. They should also ensure that the new content does not repeat information

presented elsewhere in the taxonomy.

Users should also ensure that they position the new content under the correct dimension,

facet, and/or sub-facet. If adding a new facet/sub-facet, the new facet’s values as well as the

value type (boolean sub-facets, mutually exclusive states, or a range) should be identified.

Any relationships between the new facets and additional term mappings should also be

defined. Additional values, term mappings, or relationships can also be added to an existing

facet in a similar manner. Ideally, the validity of the expansions should also be tested (e.g.,

tagging examples of bots, expert opinion, benchmarking, etc. [1]).

5.2 Environment Dimensions

To better understand the bot, we have to first understand its environment. The environment

dimension describes the surrounding in which the bot lives and operates. What we can

observe about bots is how they behave with the environment around them, therefore the

environment likely has an influence on the bot’s behaviours. As shown in Figure 5.4, there

are seven top-level facets that fall under the environment dimension: type, scope, closure,

dynamism, predictability, permanence, and population.

A bot might operate in many distinct environments. In this case, each of the bot’s

environments should be classified independently to provide a more complete picture of the

influences that each of the environments may have on the bot.

5.2.1 Environment Type

The bot environment’s type describes the setting (often times a system) which the bot

inhabits, participates, or accesses. Bots may differ on the type of environment in which they

execute (i.e., intrinsic dimensions) and where they interact (i.e., interaction dimensions).

There are two exclusive environment type states:

Standalone The bot is not tied or restricted to a specific platform [44]. The bot is hosted

independently, but can access platforms much in the same way other non-bot

users would.

Platform The bot is “integrated” [61] into the platform. The bot can either be hosted

independently or through the platform, but it accesses the platform through

non-user methods (e.g., through APIs). Platform bots are often seen as “aug-

54

ENVIRONMENT
DIMENSIONS

Population

Diversity
Homogeneous,
Heterogeneous

Cardinality
Singular,
Countable,
Uncountable

Permanence
Episodic,
Sequential

Predictability
Stochastic,
Uncertain,
Deterministic

Dynamism Static, Dynamic

Closure Closed, Open

Scope Bounded,
Unbounded

Type
Standalone,
Platform

Figure 5.4: The Software Bot Taxonomy’s Environment Dimensions. The
dimensions/facets/sub-facets and the range of possible values which the facet can take
on are shown in the solid and dashed boxes, respectively.

menting” a system’s behaviour [61]. Some common examples of platform

types include but are not limited to:

(i) Social platforms: Bots operate in online human communities (e.g.,

Facebook Messenger, Skype, Slack, etc.).

(iii) Ambient platforms: Bots operate in the real world and users call upon

them with voice commands (e.g., Alexa, Siri, and other “consumer voice”

[39] bots).

(ii) Computer systems: Bots operate within computer systems (e.g., net-

works [69], operating systems [69], databases [69], etc.).

5.2.2 Scope

The bot’s scope describes the size of its environment [66]. More specifically, the scope

describes whether the environment is bounded or not.

There are two exclusive scope states:

55

Bounded The environment is limited with respect to its size [43]. If the bot’s environ-

ment is bounded, then the bot is limited in how far it can (hypothetically)

travel.

Unbounded The environment is not limited with respect to its size [43]. If the bot’s

environment is continuous, then the bot is not limited in how far it can (hy-

pothetically) travel.

5.2.3 Closure

The bot environment’s closure describes who is able to access the environment [66]. The

closure determines whether or not outsiders (i.e., those not already inhabiting the bot’s

environment) are able to access the environment.

There are two exclusive closure states:

Closed Access to the environment is limited by constraints [66, 70]. A closed environ-

ment imposes restrictions on who can access it (e.g., requiring user accounts).

Facebook Messenger, for example, would be a closed environment since you

need an account to access it.

Open If the environment is not closed, then it is open. An open environment al-

lows others to freely access it without imposing restrictions [70, 66, 43]. The

internet is an example of an open environment.

5.2.4 Dynamism

The bot environment’s dynamism is the degree to which the bot’s environment is capable

of being changed by outside forces [66, 43].

There are two exclusive dynamism states:

Static All of the changes in the environment can be attributed to the bot’s actions

[66, 43]. This means that the bot’s environment cannot change while the bot

is deliberating [5].

Dynamic If the environment is not static, then it is dynamic. A dynamic environ-

ment changes as a result of forces outside of the bot’s control. The changes

in a dynamic environment can stem from those inhabiting the environment,

environmental factors (e.g., time), or randomness [71, 66, 43].

5.2.5 Predictability

The bot environment’s predictability is the degree to which, given the same conditions, the

outcome of the bot’s actions can be predicted [43, 66].

56

Possible predictability values range from deterministic to stochastic:y

Stochastic If the environment is not deterministic or uncertain, then it is stochastic. In

a stochastic environment, the results of the actions performed are random

and cannot be predicted [43].

Uncertain The results of the bot’s actions can be partially (but not fully) predicted

[5].

Deterministic The results of the actions that the bot performs in the environment can be

fully predicted [43, 66, 5]. With respect to classifying the environment’s

determinism, we ignore the uncertainty that stems from the actions of

others in the environment (e.g., bots, humans, other systems). Even in a

deterministic environment, bots are not required to predict the actions of

others for the environment to be deterministic.

5.2.6 Permanence

The bot environment’s permanence describes how long the effect of changes, stemming from

actions taken in the bot’s environment, persist. Action permanence is defined by how long

the change of environmental state lasts. The permanence of actions can differ based on

who performed them (e.g., the bot, other bots, or humans), the type of action performed

(e.g., complexity, criticality), etc.

There are two boolean permanence sub-facets:⊕
Episodic The actions performed in the environment only temporarily affect the en-

vironment’s state [43, 5]. After the current interaction (episode) with the

environment is over, the environment reverts back to its previous state and

the previously performed actions do not impact the outcome of future actions.

When Mention-Bot, for example, posts a message on a new GitHub pull

request, it does not have any effect on the future state of the environment

itself.⊕
Sequential The environment is sequential if the actions performed in the environment

persist [43, 5]. The actions permanently change the environments state and

may impact the future actions performed within the environment. When

Alexa turns on a light, for example, the light remains on until another action

is taken to turn it off.

57

5.2.7 Population

The population describes the active entities situated within the bot’s environment. There

is a distinction, however, between “active” and “passive” objects in the bot’s environment

[43]. Passive objects can only be manipulated [43] and cannot change their own attributes,

drives, or behaviours. The environment’s population describes the overall make-up of the

active objects inhabiting, participating, or accessing the bot’s environment. These active

objects can be other bots, systems, humans, etc. The environment’s population is described

by two sub-facets: cardinality and diversity.

5.2.7.1 Cardinality

The population cardinality describes the size of the population in the bot’s environment. In

other words, the cardinality describes the number of active objects in the bot’s environment.

Possible cardinality values range from singular to uncountable:y
Singular The bot is the only member of the population.

Countable The population can be reasonably counted.

Uncountable The population cannot be reasonably counted.

5.2.7.2 Diversity

The population diversity describes the composition of the population [66]. In other words,

population diversity describes the differences of the active objects in the bot’s environment.

If the environment’s cardinality is not singular, the environment can also be described by

its diversity.

Possible diversity values range from homogeneous to heterogeneous:y

Homogeneous All members of the population are the same type [43, 72, 66] or behave

in a similar manner. If the bot is the only member of the population, the

environment is homogeneous.

Heterogeneity If the population is not homogeneous, it is heterogeneous. A hetero-

geneous population has a diverse set of inhabitants [43, 72, 66]. These

inhabitants can be other bots, systems, users, etc. that live or operate in

the bot’s environment [72]. The heterogeneity of the population can range

from almost homogeneous to extremely diverse.

58

5.3 Intrinsic Dimensions

The intrinsic dimension is composed of facets that describe internal properties or properties

belonging to the bot itself. There are a total of 7 facets and 28 sub-facets that fall under

the intrinsic dimension, as shown in Figure 5.5.

The bot’s developer has complete control over its intrinsic dimensions. Although some

of these intrinsic facets touch on the inner workings of the software bot itself, they are still

relatively visible from a black box approach. However, for the most part, I try to focus on

the externally observable, intrinsic properties of software bots.

5.3.1 Knowledge

A bot’s knowledge is what the bot knows or understands. They have the ability to store

and use information to achieve their goals. Since knowledge is a very high-level concept, it

is broken down into the following sub-facets: memory and source.

5.3.1.1 Memory

A bot’s memory describes its ability to both store and access its knowledge. Hypothetically,

a bot should have the ability to store and access any knowledge type it understands.

There are three boolean memory sub-facets:⊕
Long-term The bot is able to store and access past events, actions, etc. More specifically,

the bot remembers what happened before [73].⊕
Short-term The bot is able to temporarily store and access the current context, events,

actions, etc. Bots that have short-term memory may have the ability to

understand where it is, when it is, who it’s talking to, etc. [73].⊕
Future The bot is able to store and access predictions of future events, actions, etc.

5.3.1.2 Source

The knowledge source describes where the bot’s knowledge originates from [61].

There are three boolean knowledge source sub-facets:⊕
Encoded The bot’s knowledge is directly encoded (by programmer or creator) [61].

Encoded knowledge can only be provided before runtime.⊕
Supplied The bot’s knowledge is provided by someone or something in its environment

[61]. Supplied knowledge can only be provided to the bot at runtime.⊕
Learned The bot’s knowledge is inferred from its environment [61]. Learned knowledge

can only be inferred at runtime.

59

INTRINSIC
DIMENSIONS

Lifecycle

Reproduction None, Reproductive

Lifespan Terminating, Transient,
Continuous

Creation Human, Bot, System

Anthropomorphism

Emotions None, Superficial, Logical

Personality None, Personality

Profession None, Profession

Ethnicity None, Ethnicity

Gender None, Gendered

Age None, Static, Dynamic

Embodiment None, Embodied

Name
None, Representative,
Unique

Specialization Generalist, Specialist

Delegation None, Partial, Complete

Goal Orientation

Source Internal, External

Explicitness Explicit, Implicit

Attainability Achievable, Homoeostasis

Criticality Low, High

Complexity Low, High

Adaptability

Guidance Undirected, Directed

Source Internal, External

Constraints Constrained, Open

Reasoning

Scheduling Single, Multiple

Reactivity
Synchronous, Mixed,
Asynchronous

Visibility None, Transparent, Visible

Predictability Stochastic, Deterministic

Agency None, Veto, Complete

Mechanisms Scripted, Mixed, Planning

Knowledge

Source Encoded, Supplied, bLearned

Memory Long-term, Short-term, Fu-
ture

Figure 5.5: The software bot taxonomy’s intrinsic dimensions. The dimensions/facets/sub-
facets as well as the range of possible values which the facet can take on are shown in the
solid and dashed boxes, respectively.

60

5.3.2 Reasoning

A bot’s reasoning describes its capacity to apply logic to achieve its goals. Since reasoning

is a very high-level concept, the reasoning dimension is broken down into six sub-facets:

mechanisms, agency, predictability, visibility, reactivity, and scheduling. The

bot’s reasoning refers to its ability to reflect upon the meaning of its inputs (see sensing

and knowledge) to generate outputs (see actions) as it attempts to realize its goals (see goal

orientation).

5.3.2.1 Mechanisms

A bot’s reasoning mechanism is the way that it processes inputs and/or generates outputs

in order to realize its goals. Although technically a bot’s reasoning mechanism falls within

the black box of the system, we opted to include it in the taxonomy since the outputs of

the reasoning mechanism can be observed. Therefore, the type of reasoning mechanism can

usually be inferred based on the bot’s stimulus (what the bot senses) and response (the

actions or behaviours of the bot).

Possible reasoning mechanism values range from scripted to planning :y

Scripted The bot has scripted reasoning if it responds to a set of predefined stimuli

with a corresponding set of preprogrammed responses. A scripted bot does

not have to come up with its own responses to inputs since it already has

a set of responses. However, this might limit the bot’s ability to respond

to unexpected inputs.

Mixed The bot has mixed reasoning mechanisms if it uses a combination of

planned and scripted reasoning mechanisms [65, 66]. In certain situations,

the bot may react to inputs with scripted responses. At other times, the

bot may plan its responses to the situation. These hybrid systems can take

the form of script ‘overridden by plan’, ‘modified by plan’, etc. [65]

Planning The bot has planned reasoning if it does not have a predefined script map-

ping inputs to outputs, but instead makes decisions based on the situation

and its current knowledge.

5.3.2.2 Agency

A bot’s agency describes its ability to perform the tasks it requires to achieve its goals

without interference. The bot may be required to get clearance or permission from an

external party (e.g., a human, bot, or another system) prior to performing any actions. The

bot’s degree of agency may change depending on the type of goal, the situation, or who it’s

interacting with.

61

Possible agency values range from none to complete:y

None The bot has no agency if it requires an external party to approve actions

before the bot can perform them.

Veto The bot has the ability to carry out the tasks required to realize its goals,

however, an external party can veto the bot’s actions. The external party

can veto actions either before (preventing) or after (undoing) they have

been performed.

Complete The bot does not require permission to carry out the tasks required to

realize its goals. When discussing bots, complete agency is often described

as autonomy.

It should be noted that I adopt the philosophical definition of agency, “the capacity of an

entity (a person or other entity, human or any living being in general, or soul-consciousness

in religion) to act in any given environment” [74]. Although, I do acknowledge that agency

is a loaded term and often has a different meaning in both the domains of software engi-

neering and artificial intelligence.

5.3.2.3 Predictability

The bot’s reasoning predictability is the degree to which the bot’s outputs (e.g., actions or

behaviours) can be predicted given the same conditions.

Possible predictability values range from stochastic to deterministic:y

Stochastic The bot is stochastic if the results of its reasoning mechanism appear as

though they are random.

Mixed The bot has a mixed predictability if it is stochastic for some input types

and predictable for others, or is a combination for an input.

Deterministic The bot is deterministic if the results of its reasoning mechanism are the

same when provided with the same inputs and conditions.

5.3.2.4 Visibility

The bot’s reasoning visibility is the degree to which it makes its decisions or actions visible

to others.

A bot may vary its degree of visibility based on the type of action it’s performing or

its current context. The bot may also make actions more or less visible to different groups

(e.g., types of users, other bots, systems, etc.)

Possible visibility values range from None to Visible:

62

y

None The bot’s visibility is none if all of its decisions or actions are hidden.

Transparent The bot’s visibility is transparent if its decisions or actions leave visible

traces when the bot is not actively trying to make its processes visible.

Visible The bot is visible if it actively works to make its decisions or actions visi-

ble. The bot creates additional artifacts for the sole purpose of providing

visibility into its decisions or actions.

5.3.2.5 Reactivity

A bot’s reasoning reactivity is the time the bot takes to respond to stimuli [66]. Reactivity

is not purely the time to process its response, as some bots may implement an artificial

response delay (e.g., to make it look like the bot is doing work or thinking). Reactivity

describes both the time it takes the bot to select and perform on its response. However,

the bot’s response to the stimuli may be to do nothing.

A bot may vary the speed of its reactivity based on various factors such as the type of

action it’s performing, the current context, or what it’s responding to (e.g., humans, other

bots, something in the environment).

Possible reactivity values range from synchronous to asynchronous:y

Synchronous The bot responds at the same time (or very shortly after) as the stimuli is

perceived (i.e., in a synchronous manner [75]).

Mixed The bot uses a mixture of synchronous and asynchronous response times.

The bot can range from mostly synchronous, to mostly asynchronous.

Asynchronous The bot responds to the stimuli after some time has passed (i.e., in an

asynchronous manner).

5.3.2.6 Scheduling

A bot’s reasoning scheduling describes the bot’s strategy for dealing with multiple inputs

or outputs that need to be reasoned about. The bots scheduling also describes how many

different reasoning processes the bot can handle simultaneously.

Scheduling restricts the bot’s ability to process what it senses and produce meaningful

responses in the form of actions. A bot may also display different scheduling behaviours

based on the task (i.e., type of input/output).

There are two exclusive scheduling states:

Single Tasked The bot is single tasked if it can only handle one stimulus or task at a time.

Single-tasked bots can be further broken down into:

63

(i) Non-Interrupting: Since only one task can exist at a time, the new

instance of a task is ignored [76].

(ii) Hybrid: The bot is hybrid if it is interrupting and non-interrupting

based on the situation or priority of the stimuli.

(iii) Interrupting: Since only one task can exist at a time, the new instance

of a task overrides the original one [76].

Multiple Tasked The bot is multiple tasked if it is capable of handling more than one stimuli

or task at once [76]. Multi-task bots may process tasks based on the order

in which they arrive (e.g., queues requests or adds them to a stack), some

prioritization metric (e.g., highest criticality first), or randomly.

5.3.3 Adaptability

A bot’s adaptability refers to the bot’s ability to modify its own behaviour or functionality

at runtime. In general, these adaptations are the bot’s attempt to improve its effectiveness

or optimize its performance. Hypothetically, a bot may be able to adapt any of its

behaviours. More specifically, a bot can adapt any of its intrinsic or interaction facets or

sub-facets.

There are two exclusive adaptability states:

Non-Adaptive The bot is not able to change its behaviour at runtime [65]. A non-adaptive

bot’s behaviours remain unchanged after it has started running.

Adaptive The bot is able to change at least some of its behaviours at runtime. If a

bot is adaptive, than it can be further described by the following sub-facets:

constraints, source, and guidance.

5.3.3.1 Constraints

If a bot is adaptive, it can also be described by its adaptation constraint. These constraints

determine restrictions on the bot’s adaptation capabilities. [77, 65].

A bot can have varying levels of adaptation constraints based on the behaviour (i.e.,

facet or sub-facet) it is trying to adapt, as well as the source or level of guidance provided

during adaptation.

Possible constraint values range from constrained to open:y
Constrained The bot is able to adapt its dimensions, but it is restricted by scope, extent,

or activity [65]. This provides safeguards to ensure the bot still functions

well on its core responsibilities.

Open The bot is freely able to adapt its behaviour.

64

It should be noted that adaptation constraints differ from reasoning agency as the con-

straints block the bot’s ability to adapt even if it had the agency to do so.

5.3.3.2 Source

If a bot is adaptive, it can also be described by the source that triggered its adaptation.

The source of adaptation describes where the bot’s motivation to adapt stemmed from.

The source of a bot’s adaptation can vary based on the type of behaviour (i.e., facet or

sub-facet) it is adapting.

There are two boolean source sub-facets:⊕
Internal The bot’s adaptation process is triggered from within the bot itself. Internal

sources for adaptation are likely to be logically programmed into the bot by

its designer (i.e., by programmer or creator of the bot [61]).⊕
External The bot’s adaptation process is triggered by something in the bot’s environ-

ment. These sources include interactions, communication [71], social streams

[50], other systems, environmental changes [77], etc.

It should be noted that the bot’s adaptation source differs from the knowledge source,

since knowledge can be accumulated without undergoing a behavioural adaptation.

5.3.3.3 Guidance

Guidance refers to whether or not the bot had some form of help, support, or supervision

during its adaptation process. After adaptation has been triggered, the direction provided

during or after adaptation can influence the outcome of the adaptation process.

Different types of adaptations may require different levels of guidance. Thus, the type

of guidance may differ based on the type of behaviour (i.e., facet or sub-facet) that is being

adapted.

There are two boolean guidance sub-facets:⊕
Undirected The bot’s adaptation is undirected if its adaptation outcome is not directly

shaped or influenced by a source. Undirected adaptation is guided from within

(e.g., from its programming) and the bot itself controls the adaptation pro-

cess.⊕
Directed The bot’s adaptation is directed if its adaptation outcome is shaped by the

source’s actions. If a bot is directed, then it can be further described by the

following sub-facets:

(i) Configuration: A form of directed adaptation in which an external

force directly changes or manipulates the bot’s existing behaviours. Typ-

65

ically, these types of changes happen at a high level and users do not

directly change the bot’s code. Some examples of this type of change

include users updating bot settings or changing the bot’s configuration.

(ii) Subscription: A form of directed adaptation in which an external

force directly adds or removes behaviours [65]. Typically, these types

of changes happen at a lower level and users directly change the bot’s

code to add “additional layers of competency” [65]. A great example is

the addition of new ‘Alexa skills’ to Amazon’s Alexa.

(iii) Reinforcement: A form of directed adaptation in which the source

shapes the adaptation by either rewarding or punishing the outcome of

the bot’s adaptation [71]. Generally this happens after the adaptation

has occurred, thus shaping the bot’s behaviour through the source’s re-

sponse to the changes. The bot uses trial and error to determine the

correct adaptations [71].

5.3.4 Goals

All bots have goals, which are one or more future states the bot is working towards or

attempting to achieve. However, there is a huge variety in the types of goals bots can try

to achieve. Since many types of goals exist, a bot’s goals can be further described by the

following sub-facets: complexity, criticality, attainability, explicitness, and source.

A single bot may work towards a variety of different goals (and in most cases does).

Each of a bot’s goals should be ranked independently according to the goal sub-facets.

5.3.4.1 Complexity

The bot’s goal complexity describes how complicated the bot’s goals are. The complexity of

goals is a rather subjective measure, but provides some insight into the overall capabilities

of the bot. Since bots can also have many different types of goals, each goal may have a

different level of complexity.

Possible complexity values range from low to high:yLow The bot’s goals have a low complexity if it is a simple task.

