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ABSTRACT

The amount of data that is available to us is ever increasing, and thus is the

potential to extract information from it. Information visualization, which leverages

our perceptual system to enable us to perceive patterns, outliers, trends and anomalies

in large amounts of data, is an important technique for exploratory data analysis.

As part of a flexible visual data analysis process, the user needs to construct and

parametrize visualizations, which is challenging for novice users.

In this thesis, I explore how information visualization novices can be supported

in visualization construction. First, I identify existing visualization construction ap-

proaches in a systematic literature survey and examine their use cases. Second, I

conduct a laboratory study to learn about the process and the characteristics of how

information visualization novices construct visualization during data analysis. Third,

I identify natural language visualization queries as a promising alternative specifica-

tion approach that I study by analyzing the queries from the laboratory experiment



iv

and by conducting an online survey study. Based on my findings, I propose a de-

scriptive model of natural language visualization queries. Fourth, I derive guidelines

for visualization construction tools from my studies and from related work. Finally,

I show how these guidelines can be applied to existing visualization tools using the

example of the Choosel visualization framework.
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Chapter 1

Introduction

Exploring and understanding data are crucial to a wide variety of activities. For

example, store managers need to explore and understand sales data to plan purchasing

and staffing. Students learn more deeply when they explore exemplary data and apply

the models that they have been taught. Sport fans might want to explore results and

statistics of their favorite teams. There is a great demand for easy and efficient ways

to explore and comprehend data.

Information visualization, “the use of computer-supported, interactive, visual rep-

resentations of abstract data to amplify cognition” [17], is a promising approach to

assist users in data exploration and sense making. Through leveraging the properties

of our perceptual system, visualization facilitates comprehending large amounts of

data [169]. Visualization makes it easy to identify emergent properties of the data, to

understand both its large-scale and its small-scale features, and to generate hypothe-

ses about it. Information visualization systems have been successful in supporting

expert users, for example in the domains of system management [109], bio-informatics

[146], and social network analysis [127]. Similarly, many basic visualization techniques

such as charts and maps are used by information visualization novices— those who

create visualizations to support their primary tasks but who are typically not trained

in data analysis, information visualization and statistics — in their everyday lives

[151].

However, the vision of visualization as a ubiquitous tool for information visu-

alization novices has not yet been realized [69, 83]. While they already consume

many existing visualizations, their capabilities to create, configure and compose vi-

sualizations that support their tasks well are limited, as this often requires advanced

visualization and analytics knowledge. As Johnson et al. find in their NIH/NSF Visu-
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alization Research Challenges report, “We must develop [. . . ] systems [. . . ] that assist

non-expert users [. . . ] in complex decision-making and analysis tasks” [83]. Relying

on experts to construct appropriate visualizations is also not feasible for the long

tail of data exploration scenarios — the multitude of data exploration scenarios that

provide little profit individually, but have a huge impact because there are so many

of them. The development of visualizations by experts is not cost-effective and too

time-consuming for those scenarios, and it is thus important to find ways to enable

end users to do this by themselves.

1.1 Research Problem and Design

To facilitate the exploration and understanding of small data sets, we need to en-

able information visualization novices to quickly and easily construct visualizations.

In this thesis, I addressed the problem “How can information visualization

novices be supported in constructing visualizations?” This involved learn-

ing about information visualization novices and their visualization construction pro-

cesses, understanding the design space of visualization construction user interfaces,

and deriving guidelines that align the design of a user interface with the behaviors

and characteristics of information visualization novices.

I started my research by systematically reviewing the literature on visualization

construction user interfaces and by creating a categorization of the different visual-

ization construction approaches (Chapter 3) to answer my first research question:

RQ1 What visualization construction approaches have been developed?

I identified six different visualization construction approaches and their use cases.

The “fixed algebra configuration” approach appeared to be particularly well-suited for

data exploration tasks, and I decided to explore how novices use tools that implement

this approach in a user study. However, the pilots for this study revealed that there is

a learning barrier which makes exploring this in a user study challenging, and that the

user interface itself had a strong influence on the user’s actions. Therefore, I removed

the direct interaction with the user interface by introducing a human mediator, and

to focus on how novices construct information visualizations. This led to my next

research question:

RQ2 How do information visualization novices construct visualizations?
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To answer this question, I conducted an exploratory laboratory study in which

information visualization novices analyzed fictitious sales data by communicating

visualization specifications to a human mediator, who rapidly constructed the visual-

izations using commercial visualization software (Chapter 4). The participants in the

study used a combination of gestures, sketching and natural language to specify which

visualizations they wanted to see. I was especially interested in the use of natural lan-

guage for specifying initial visualizations, because this seemed to be