High The bot’s goals are complex.

5.3.4.2 Criticality

The bot’s goal criticality describes the level of risk, importance, or urgency associated with

the goal. While the specific type of criticality may differ from bot to bot, the criticality

66

sub-facet captures the overall perceived criticality. The criticality of the bot’s goals is a

subjective measure, but provides some insight into the overall risks associated with the bot.

Since bots can have many different types of goals, each goal may have a different level of

criticality. The degree of risk may differ depending what the bot’s goals are, the setting/en-

vironment (e.g., personal, cooperate, government), who it’s interacting with (e.g., children

or other risk groups, safety-critical systems), etc.

Possible criticality values range from low to high:y

Low The bot’s goal criticality is low if the tasks are low risk, of low importance,

or do not have any safety/security concerns. For example, a bot that sets

a kitchen timer would have low overall criticality.

High The bot’s goal criticality is high if the tasks are high risk, of high impor-

tance, or have any safety/security concerns. For example, a bot that sets

a timer for some form of safety-critical system would have high criticality.

5.3.4.3 Attainability

The bot’s goal attainability is the bot’s ability to complete or achieve its goal. The attain-

ability does not reflect how likely the bot is to achieve its goal, but rather if the goal itself

can be completed (i.e., does the goal have an explicit end state). Since bots can have many

different types of goals, each goal can have a different degree of attainability.

There are two boolean attainability sub-facets:⊕
Achievable The bot’s goal is achievable if the goal has an explicit end state that can be

successfully reached [61]. Once the goal’s end state has been reached, the goal

is considered complete and the bot is no longer actively working toward this

goal.⊕
Homoeostasis The bot’s goal attainability is homoeostasis if its goal is never considered

complete [61]. For homoeostasis goals, either the bot’s desired goal state

can never fully be reached or the bot must try to maintain the desired state

indefinitely.

5.3.4.4 Explicitness

The bot’s goal explicitness is the degree to which the bot’s goals are explicitly defined or

described [66]. Since bots can have many different types of goals, each goal may have a

different level of explicitness.

There are two boolean explicitness sub-facets:

67

⊕
Explicit The bot’s goal is explicit if it is clearly defined, described, and with no room

for interpretation [66]. For example, asking Alexa to find the next show time

of movie x at theatre y.⊕
Implicit An implicit goal is not clearly defined, but instead ambiguous [66]. There

may be many possible interpretations of an implicit goal. For example, asking

Alexa to find a good movie playing nearby.

5.3.4.5 Source

The bot’s goal source describes where the bot’s goals originated from. More specifically,

the goal source describes what triggered a new instance of a goal behaviour. Since bots

can have many different types of goals, each of its goals may stem from a different source.

There are two boolean source sub-facets:⊕
Internal Internal goals are derived from within the bot (at runtime), or provided to it

in its source code (before runtime).⊕
External The bot’s goal source is external if its goals are adopted from external stake-

holders (e.g., user, another bot, system) or something in its environment.

External goals can only originate at runtime.

It should be noted that goal source differs from adaptation source, as goal source triggers

a new instance of a preexisting goal behaviour. That is, the bot was capable of working

towards that goal prior to the source activating it. The adaptation source triggers an

adaptation of a behaviour, which could be learning a new type of goal behaviour.

5.3.5 Delegation

A bot’s delegacy describes its permission or authority to act on behalf of or to represent

others [61, 66]. The bot may act as a delegate for any of the inhabitants of its environment

(e.g., users, groups of users, other bots, systems). The bot’s degree of delegacy may vary

depending on the goal or type of action it’s required to perform, as well as who the bot is

acting as a delegate for.

Possible delegacy values range from none to complete:

68

y

None The bot does not have the authority to act on behalf of others. However,

bots in this category can appear to be acting on behalf of others, but do

so without permission and likely with malicious intent.

Partial The bot has authority to do things on behalf of the user, but does not

pretend to be the person it’s representing. For example, Google Duplex

will call a business and book services on a user’s behalf.

Complete The bot has the authority to both act on behalf of and pretend to be the

user themselves. For example, an online ticket purchasing bot may pretend

to be the user in order to purchase the ticket on their behalf.

5.3.6 Specialization

The bot’s specialization is the degree to which the bot focuses its efforts in a specific area.

More specifically, a bot specialization describes how similar the bot’s goals are with respect

to the types of tasks, domain, etc.

Possible specialization values range from generalist to specialist :y

Generalist Bot A generalist bot supports a wide range of (usually simple) tasks, and

directs users to the appropriate external resources when deeper knowledge

is required [46]. Generalist bots are often the first step in a multi-step

process that guides users to the next correct step [46]. A good example

of a generalist bot is Apple’s Siri, who can perform a variety of simple

tasks but re-directs users when deeper knowledge is required to perform

the task.

Specialist Bot A specialist bot is designed to perform specific tasks in a limited domain

[46]. These tasks are generally similar in purpose/focus. These bots typi-

cally have deeper knowledge in a specific domain than generalist bots, and

apply this knowledge to help them complete their goals. An example of

a specialist bot is DoNotPay, which guides users through the process of

disputing parking tickets.

Since the purpose of this taxonomy is not to present another role-based classification of

bots, specialization can be viewed as a high-level way of conceptualizing the bot’s purpose

without singling out specific roles.

5.3.7 Anthropomorphism

A bot’s level of anthropomorphism is the degree to which the bot has been given human-like

characteristics or traits. Most software bots exude at least some degree of anthropomor-

phism. Since anthropomorphism is a very high-level concept, this facet is broken down into

69

eight sub-facets: name, age, gender, ethnicity, embodiment, profession, personal-

ity, emotions.

Although this taxonomy identifies some common types of bot anthropomorphism, this

list is by no means comprehensive but instead focuses on some key types of anthropo-

morphism we believe will aid in a better understanding of software bots. We believe that

the sub-facets of anthropomorphism will likely grow as developers continue to build more

human-like bots.

5.3.7.1 Name

The bot’s name describes how others refer to the bot, address it, or identify it [39]. This

facet describes the degree to which the bot has its own name.

There are three exclusive name states:

None The bot does not have a name. These bots are likely addressed by some

generic file name or not at all.

Representative The bot takes the name of the company it represents or the service it pro-

vides. For example, Mention-Bot’s name represents the service it provides.

Unique The bot has been given its own identifiable name. Alexa, Siri, and Cortana,

the voice assistants from Amazon, Apple, and Microsoft, respectively, were

all given their own unique names.

5.3.7.2 Embodiment

The degree to which bots have been given a visible icon, figure, or form to represent them-

selves [39, 78]. Since software bots live in the virtual world, their embodiment must also be

virtual.

There are two exclusive embodiment states:

None If the bot does not have a visible form, it has no embodiment.

Embodied If the bot has a visible form, then it is embodied. If the bot is embodied, then

it can be further described by the following sub-facets:⊕
Logo The bot has a logo that does not take a life-like form. For

example, Alexa has non life-like logo.⊕
2D Avatar The bot has a two-dimensional life-looking avatar, which rep-

resents the bot (e.g., 2D agents [78]). For example, Poncho’s

avatar is a rain-gear wearing cat and MentionBot’s avatar is

a smiling robot.

70

⊕
3D Avatar The bot has a three-dimensional life-looking avatar, which rep-

resents the bot (e.g., 3D agents [78]).

5.3.7.3 Age

The bot’s age describes whether the bot has a visible or identifiable age . The anthropo-

morphized age of the bot is a superficial age provided to the bot by the bot’s developer.

Those interacting with the bot can either visibly see the bot’s age, or the bot may reveal

its age in some way. A bot’s age may or may not be correlated with the bot’s lifespan.

There are three exclusive age states:

None The bot does not have a visible or identifiable age.

Static The bot has a visible or identifiable age, but its age does not increase over

time. For example, Apple’s Siri claims to be the “same age as you are”.

Dynamic The bot has a visible or identifiable age and it continues to age over time. For

example, Amazon’s Alexa calculates its age based on the day it was released.

5.3.7.4 Gender

The bot’s gender describes whether the bot has a visible or identifiable gender [39]. Those

interacting with the bot can either visibly see the bot’s gender, or the bot may reveal its

gender in some way.

There are two exclusive gender states:

None The bot does not have a visible or identifiable gender.

Gendered The bot has a visible or identifiable gender. For example, Alexa says it’s

“female in character”, while Poncho claims to be male.

5.3.7.5 Ethnicity

The bot’s ethnicity facet describes whether or not the bot has a visible or identifiable species,

race, or ethnicity [39]. More specifically, those interacting with the bot can either visibly

see its ethnicity or the bot reveals its ethnicity in some way. The bot’s ethnicity may be

visible as a result of its embodiment (e.g., logo or avatar).

There are two exclusive ethnicity states:

None The bot does not have a visible or identifiable species, race, or ethnicity.

Ethnicity The bot has a visible or identifiable species, race, or ethnicity. For example,

Poncho will tell you it’s a cat (i.e., species). Alexa, Siri, and Cortana,

all, by default, have North American accents.

71

5.3.7.6 Profession

The bot’s profession facet captures whether or not the bot has a visible or identifiable

profession. Those interacting with the bot can either visibly see the bot’s profession (e.g.,

wearing a uniform), or the bot reveals it in some way.

There are two possible profession states:

None The bot does not have a visible or identifiable profession.

Profession The bot has a visible or identifiable profession. The bot’s profession might be

similar to or dramatically different from the tasks that the bot performs. For

example, Eliza is a therapist.

5.3.7.7 Personality

The bot’s personality is made up of the behaviours, quirks, or characteristics that give

it a unique and distinctive character. The American Psychological Association describes

personality as the “individual differences in characteristic patterns of thinking, feeling, and

behaving”[79] Early research has shown that a bots personality changes the way in which

users interact with it . But too much personality might not be a good thing, either. Ac-

cording to Slack, “a little goes a long way”.96

There are two exclusive personality states:

None The bot does not have a deliberate, anthropomorphized personality.

Personality The bot has a personality. The amount of personality a bot has can vary

dramatically, just like with humans. The FoodNetwork bot, for example,

will remind you, “does it matter? I’m a bot!” when you ask it personal

questions. Other bots have hours of content developed to answer even the

silliest of user questions.

It’s worth noting that personality is a very subjective and complex dimension. In this

taxonomy, we simply provide a binary has a personality or does not have added personality

facet. However, personality is a complex category and we strongly encourage the expansion

of this taxonomy by breaking this dimension down into further sub-facets.

5.3.7.8 Emotions

The bot’s emotions are the degree to which the bot appears to have human-like emotions

or attitudes [71]. These emotions can range from basic emotions (e.g., fear, happiness,

sadness), to more advanced emotions (e.g., guilt, jealousy, pride), although we do not

distinguish between them in this taxonomy.

72

Emotions can trigger interactions, influence reasoning/adaptation, influence goals, bias

behaviours. Emotions can be impacted by the environment or interactions.

There are three possible emotion states:

None The bot does not have visible emotions.

Superficial The bot has superficial emotions if it only displays its emotions when interact-

ing with others. These emotions do not have an effect on the bot’s behaviour.

When you insult Siri, for example, it responds with“[t]here’s no need for

that!” or “[w]hat did I do to deserve that?”, but its behaviour otherwise

remains the same.

Logical The bot has logical emotions if it both displays and has the ability to use

emotions. The bot’s current emotional state (i.e., the emotion the bot is cur-

rently feeling) has an influence on its other behavioural facets. For example,

if you insult Poncho it will first respond with, “[u]h... rude”, but if you

continue the abuse Poncho says, “[o]k, well then I think I’m going to take a

short break,” and then ignores you for a few minutes.

Similar to personality, it’s worth noting that emotions are a very subjective and complex

dimension. In this taxonomy, we provide a simple division between emotions that have an

effect on the bot’s behaviour, and ones that do not. However, emotions are a complex

category and we strongly encourage the expansion of this taxonomy by breaking this facet

down into further sub-facets. If a bot has a visible personality it is usually more likely to

also show emotions.

5.3.8 Life Cycle

The bot’s life cycle describes the various phases that the bot goes through in its “life”. Since

life cycle is a very high-level concept, it is broken down into three sub-facets: lifespan,

creation, reproduction, and adaptation.

5.3.8.1 Creation

The bot’s creation is the way in which the bot was brought to life [39]. More specifically,

creation describes the process in which the bot’s code was generated and executed.

There are three exclusive creation states:

Human The bot was created by a human [39]. Most software bots are created and

executed by humans.

Bot The bot was created by another bot. For example, BotFather will create a

new bot based on your requests.

73

System The bot was created by another system. For example, many bots in online

games are spawned by a system.

5.3.8.2 Lifespan

The bot’s lifespan refers the length of time that the bot continues to function. Lifespan

specifically refers to the time the bot would have run if left completely alone with ample

resources (i.e., if it did not receive any external intervention such as turning it off or a power

outage).

There are three exclusive lifespan states:

Terminating The bot has a terminating lifespan if it eventually stops on its own accord.

We further break this down in two categories of terminating programs:

(i) Determinate: The time taken for the bot to terminate has exact or

predictable limits.

(ii) Indeterminate: The time taken for the bot to terminate is not known,

defined, or predictable.

Transient The bot has a transient lifespan if it passes in and out of existence [80]. The

bot will pass into existence for a period of time, often to complete a task, then

disappears until it is needed again. The bot’s passing in and out of execution

can be internally or externally triggered. Sometimes bots that are tied to a

specific platform operate in a transient manner.

Continuous The bot has a continuous lifespan if it never self-terminates. The only way in

which a continuous bot stops its execution is if it’s acted upon by an external

force that causes it to stop.

5.3.8.3 Reproduction

The bot’s reproduction describes the bot’s ability to spawn other bots [64]. The bot can

spawn a new bot by triggering a new instance of an existing bot or by creating a new bot

itself.

There are two exclusive reproduction states:

None The bot is not able to trigger or create new bots.

Reproductive The bot is able to trigger or create new bots. They also have the ability to

trigger the same type of program they are, a different type of program, or

multiple types of programs.

74

5.4 Interaction Dimensions

The interaction dimension is composed of facets that describe the bot’s interactions with the

different elements in its environment. There are a total of seven facets and eight sub-facets

that fall under the interaction dimension, as shown in Figure 5.6.

Although these interaction facets touch somewhat on the inner workings of the software

bot itself, they still take a black box approach to examining bot behaviours. More specifi-

cally, they try to focus on the wide range of externally observable behaviours that the bot

can exude when interacting with the various elements in its environment.

5.4.1 Access

A bot’s access is the degree to which the bot has access to its environment [66, 43]. Since

the environment can impose restrictions on both the bot’s ability to sense or act within

their environment, the bot may have different degrees of access for sensing and acting.

Possible access values range from partial to complete:y
None The bot is not allowed to access any of its environment [43].

Partial The bot is allowed to access a subset of its environment [43, 66].

Complete The bot is allowed to access all of its environment [43, 66].

5.4.2 Sense

A bot’s sensing describes the degree to which the bot is able to perceive stimuli in its

environment. The type of stimuli the bot is able to sense is limited by its access, as well as

which type of knowledge it understands.

There are two exclusive sense states:

Non-Sensing The bot is non-sensing if it does not try to perceive any external stimuli in

its environment.

Sensing The bot is sensing if it tries to perceive a limited set of stimuli in its environ-

ment. Sensing is supported by sensors [55, 43, 5]. Different sensors help the

bot perceive different properties in its environment.

5.4.3 Act

A bot’s acting describes the bot’s ability to act upon or make changes in its environment

[69]. The type of actions the bot is able to perform is limited by its access as well as the

type of actions the bot’s reasoning mechanisms are capable of selecting and have the agency

to perform.

75

INTERACTION
DIMENSIONS

Mobility Static, Mobile

Robustness

Correction Bot, User

Discovery Bot, User

Prevention Bot, User

Initiative
Reactive,
Proactive

Communicate

Language

None,
Keywords,
Natural Language,
Conversation

Directness Direct, Indirect

Directionality
One-Way,
Two-Way

Cardinality
One-One,
One-Many,
Many-Many

Veracity
Truthful,
Untruthful

Disposition

Antagonistic,
Competitive,
Indifferent,
Cooperative,
Benevolent

Act
Non-Acting,
Acting

Sense
Non-Sensing,
Sensing

Access

None,
Constrained,
Complete

Figure 5.6: The software bot taxonomy’s interaction dimensions. The
dimensions/facets/sub-facets, as well as the range of possible values which the facet
can take on, are shown in the solid and dashed boxes, respectively.

76

There are two exclusive act states:

Non-Acting The bot is non-acting if it does not try to act upon or make changes to its

environment.

Acting The bot is acting if it tries to act upon or make changes to its environment.

Acting is supported by effectors [55, 43] or actuators [5]. Different effectors

help the bot perform different actions in its environment.

5.4.4 Communicate

A bot’s communication is the degree to which the bot is able to meaningfully interact with

others in its environment. To have the ability to communicate, a bot must be able to both

act and sense, and also have other inhabitants in its environment. These requirements also

extend to the sub-facets of communicate.

There are two exclusive communicate states:

Non-communicative The bot is non-communicative if it does not interact with others in its

environments [69].

Communicative The bot is communicative if interacts with others in its environments [69,

81, 43, 82, 83, 84, 61, 71, 5]. If a bot is communicative, it can be further de-

scribed by the following six sub-facets: disposition, veracity, cardinality,

directness, speech, and centralization.

5.4.4.1 Disposition

If a bot is communicative, it can also be classified by its disposition. A bot’s disposition

describes its willingness to help, perform actions for, or share resources with others in its

environment [65]. A bot may display different patterns of disposition based on who it’s

interacting with, the type of request, the bot’s current goal(s), its current internal state,

the current context, etc.

Possible disposition values range from antagonistic to benevolent :

77

y

Antagonistic The bot is antagonistic if it makes purposefully antagonistic attempts to

inconvenience or undermine others. Many antagonistic bots exist in online

game settings.

Competitive The bot is competitive if it acts in favour of its own self-interests [65, 66,

71, 43, 5]. A competitive bot will collaborate with others only when the

outcome benefits them as well.

Indifferent The bot is indifferent if it is unaware of the needs of others (inadvertently

or by choice). An indifferent bot also does not concern itself with the

actions of others. The bot does not assist others in its environment, nor

does it purposefully attempt to inconvenience or undermine them.

Cooperative The bot is cooperative if it is willing to help others in its environment, po-

tentially sacrificing its own goals. The bot is collaborative if it coordinates

its efforts with others [64, 85, 86].

Benevolent The bot is benevolent if it always helps others in its environment, even if it

is detrimental to its own goals or best interests [65]. Most of the common

user-focused bots fall under this category. For example, Alexa at least

attempts to perform any task that is asked of it.

5.4.4.2 Veracity

If a bot is communicative, it can also be classified by its veracity. A bot’s veracity refers to

the bot’s deliberate adherence to or divergence from the truth during its communications

[65]. A bot may display different patterns of veracity based on who it’s interacting with,

its current internal state, the current context, etc.

Possible veracity values range from truthful to untruthful :y

Untruthful The bot’s veracity is untruthful if it intentionally attempts to deceive the

individuals that it interacts with [65]. A good example of untruthful bots

are impersonator bots.

Mixed The bot’s veracity is mixed if it exhibits both deceiving and truthful ten-

dencies based on the situation.

Truthful The bot’s veracity is truthful if it does not attempt to deceive the individ-

uals it interacts with [65].

78

5.4.4.3 Cardinality

If a bot is communicative, it can also be classified by its cardinality. A bot’s cardinality

describes the number of users the bot’s environment is capable of communicating with at

the same time.

There are three boolean cardinality sub-facets:⊕
One-One The bot is one-to-one if it is only capable of interacting with one individual

at a time.⊕
One-Many The bot is one-to-many if it is capable of interacting with many users at the

same time [39]. In this case, the bot might be required to distinguish between

users.⊕
Many-Many The bot is many-to-many if it is capable of interacting with many users

while they are also interacting among themselves. In this case, the bot must

understand when the users are trying to interact with the bot versus each

other.

5.4.4.4 Directionality

If a bot is communicative, it can also be classified by its directionality [87]. A bot’s direc-

tionality describes whether the bot’s interactions with users is bidirectional.

There are two boolean directionality sub-facets:⊕
One-Way The bot is one-way if it is only capable of receiving inputs from or sending

outputs to a user.⊕
Two-Way The bot is two-way if it is capable of both receiving inputs from and sending

outputs to a user.

5.4.4.5 Directness

If a bot is communicative, it can also be classified by its directness. A bot’s directness

describes the way the bot communicates with others in its environment [81]. A bot may

display different levels of directness based on who it’s interacting with, its current internal

state, the current context, etc.

Possible directness values range from direct to indirect :

Indirect The bot’s communication is indirect if it communicates with others indirectly

(e.g., through mediators, non-message interactions, or artifacts) [81, 84].

Direct The bot’s communication is direct if it communicates with others directly

(e.g., direct messages or requests) [81, 84, 80, 50].

79

5.4.4.6 Language Capability

If a bot is communicative, it can also be classified by its conversational ability. A bot’s con-

versation facet reflects its ability to communicate through human understandable language.

A bot may display different levels of conversation based on its goals, current internal

state, the current context, who it’s interacting with, etc. For a bot to be able to use human

language, the bot has to also be able to understand human language (see knowledge). A

bot may be able to converse in multiple languages or in just a single language.

Possible dialog values range from none to conversation:y

None The bot’s level of speech is none if it is not able to use human language.

Keywords The bot’s level of speech is keywords if it is only able to communicate

with others using keywords or short, predetermined phrases [38, 75]. For

example, MentionBot is able to post a scripted message on pull-requests.

Natural Language The bot’s level of speech is natural language if it is able to communicate

with others using natural language [38, 70, 39]. Most chatbots fall into this

category.

Conversation The bot’s level of speech is conversation if it is able to engage in a mean-

ingful two-way dialogue with others in its environment [70, 38].

5.4.5 Initiative

The bot’s initiative describes the way that the bot’s interactions with its environment are

initiated. A bot’s initiative is related to its ability to sense stimuli in its environment,

reason appropriately about the changes it detects, and affect change via its actions. Further-

more, a bot’s initiative can vary depending on its goals, current internal state, the current

context, etc.

Possible initiative values range from reactive to proactive:y

Reactive The bot is reactive if it initiates actions in response to a specific stimuli,

“motivational cue” [77], or trigger in its environment [80, 65, 55, 88, 69,

70].

Proactive The bot is proactive if it takes action to control the situation rather than

responding after something has happened [78, 55, 52, 69, 85]. For example,

a bot might remind users that they haven’t been to the gym in a few days.

It should be noted that a bot’s initiative might also change based on the lens you’re

looking through. Thus, for the scope of the thesis, we examine initiative through the lens

of what the bot is interacting with. For example, if the bot is interacting with a user, we

consider initiative from the user’s perspective of the bot.

80

5.4.6 Robustness

The bot’s robustness describes its ability to handle errors or ambiguity [89]. A bot’s robust-

ness encompasses the full life cycle of dealing with errors or ambiguity. Since robustness

is a high-level concept, it can be broken down further into three sub-facets: prevention,

discovery, and correction [90].

A bot may display different levels of robustness based who it’s interacting with, its

current internal state (see knowledge representation), the current context, etc.

5.4.6.1 Error Prevention

The bot’s error prevention describes the strategies that it uses to reduce or prevent errors

when receiving inputs from users [90].

There are two boolean prevention sub-facets:⊕
Bot The bot is responsible for preventing errors in the inputs it is receiving. Some

strategies for bot-led error prevention include using less error-prone designs to

influence/constrain users during bot-user interactions (e.g., guided dialogues,

restricted inputs, structured responses), or using additional/contextual infor-

mation to supplement the user’s inputs (e.g., episodic memory, user data, user

settings, user preferences) [90].⊕
User The bot relies on users adapting their behaviour to select less error-prone

input mechanisms. In this case, the bot must be designed to support the

user’s ability to spontaneously alter their input or interaction behaviours.

Some strategies to help the user prevent errors include changing input styles

(using text inputs over voice in loud environments), or using redundancy

(showing the results of voice to text) [90].

5.4.6.2 Error Discovery

The bot’s error discovery describes the strategies that the bot uses to detect errors in the

inputs it has received [90].

There are two boolean discovery sub-facets:⊕
Bot The bot is responsible for discovering errors in the inputs it receives. Some

strategies to help the bot discover errors include comparing the request against

its knowledge base to identify unusual inputs, using more that one modality to

determine possible interpretations of inputs, or using statistical model thresh-

olds to determine incorrectly identified inputs [90].

81

⊕
User The bot relies on users to detect errors. The bot provides the user with its

interpretation of the input, and the user determines if the bot interpreted it

correctly. Some strategies to help the user discover errors include:

(i) Implicit: The bot repeats its interpretation of the input back to the

user after the bot executes the task, usually along with the result [90].

(ii) Explicit: The bot repeats its interpretation of the input back to the

user before the bot executes the task [90].

(iii) Alternatives: The bot provides users with a set of possible interpreta-

tions [90].

(iv) Multi-Modal: The bot uses a different mode to confirm its interpreta-

tion (e.g., the bot uses text to confirm a spoken input) [90].

5.4.6.3 Error Correction

The bot’s error correction describes the strategies that the bot uses to recover from detected

errors in the inputs the bot has received [90].

There are two boolean correction sub-facets:⊕
Bot The bot is responsible for correcting errors in the inputs it receives. The bot

can recover from errors in much the same manner that it detects the errors.

Some strategies to help the bot recover from errors include rejecting inputs

that fail to meet a threshold, attempting to correct errors using its existing

knowledge, and correcting it based on simultaneous inputs (i.e., multi-modal)

[90].⊕
User The bot relies on the user to correct errors, and it provides the user with a

way to correct misinterpreted information. Some strategies to help the user

recover from errors include allowing the user to correct the mistake using the

same modality (e.g., repeating, spelling it, rephrasing it) or from a different

modality (e.g., switching from voice to writing) [90].

Since robustness of a bot was not well defined in the existing literature on software bots,

I adapted the error handling taxonomy presented by Bourguet [90] to relate to software bot

robustness.

5.4.7 Mobility

A bot’s mobility describes its ability to move around within its environment. A bot’s degree

of mobility can vary for different dimensions. A bot could be mobile in where it interacts

(e.g., acts, senses, communicates) and/or where it reasons. For the scope of this taxonomy,

82

however, we pay most attention to the mobility of the bot’s interaction facets, since a move

of reasoning would not typically be visible.

Possible mobility values range from static to mobile:y

Static The bot is static if it is not able to move within its environment [65].

Mobile If the bot is not static, then it is mobile. A mobile bot can move around

its environment [66, 69, 65]. However, the degree of the bot’s mobility

can vary. For example, some Slack bots can move between channels (low

mobility). On the other hand, GoogleBot and BingBot, both web crawlers,

are examples of highly mobile bots.

There is a difference between a mobile bot and a bot that exists on multiple platforms.

A mobile bot is, at least in some capacity, able to control its ability to move around. A

multi-platform bot, however, usually has a new instance of the bot for each platform. For

example, multiple Alexa-compatible devices that were synced to the same account does

not make Alexa a mobile bot. Similarly, the ability for a Facebook Messenger bot to be

accessed through multiple devices does not make the bot mobile.

5.5 Summary

In this chapter, I presented an updated, holistic taxonomy of software bot characteristics.

I described each of the three top-level dimensions (environment, intrinsic, and interaction),

the facets/sub-facets that fall under each of the dimensions, the range of values for each

facet, and included examples of modern software bots for illustration. I also provided a

brief readers guide to help users interpret, use, and expand the proposed taxonomy.

For the remainder of this thesis, I discuss the taxonomy’s validation process (cf. Chap-

ter 6), explore the implications of the proposed taxonomy (cf. Chapter 7), and provide

suggestions for how the taxonomy can be operationalized in the future (cf. Chapter 7).

96https://api.slack.com/best-practices/voice-and-tone

83

Chapter 6

Taxonomy Validation

To ensure that the taxonomy correctly captured the range of observable software bot prop-

erties and behaviours, I validated it by:

(i) benchmarking the proposed taxonomy against the existing classifications of software

bots (Section 6.1),

(iii) demonstrating the utility of the taxonomy through the tagging of three publicly

available software bots (Section 6.2), and

(ii) testing the utility and usability of the taxonomy through a domain expert tagging

session (Section 6.3).

I describe each of the three approaches in greater detail below. Any limitations to my

approach are discussed in the following chapter (cf. Chapter 7.2).

6.1 Benchmarking

The software bot taxonomy was validated through benchmarking, the process of comparing

a new taxonomy against existing classifications [1]. The proposed software bot taxonomy

was benchmarked against the classifications used to generate it (cf. Section 4.3) in order to

determine if the merging of the taxonomies was completed correctly. Since I tried my best

to ignore the structure of the classifications during the extraction phase (cf. Section 4.4.1),

benchmarking provided insights into how the new taxonomy compared to the ones that

provided the data used to generate it.

Overall, the software bot taxonomy covered almost all of the observable properties

and behaviours of software bots that were explicitly described in the literature search and

snowballed articles. If the properties were not identified directly in the new taxonomy,

some abstracted version of them usually was. This helped validate that the terms from the

previous classifications were properly merged to create the new software bot taxonomy. It

should be noted, however, that many of the articles also explicitly described some properties

84

that were outside of the new taxonomy’s scope and were not included, e.g., implementation

details, architectural details, languages used, etc. Although most of the online articles did

not provide a formal classification of bots, I also benchmarked them to show how the articles

both influenced the creation of and compared to the new taxonomy of software bots.

The detailed results from the benchmarking of each existing classification against my

proposed software bot taxonomy are provided in Appendix F. In the following chapter, I

also discuss some trends that emerged during the benchmarking validation step.

6.2 Subject Matter Tagging

During this phase, the proposed taxonomy was used to characterize three existing software

bots, which were publicly available online. Since I only assessed a relatively small sample

of software bots, the bots were selected opportunistically. I selected the bots with a range

of different purposes: one virtual assistant (Alexa97), one weather bot (Poncho98), and

one software development bot (Mention-Bot99).

The first bot, Amazon’s Alexa, is a voice service that can be accessed from a variety of

Amazon and third-party devices. Alexa responds to voice requests for a set of basic built-

in capabilities (e.g., making to-do lists, playing music, or providing traffic reports), and

optional user-installed skills (e.g., workout plans, talk to your cat, or wine pairings) from

third-party vendors. Alexa can also be used for home automation as it can control many

smart devices. It used the online EchoSim100 testing tool to access Alexa for the classifi-

cation. EchoSim is an online simulator of Alexa’s functionality, used by developers to test

their Alexa Skills. The second bot, Poncho, is a Facebook Messenger bot that provides

personalized weather updates, ranging from daily updates to extreme weather warnings.

Poncho is also capable of playing text-based games with users. Lastly, Mention-Bot

is a GitHub-based bot that automatically mentions potential reviewers on pull requests.

Mention-Bot was designed for large GitHub projects that are too big for people to effi-

ciently monitor notifications. By automating the process of mentioning potential reviewers

on new pull requests, Mention-Bot notifies the right people early on. It should be noted

that for the purpose of classifying Mention-Bot, I assessed its behaviours as if it was

being used on a public repository.

Each of the three bots was classified using the proposed software bot taxonomy in May

2018. Since two of the bots could respond to natural language queries, I determined their

values for many of the intrinsic and interaction facets by directly asking them questions.

For example, I asked them questions like “what is your gender?” or “what is your age?” to

determine their anthropomorphized gender and age, respectively. For the facets that could

not be asked of them directly, I assessed their capabilities by interacting with them further or

(when required) examining their documentation.6.2,101 I determined the values of the bots’

85

environment facets by examining their platform’s documentation, specifically Messenger102,

GitHub103, and Amazon’s voice services104. A summary of each of the bots’ classifications

on the environment, intrinsic, and interaction dimensions is provided in Appendix G.

However, without deeper insights into the inner workings of the bots, it is hard to know

if these classifications are completely accurate as I may have missed some of the bots’ less

visible functionality. I also acknowledge that these bots are likely to change, which in turn

would alter their classifications on the proposed software bot taxonomy.

During this validation step, I noticed that there was one facet that I had originally

overlooked during the taxonomy creation; the bot’s interaction directionality (i.e., does the

bot engage in a two-way or one-way interaction style). Both Alexa and Poncho had a

two-way interaction style, while Mention-Bot had a one-way interaction style since it

could only post messages for users and not receive inputs from them. To account for this,

I added the additional facet to the proposed taxonomy.

6.3 Domain Expert Tagging

To further validate the utility of the proposed taxonomy, I conducted a domain expert

tagging session. At the start of the session, the participant was asked a few quick questions

about their background and prior experience with software bot technologies. They were then

asked to try classifying their bot using the latest version of the software bot taxonomy. The

participant was free to ask any questions they had during the session. After the participant

was finished tagging their bot, they were asked a few follow up questions regarding their

experience using the software bot taxonomy.

The participant was invited to participate because of their previous experience research-

ing and developing software bots. Informed consent was collected at the time of the study

and the research was conducted with the approval of the Human Research Ethics Board

(HREB) of the University of Victoria (cf. Appendix I). A copy of the questions asked in

this study is provided in Appendix H.

The session took approximately 90 minutes and was conducted in person in a laboratory

setting. The participant (P1) had approximately 8 months of experience in researching,

designing, and building bots. At the time of the study, they worked in a quality assurance,

testing, and customer support role at a local technology start-up. The bot (B1) they selected

to classify was a bot that they built to automate some aspects of their company’s customer

support. Since they had found that different customers often asked similar questions, P1

decided to build a bot to answer commonly asked questions and provide basic support for

their offerings.

With the help of the facilitator, P1 was able to successfully tag their bot on all but two

facets: cardinality (under the environment dimension) and autonomy (under the intrinsic

86

dimension). With respect to cardinality, P1 found the existing description of “cardinality

describes the size of the bot’s environment” was not clear enough for them to be able to

classify the bot’s environment as either discrete (“limited or bound with respect to size”)

or continuous (“not limited or bound with respect to size”). Based on this feedback, I

re-examined the facet, updated its description, and changed the facet value names from

discrete/continuous to bounded/unbounded.

With respect to autonomy, P1 pointed out that B1 fit with the description of both

low (“it can come up with possible tasks, but requires an external party to approve of the

bot performing them”) and high (“it can select and perform tasks completely on its own”)

autonomy. Upon reflection, I realized that I had combined multiple aspects of autonomy

into a single facet. Autonomy, with respect to bots, can be viewed as the freedom to decide

on a plan, the responsibility or ability to carry it out, and the degree to which you make

your progress visible. Based on this, the high-level concept of autonomy was broken down

into three separate reasoning sub-facets: mechanisms, clearance, and visibility. It also

became clear that autonomy can differ based on the bot’s goal type. To account for this, I

added two additional goal sub-facets: complexity and criticality.

The testing session also had the added benefit of providing some insight into the usabil-

ity and understandability of the taxonomy. Although the bot was ultimately classified on

all of the facets except for the ones previously mentioned, many possible usability improve-

ments were also identified. For many of the facets, P1 requested either some form of an

example or clarification. Based on this feedback, I added additional examples and revised

the descriptions of the facets that caused the most confusion. After these changes had been

made to the taxonomy, I provided P1 with the new version of the taxonomy and the update

classification of B1. A copy of the classification of B1 is provided in Appendix J.

6.4 Summary

In this chapter, I discussed my three-phase approach to validating my proposed taxonomy

of software bot characteristics. First, I benchmarked the taxonomy by comparing it against

the existing classifications used to generate the taxonomy. This phase helped ensure that the

terms for the original articles were correctly merged to create the new taxonomy. The second

phase was the subject matter tagging, where I tagged three publicly available software bots

using the proposed taxonomy. This phase helped ensure that the taxonomy’s facet values

were complete. Lastly, I conducted a domain expert tagging session to test both the utility

and usability of the taxonomy. During this, I worked with a domain expert to tag a bot

they had built using the proposed taxonomy and gather their feedback on it.

All three of these phases were performed iteratively, and I used the insights gathered

during the validation phase to further improve the proposed taxonomy. However, my valida-

87

tion approach was not without its limitations. In the next chapter, I discuss the limitations

of the validation approach and provide suggestions to expand the validation in the future.

I also discuss the implications of my proposed taxonomy of software bot characteristics and

provide suggestions for how it can be operationalized.

97https://developer.amazon.com/alexa
98https://www.poncho.is/
99https://www.github.com/facebookarchive/mention-bot

100https://www.echosim.io/
101https://developer.amazon.com/documentation
102https://developers.facebook.com/docs/messenger-platform
103https://developer.github.com/v4/reference/object/bot/
104https://developer.amazon.com/alexa-voice-service

88

Chapter 7

Discussion, Limitations, and

Future Work

In this section, I reflect on the work presented in this thesis, identify some limitations to

my approach, and explore how this work can be used in the future.

7.1 Why Another Software Bot Taxonomy?

One of the main questions that can be asked when reading this thesis is, why do we need yet

another taxonomy for software bots? The purpose of the taxonomy proposed in this thesis

was not to create another distinct taxonomy, but instead to bring together and build upon

existing classifications to create a holistic taxonomy of software bots. In the next sections,

I explore some shortcomings of the previous software bot classifications and highlight the

ways in which my proposed taxonomy attempts to overcome them.

Limited Subject Matter: One of the major issues with the existing classifications of

software bots was the limited scope of their subject matter. In fact, none of the existing

classifications presented a holistic view of the larger domain of software bot technologies.

Instead, they presented a classification of a limited sub-type of software bots and/or focused

on a specific set of properties or behaviours. All but one of the articles returned in the

systematic literature search and snowballing phases focused on software agents or more

restrictive agent-subtypes. Similarly, many of the online articles focused on currently trendy

chatbots. Many of these classifications also focused only on specific properties of behaviours

of software bots or software bot sub-types. Although many of these classifications provide

insights into the technologies they focused on, they miss some of the bot properties and

behaviours that emerge when you consider the larger domain of software bots. They also

missed the relationships between many of the facets in the taxonomy. To help mitigate these

89

issues, the content I used to build the taxonomy included different subtypes of software bots

and a wide range of properties/behaviours.

Much of the terminology used in the different sub-domains of bot research was also

extremely inconsistent. By merging the existing classifications together, I identified a con-

trolled vocabulary for discussing the observable behaviours/properties of software bots. I

was also able to map the alternate terms (describing the same concept) back to the con-

trolled vocabulary [63]. Thus, the proposed taxonomy helps provide a more holistic view of

the variety of observable software bot properties and behaviours.

Too Low Level: Many of the properties or behaviours of software bots described existing

classifications were extremely low-level. Finding the correct level of abstraction for the

various facets, sub-facets, and facet values required an immense amount of work. Often,

too much information about a specific facet was presented, and I had to abstract away some

of the details to make the taxonomy manageable. For example, the previous classifications

contained numerous ways a bot could act or sense its environment. As a result, I abstracted

these details into two higher-level categories (acting and sensing) instead of trying to present

a comprehensive list of all possible actions they could perform or things they could sense.

Although the taxonomy lost some details in this process, I believe that it created a much

more manageable taxonomy. If needed, users can find more details by exploring the works

referenced or even extend the more generic taxonomy to suit their own unique needs.

Too High Level: Conversely, when refining the proposed taxonomy’s facets, I found that

many of the properties or behaviours described were too high level. Many of the existing

definitions combined multiple potential facets into a single concept. These definitions were

often ambiguous or used inconsistently by different researchers. In these cases, I decomposed

the high-level concept down into multiple related sub-facets.

A good example of this is the concept of “autonomy”, as existing definitions often

combine aspects of multiple potential facets. Although I describe the process of decomposing

autonomy in greater detail in Section 6.3, I determined that it was composed of at least three

distinct sub-facets: agency, reasoning mechanism, and visibility. Examples of other high-

level concepts that were decomposed into many sub-facets include: intelligence, sapiency,

adaptability, etc.

Other times, only a very high-level concept—with no obvious sub-facets—was provided.

In these cases, I looked to literature outside of the domain of software bots to provide the

additional information required to develop the facet values. For example, to design the

sub-facets of software bot robustness, I drew inspiration from an existing taxonomy of error

handling in human-computer interfaces [90]. I also relied on my previous experiences using

software bots to help fill in other minor gaps.

90

Out of Date: The existing software bot classifications were also often out of date as many

were from the 1990s and early 2000s before recent advances in AI (e.g., speech recognition,

natural language processing, computer vision) increased computing capabilities, adoption

of voice/messaging platforms, etc. These new technologies are the building blocks for many

modern software bots. In fact, I noticed that many of the articles collected during the

informal search (i.e., the emerging research on software bots) explored a few areas that the

other older articles did not. One of the areas that the informal articles covered—but was a

major gap in the systematic searched and snowballed articles—were the sub-facets related

to anthropomorphism. Other examples of facets that were more commonly found in the

recent articles include: robustness, language capability, interaction cardinality, and specific

environment types / platforms.

Lack of Validation: Lastly, all but four of the articles lacked validation for their proposed

classifications of software bots; however, the three validation methods were quite limited.

Two of the articles validated their classifications by suggesting use cases [55] or scenarios

[76]. The other classifications were validated by tagging a small set of software agents and

identifying gaps in the existing research [78, 61].

The taxonomy proposed in the thesis was validated through benchmarking, user tagging

sessions, and expert tagging of subject matter, as described in Section 6. I also believe that

future work is required to more rigorously validate my proposed taxonomy.

7.2 Limitations

In this section, I discuss the limitations and implications of the major design choices I made

during the construction of the taxonomy.

Black Box Approach: The taxonomy focuses on classifying the observable properties

and behaviours of software bots. I adopted a “black box” approach so that software bots

could be classified using the taxonomy even if their inner structures were not known. As

a result, the taxonomy abstracts many technical and implementation details. The field of

software bots continues to grow in popularity, while at the same time new tools, techniques,

and algorithms are being developed. Thus, if the proposed taxonomy included these types

of details, it would likely be out of date quite quickly. Since I was not able to adequately

explore the inner workings of software bots, this is a good avenue for future work.

The taxonomy also focused on the software bot as a whole (i.e., emergent properties

[2]), as like other software systems, a bot is more than a sum of its parts. I attempted to

define the relationships between facets where possible, however, future work is required to

continue to explore the relationships between the various facets of the proposed taxonomy.

91

Article Selection: The articles used to generate the proposed taxonomy likely influenced

both the content and structure of the resulting taxonomy. Although the systematic liter-

ature search (cf. Section 4.3.1) provided a solid foundation of academic literature, only

articles that had the search terms were included. This may have ruled out many articles

that did not provide classifications or focused on less popular subtypes of software bots.

The strictness of this selection criteria may also have inadvertently disqualified some arti-

cles that could have contributed valuable software bot insights. All of these articles also

focused mainly on software agents and agent subtypes. I tried to mitigate these issues by

introducing a round of snowballing (cf. Section 4.3.1) and an informal online search (cf.

Section 4.3.3).

Even after attempting to balance the articles selected, a majority of them still focused

on software agents. As a result, the proposed taxonomy may have a bias towards agent-like

technologies and may lack generalizability to the larger population of software bots. Since

many of the articles used to generate the taxonomy were based in theoretical research, some

aspects of the proposed taxonomy may also lack generalizability to real-life software bots. I

attempted to mitigate these risks through tagging a set of publicly available software bots

using the proposed taxonomy (cf. Section 6.2), as well as having a domain expert tag their

own software bot with the taxonomy (cf. Section 6.3). As future work, comparing the

taxonomy against a broader range of software bot technologies would help further validate

its generalizability.

Although I provided an inclusion reason for each of the articles I selected during the

online search step (cf. Appendix B.4), there were no formal selection criteria for these

articles. As a result, I likely also introduced some degree of selection bias with respect to

the articles used to generate the taxonomy.

Term Extraction: Since I was the only researcher to conduct the term extraction, I

may have introduced some selection bias with respect to the terms used to generate the

taxonomy. I also included only terms that the articles’ authors explicitly stated to be a

property/behaviour of software bots. Due to this criteria, I may have missed some of the

authors’ implied or more subtle dimensions of software bots. I also may have introduced

interpretation bias when the authors did not provide a clear description of the extracted

property/behaviour.

Term Inclusion: Although the initial card sorting during the taxonomy generation pro-

cess was completed with a collaborator and the final taxonomy was both run by domain

experts and user tested, I performed many of the later steps of the taxonomy generation

alone (e.g., drafting descriptions, revising the taxonomy, validation). Ultimately, I selected

the dimensions, facets/sub-facets, and values that made it into the taxonomy, which likely

92

introduced some degree of researcher bias. I tried to mitigate this by taking detailed notes

for repeatability/transparency and consulting with both my collaborator and other domain

experts throughout the taxonomy generation process. It should also be mentioned that the

taxonomy is not a comprehensive list of all possible observable properties/behaviours, but

rather a curation of the key facets that I believe are important when trying to understand

software bot technologies.

Taxonomy Structure: It is also worth mentioning that many other taxonomy structures

could have emerged during the taxonomy generation process. As discussed in Section 4.5.3,

multiple variations of high-level dimensions were considered. In the end, I selected three

high-level dimensions that provided the most natural feeling division of facets/sub-facets.

However, I may have been unintentionally biased by the classification structures proposed

in the articles that were used to generate the proposed taxonomy. It is also possible that

using different data sources may have created a different taxonomy of software bot proper-

ties/behaviours. Similarly, very different taxonomies would have emerged if I had selected

an alternate taxonomy structure (e.g., hierarchy or tree).

Validation: Although the taxonomy was validated through benchmarking, researcher

tagging, and domain expert tagging, these validation strategies were limited. The bench-

marking validation only compared the new taxonomy against the articles that were used

to generate it (cf. Section 6.1). Although this was effective in ensuring that important

properties/behaviours included in the articles were not overlooked, it would not identify

potentially overlooked facets that were not included in the articles. Thus, the taxonomy

should be benchmarked against a larger set of articles in future work.

Similarly, the taxonomy should be used to tag a larger population of software bots.

The existing validation only tagged three software bots with the proposed taxonomy (cf.

Section 6.2). These bots were selected opportunistically (i.e., “cherry picked”) since they

all had a different purpose (i.e., a virtual assistant, a weather bot, and a software develop-

ment bot) and displayed a range of behaviours. However, these bots were also similar in

many ways: e.g., they all performed tasks for users, were non-malicious, publicly available,

used human language, were platform bots, and were not mobile. Although I was able to

successfully classify these three bots on all of the proposed taxonomy dimensions, based on

the sample size and selection mechanism, these results cannot be generalized to the entire

population of software bots.

Although a domain expert tagging session was held (cf. Section 6.3), it was extremely

limited (one participant tagging one bot) and needs to be expanded to cover both a larger

set of users and software bots. Due to this, the results of the testing sessions cannot

be generalized to the population of potential users or the population of software bots.

93

Furthermore, the primary focus was on evaluating the utility of the taxonomy (i.e., can

it be used to classify a bot) and not the usability of the taxonomy. During the session,

the participant relied on the facilitator to help them classify their bot, which suggests that

future work in testing and improving the taxonomy’s usability is also required.

I believe that the best way to validate the taxonomy’s generalizability to the larger

population of software bots is to use the taxonomy to classify a wider variety of software

bots. This may also have some added benefits for the operationalization of the taxonomy,

as described below.

7.3 Operationalizing the Taxonomy

Another question readers may have is, how can I go about using the taxonomy presented in

this thesis? What future work is required to further operationalize the proposed taxonomy?

In this thesis, I identified three potential user groups for the proposed taxonomy: re-

searchers, practitioners, end users. These groups are also not mutually exclusive, as

the same user may fall into different categories at different times. However, I distinguish

between these three types of users since many of the usage scenarios for each group are

distinct. Below, I discuss some ways in which these three groups can use the proposed

taxonomy; however, future work is required to validate these assumptions and determine

to what extent the existing taxonomy satisfies them.

7.3.1 Researchers

Researchers contribute to the software bot knowledge base by publishing their software

bot research. Below, I highlight some key ways in which researchers can use the proposed

software bot taxonomy.

Introducing Consistency: The terminology used in the field of software bot research

is diverse and often inconsistent. Inconsistent or diverse terminology is also an obstacle

to new research. Thus, having a set of consistent terminology in an emerging field makes

it easier to build upon each others work and, in turn, speeds up research [1]. In the

software bot taxonomy, I propose a set of controlled vocabulary for discussing the observable

properties and behaviours of software bots, stemming from past research on software bot-

like technologies. This set of preferred terms can be leveraged to help introduce more

consistent terminology in future research on software bots.

Understanding Prior Work: By having a mapping between the alternative terminology

used in previous research and my proposed taxonomy’s controlled vocabulary, researchers

94

can better understand past research into software bot technologies. The taxonomy’s map-

pings can be used as a sort of thesaurus of related bot terms. These mappings can also be

used to help understand the ways that different researchers, across multiple research areas

are discussing software bots and bot-subtypes.

Helping with Meta Research: The taxonomy can also help researchers better under-

stand the state of research in the domain of software bots as it provides a map of many

possible sub-areas of software bot research. Researchers could use the taxonomy to under-

stand where their research fits within and how it connects to other research in the larger

domain of software bot research. It can also provide a good starting point for the initial

search process. Conducting literature reviews in a specific domain is hard when the ter-

minology is not well defined or standardized—the taxonomy’s controlled vocabulary and

mappings can help with this.

Tagging Bots: If a large population of software bots were to be classified using the pro-

posed taxonomy, this would allow researchers to use the taxonomy in a variety of additional

ways. First, the taxonomy could be used to identify software bot trends. How have soft-

ware bot technologies evolved over the years? What are the properties or behaviours of

successful bots? What are the properties or behaviours of unsuccessful bots? Can certain

facets predict how a bot will be used?

Different role-based or high-level classifications of software bots could also be compared

using the proposed taxonomy. For example, on which facets are all chatbots similar and on

which facets do they differ? This could help better answer questions like, how to agents differ

from other software bots? Or, what properties/behaviours do different types of malicious

bots exude, helping us to better detect bad bots. The proposed taxonomy could also help

clarify the differences between bot subtypes and other types of non-bot programs.

Identifying Areas for Future Research: Lastly, the proposed taxonomy can also help

mature the software bot knowledge area by helping researchers identify existing gaps in the

knowledge area and/or new avenues of research.

7.3.2 Practitioners

Practitioners design, develop, and maintain software bot technologies. They contribute

to software bot knowledge base through the technical problems they solve and the bots

they create. Below, I highlight some key ways in which practitioners can use the proposed

software bot taxonomy.

95

Understanding Possibilities: Whether the practitioners use only a subset or the entire

taxonomy, it can provide them with a way to better understand the range of possible prop-

erties and behaviours of software bots. Each of the taxonomy dimensions can be viewed

as a set of bot design decisions. Practitioners can walk through each of the taxonomies

facets/sub-facets in order to make sure they have considered all possible options for their

bots properties. Thus, the taxonomy can serve as a sort of check-list of bot design consid-

erations. This helps to get them thinking about the range of software bot properties, and

which ones might best address their use cases. The taxonomy also provides practitioners

with the vocabulary (both the controlled vocabulary and mapped terms) required to discuss

software bots in a research setting.

Analyzing Bots: The proposed taxonomy can also help practitioners glean insights into

the bots they have built, by classifying them on the taxonomy. In doing so, the taxonomy

can help them reflect on the choices they made, understand the other options available, and

determine if they made the right decisions for their bot’s use-case(s). Practitioners can also

use the taxonomy to learn more about their bot’s properties or behaviours.

Building Better Bots: I believe that this taxonomy could be used to help practitioners

build better bots. Although this taxonomy is currently non-prescriptive, the taxonomy

could be extended to include a set of guidelines or best practices for building bot. Since

the taxonomy describes the set of possible values for each of the facets or sub-facets, then

recommendations could be derived from exploring the difference in the distribution facet

values for successful and non-successful bots.

7.3.3 End Users

The last category of potential software bot taxonomy users are the software bot end-users.

They look to the software bot knowledge base to increase their understanding, as well as

guide their usage and adopting software bots.

Through the taxonomy does not provide any advice on the types of bots to adopt directly,

it can help end-users learn more about the technologies they are interacting with and get

them thinking about the risks/benefits associated with software bots. Understanding the

possible software bots properties and behaviours can help end-user determine what they

value in a bot, helping them make more informed decisions regarding the types of bots they

welcome into their communication channels, workplaces, and homes.

96

Chapter 8

Conclusions

This thesis explored, organized, and updated the software bot knowledge area. In this

chapter, I conclude the thesis by reflecting on the questions that I set out to answer,

pointing out the research contributions that I made along the way, and leave you with some

final thoughts on software bots.

8.1 Summary of Research

The work presented in this thesis resulted in three main research contributions. Below, I

discuss each of the contributions as well as the research questions they helped answer.

RQ1: What is a software bot? Despite the growing popularity of software bots, there

is no clear consensus on what exactly constitutes a bot or the boundaries of bot-hood.

In Chapter 3, I addressed this research question by proposing an updated definition of a

software bot. I arrived at this definition through exploring and building on many of the

existing definitions of software bots from previous literature. I also compared software bots

to a variety of other bot-like technologies.

RQ2: What properties of software bots can be used to classify them? The

terminology currently used to describe software bots is fragmented and disjointed as it

borrows from a variety of research domains. To answer this question, I first explored the

range of existing classifications of software bots and discussed any shortcomings of these

approaches, see Chapter 3. Since these existing classifications fail to adequately capture the

intricacies of modern software bots, I proposed a new taxonomy of the observable properties

and behaviours of software bots, as described in Chapter 5. The taxonomy brought together

and built upon existing classifications of software bots to create a more holistic view of

software bots, see Chapter 4. Lastly, in Chapter 5.1, I discussed how the proposed taxonomy

could be used to better understand and classify software bot technologies.

97

RQ3: What existing terminology used in previous software bot research can be

mapped onto the new classification scheme? To answer this question, first I reflected

on the variety of terms that previous researchers have used to describe the observable

properties and behaviours of software bots, see Chapters 4. Next, I mapped the various

terms used to describe equivalent concepts to the controlled vocabulary in the proposed

taxonomy. A copy of the term mappings is provided in Appendix E. Lastly, in Chapter 5.1,

I discussed how these mappings may be used to better understand software bot technologies.

8.2 Final Remarks

Software bots are complex—and growing more so each day. For many years people have

struggled to define exactly what makes a bot, a “bot”, which has often led them to define

bots according to their own specific needs. Software bots are also a digital “Frankenstein”

of research from a variety of different fields, both in academia and industry. Many of these

different fields bring with them their own set of terminology for describing bots. I believe

that the research presented in thesis serves to further highlight how complex software bots

are and how much we still have to learn about them.

In this thesis, I explored the bot knowledge area, both historic and theoretic concepts

and definitions, and generated a comprehensive and modern taxonomy of bots. Although

this work provides an initial step towards a deeper understanding of modern software bot

technologies, much work remains. It is my hope, however, that this research can assist

people researching, building, and using software bots.

98

Appendices

99

Appendix A

Collection Queries

The following queries were ran the first week of June 2017, and included anything published

prior to that date.

A.1 ACM Digital Library

• acmdlTitle:(+taxonom* +agent*) or acmdlTitle:(+classif* +agent*) or acmdlTi-

tle:(+charact* +agent*)

• acmdlTitle:(+taxonom* +bot) or acmdlTitle:(+classif* +bot) or acmdlTitle:(+charact*

+bot)

• acmdlTitle:(+taxonom* +bots) or acmdlTitle:(+classif* +bots) or acmdlTitle:(+charact*

+bots)

• acmdlTitle:(+taxonom* +chatbot*) or acmdlTitle:(+classif* +chatbot*) or acmdlTi-

tle:(+charact* +chatbot*)

• acmdlTitle:(+taxonom* +chatterbot*) or acmdlTitle:(+classif* +chatterbot*) or acmdlTi-

tle:(+charact* +chatterbot*)

A.2 IEEE Xplore

• (”Document Title”:taxonom* OR ”Document Title”:classif* OR ”Document Title”:charact*)

AND (”Document Title”:bot OR ”Document Title”:bots OR ”Document Title”:chatbot*

OR ”Document Title”:chatterbot* OR ”Document Title”:agent*)

A.3 ScienceDirect (Computer Science section)

• TITLE-ABSTR-KEY(taxonom* or classif* or charact*) and TITLE(agent* or bot or

bots or chatbot* or chatterbot*)[Journals(Computer Science)]

100

A.4 SpringerLink

• Searching for taxonom* OR classif* OR charact* in Article Titles AND agent* OR

bot OR bots OR chatbot* OR chatterbot* in Article Title

A.5 Wiley Online (Computer Science section)

• taxonom* OR classif* OR charact* in Article Titles AND agent* OR bot OR bots OR

chatbot* OR chatterbot* in Article Title

101

Appendix B

Data Extracted from Article

Selection

B.1 Excluded Systematic Search Articles

Ref Date Authors Title Venue Reason

[91] 2008
Schmeck and
Müller-Schloer

A Characterization Of
Key Properties Of
Environment-Mediated
Multi-agent Systems

workshop
paper

E4: focuses on specific subtype of subject:
Multi-agent systems since it focuses on the
interactions of multiple agents and not sin-
gle agents

[92] 1995
Aitken,
Schmalhofer,
and Shadbolt

A Knowledge Level
Characterization Of
Multi-Agent Systems

workshop
paper

I3: doesnt try to provide a schema for sub-
ject classification

[93] 2008
Ko, Han, Kim,
and Youn

A New Agent Characteri-
zation Model And Group-
ing Method For Multi-
Agent System

conference
paper

E2: this paper focuses on the algorithmic
classification of agents, E4: this paper fo-
cuses on the bots in multi-agent systems

[94] 2007
Dagon, Gu,
Lee, and Lee

A Taxonomy Of Botnet
Structures

conference
paper

E4: focuses on botnet structures (network
focus)

[95] 2000
Wong and
Sycara

A Taxonomy Of Middle-
Agents For The Internet

conference
paper

E4: middle agents in multi-agent systems
(specifically: matchmakers and facilitators)

[96] 2013
van Oijen and
Dignum

Agent Communication For
Believable Human-Like In-
teractions Between Virtual
Characters

workshop
paper

I3: doesnt examine a classification schema,
I1: doesnt contain search keywords

[97] 2009
Afonso and
Prada

Agents That Relate:
Improving The Social
Believability Of Non-
Player Characters In
Role-Playing Games

conference
paper

I3: doesnt examine a classification schema,
I1: doesnt contain search keywords

[98] 2004
Oluyomi,
Karunasekera,
and Sterling

An Agent Design Pat-
tern Classification Scheme:
Capturing The Notions Of
Agency In Agent Design
Patterns

conference
paper

I4: focuses on the implementation design
patterns for bots, not functional / non-
functional properties

102

[99] 2005
Riedl and
Young

An Objective Character
Believability Evaluation
Procedure For Multi-
Agent Story Generation
Systems

conference
paper

I3: doesnt examine a classification schema,
I1: doesnt contain search keywords

[64] 1999
Yap and
Keong

Are Life-Like Char-
acteristics Useful For
Autonomous Agents?

conference
paper

I3: doesnt examine a classification schema,
I1: doesnt contain search keywords

[100] 2002 Doyle

Believability Through
Context Using Knowledge
In The World To Create
Intelligent Characters

conference
paper

I3: doesnt examine a classification schema,
I1: doesnt contain search keywords, I4: fo-
cuses on the implementation of bots, not
functional / non-functional properties

[101] 2012
Eslahi, Salleh,
and Anuar

Bots And Botnets: An
Overview Of Characteris-
tics, Detection And Chal-
lenges

conference
paper

E4: focuses on botnet structures (network
focus)

[102] 2006
Cascalho, An-
tunes, Corrêa,
and Coelho

Characterising Agents’ Be-
haviours: Selecting Goal
Strategies Based On At-
tributes

workshop
paper

I3: focuses on bots from an engineering per-
spective and proposes a framework to alter
bots behaviours

[103] 2013
Sumi and Na-
gata

Characteristics Of Robots
And Virtual Agents As A
Persuasive Talker

conference
paper

I3: focuses on evaluating the effect of agents
using verbal / facial expression

[104] 2005
Davidsson, Jo-
hansson, and
Svahnberg

Characterization And
Evaluation Of Multi-
Agent System Architec-
tural Styles

workshop
paper

I3: focuses on evaluating different multi
agent systems architectures, not on the
properties themselves, E3: focuses on prop-
erties of MAS as a whole

[105] 2007
Stinson and
Mitchell

Characterizing Bot’s Re-
mote Control Behavior

conference
paper

E1: focuses on evaluating remote-control
behaviours of bots, E3: focuses on botnets
and malicious bots

[106] 2005 Hu and Liu

Characterizing Com-
plex Behavior In (Self-
Organizing) Multi-Agent
Systems

conference
paper

I3: focus on evalutating types of MAS, not
of characterizing properties of bots, E3: fo-
cus on MAS as a whole

[107] 2012

den Bosch,
Branden-
burgh, Muller,
and Heuvelink

Characters With Personal-
ity!

conference
paper

I3: evaluates the effects of personality on
virtual agents, does not provide a classifica-
tion, E3: focused on virtual agents in games

[108] 2009
Hayashi and
Miwa

Cognitive And Emo-
tional Characteristics
Of Communication In
Human-Human/Human-
Agent Interaction

conference
paper

I3: examines the characteristics of human-
agents interactions, not the characteristics
of agents themselves violates, I4, E1

[109] 2009
Prasad, Ku-
mari, and
Raju

Comparison Shopping
Agents: The Essential
Characteristics And Chal-
lenges To Be Met

conference
paper

I3: evaluates characteristics, doesnt provide
a classification, E4: focuses only on compar-
ison shopping bots

[110] 1995 Darley

Constructive And Destruc-
tive Obedience: A Tax-
onomy Of Principal-Agent
Relationships

conference
paper

I3: not focused on software agents, E6: not
found online

[111] 2011

Smajgl,
Brown, Val-
buena, and
Huigen

Empirical Characterisa-
tion Of Agent Behaviours
In Socio-Ecological Sys-
tems

journal
paper

I2: focusing on modeling human behaviours
with agents, not software bots themselves,
I3: doesnt try to characterize functionality,
I4: doesn’t focus on the properties of an
emerging system, E3: focuses on the appli-
cation of bots in other domains

103

[112] 2007
Zoric, Smid,
and Pandzic

Facial Gestures: Tax-
onomy And Application
Of Non-verbal, Non-
emotional Facial Displays
For Embodied Conversa-
tional Agents

academic
book

E4: focuses only on classifying the facial ex-
pressions / gestures of embodied conversa-
tional agents

[113] 2016 Merrick
Game-Playing Agents And
Non-Player Characters

academic
book

I1: does not contain desired definition of
keywords in title, I3: does not provide clas-
sification of bots properties

[114] 2009 DiPaola
Intelligent Expression-
Based Character Agent
Systems

workshop
paper

I1: does not contain desired definition of
keywords in title, I3: does not provide clas-
sification of bots properties

[115] 2002
Cavazza,
Charles, and
Mead

Interacting With Virtual
Characters In Interactive
Storytelling

conference
paper

I1: does not contain desired definition of
keywords in title, I3: does not provide clas-
sification of bots properties

[116] 2005 Ito
Introducing Multimodal
Character Agents Into
Existing Web Applications

conference
paper

I1: does not contain desired definition of
keywords in title, I3: does not provide clas-
sification of bot properties

[117] 1996
Tosa and
Nakatsu

Life-Like Communication
Agent-Emotion Sensing
Character And Feeling
Session Character

journal
paper

I1: does not contain desired definition of
keywords in title, I3: does not provide clas-
sification of bot properties, instead focuses
on a proposed bot properties

[118] 2003

Mukhopadhyay,
Peng, Raje,
Palakal, and
Mostafa

Multi-Agent Informa-
tion Classification Using
Dynamic Acquaintance
Lists

journal
paper

I3: does not provide a classification of bot
properties, instead focuses on a proposed
bots properties, E2: focuses on the algo-
rithmic classification of agents

[119] 2002

Kitamura,
Tsujimoto,
Yamada, and
Yamamoto

Multiple Character-Agents
Interface: An Informa-
tion Integration Platform
Where Multiple Agents
And Human User Collab-
orate

conference
paper

I1: does not contain desired definition of
keywords in title, I3: does not provide clas-
sification of bot properties, instead focuses
on a proposed bots properties

[120] 2001
Jones and
Firozabadi

On The Characterisation
Of A Trusting Agent – As-
pects Of A Formal Ap-
proach

academic
book

I3: does not provide classification of bot
properties

[121] 2003
Arafa and
Mamdani

Scripting Embodied
Agents Behaviour With
Cml: Character Markup
Language

conference
paper

I3: does not provide classification of bot
properties, instead the properties of lan-
guages for building bots

[122] 1999
Takeuchi and
Katagiri

Social Character Design
For Animated Agents

workshop
paper

I3: does not provide classification of bot
properties, instead compares HCI aspects of
bot properties

[123] 2009
Neto and
da Silva

Synthetic Characters With
Personality And Emotion

workshop
paper

I3: does not provide classification of bot
properties, instead proposes an architecture
for building bots

[124] 2011
Cabri, Pu-
viani, and
Zambonelli

Towards A Taxonomy Of
Adaptive Agent-Based
Collaboration Patterns
For Autonomic Service
Ensembles

conference
paper

I3: does not provide classification of bot
properties, instead proposes a taxonomy for
bot building/communication patterns

[125] 2009
Damiano and
Lombardo

Using Values To Turn
Agents Into Characters

conference
paper

I1: does not contain desired definition of
keywords in title, I3: does not provide clas-
sification of bot properties

104

[126] 2008
Ke and
Mostafa

Visualizing Multi-Agent
Collaboration For Classifi-
cation Of Information

journal
paper

I3: does not provide classification of bot
properties, instead visualizes communica-
tion patterns between agents

[127] 2004 Kitamura
Web Information Integra-
tion Using Multiple Char-
acter Agents

academic
book

I1: does not contain desired definition of
keywords in title, I3: does not provide clas-
sification of bot properties, instead pro-
posed a multi-agent platform

[128] 2014 Baraniuk
You’ve Got Personality...
For A Bot

academic
magazine

I1: does not contain keywords in title, I3:
does not provide classification of bot prop-
erties

[129] 2004
Hare and
Deadman

Further towards a taxon-
omy of agent-based simu-
lation models in environ-
mental management

journal
paper

E4: focuses on agent simulations

[130] 2010

Read, Tale-
vich, Walsh,
Chopra, and
Iyer

A Comprehensive Taxon-
omy Of Human Motives:
A Principled Basis For
The Motives Of Intelligent
Agents

conference
paper

I2: does not provide classification software
bots, but instead intelligent agents of a non-
software variety

[131] 2003 Höppner

An Agents Definition
Framework And A
Methodology For De-
riving Agents Taxonomies

conference
paper

E5: the full article is not available online

[132] 2006 Filatov
About One Approach To
The Classification Of Pro-
gram Agents

conference
paper

E2: focuses on the algorithmic classification
of agents

[133] 1997
Jennings and
Campos

Towards A Social Level
Characterisation Of So-
cially Responsible Agents

academic
magazine

I3: doesnt examine a classification schema,
instead presents a framework for agent ar-
chitecture

[131] 2003 Höppner

An Agents Definition
Framework And A
Methodology For De-
riving Agents Taxonomies

Conference

I3: doesnt examine a classification schema,
instead develops an algorithm to classify
software agents based on other definitions

105

B.2 Included Systematic Search Articles

Ref Date Authors Title Schema Subject Scope Methodology Validation

[72] 1993 Bird
Toward A Tax-
onomy Of Multi-
Agent Systems

taxonomy

agents
(multi-
agent
system)

proposing
new (based
on previous
work)

expert
opinion

none

[64] 1999
Yap and
Keong

Are Life-Like
Characteris-
tics Useful For
Autonomous
Agents?

character-
ization

agents (au-
tonomous
agents)

Proposing
new

expert
opinion

none

[86] 2003

Parunak,
Brueckner,
Fleischer,
and Odell

A Design Tax-
onomy Of
Multi-Agent
Interactions

taxonomy
agents
(multi-
agent)

extending
existing
model

expert
opinion

none

[65] 2005
Hector and
Narasimhan

A New Classifica-
tion Scheme For
Software Agents

classification
scheme /
ontology

software
agents

extending
existing
model

expert
opinion

none

[66] 2007
Moya and
Tolk

Towards A Tax-
onomy Of Agents
And Multi-Agent
Systems

taxonomy

Agents
and Multi-
Agent
Systems

proposing
new (based
on others)

expert
opinion

none

[71] 2008

van Ot-
terlo,
Dastani,
Wiering,
and Meyer

A Characteriza-
tion Of Sapient
Agents

character-
ization

sapient &
cognitive
Agents

proposing
new

expert
opinion

none

[88] 2009
Sakarkar
and Shelke

A New Classi-
fication Acheme
For Autonomous
Software Agent

classification
agents (au-
tonomous
agents)

proposing
new (based
on others)

expert
opinion

none

[43] 2009
Tolk and
Uhrmacher

Agents: Agent-
hood, Agent
Architectures,
And Agent
Taxonomies

taxonomy
/ classifica-
tion

agents
extending
existing
model

expert
opinion

none

[76] 2012

Aguero,
Rebollo,
Carrascosa,
and Julian

Agent Capabil-
ity Taxonomy
For Dynamic
Environments

taxonomy agents
extending
existing
model

expert
opinion

(utility)
limited
scenarios

[61] 1997 Sánchez
A Taxonomy Of
Agents

taxonomy agents
extending
existing
model

expert
opinion

none

[86] 2003

Parunak,
Brueckner,
Fleischer,
and Odell

A Preliminary
Taxonomy Of
Multi-Agent
Interactions

taxonomy

agents
(multi-
agent
system)

proposing
new

expert
opinion

none

[78] 2000

Huang,
Eliens, van
Ballegooij,
and de Bra

A Taxonomy Of
Web Agents

taxonomy
agents (web
agents)

proposing
new

expert
opinion

(utility)
limited
agent
tagging,
identifying
research
gaps

[77] 2003
Munroe
and Luck

Agent Autonomy
Through The
3M Motivational
Taxonomy

taxonomy agents
proposing
new

expert
opinion

none

106

[55] 2004
Tosic and
Agha

Towards A
Hierarchical
Taxonomy Of
Autonomous
Agents

taxonomy
agents (au-
tonomous
agents)

proposing
new (based
on previous
work)

expert
opinion

(utility)
suggested
use case
scenarios

[69] 1996
Franklin
and
Graesser

Is It An Agent,
Or Just A Pro-
gram?: A Tax-
onomy For Au-
tonomous Agents

Taxonomy
agents (au-
tonomous
agents)

proposing
new (based
on previous
work)

expert
opinion

none

107

B.3 Included Snowballed Articles

Ref Date Authors Title Schema Subject Scope Methodology Validation

[57] 1996 Nwana
Software Agents:
An Overview

topology
software
agents

proposing
new

expert
opinion

identified
examples
of bots
for each
category

[89] 1994

Kautz, Sel-
man, Coen,
Ketch-
pel, and
Ramming

An Experiment
in the Design of
Software Agents

list: dis-
tinguishing
properties

software
agents

proposing
new

list: “dis-
tinguishing
features” &
interaction
framework

no evalu-
ation for
list

[80] 1998
Huhns and
Singh

Agents and Mul-
tiagent Systems:
Themes, Ap-
proaches and
Challenges.

taxonomy
agents and
multi-agent
systems

proposing
new

expert
opinion

none

[85] 1994
Etzioni and
Weld

A Softbot-Based
Interface to the
Internet

list: design
principles

Agents
proposing
new

inspired by
an existing
agent

none

[53] 1993 Foner
What’s An
Agent, Anyway?

list: “cru-
cial no-
tions”

Agents
proposing
new

inspired by
an existing
agent

none

[52] 1994
Wooldridge
and Jen-
nings

Agent Theories,
Architectures,
and Languages:
a Survey

list: at-
tributes of
agency

Agents
based on
existing
definitions

expert
opinion

none

[5] 1995
Russell and
Norvig

Artificial Intelli-
gence: A Modern
Approach (Ch 2)

list: de-
scribes
properties

intelligent
agents

n/a
expert
opinion

none

[134] 1995 Goodwin
Formalizing
Properties of
Agents

framework
agents
(virtual/-
physical)

proposing
new

expert
opinion

none

108

B.4 Included Online Articles

Ref Date Authors Title Venue Subject
Inclusion Reason

[39] 2017 Shevat
Designing Bots: Creat-
ing Conversational Ex-
periences

book chatbots

provides a comprehensive
look at the development
of modern bots and their
various properties

[50] 2016 Roy

What Bots May Come:
A Learning Archi-
tecture for the Next
Paradigm

Chatbot Maga-
zine (online)

Chatbots

provides an updated collec-
tion of chatbot attributes
(with a focus on learning)

[38] 2016 Dale
Industry Watch The re-
turn of the chatbots

Journal chatbots

provides an overview of the
existing bot landscape, rea-
sons for bot’s re-emergence,
and where bot technologies
are heading in the future

[135] 2016 Fisher

The Seven Habits of
Highly Effective Chat-
bots: Lessons learned
to help super charge
your bot.

Chatbot Maga-
zine

chatbots

provides a set of best prac-
tices for building chatbots
and discusses many themes of
modern software bots

[136] 2016 Grover
Bots won’t replace
apps. Better apps will
replace apps.

blog chatbots

provides a more pessimistic
view on software bots, pro-
vides some background on
the evolution of bots in con-
versational platforms, and
discusses many themes of
modern software bots

[137] 2015 Libov

Futures of text: A sur-
vey of all the current
innovation in text as a
medium

blog agents/bots

explores some existing prop-
erties of modern bots and dis-
cusses what they want from
bots going forward

[75] 2016 Block
How to build a better
bot

Chatbot maga-
zine

bots

provides a set of guide-
lines for building better bots,
discusses bot conversational
abilities, and highlights some
properties of bots

[138] 2016 MacPherson

How to interact with
bots? Dealing with the
complexity of a new de-
sign paradigm

Chatbot Maga-
zine

bots

discusses how different be-
haviours of modern software
bots can be used to create
a feeling of authority and
expertise in humans interac-
tions

[139] 2015
Clément
and Guit-
ton

Interacting with bots
online: Users reactions
to actions of automated
programs in Wikipedia

journal bots

discusses the current roles
that bots can play on
Wikipedia, and the per-
ceptions humans have of
them

[140] 2000
Jurafsky
and Martin

Dialog Systems and
Chatbots

book chapter chatbots

provides a detailed descrip-
tion of how chatbots can in-
teract via dialogue

109

[46] 2017 Bot Nerds
Types of Bots: An
Overview

website bots

provides a great overview of
the various types/properties
of modern software bots

[45] 2016
Storey and
Zagalsky

Disrupting Developer
Productivity One Bot
at a Time

Conference bots

provides a modern look at
the properties of software
bots, how software develop-
ers are using bots, and intro-
duces a preliminary produc-
tivity framework for evaluat-
ing/studying software bots

[141] 2017 Storey

To Bot or Not: How
Bots can Support Col-
laboration in Software
Engineering

Keynote bots

provides a modern look at
the properties of software
bots, how software develop-
ers are using bots, and intro-
duces a preliminary produc-
tivity framework for evaluat-
ing/studying software bots

[83] 2017

Long,
Vines,
Sutton,
Brooker,
Feltwell,
Kirman,
Barnett,
and Law-
son

“Could You Define
That in Bot Terms”?:
Requesting, Creating
and Using Bots on
Reddit

conference bots

presents a study of how bot
are being discussed and cre-
ated on Reddit, their roles,
and the actions they can per-
form

[73] 2014 Schenk
Bot Design Patterns:
different ways to make
different bots

blog bots
discusses challenges when
building chatbots

110

Appendix C

Excluded Cards

Ref Card Exclusion Reason

[84]
communication: mutual adjustment, informal commu-
nication among workers “conversation” (direct)

too specific to agent systems, does not make sense for
single agents

[84]
communication: standardization of work processes (e.g.,
setting up a work station on an assembly line) (indirect)

too specific to agent systems, does not make sense for
single agents

[84]
communication: standardization of outputs / input (in-
direct)

too specific to agent systems, does not make sense for
single agents

[84]
communication: standardization of skills and knowledge
(direct)

too specific to agent systems, does not make sense for
single agents

[66]
competency (capability to effectively manipulate the
problem domain environment to accomplish the prereq-
uisite tasks)

too high level of a concept (effectively + complete tasks)

[78] environment: 2D environment vs 3D environment
too much detail about the environment

[136] snap commands
extraction error, should have been “slash” commands

[69] control via language (in which written)
implementation related details

[61]

location of behaviour or architecture: monolithic (mid-
dleman between user and database), embedded, or inde-
pendent. Where the data is located in reference to the
user.

multi-agent system and implementation specific detail

111

Appendix D

Restructuring the Taxonomy

Figure D.1: Version #1 of the re-ordering of dimensions, facets, and sub-facets.

Figure D.2: Version #2 of the re-ordering of dimensions, facets, and sub-facets.

112

Figure D.3: Version #3 of the re-ordering of dimensions, facets, and sub-facets.

Figure D.4: Version #4 of the re-ordering of dimensions, facets, and sub-facets.

113

Appendix E

Mapped Terminology

Tables E.1, E.2, & E.3 present a high-level summary of the outcome of the terminology map-
ping effort for the environment, intrinsic, and interaction dimensions, respectively. A
list of all previous literature used to generate the mappings can be found in Appendices B.2,
B.3, & B.4.

E.1 Environment Dimension

Summary of the mappings between the terminology used in the proposed taxonomy and
previous software bots research for the environment facets.

Environment Dimension

Section Preferred Term Mapped Terms

5.2.1 Type

5.2.1(i) Standalone multi-platform [89], augmenting architectures [61]

5.2.1(ii) Platform
platforms [141], integrating architectures [61] voice
platforms [39], consumer platforms [39], business plat-
forms [39], legacy platforms [39]

5.2.2 Scope

5.2.2(i) Bounded discrete [5, 43]

5.2.2(ii) Unbounded continuous [5, 43]

5.2.3 Closure closure [66]

5.2.3(i) Closed closed [66, 43]

5.2.3(ii) Open open [81, 66, 43]

5.2.4 Dynamism

5.2.4(i) Static static [5, 66, 43]

5.2.4(ii) Dynamic dynamic [5, 66, 43], real-time [80]

5.2.5 Predictability predictable [80], omniscience [5], deterministic [5]

5.2.5(i) Stochastic stochastic [69, 43], non-deterministic [5]

5.2.5(ii) Uncertain

5.2.5(iii) Deterministic deterministic [5, 69, 43]

5.2.6 Permanence

114

5.2.6(i) Episodic episodic [5, 43]

5.2.6(ii) Sequential sequential [43], historical [80], non-episodic [5]

5.2.7 Population population [66, 43]

5.2.7.1 Cardinality cardinality [66], size [66]

5.2.7.1(i) Singular

5.2.7.1(ii) Countable countable [66], few [43]

5.2.7.1(iii) Uncountable uncountable [66], large scale [43]

5.2.7.2 Diversity diversity [66], uniqueness [80], composition [72]

5.2.7.2(i) Homogeneous homogeneous [72, 66, 43]

5.2.7.2(ii) Heterogeneous heterogeneous [72, 81, 66, 43]

E.2 Intrinsic Dimension

Summary of the mappings between the terminology used in the proposed taxonomy and
previous software bots research for the intrinsic facets.

Intrinsic Dimension

Section Preferred Term Mapped Terms

5.3.1 Knowledge
knowledge [52], belief [52, 55, 71], modeling [80], inter-
nal state [5, 55], mental states [55]

5.3.1.1 Memory memory [53, 45, 39],

5.3.1.1(i) Long-term
historical events [66], past actions (self/others) [66], ac-
tion effects (self/others) [66]

5.3.1.1(ii) Short-termepisod episodic [50], contextual [50, 39]

5.3.1.1(iii) Future

5.3.4.5 Source

5.3.4.5(i) Encoded encoded [61]

5.3.4.5(ii) Supplied supplied [61]

5.3.4.5(iii) Learned learned [61]

5.3.2 Reasoning reasoning [66], proactiveness [65], intelligence [46]

5.3.2.1 Mechanisms
controller [134], action selection mechanism [69], con-
trol process [77], reasoning architecture [66], decision
making [43], deliberation [71]

5.3.2.1(i) Scripted
script bots [46], reactive [80], pure reaction [65], reflex
[5], non-planning [69], tropistic [66], simple rules [141],
rule-based [140]

5.3.2.1(ii) Mixed hybrid [65, 66], smart bots [46], corpus-based [140]

5.3.2.1(iii) Planning
planning [69], pure planning [65], deliberative [80, 134],
flexible [69], declarative [66], intelligent [141, 46]

5.3.2.2 Agency execution autonomy [80]

5.3.2.2(i) None controlled [80]

5.3.2.2(ii) Veto

5.3.2.2(iii) Complete independent [80]

5.3.2.3 Predictability

115

5.3.2.3(i) Stochastic

5.3.2.3(ii) Deterministic

5.3.2.4 Visibility

5.3.2.4(i) None

5.3.2.4(ii) Transparent

5.3.2.4(iii) Visible

5.3.2.5 Reactivity responsiveness [64, 39], response time [138]

5.3.2.5(i) Synchronous
synchronous [75], reflexive [134], reactive [69, 55], re-
sponsiveness [55]

5.3.2.5(ii) Mixed

5.3.2.5(iii) Asynchronous asynchronous [137]

5.3.2.6 Scheduling

5.3.2.6(i) Single exclusive [76], non-interrupting [76], interrupting [76]

5.3.2.6(ii) Multiple multiple [76]

5.3.3 Adaptability
adaptive [69, 55, 43, 71], adaptiveness [65], learning
[57, 53, 69, 71], non-learning [69], fixed [80], growth
[64], non-adaptive [65]

5.3.3.1 Constraints

5.3.3.1(i) Constrained constraint based [65]

5.3.3.1(ii) Open

5.3.4.5 Source

5.3.4.5(i) Internal

5.3.4.5(ii) External social learning [50]

5.3.3.3 Guidance

5.3.3.3(i) Undirected autodidactic [80], learning [65]

5.3.3.3(ii) Directed
teachable [80], personalizabile [53], personalization [45]
subscription [65], reinforcement [71]

5.3.4 Goals
goals [64, 71], goal oriented [89, 69, 55], goal directed-
ness [77, 55] task [134, 76], drive [69], pro-active [69],
purposeful [69], desire [55], capability[76]

5.3.4.1 Complexity risk [77]

5.3.4.1(i) Low

5.3.4.1(ii) High

5.3.4.2 Criticality domain [53]

5.3.4.2(i) Low

5.3.4.2(ii) High

5.3.4.3 Attainability

5.3.4.3(i) Achievable achievable [134], binary-task [134]

5.3.4.3(ii) Homoeostasis maintenance-task [134]

5.3.4.4 Explicitness

5.3.4.4(i) Explicit explicit [66], ground goals [89], procedural [80]

5.3.4.4(ii) Implicit
implicit [66], charitable [89], incomplete specification
[89], declarative [80]

5.3.4.5 Source

116

5.3.4.5(i) Internal interal trigger [39]

5.3.4.5(ii) External external trigger [39]

5.3.5 Delegacy delegacy [61, 66], delegate [57, 53]

5.3.5(i) None

5.3.5(ii) Partial

5.3.5(iii) Complete

5.3.6 Specialization

5.3.6(i) Generalist generalist [46], versatile [57], super bot [39]

5.3.6(ii) Specialist specialist [46], domain specific bot [39]

5.3.7 Anthropomorphism anthropomorphism [53], lifelike character [61]

5.3.7.1 Name

5.3.7.1(i) None

5.3.7.1(ii) Representative brand name [39], functional name [39]

5.3.7.1(iii) Unique human name [39]

5.3.7.2 Embodiment

5.3.7.2(i) None

5.3.7.2(ii) Embodied 2D [78], 3D [78], logos [39], icons, [39]

5.3.7.3 Age age [39]

5.3.7.3(i) None

5.3.7.3(ii) Static

5.3.7.3(i) Dynamic

5.3.7.4 Gender gender [141, 39]

5.3.7.4(i) None

5.3.7.4(ii) Gendered

5.3.7.5 Ethnicity

5.3.7.5(i) None

5.3.7.5(ii) Ethnicity

5.3.7.6 Profession

5.3.7.6(i) None

5.3.7.6(ii) Profession

5.3.7.7 Personality personality [141, 50, 138, 39]

5.3.7.7(i) None lifeless [135]

5.3.7.7(ii) Personality character [69], persona [137]

5.3.7.8 Emotions emotional [52, 50], sentiment [39]

5.3.7.8(i) None

5.3.7.8(ii) Superficial

5.3.7.8(iii) Logical emotional attitude [57, 71]

5.3.8 Lifecycle

5.3.8.1 Creation

5.3.8.1(i) Human

5.3.8.1(ii) Bot

5.3.8.1(iii) System

5.3.8.2 Lifespan lifespan [80], age [64]

5.3.8.2(i) Terminating death [64]

117

5.3.8.2(ii) Transient transient [80]

5.3.8.2(iii) Continuous
temporally continuous [57, 89, 69], long-lived [80], per-
sistent [55]

5.3.8.3 Reproduction reproduction [64]

5.3.8.3(i) None

5.3.8.3(ii) Reproductive

E.3 Interaction Dimension

Summary of the mappings between the terminology used in the proposed taxonomy and
previous software bots research for the interaction facets.

Interaction Dimension

Section Preferred Term Mapped Terms

5.4.1 Access accessible [5]

5.4.1(i) None inaccessible [5], nonaccessible [43]

5.4.1(ii) Constrained partial [66]

5.4.1(iii) Complete complete [66], accessible [5, 43]

5.4.2 Sense
sense [69], knowable environment [80], percept [134],
perception [43], perceiving [5], sensors [55], events [76],
inputs [75]

5.4.2(i) Non-Sensing

5.4.2(ii) Sensing

5.4.3 Act
acting [5, 69], action [43, 71], controllable environment
[80], affect [134], effectors [55], behaviour [76], capabil-
ity [76], output [75]

5.4.3(i) Non-Acting

5.4.3(ii) Acting

5.4.4 Communicate
communication [89, 43], communicative [69, 84, 81, 65],
social ability [57, 52, 69, 77, 66], non-communicative
[69, 65], singular vs multiplicity [78]

5.4.4.1 Disposition socialness [64], sociality [77, 55], cooperativity [66]

5.4.4.1(i) Antagonistic
antagonistic [57, 80, 81], Contention [84, 81], malevo-
lent [65]

5.4.4.1(ii) Competitive
competitive [80, 84, 81, 66, 43, 71], selfish [77], self-
interested [65]

5.4.4.1(iii) Indifferent non-helpful [57], independent [66], autistic [80]

5.4.4.1(iv) Cooperative
cooperative [66, 43, 71], cooperate [57, 80, 77], cooper-
ation [53, 86, 84], collaborate [64, 65, 88], coordinate
[84, 81]

5.4.4.1(v) Benevolent benevolent [57, 80, 65], altruistic [57]

5.4.4.2 Veracity veracity [52, 57]

5.4.4.2(i) Truthful truthful [57, 65]

5.4.4.2(ii) Untruthful untruthful [65], lies [57]

118

5.4.4.3 Cardinality

5.4.4.3(i) One-One
1:1 [137], personal agent [61], personal bot [39], private
channel [39]

5.4.4.3(ii) One-Many 1:N [137], public channel [39]

5.4.4.3(iii) Many-Many M:N [137], group agents [61], team bot [39]

5.4.4.4 Directionality

5.4.4.4(i) One-Way

5.4.4.4(ii) Two-Way
two-way [89], discourse [53], conversation [84, 81], turns
[140], respond [73]

5.4.4.5 Directness

5.4.4.5(i) Direct direct [84, 81]

5.4.4.5(ii) Indirect indirect [84, 81]

5.4.4.6 Language conversation management [39]

5.4.4.6(i) None

5.4.4.6(ii) Keywords
specific vocabulary [80], universal commands [140],
restrictive grammar [140], template generation [140],
prompts [140], slash commands [39]

5.4.4.6(i) Natural Language language [80, 39]

5.4.4.6(i) Conversation conversation [140, 73, 39], dialog [140]

5.4.5 Initiative initiative [140], invocation [39]

5.4.5(i) Reactive
reactivity [52, 77, 88], perceptive [134], pull [45], react
[73], user lead invocation [39]

5.4.5(ii) Proactive
proactive [39], proactiveness [57, 52, 78, 77, 55], system-
initiative [140], push [45], notify [73, 39], prediction [39]

5.4.6 Robustness
robustness [89], degrade gracefully [57, 53], accuracy
[66], error handling [39]

5.4.6.1 Error Prevention

5.4.6.1(i) Bot

5.4.6.1(ii) User user help [39]

5.4.6.2 Error Discovery

5.4.6.2(i) Bot implicit confirmation [39], explicit confirmation [39]

5.4.6.2(ii) User

5.4.6.3 Error Correction

5.4.6.3(i) Bot

5.4.6.3(ii) User human intervention [39]

5.4.7 Mobility mobility [55, 65]

5.4.7(i) Static static [57, 65], stationary [80], non-mobile [69]

5.4.7(ii) Mobile
mobile [57, 52, 69, 88], itinerant [80], move [64], physi-
cally mobile [65], logically mobile [65]

119

Appendix F

Benchmarking Validation

Below, I discuss how the many articles used to build my proposed taxonomy compare to it.
The articles are organized by their data collection method and presented in chronological
order.

F.1 Literature Search Articles:

(1993) Bird [72]: proposes a taxonomy of multi-agent systems which describes the prop-
erties of agents in these systems by extrapolating a set of general characteristics from three
primary agent dimensions: distribution (of knowledge, control, operation), heterogeneity,
and autonomy. Although some of the article’s dimensions were out of the scope of the
new taxonomy’s subject matter (e.g., specific to multi-agent systems or describing imple-
mentation details), the following properties were mapped/merged to the new taxonomy:
autonomy, composition of agents, and scope.

(1996) Franklin and Graesser [69]: explores existing definitions of agent-hood, pro-
vides a classification of the properties of autonomous agents, and rule-based classification
of autonomous agents. In their classification of properties, they include four high-level
properties that all autonomous agents must have (reactive, autonomous, goal-oriented, and
temporally continuous) and five useful additions (communicative, learning, mobile, flexible,
character). My proposed taxonomy covers these properties.

(1997) Sánchez [61]: describes three sub-types of agents: programmer, network, and
user agents. User agents, which closely resemble the definition of software bots provided in
Chapter 3, are characterized by their autonomy, scope, architecture, and knowledge. My
proposed taxonomy covers all of their properties of user agents.

(1999) Yap and Keong [64]: proposes and defines a set of life-like characteristics for
autonomous agents (e.g., growth, death, reproduction, etc). My proposed taxonomy covers
these properties.

120

(2000) Huang et al. [78]: proposes a taxonomy of web agents based on three proper-
ties: their embodiment, implementation location, and their ability to interface. They use
these three properties in combination to talk about a variety of high-level bot types/roles.
My proposed taxonomy covers all of the non-implementation aspects of Huang et al. [78]
taxonomy.

(2003) Munroe and Luck [77]: proposes a taxonomy for autonomous agents which is
comprised of three types of motivations used to satisfy goals: domain motivations, constraint
motivations, and social motivations. Each of these three motivations has their own set of
sub-concepts, many of which I was able to merge/map to the new taxonomy. My proposed
taxonomy covers many of the sub-concepts.

(2004) Tosic and Agha [55]: proposes a taxonomy of autonomous agents that takes
a systems approach to classifying how agents function and behave. They specify two cat-
egories of autonomous agents, weak autonomous agents (control of their own state, are
reactive, and persist) and strong autonomous agents which have all the properties of weak
autonomous agents plus goal-directness and pro-activeness. My proposed taxonomy covers
all of their requirements for both weak and strong agency. Their taxonomy, however, unlike
my software bot taxonomy, does not include any anthropomorphizing of agents since the
authors do not believe that agents should be described by their anthropomorphic features
as they are artificial systems.

(2003) Parunak et al. [84]: proposes a preliminary taxonomy of multi-agent interac-
tions (“co-x”) properties. The authors focus on the interactions between agents, but I
believe that many of the same interaction characteristics can be observed in agent to non-
agent communication. Although the concepts presented in this taxonomy were slightly
reorganized in the new software bot taxonomy, my taxonomy covers all except the com-
munication centralization/decentralization and alignment mechanisms since they were too
implementation/multi-agent system specific (out of scope).

(2003) Parunak and Fleischer [81]: presents an expanded design taxonomy of multi-
agent interactions (“co-x” properties). It should be noted that the authors build off of
this taxonomy in their earlier recent work, described above [81]. Although the concepts
presented in this taxonomy were slightly reorganized in the new software bot taxonomy, my
taxonomy covers all except the communication centralization/decentralization and align-
ment mechanisms, since they were too implementation/multi-agent system specific (out of
scope).

(2005) Hector and Narasimhan [65]: proposes a new ontology of software agents
based on existing taxonomies. The proposed classification scheme has 6 main features along
with a set of possible values for each: pro-activeness, adaptiveness, mobility, collaboration,
veracity, and disposition. All of these characteristics of agents are covered by my taxonomy,
however, they had to be re-organized since some of the category values were not mutually
exclusive.

121

(2007) Moya and Tolk [66]: proposes a taxonomy of agents/multi-agent systems that
has a similar structure to my taxonomy of software bots. Their taxonomy had three high-
level categories of properties: the situated environment, the population, and the agent
characteristics. The situated environment dimension was composed of four properties, each
with their own set of possible values: closure, dynamism, determinism, and cardinality. The
population dimension was composed of four properties, each with their own set of possible
values: size, diversity, homogeneity, goal structure, cooperatively. The agent characteristics
dimension was composed of four properties, each with their own set of possible values: rea-
soning (architecture, beliefs, goals, reactivity), perception (access, accuracy, memory), and
action (communication, protocol, negotiation). Since some of the properties described in
population and situated environment were specific to multi-agent systems, a small subset of
the properties (goal structure, protocol, negotiation) were not able to be merged/mapped
into the new taxonomy; however, all of the remaining properties were covered in my pro-
posed taxonomy.

The structure of their taxonomy was also similar to the one that emerged from the
taxonomy development process: situated environment + population = environment facets,
and agent characteristics = intrinsic + interaction facets.

(2008) van Otterlo et al. [71]: presents a characterization of sapient agents, based on
the agent’s cognitive concepts and abilities. Although they focused primarily on sapient
agents, many of the characteristics they describe can be applied to other bot types: beliefs,
goals, actions, emotions, learning, and properties of the social environment. My proposed
taxonomy covers all of the characteristics listed above. However, the article also discusses a
great deal of implementation specific details that were outside of the scope of my taxonomy
and therefore were not included.

(2009) Sakarkar and Shelke [88]: presents a classification scheme for autonomous
software agents based on their application, technologies, behaviours, and design structure.
However, only a subset of the agent behaviour categories (mobility and reactivity) were
covered in my taxonomy, since the remainder of the classification focused on applications,
technologies, and implementation details.

(2009) Tolk and Uhrmacher [43]: develop a three-dimensional agent space focusing
on the (1) the characteristics of agents, (2) their environments, and (3) the community of
agents. The chapter also discusses various existing agent architectures, presents strategies
for realizing key agent behaviours, identifies some applications of agents. They reflect on
existing hierarchical taxonomies of agents and propose three-dimensional taxonomy is based
upon the earlier framework by [66]. My taxonomy covers all of the facets they propose in
their taxonomy.

(2012) Aguero et al. [76]: propose an agent capability taxonomy for dynamic envi-
ronments. Their taxonomy distinguishes between agent’s tasks, capabilities (many tasks),
and behaviours (many capabilities); however, since my proposed taxonomy takes a black-
box approach my taxonomy does not distinguish between tasks/capabilities/behaviours and
instead merges them under-scheduling, with the values of interrupting/non-interrupting.

122

F.2 Snowballing Articles:

(1995) Goodwin [134]: proposes a framework that discusses agents as a whole (both
physical and virtual agents), and therefore some of the properties they described do not
map well to my taxonomy (e.g., configuration = body + position). Although some of
the properties in their framework are covered in my taxonomy (e.g., binary/maintenance
tasks), perceptive, predictive, affect, controller), many of their other properties were too high
level (e.g., capable, successful, interpretive, rational, sound, predictive) or implementation
specific to be included.

(1993) Foner [53]: starts their paper by introducing Julia, a Lobner prize winning soft-
ware agent, and demonstrates her capabilities. They end the paper by highlighting “criti-
cal notions” for agents: autonomy, personalization, discourse, risk/trust, domain, graceful
degradation, and cooperation, anthropomorphism. My taxonomy covers all of their “critical
notions” of agency.

(1994) Kautz et al. [89]: presents a framework for agent interaction, through an ex-
ample of a software agent they built as part of their research. Although this paper focuses
mostly on the design of software agents, it ends by presenting a list of distinguishing agent
properties: communication, temporal continuity, responsibility, robustness, multi-platform,
and autonomy. I was able to map/merge all of the properties except responsibility as it
related to the role of the software agents (i.e., has the ability to handle private information).

(1994) Etzioni and Weld [85]: proposes the use of a softbot interface for exploring the
Internet. They also outline many behavioural properties (e.g., goal oriented, charitable,
balanced, integrated) of software bots in a set of design principles. My taxonomy covers all
of these properties except for “balance”, as it is inside the black-box.

(1994) Wooldridge and Jennings [52]: starts their paper by listing a few requirements
for weak agency (autonomy, social ability, reactivity, pro-activeness), strong agency (men-
talist notions, emotional state), and other agent attributes (mobility, veracity, benevolence,
rationality). My proposed taxonomy covers these requirements. The rest of the article dives
into other researchers’ theories of agency, agent architectures, and agent languages, all of
which are outside the scope of my taxonomy.

(1995) Russell and Norvig [5]: provides a description of basic agent properties (per-
ceiving, affecting), a variety of agent subtypes, and their key properties (e.g., goals, reflex,
internal state). My proposed taxonomy covers all of the properties the authors explicitly de-
fined as belonging to agents. They also provide a list of environment properties (accessible,
deterministic, episodic, static, discrete) that my taxonomy also covers.

(1996) Nwana [57]: proposes a topology of software agents based on a combination of
three attributes that agents should exhibit: cooperation, learning, and autonomy. They also
provide a list of other possible agent properties (e.g., static/mobile, deliberative/reactive,
versatility, benevolent/non-helpful, delegate, temporally continuous, emotional attitudes,
etc.)—my proposed taxonomy covers all of these properties. The remainder of the paper

123

identifies and discusses high-level subtypes of agents (e.g., collaborative agents, interface
agents, information agents, etc.), which is outside of the scope of my taxonomy.

(1998) Huhns and Singh [80]: provides one of the most thorough taxonomies of soft-
ware agents. The taxonomy classifies agents based on key characteristics (both intrinsic
and extrinsic), the multi-agent systems they are a part of, the frameworks they are devel-
oped with, the roles they play, and their environment. My taxonomy covers most of their
intrinsic (lifespan, level of cognition, construction, mobility, adaptability, modeling) and ex-
trinsic (locality, social autonomy, sociability, friendliness, and interactions) characteristics
were able to be merged/ mapped with the new taxonomy. My taxonomy also covers a few,
non-implementation specific system characteristics (uniqueness, interface autonomy, execu-
tion autonomy) and all of the environment properties (knowable, predictable, controllable,
historical, teleological, and real-time). The rough structure of their taxonomy was similar
to my taxonomy’s as well: (intrinsic characteristics = intrinsic facets), (extrinsic + system
characteristics = interaction facets), (environment-agent characteristics = environment +
interaction facets). Although the taxonomy presents a wide range of agent characteristics,
the article does not formally definition many of the properties. Thus, it is likely that many
more may be covered in my taxonomy, but I was not able to tell.

Although this taxonomy was quite extensive, it was missing anything regarding the
anthropomorphism of software bots, as well as dimensions related to recent technological
advancements. The paper also discusses architectural/infrastructures for building software
agents and an analysis of existing subtypes/applications of agents, both outside of the scope
of my taxonomy.

F.3 Online Articles:

Although most of the online articles do not provide formal classifications of bots, I discuss
how they influenced and compare to my proposed taxonomy of software bots.

(2014) Schenk [73]: discusses some different bot design patterns and the properties of
each of the types of bots: notifiers (notify), reactors (react), responders (respond), and
conversationalists (conversation). Although this article presents a lot of implementation
details, abstractions of the properties described above are covered in my taxonomy.

(2015) Libov [137]: does not present a classification of software bots; however, they de-
scribe the current (and make predictions for the future) state of text-based interactions with
software bots. They describe some key ways in which we interact with bots on messaging
platforms (1:1, 1:N, M:N), their asynchrony, their natural language capabilities, and their
personas – all of which are covered in my propose taxonomy. They also discuss a variety
of interaction and conversation styles, that helped shape the communicate/act facets of my
taxonomy.

(2016) Roy [50]: does not present a classification of software bots; however, they high-
light some key properties of modern chatbot systems in the form of a “pyramid of con-
versation” requirements: facts/transactional (base), episodic/contextual, social learning,

124

emotion/sentiment, episodic memory, personality (top). My proposed taxonomy covers
these properties.

(2016) Storey and Zagalsky [45]: examines the various roles that bots are playing
in the software development life-cycle. Although out of the scope of my taxonomy, they
provide a classification of software bot subtypes that are used in software development (code
bots, test bots, dev-ops bots, support bots, documentation bots) as well as a preliminary
productivity framework for evaluating bot efficiency and effectiveness. Their paper does
mention a few key bot properties (personalization, memory, pull/push), which my proposed
taxonomy covers.

(2017) Storey [141]: this keynote was based off the paper above [45], and provides a
deeper look at the properties of software bots. All of the properties mentioned in the
presentation (pull/push, script/intelligent, personality, gender, dwelling, etc) are covered in
my proposed taxonomy covers.

(2016) Dale [38]: does not present a classification of software bots; however, they provide
an analysis of the current trends in chatbot technologies, what caused their sudden return,
and where they are headed in the future. Although Dale does not call out any properties
of software bots directly, the themes presented in this paper provided a great background
and helped to shape many of the facets in my taxonomy.

(2016) Fisher [135]: does not present a classification of software bots; however, they
discuss some best practices for building modern chatbots. Although Fisher does not call
out any properties of software bots directly, the themes presented in this paper provided the
background required to help to shape many of the categories of taxonomy (e.g., personality,
conversation, specialization, robustness).

(2016) Grover [136]: does not present a classification of software bots; however, they
provide a background of the evolution of bots in instant messaging platforms, conversational
UI. Although Grover does not call out any properties of software bots directly, the themes
presented in this paper provided a great background and helped to shape many of the facets
in my taxonomy (e.g., conversation, actions, specialization).

(2016) Block [75]: does not present a classification of software bots; however, they
provide a set of guidelines for building better bots, discuss bots’ conversational abilities
(which helped shape my taxonomy’s language facet), and highlights some properties of bots
(input/outputs, autonomy, synchrony – which are covered in my taxonomy).

(2016) MacPherson [138]: does not present a classification of software bots; however,
they discuss how the behaviours of modern software bots can be used to create a feel-
ing of authority and expertise during bot-human interactions (vocabulary/jargon, asking
questions, varying response time, personality/tone, etc). Although MacPherson does not
call out any properties of software bots directly, the themes presented in this paper pro-
vided a great background and helped to shape many of the facets in my taxonomy (e.g.,
anthropomorphism, conversation, synchronously).

125

(2017) Long et al. [83]: does not present a classification of software bots; however, they
present a study of how bots are being discussed/created on Reddit. They provide a detailed
list of the functionality that bots can provide on twitter (abstracted under the act facet in
my taxonomy), and the roles they play (abstracted under specialization).

(2017) Nerds [46]: provides a great overview of the different type of modern software
bots and their properties. They provide a list of ways to characterize bots: generalist/spe-
cialist, script bot/smart bots/intelligent agents – all of which are covered in my taxonomy.
The article also discusses a variety of interaction and conversation styles which helped shape
the communicate/act facets of my taxonomy.

(2000) Jurafsky and Martin [140]: does not present a classification of software bots;
however, they discuss conversations w.r.t. chatbots: what is a conversation, their archi-
tectures (rule-based, corpus-based), dialogue management (initiative, universal commands,
template generation, prompts, etc), and how to evaluation dialogue systems. Although
the paper mostly provides implementation details, many of the dialogue properties they
mentioned are covered, directly or in an abstracted form, in my proposed taxonomy.

(2017) Shevat [39]: does not present a classification of software bots; however, they
provide a comprehensive look at developing modern chatbots. The book presents the most
thorough description of modern software bots’ anthropomorphism facets and interaction
mechanisms. Since the book also provides guidelines on how to build chatbots, it goes into
much greater detail than my taxonomy for many of the facets. However, my taxonomy
covers most of the concepts from this book at an abstracted level.

126

Appendix G

Validation: Subject Matter

Tagging

Tables J, J, and J present the results of assessing three software bots according to the
proposed software bot taxonomy on the environment, intrinsic, and interaction dimen-
sions, respectively.

Dimension Values Poncho Alexa Mention-Bot	(public	repo)

Standalone

Platform
�

(social	-	intergrated	into	facebook)
�

(ambient)
�

(social	-	intergrated	into	Github)

Bounded � � �

Unbounded
Open � �

Closed
�

(require	a	facebook	account)

Static

Dynamic
��	

(changes	to	the	API	where	is	gets	its	
data) �

�

(changes	can	be	made	to	the	code	or	
the	PR	while	it's	thinking)

Stochastic

Uncertain
�

(uncertain	about	changes	to	outside	
devices)

Deterministic
�

(actions	result	in	message	being	
posted)

�

(actions	result	in	message	being	
posted)

Episodic

�

(although	the	messages	themselves	
persist,	they	only	temporarily	effect	

the	environment)

�

(although	the	messages	themselves	
persist,	they	only	temporarily	effect	

the	environment)

Hybrid

Sequential
�

(the	changes	made	persist,	eg.	
turning	on	a	light)

Singular

Countable �

(poncho	+	the	user)

�

(alexa	+	anyone	in	the	environment		
=	countable)

Uncountable
�

(anyone	with	access	to	the	web)

Homogeneous

Heterogeneous �

(poncho	+	the	user)
�

(alexa	+	anyone	in	the	environment)

�

(mention-bot	+	anyone	with	access	
to	the	web)

EN
VI
RO

N
M
EN

T

Facets	/	Sub-Facets

Predictability

Dynamism

Closure

Scope

Type

Population

Cardinality

Diversity

Permanence

127

Dimension Values Poncho Alexa Mention-Bot	(public	repo)

Long-Term � �

Short-Term � �

Future
Encoded � � �

Supplied
�

(e.g.,	users	tell	it	their	location)
�

�

(e.g.,	the	Github	webhook	tell	the	bot	there	
was	a	new	PR)

Learned �

�

(e.g.,	the	bot	grabs	all	of	the	data	needed	to	
preform	its	tasks)

Scripted � �

Mixed �

Planning
None �

Veto �

Complete � �

Deterministic � � �

Stochastic
None

Transparent
�

(traces	--	visible	in	the	converstation)
�

(traces	--	visible	in	the	converstation)

Visible
�

(repeats	what	it's	done,	or	"chimes"	if	in	brief	mode)

Synchronous � � ��	

Asynchronous

Single
�

(can	process	one	task	at	a	time)
�

(can	process	one	task	at	a	time)
�

(only	ever	one	task	at	a	time)

Multiple
Open
Constrained � �

Internal
External � �

Undirected
Directed � �

Complexity Low-High (Low	--	simple	tasks	to	complete) (Medium	--	tasks	require	interfacing	w/	multiple	services) (Low	--	simple	task	to	complete)

Criticality Low-High (Low	--	not	completing	high	risk	tasks) (Medium	--		sensitive	information	&	financial	tasks) (Low	--	not	completing	high	risk	tasks)

Achievable
�

(e.g.	the	weather	now)
�

(e.g.	turn	on	the	lights)

Homoeostasis
�

(e.g.	provide	weather	updates	daily)
�

(e.g.	remind	me	to	x	every	y)
�

(posts	every	time	a	new	PR	is	opened)

Explicit � � �

Implicit �

Internal
�

(programmed	into	bot)

External
�

(goals	stem	from	user	requests)
�

(goals	stem	from	users)

None � �

Partical

Complete
�

(e.g.	acts	on	behalf	of	users	to	make	purchases)

Generalist ��	(in	the	middle)

Specialist � � �

None

Representative
�

("mention-bot"	depicts	role)

Unique
�

("Poncho")
�

("Alexa")

None � �

Static
Dynamic �

None �

Gendered
�

("I'm	a	male	cat")
�

("I'm	female	in	character")

None �

None
�

("I'm	a	male	cat")
�

(smiling	robot	in	avatar)

None

Embodied
�

(2D	avatar)
�

(Logo)
�

(2D	avatar)

None ?
�

("My	job	is	to	help	you")
�

Profession ?

None �

Personality � �

None �

Superficial �

Logical

�

(If	insulted,	"Ok,	well	then	I	think	I'm	going	
to	take	a	short	break",	and	it	becomes	

unresponsive)

Continuous � � �

Transient
Terminating
Human � � �

Bot
System

Non-Reproductive � �

Reproductive
�

(Can	trigger	"routines")

Visibility

Goals

Specialization

Anthropomorphism

Name

Age

Gender

Ethnicity

Embodiment

Profession

Personality

Emotions

Explicitness

Creation

Reproduction

Adaptability

Constraints

Source

Guidance

Attainability

(non-adaptive)

Source

Facets	/	Sub-Facets

IN
TR

IN
SI
C	
DI
M
EN

SI
O
N

Delegacy

Knowledge

Memory

Source

Reasoning

Mechanisms

Agency

Predictability

Reactivity

Scheduling

Lifecycle

Lifespan

128

Dimension Values Poncho Alexa Mention-Bot	(public	repo)

None

Constrained
�

(can’t	completely	access	ambient	

environment)

�

(bot	user	types	can	have	less	

permisions	than	full	users)

Complete
�

(complete	access	to	fb	messenger	

conversation)

Non-Sensing
Sensing � � �

Non-Acting
Acting � � �

Antagonistic
Competitive

Indifferent
�

(doesn’t	care	what	others	are	doing	

in	the	environment)

Cooperative

Benevolent
�

(always	tries	to	do	what	you	ask)

�

(always	tries	to	do	what	you	ask)

Truthful � � �

Untruthful
One-One � �

One-Many �

Many-Many � �

One-Way
�

(Bot	talks	to	user)

Two-Way � �

Direct � � �

Indifferent
None

Keywords
�

(it	follows	a	pre-defined	script)

Natural	Language � �

Conversation (it	tries,	but	hasn’t	reached	here)

Reactive � �
�

(responds	when	PRs	are	open)

Proactive �

Bot
�

(leveraged	guided	dialogs	+	input	

shortcuts	like	buttons)

�

(uses	guided	dialogs	to	help	guide	

users	to	provide	information	

required	to		complete	tasks)

User

Bot

�

(repeating	inupts	back	to	the	user	

before	(explicit),	providing	user	with	

list	of	alternatives)

�

(repeating	inupts	back	to	the	user	

before	(explicit)	or	after	(implicit)

User
Bot

User
�

(allows	user	to	correct	mistake	using	

same	modality)

�

(allows	user	to	correct	mistake	using	

same	modality)

Static � �

Mobile
�

(can	go	between	PRs)

Error
Discovery

Mobility

Directionality

IN
TE
RA

CT
IO
N
	D
IM

EN
SI
O
N
S

(no	robustness)

	Error
Correction

Facets	/	Sub-Facets

Access

Sense

Act

Communicate

Disposition

Veracity

Cardinality

Directness

Speech

Initiative

Robustness

Error
Prevention

129

Appendix H

Study Questions

If the participant selected the online computerized task option, the questions were adminis-
tered in an online questionnaire format. If the participant selected the in-laboratory com-
puterized task option, the questions were administered as a semi-structured interview.

H.1 Participant Background & Experience

These questions were asked prior to classifying their software bot. It should be noted that
not all questions were asked to all participants.

1. What is your occupation?
e.g., academia (professor, researcher), student, industry, other

2. What is your domain?
e.g., computer science, life science, healthcare, mathematics, other

3. How much experience do you have using software bots? (if applicable)
None (1) (2) (3) (4) (5) (6) (7) Expert

4. How long have you been using software bots? (if applicable)
� Less than one year

� Between one and three years

� More than three years

5. How much experience do you have designing/building software bots? (if applicable)
None (1) (2) (3) (4) (5) (6) (7) Expert

6. How long have you been designing / developing software bots? (if applicable)
� Less than one year

� Between one and three years

� More than three years

7. How much experience do you have researching software bots? (if applicable)
None (1) (2) (3) (4) (5) (6) (7) Expert

8. How long have you been researching software bots? (if applicable)
� Less than one year

� Between one and three years

130

� More than three years

9. Please describe the bot you built (if applicable)

H.2 Software Bot Taxonomy Feedback

These questions were asked as a follow-up when required. It should be noted that not all
questions were asked to all participants.

1. How difficult was it to classify the bot using the Software Bot Taxonomy?
Easy (1) (2) (3) (4) (5) (6) (7) Difficult

2. What aspects of the Software Bot Taxonomy did you like?

3. What aspects of the Software Bot Taxonomy did you not like?

4. Is there anything you would change about the Software Bot Taxonomy

5. Is there anything you think is missing from Software Bot Taxonomy?

6. Is there anything else you would like to add?

7. Do you see yourself using the Software Bot Taxonomy in the future? (if applicable)

8. Who do you think would benefit from using the Software Bot Taxonomy? (if appli-
cable)

9. Do you have any other feedback?

10. Would you be interested in participating in a follow-up interview via video confer-
ence or in person, allowing us to gain more insights on your usage of Software Bot
Taxonomy?

131

Appendix I

H.R.E.B. Ethics Approval

132

Appendix J

Expert Tagging Session

Tables J, J, and J present the results of the expert tagging software bots according to
the proposed software bot taxonomy on the environment, intrinsic, and interaction
dimensions, respectively.

Dimension Values B1 B1

Standalone �

Platform
�

(social	-	intergrated	into	facebook)
�

(intergrated	into	slack)
Bounded �

Unbounded

Open
�

version	deployed	on	slack	is	closed

Closed
�

(require	a	facebook	account) �

Static
Dynamic � �

Stochastic
Uncertain

Deterministic
�

(actions	result	in	message	being	
posted)

�

(actions	result	in	message	being	
posted)

Episodic

�

(although	the	messages	themselves	
persist,	they	only	temporarily	effect	

the	environment)

�

(although	the	messages	themselves	
persist,	they	only	temporarily	effect	

the	environment)
Hybrid
Sequential
Singular

Countable
�

(B1	+	the	user)
�

(B1	+	the	user)
Uncountable
Homogeneous

Heterogeneous
�

(B1	+	the	user)
�

(B1	+	the	user)

EN
VI
RO

NM
EN

T

Facets	/	Sub-Facets

Predictability

Dynamism

Closure

Scope

Type

Population

Cardinality

Diversity

Permanence

133

Dimension Values B1 B1
Long-Term
Short-Term � �

Future
Encoded � �

Supplied � �

Learned
Scripted � �

Mixed
Planning
None
Veto
Complete � �

Deterministic � �

Stochastic
None

Transparent
�

(traces	--	visible	in	the	converstation)

�

(traces	--	visible	in	the	converstation)

Visible
Synchronous ��	 ��	

Asynchronous
Single
Multiple � �

Open
Constrained
Internal
External
Undirected
Directed

Complexity Low-High (Low	--	simple	task	to	complete) (Low	--	simple	task	to	complete)

Criticality Low-High (Low	--	not	completing	high	risk	tasks) (Low	--	not	completing	high	risk	tasks)

Achievable � �

Homoeostasis
Explicit � �

Implicit
Internal

External
�

(users	ask	for	things)

�

(users	ask	for	things)

None � �

Partical
Complete
Generalist
Specialist � �

None

Representative
�

(depicts	product)

�

(depicts	product)

Unique
None � �

Static
Dynamic
None

Gendered
�

(visible	in	logo)

�

(visible	in	logo)

None

Ethnicity
�

(smiling	robot	in	avatar)

�

(smiling	robot	in	avatar)

None

Embodied
�

(2D	avatar)

�

(2D	avatar)

None
Profession � �

None
Personality � �

None
Superficial � �

Logical
Continuous

Transient
�

(is	there	when	people	access	it	on	FB)

�

(is	there	when	people	access	it	on	FB)

Terminating
Human � �

Bot
System
Non-Reproductive � �

Reproductive

(non-adaptive)(non-adaptive)

Source

Facets	/	Sub-Facets

IN
TR

IN
SI
C	
D
IM

EN
SI
O
N

Delegacy

Knowledge

Memory

Source

Reasoning

Mechanisms

Agency

Predictability

Reactivity

Scheduling

Lifecycle

Lifespan

Creation

Reproduction

Adaptability

Constraints

Source

Guidance

Attainability

Visibility

Goals

Specialization

Anthropomorphism

Name

Age

Gender

Ethnicity

Embodiment

Profession

Personality

Emotions

Explicitness

134

Dimension Values B1 B2

None
Constrained

Complete
�

(complete	access	to	fb	messenger	
conversation)

�

(complete	access	to	fb	messenger	
conversation)

Non-Sensing
Sensing � �

Non-Acting
Acting � �

Antagonistic
Competitive
Indifferent
Cooperative

Benevolent
�

(always	tries	to	do	what	you	ask)
�

(always	tries	to	do	what	you	ask)
Truthful � �

Untruthful
One-One � �

One-Many
Many-Many
One-Way
Two-Way � �

Direct � �

Indifferent
None
Keywords
Natural	Language � �

Conversation
Reactive � �

Proactive
Bot � �

User
Bot
User � �

Bot
User � �

Static � �

Mobile

Facets	/	Sub-Facets

Access

Sense

Act

Communicate

Disposition

Veracity

Cardinality

Directness

Speech

Error
Discovery

Mobility

Directionality

IN
TE
RA

CT
IO
N	
DI
M
EN

SI
ON

S

	Error
Correction

Initiative

Robustness

Error
Prevention

135

Bibliography

[1] M. Usman, R. Britto, J. Börstler, and E. Mendes, “Taxonomies in software engi-

neering: A systematic mapping study and a revised taxonomy development method,”

Information and Software Technology, vol. 85, pp. 43 – 59, 2017.

[2] I. C. Society, P. Bourque, and R. E. Fairley, Guide to the Software Engineering Body

of Knowledge (SWEBOK(R)). IEEE Computer Society Press, 2014.

[3] A. Leonard, Bots: The Origin of New Species. Penguin Books Limited, 1998.

[4] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A proposal for the

dartmouth summer research project on artificial intelligence,” AI Magazine, vol. 27,

no. 4, p. 12, 2006.

[5] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson Edu-

cation Limited, 1995, vol. 25, ch. 2.

[6] W. Thomson, “The sorting demon of maxwell,” in Proceedings of the Royal Society,

vol. 9, 1879, pp. 113–114.

[7] J. Bub, “Maxwell’s demon and the thermodynamics of computation,” Studies in His-

tory and Philosophy of Science: Studies in History and Philosophy of Modern Physics,

vol. 32, no. 4, pp. 569–579, 2001.

[8] R. P. Martin, The Language of Heroes: Speech and Performance in the Iliad. Myth

and Poetics. Cornell University Press, 1990.

[9] P. McCorduck, Machines Who Think: A Personal Inquiry into the History and

Prospects of Artificial Intelligence. AK Peters/CRC Press, 2009.

[10] W. Clark, J. Golinski, and S. Schaffer, The Sciences in Enlightened Europe. Univer-

sity of Chicago Press, 1999.

[11] K. Čapek, R.U.R. (Rossum’s Universal Robots). Oxford University Press, 1951,

english translation.

136

[12] I. Kato, “Development of wabot-1,” Biomechanism, vol. 2, pp. 173–214, 1973.

[13] P. Mowforth and I. Bratko, “Ai and robotics; flexibility and integration,” Robotica,

vol. 5, no. 2, pp. 93–98, 1987.

[14] M. Rüßmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, and M. Har-

nisch, “Industry 4.0: The future of productivity and growth in manufacturing indus-

tries,” Boston Consulting Group, vol. 9, 2015.

[15] A. M. Turing, “Computing machinery and intelligence,” in Parsing the Turing Test.

Springer, 2009, pp. 23–65.

[16] V. Cerf, “Parry encounters the doctor,” Tech. Rep., 1973.

[17] R. Wallace, “Artificial linguistic internet computer entity (alice),” 1995.

[18] R. Hoffer, T. Kay, P. Levitan, and S. Klein, “Smarterchild,” ActiveBuddy, 2001.

[19] M. L. Mauldin, “Chatterbots, tinymuds, and the turing test: Entering the loebner

prize competition,” in AAAI, vol. 94, 1994, pp. 16–21.

[20] “Verbot sylvie,” Virtual Personalities Inc, 1997.

[21] J. Hendler, “Avoiding another ai winter,” IEEE Intelligent Systems, vol. 23, no. 2,

pp. 2–4, 2008.

[22] O. Barnett, K. Famiglietti, R. Kim, E. PHoffer, and M. Feldman, “Dxplain on the in-

ternet,” in Proceedings of the American Medical Informatics Association Symposium.

American Medical Informatics Association, 1998, p. 607.

[23] H. S. Nwana, “Software agents: An overview,” The Knowledge Engineering Review,

vol. 11, no. 3, pp. 205–244, 1996.

[24] C. Hewitt, “Viewing control structures as patterns of passing messages,” Artificial

Intelligence, vol. 8, no. 3, pp. 323–364, 1977.

[25] A. H. Bond and L. Gasser, Readings in Distributed Artificial Intelligence. Morgan

Kaufmann, 2014.

[26] L. Gasser and M. N. Huhns, Distributed Artificial Intelligence. Morgan Kaufmann,

1989, vol. 2.

[27] B. Chaib-Draa, B. Moulin, R. Mandiau, and P. Millot, “Trends in distributed artificial

intelligence,” Artificial Intelligence Review, vol. 6, no. 1, pp. 35–66, 1992.

137

[28] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and practice,” The

Knowledge Engineering Review, vol. 10, no. 2, pp. 115–152, 1995.

[29] J. Müller, M. Wooldridge, and N. Jennings, Intelligent Agents III. Agent Theories,

Architectures, and Languages, 1996.

[30] J. Sculley, “The knowledge navigator,” 1987, educom Keynote.

[31] R. Kozierok and P. Maes, “A learning interface agent for scheduling meetings,” in

Proceedings of the 1st International Conference on Intelligent User Interfaces, 1993,

pp. 81–88.

[32] H. Lieberman, “Letizia: An agent that assists web browsing,” 1995, pp. 924–929.

[33] A. Chavez and P. Maes, “Kasbah: An agent marketplace for buying and selling

goods,” in Proceedings of the First International Conference on the Practical Ap-

plication of Intelligent Agents and Multi-agent technology, 1996, p. 40.

[34] P. Maes, “Artificial life meets entertainment: lifelike autonomous agents,” Communi-

cations of the ACM, vol. 38, no. 11, pp. 108–114, 1995.

[35] J. L. McCarthy, “Artificial intelligence: A general survey,” Artificial Intelligence,

vol. 5, no. 3, pp. 317–322, 1974.

[36] D. Crevier, AI: The Tumultuous History of the Search for Artificial Intelligence. Basic

Books, 1993.

[37] J. W. Ng and D. H. Lau, “Going beyond web browsing to web tasking: Transform-

ing web users from web operators to web supervisors,” in Proceedings of the World

Congress on Services (SERVICES). IEEE, 2013, pp. 126–130.

[38] R. Dale, “The return of the chatbots,” Natural Language Engineering, vol. 22, no. 5,

pp. 811–817, 2016.

[39] A. Shevat, Designing Bots. O’Reilly Media, 2017.

[40] The smart audio report. National Public Radio (NPR) & Edison Research.

[Online]. Available: http://nationalpublicmedia.com/wp-content/uploads/2018/01/

The-Smart-Audio-Report-from-NPR-and-Edison-Research-Fall-Winter-2017.pdf

[41] R. Fielding, “Architectural styles and the design of network-based software architec-

tures,” Ph.D. dissertation, University of California Irvine, 2000.

[42] C. Lebeuf, M. A. Storey, and A. Zagalsky, “Software bots,” IEEE Software, vol. 35,

no. 1, pp. 18–23, 2018.

http://nationalpublicmedia.com/wp-content/uploads/2018/01/The-Smart-Audio-Report-from-NPR-and-Edison-Research-Fall-Winter-2017.pdf
http://nationalpublicmedia.com/wp-content/uploads/2018/01/The-Smart-Audio-Report-from-NPR-and-Edison-Research-Fall-Winter-2017.pdf

138

[43] A. Tolk and A. M. Uhrmacher, “Agents: Agenthood, agent architectures, and agent

taxonomies,” in Agent-Directed Simulation and Systems Engineering. Wiley, 2009,

pp. 75–109.

[44] C. Vouillon. (2015) Software bots: From do-it-yourself companion bots to ai powered

software. [Online]. Available: https://medium.com/point-nine-news/software-bots-

c56aeedcfec3

[45] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one bot at a time,”

in Proceedings of the 24th ACM Sigsoft International Symposium on Foundations of

Software Engineering, 2016, pp. 928–931.

[46] B. Nerds. (2017) Types of bots: An overview. [Online]. Available: http:

//botnerds.com/types-of-bots/

[47] D. Geer, “Malicious bots threaten network security,” Computer, vol. 38, no. 1, pp.

18–20, 2005.

[48] L. McLaughlin, “Bot software spreads, causes new worries,” IEEE Distributed Systems

Online, vol. 5, no. 6, p. 1, 2004.

[49] G. Maus, “A typology of socialbots (abbrev.),” in Proceedings of the ACM Conference

on Web Science, 2017, pp. 399–400.

[50] S. D. Roy. (2016) What bots may come: A learning architecture for the next

paradigm. [Online]. Available: https://chatbotsmagazine.com/what-bots-may-come-

a35b2bb9bd58

[51] Squareweave, “The user is drunk,” 2013. [Online]. Available: https://www.youtube.

com/watch?v=r2CbbBLVaPk

[52] M. Wooldridge and N. R. Jennings, “Agent theories, architectures, and languages: A

survey,” in International Workshop on Agent Theories, Architectures, and Languages,

1994, pp. 1–39.

[53] L. Foner, “What’s an agent, anyway? a sociological case study,” Agents Memo 93,

Tech. Rep., 1993.

[54] B. Hayes-Roth, “An architecture for adaptive intelligent systems,” Artificial Intelli-

gence, vol. 72, no. 1-2, pp. 329–365, 1995.

[55] P. T. Tosic and G. A. Agha, “Towards a hierarchical taxonomy of autonomous agents,”

in IEEE International Conference on Systems, Man and Cybernetics, 2004, pp. 3421–

3426.

https://medium.com/point-nine-news/software-bots-c56aeedcfec3
https://medium.com/point-nine-news/software-bots-c56aeedcfec3
http://botnerds.com/types-of-bots/
http://botnerds.com/types-of-bots/
https://chatbotsmagazine.com/what-bots-may-come-a35b2bb9bd58
https://chatbotsmagazine.com/what-bots-may-come-a35b2bb9bd58
https://www.youtube.com/watch?v=r2CbbBLVaPk
https://www.youtube.com/watch?v=r2CbbBLVaPk

139

[56] J. Weizenbaum, “Eliza: A computer program for the study of natural language com-

munication between man and machine,” Communications of the ACM, vol. 9, no. 1,

pp. 36–45, 1966.

[57] H. S. Nwana, “Software agents: An overview,” The Knowledge Engineering Review,

vol. 11, no. 3, pp. 205–244, 1996.

[58] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “How software developers mitigate collab-

oration friction with chatbots,” 2017.

[59] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one bot at a time,”

in Proceedings of the 24th ACM Sigsoft International Symposium on Foundations of

Software Engineering, 2016, pp. 928–931.

[60] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,

“Systematic literature reviews in software engineering–a systematic literature review,”

Information and Software Technology, vol. 51, no. 1, pp. 7–15, 2009.

[61] J. A. Sánchez, “A taxonomy of agents,” Interactive and Cooperative Technologies

Lab, Report ICT-97-1, 1997.

[62] C. Wohlin, “Guidelines for snowballing in systematic literature studies and a replica-

tion in software engineering,” in Proceedings of the 18th International Conference on

Evaluation and Assessment in Software Engineering, 2014, p. 38.

[63] L. Rosenfeld and P. Morville, Information Architecture for the World Wide Web.

O’Reilly Media, Inc, 2002.

[64] M. Yap and N. W. Keong, “Are life-like characteristics useful for autonomous agents?”

in Proceedings of the Third Annual Conference on Autonomous Agents, 1999, pp. 336–

337.

[65] A. Hector and V. L. Narasimhan, “A new classification scheme for software agents,”

in Third International Conference on Information Technology and Applications, 2005,

pp. 191–196.

[66] L. J. Moya and A. Tolk, “Towards a taxonomy of agents and multi-agent systems,”

in Proceedings of the Spring Simulation Multiconference, 2007, pp. 11–18.

[67] S. Hannah, Sorting out card sorting: Comparing methods for information architects,

usability specialists, and other practitioners, 2008.

[68] D. Spencer and T. Warfel, “Card sorting: A definitive guide,” Boxes and Arrows,

p. 2, 2004.

140

[69] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxonomy for

autonomous agents,” in International Workshop on Agent Theories, Architectures,

and Languages, 1996, pp. 21–35.

[70] D. Britz, “Deep learning for chatbots,” 2016.

[71] M. van Otterlo, M. Dastani, M. Wiering, and J.-J. Meyer, A Characterization of

Sapient Agents. Springer London, 2008, pp. 129–141.

[72] S. D. Bird, “Toward a taxonomy of multi-agent systems,” International Journal of

Man-machine Studies, vol. 39, no. 4, pp. 689–704, 1993.

[73] W. Schenk. (2014) Bot design patterns: different ways to make different bots.

[Online]. Available: http://willschenk.com/bot-design-patterns/

[74] E. Zalta, “Stanford encyclopedia of philosophy,” The Metaphysics Research Lab, 2003.

[75] R. Block. (2016) How to build a better bot. [Online]. Available: https:

//workshop.begin.com/how-to-make-a-better-bot-c038626fd401

[76] J. Aguero, M. Rebollo, C. Carrascosa, and V. Julian, Agent Capability Taxonomy for

Dynamic Environments. Springer Berlin Heidelberg, 2012, pp. 37–48.

[77] S. Munroe and M. Luck, “Agent autonomy through the 3m motivational taxonomy,”

in Proceedings of the International Conference on Agents and Computational Auton-

omy, 2003, pp. 55–67.

[78] Z. Huang, A. Eliens, A. van Ballegooij, and P. de Bra, “A taxonomy of web agents,”

in Proceedings of the 11th International Workshop on Database and Expert Systems

Applications, 2000, pp. 765–769.

[79] (2018) Personality. American Psychological Association. [Online]. Available:

http://www.apa.org/topics/personality/

[80] M. Huhns and M. P. Singh, “Agents and multiagent systems: Themes, approaches

and challenges,” in Readings in Agents, 1998, ch. 1.

[81] H. V. D. Parunak and M. Fleischer, “A design taxonomy of multi-agent interactions,”

in International Workshop on Agent-Oriented Software Engineering, 2003, pp. 123–

137.

[82] M. M. de Graaf, S. B. Allouch, and J. van Dijk, “What makes robots social?: A user’s

perspective on characteristics for social human-robot interaction,” in International

Conference on Social Robotics, 2015, pp. 184–193.

http://willschenk.com/bot-design-patterns/
https://workshop.begin.com/how-to-make-a-better-bot-c038626fd401
https://workshop.begin.com/how-to-make-a-better-bot-c038626fd401
http://www.apa.org/topics/personality/

141

[83] K. Long, J. Vines, S. Sutton, P. Brooker, T. Feltwell, B. Kirman, J. Barnett, and

S. Lawson, “Could you define that in bot terms?: Requesting, creating and using

bots on reddit,” in Proceedings of the Conference on Human Factors in Computing

Systems, 2017, pp. 3488–3500.

[84] H. V. D. Parunak, S. Brueckner, M. Fleischer, and J. Odell, “A preliminary tax-

onomy of multi-agent interactions,” in Proceedings of the Second International Joint

Conference on Autonomous Agents and Multiagent Systems, 2003, pp. 1090–1091.

[85] O. Etzioni and D. Weld, “A softbot-based interface to the internet,” Communications

of the ACM, vol. 37, no. 7, pp. 72–76, 1994.

[86] H. V. D. Parunak, S. Brueckner, M. Fleischer, and J. Odell, “A preliminary tax-

onomy of multi-agent interactions,” in Proceedings of the Second International Joint

Conference on Autonomous Agents and Multiagent Systems, 2003, pp. 1090–1091.

[87] E. Paikari and A. van der Hoek, “A framework for understanding chatbots and their

future,” The 11th International Workshop On Cooperative and Human Aspects of

Software Engineering an ICSE workshop, 2018.

[88] G. Sakarkar and N. M. Shelke, “A new classification scheme for autonomous software

agent,” in International Conference on Intelligent Agent Multi-agent Systems, 2009,

pp. 1–2.

[89] H. Kautz, B. Selman, M. Coen, S. Ketchpel, and C. Ramming, “An experiment

in the design of software agents,” in Association for the Advancement of Artificial

Intelligence, 1994, pp. 438–443.

[90] M.-L. Bourguet, “Towards a taxonomy of error-handling strategies in recognition-

based multi-modal human–computer interfaces,” Signal Processing, vol. 86, no. 12,

pp. 3625–3643, 2006.

[91] H. Schmeck and C. Müller-Schloer, A Characterization of Key Properties of

Environment-Mediated Multiagent Systems. Springer Berlin Heidelberg, 2008, pp.

17–38.

[92] J. S. Aitken, F. Schmalhofer, and N. Shadbolt, A knowledge level characterisation of

multi-agent systems. Springer Berlin Heidelberg, 1995, pp. 179–190.

[93] H. Ko, S. Han, U. Kim, and H. Y. Youn, “A new agent characterization model and

grouping method for multi-agent system,” in IEEE International Conference on In-

formation Reuse and Integration, 2008, pp. 86–91.

142

[94] D. Dagon, G. Gu, C. P. Lee, and W. Lee, “A taxonomy of botnet structures,” in

Twenty-third Annual Computer Security Applications Conference, 2007, pp. 325–339.

[95] H. C. Wong and K. Sycara, “A taxonomy of middle-agents for the internet,” in Pro-

ceedings of the Fourth International Conference on Multiagent Systems, 2000, pp.

465–466.

[96] J. van Oijen and F. Dignum, Agent Communication for Believable Human-Like In-

teractions between Virtual Characters. Springer Berlin Heidelberg, 2013, pp. 37–54.

[97] N. Afonso and R. Prada, Agents That Relate: Improving the Social Believability of

Non-Player Characters in Role-Playing Games. Springer Berlin Heidelberg, 2009,

pp. 34–45.

[98] A. Oluyomi, S. Karunasekera, and L. Sterling, “An agent design pattern classification

scheme: capturing the notions of agency in agent design patterns,” in 11th Asia-

Pacific Software Engineering Conference, 2004, pp. 456–463.

[99] M. O. Riedl and R. M. Young, An Objective Character Believability Evaluation Pro-

cedure for Multi-agent Story Generation Systems. Springer Berlin Heidelberg, 2005,

pp. 278–291.

[100] P. Doyle, “Believability through context using ”knowledge in the world” to create

intelligent characters,” in Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems, 2002, pp. 342–349.

[101] M. Eslahi, R. Salleh, and N. B. Anuar, “Bots and botnets: An overview of characteris-

tics, detection and challenges,” in IEEE International Conference on Control System,

Computing and Engineering, 2012, pp. 349–354.

[102] J. Cascalho, L. Antunes, M. Corrêa, and H. Coelho, “Characterising agents be-

haviours: selecting goal strategies based on attributes,” in International Workshop

on Cooperative Information Agents, 2006, pp. 402–415.

[103] K. Sumi and M. Nagata, “Characteristics of robots and virtual agents as a persua-

sive talker,” in International Conference on Universal Access in Human-Computer

Interaction, 2013, pp. 414–423.

[104] P. Davidsson, S. Johansson, and M. Svahnberg, “Characterization and evaluation

of multi-agent system architectural styles,” in International Workshop on Software

Engineering for Large-scale Multi-agent Systems, 2005, pp. 179–188.

143

[105] E. Stinson and J. C. Mitchell, “Characterizing bots remote control behavior,” in

International Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, 2007, pp. 89–108.

[106] B. Hu and J. Liu, “Characterizing complex behavior in (self-organizing) multi-agent

systems,” in International Conference on Computational Science and its Applications,

2005, pp. 1274–1283.

[107] K. V. den Bosch, A. Brandenburgh, T. J. Muller, and A. Heuvelink, “Characters

with personality!” in International Conference on Intelligent Virtual Agents, 2012,

pp. 426–439.

[108] Y. Hayashi and K. Miwa, “Cognitive and emotional characteristics of communication

in human-human/human-agent interaction,” in International Conference on Human-

Computer Interaction, 2009, pp. 267–274.

[109] R. Prasad, V. V. Kumari, and K. Raju, “Comparison shopping agents: the essential

characteristics and challenges to be met,” in International Conference on Intelligent

Agent & Multi-agent Systems, 2009, pp. 1–2.

[110] J. M. Darley, “Constructive and destructive obedience: A taxonomy of principal-agent

relationships,” Journal of Social Issues, vol. 51, no. 3, pp. 125–154, 1995.

[111] A. Smajgl, D. G. Brown, D. Valbuena, and M. G. Huigen, “Empirical characterisation

of agent behaviours in socio-ecological systems,” Environmental Modelling & Software,

vol. 26, no. 7, pp. 837–844, 2011.

[112] G. Zoric, K. Smid, and I. S. Pandzic, “Facial gestures: taxonomy and application of

non-verbal, non-emotional facial displays for embodied conversational agents,” Con-

versational Informatics: An Engineering Approach, pp. 161–182, 2007.

[113] K. E. Merrick, “Game-playing agents and non-player characters,” in Computational

Models of Motivation for Game-Playing Agents. Springer, 2016, pp. 45–65.

[114] S. DiPaola, “Intelligent expression-based character agent systems,” in International

Workshop on Intelligent Virtual Agents, 2009, pp. 3–4.

[115] M. Cavazza, F. Charles, and S. J. Mead, “Interacting with virtual characters in in-

teractive storytelling,” in Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems, 2002, pp. 318–325.

[116] K. Ito, “Introducing multimodal character agents into existing web applications,” in

Special Interest Tracks and Posters of the 14th International Conference on World

Wide Web, 2005, pp. 966–967.

144

[117] N. Tosa and R. Nakatsu, “Life-like communication agent-emotion sensing character”

mic” and feeling session character” muse”,” in Proceedings of the Third IEEE Inter-

national Conference on Multimedia Computing and Systems, 1996, pp. 12–19.

[118] S. Mukhopadhyay, S. Peng, R. Raje, M. Palakal, and J. Mostafa, “Multi-agent infor-

mation classification using dynamic acquaintance lists,” Journal of the Association

for Information Science and Technology, vol. 54, no. 10, pp. 966–975, 2003.

[119] Y. Kitamura, H. Tsujimoto, T. Yamada, and T. Yamamoto, “Multiple character-

agents interface: An information integration platform where multiple agents and hu-

man user collaborate,” in Proceedings of the First International Joint Conference on

Autonomous Agents and Multiagent Systems, 2002, pp. 790–791.

[120] A. J. Jones and B. S. Firozabadi, “On the characterisation of a trusting agentaspects

of a formal approach,” in Trust and Deception in Virtual Societies, 2001, pp. 157–168.

[121] Y. Arafa and A. Mamdani, “Scripting embodied agents behaviour with cml: character

markup language,” in Proceedings of the 8th International Conference on Intelligent

User Interfaces, 2003, pp. 313–316.

[122] Y. Takeuchi and Y. Katagiri, “Social character design for animated agents,” in IEEE

International Workshop on Robot and Human Interaction, 1999, pp. 53–58.

[123] A. F. B. Neto and F. S. C. da Silva, “Synthetic characters with personality and

emotion,” in International Workshop on Intelligent Virtual Agents, 2009, pp. 533–

534.

[124] G. Cabri, M. Puviani, and F. Zambonelli, “Towards a taxonomy of adaptive agent-

based collaboration patterns for autonomic service ensembles,” in International Con-

ference on Collaboration Technologies and Systems, 2011, pp. 508–515.

[125] R. Damiano and V. Lombardo, “Using values to turn agents into characters,” in

International Conference on Agents and Artificial Intelligence, 2009, pp. 283–296.

[126] W. Ke and J. Mostafa, “Visualizing multi-agent collaboration for classification of

information,” Proceedings of the Association for Information Science and Technology,

vol. 45, no. 1, pp. 1–4, 2008.

[127] Y. Kitamura, “Web information integration using multiple character agents,” in Life-

like Characters, 2004, pp. 295–315.

[128] C. Baraniuk, “You’ve got personality for a bot,” 2014.

145

[129] M. Hare and P. Deadman, “Further towards a taxonomy of agent-based simulation

models in environmental management,” Mathematics and Computers in Simulation,

vol. 64, no. 1, pp. 25–40, 2004.

[130] S. J. Read, J. Talevich, D. A. Walsh, G. Chopra, and R. Iyer, A Comprehensive Tax-

onomy of Human Motives: A Principled Basis for the Motives of Intelligent Agents.

Springer Berlin Heidelberg, 2010, pp. 35–41.

[131] S. Höppner, “An agents’ definition framework and a methodology for deriving agents’

taxonomies,” in Ki: Advances in Artificial Intelligence, 2003, pp. 618–632.

[132] V. Filatov, “About one approach to the classification of program agents,” in Interna-

tional Conference on Modern Problems of Radio Engineering, Telecommunications,

and Computer Science, 2006, pp. 410–411.

[133] N. R. Jennings and J. R. Campos, “Towards a social level characterisation of socially

responsible agents,” IEEE Proceedings: Software, vol. 144, no. 1, pp. 11–25, 1997.

[134] R. Goodwin, “Formalizing properties of agents,” Journal of Logic and Computation,

vol. 5, no. 6, pp. 763–781, 1995.

[135] R. Fisher. (2016) The seven habits of highly effective chatbots. [Online]. Avail-

able: https://chatbotsmagazine.com/the-seven-habits-of-highly-effective-chatbots-

79a0e3c962db

[136] D. Grover. (2016) Bots won’t replace apps. better apps will replace apps. [Online].

Available: http://dangrover.com/blog/2016/04/20/bots-wont-replace-apps.html

[137] J. Libov. (2015) Futures of text: A survey of all the current innovation in text as a

medium. [Online]. Available: http://whoo.ps/2015/02/23/futures-of-text

[138] S. MacPherson. (2016) How to interact with bots? dealing

with the complexity of a new design paradigm. [Online]. Avail-

able: https://chatbotsmagazine.com/how-to-interact-with-bots-dealing-with-the-

complexity-of-a-new-design-paradigm-e89fd7131921

[139] M. Clément and M. J. Guitton, “Interacting with bots online: Users’ reactions to

actions of automated programs in wikipedia,” Computers in Human Behavior, vol. 50,

pp. 66–75, 2015.

[140] D. Jurafsky and J. H. Martin, “Dialog systems and chatbots,” in Speech and Language

Processing: An Introduction to Natural Language Processing. Prentice Hall, 2000,

ch. 28.

https://chatbotsmagazine.com/the-seven-habits-of-highly-effective-chatbots-79a0e3c962db
https://chatbotsmagazine.com/the-seven-habits-of-highly-effective-chatbots-79a0e3c962db
http://dangrover.com/blog/2016/04/20/bots-wont-replace-apps.html
http://whoo.ps/2015/02/23/futures-of-text
https://chatbotsmagazine.com/how-to-interact-with-bots-dealing-with-the-complexity-of-a-new-design-paradigm-e89fd7131921
https://chatbotsmagazine.com/how-to-interact-with-bots-dealing-with-the-complexity-of-a-new-design-paradigm-e89fd7131921

146

[141] M.-A. Storey, “To bot or not: How bots can support collaboration in software engine,”

2017, keynote at 11th IEEE International Conference on Global Software Engineering.

[Online]. Available: https://www.slideshare.net/mastorey/icgse-2016-storey

https://www.slideshare.net/mastorey/icgse-2016-storey

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Research Questions
	Contributions
	Structure

	Software Bot Background
	The Evolution of Software Bots
	Daemons
	Automata
	Robots
	Chatbots
	Expert Systems
	Software Agents

	The AI Winter
	Why Now? The Re-Emergence of Software Bots
	Technological Advancements
	Mainstream Adoption of Messaging Platforms
	Emergence of Voice-Only Platforms
	Transition to Service Oriented Architectures
	Abundance of Public APIs and Datasets
	Industry Support

	Summary

	Defining Software Bots
	What Is a Software Bot?
	Proposed Definition of Software Bots

	Comparing Software Bots and Related Technologies
	Software Bots vs. Robots
	Software Bots vs. Scripts
	Software Bots vs. Programs
	Software Bots vs. Agents
	Software Bots vs. Chatbots

	Existing Classifications of Software Bots
	High-Level Classifications (Subtypes)
	Role-Based Classifications
	Other Classifications

	Shortcomings of Existing Classifications
	Summary

	Developing a Software Bot Taxonomy
	Taxonomy Generation Methodology
	Planning (Phase 1)
	Knowledge Area
	Objectives & Scope
	Subject Matter
	Classification Structure
	Classification Procedure

	Data Collection (Phase 2)
	Systematic Literature Search
	Backwards Snowballing
	Online Search

	Identification & Extraction (Phase 3)
	Term Identification & Extraction
	Term Reduction

	Design & Construction (Phase 4)
	Card Sorting
	Dimensions, Facets, and Relationships
	Drafting Definitions & Refining Dimensions

	Summary

	A Taxonomy of Software Bot
	Reader's Guide
	General Usage Guidelines

	Environment Dimensions
	Environment Type
	Scope
	Closure
	Dynamism
	Predictability
	Permanence
	Population

	Intrinsic Dimensions
	Knowledge
	Reasoning
	Adaptability
	Goals
	Delegation
	Specialization
	Anthropomorphism
	Life Cycle

	Interaction Dimensions
	Access
	Sense
	Act
	Communicate
	Initiative
	Robustness
	Mobility

	Summary

	Taxonomy Validation
	Benchmarking
	Subject Matter Tagging
	Domain Expert Tagging
	Summary

	Discussion, Limitations, and Future Work
	Why Another Software Bot Taxonomy?
	Limitations
	Operationalizing the Taxonomy
	Researchers
	Practitioners
	End Users

	Conclusions
	Summary of Research
	Final Remarks

	Appendices
	Collection Queries
	ACM Digital Library
	IEEE Xplore
	ScienceDirect (Computer Science section)
	SpringerLink
	Wiley Online (Computer Science section)

	Data Extracted from Article Selection
	Excluded Systematic Search Articles
	Included Systematic Search Articles
	Included Snowballed Articles
	Included Online Articles

	Excluded Cards
	Restructuring the Taxonomy
	Mapped Terminology
	Environment Dimension
	Intrinsic Dimension
	Interaction Dimension

	Benchmarking Validation
	Literature Search Articles:
	Snowballing Articles:
	Online Articles:

	Validation: Subject Matter Tagging
	Study Questions
	Participant Background & Experience
	Software Bot Taxonomy Feedback

	H.R.E.B. Ethics Approval
	Expert Tagging Session
	Bibliography

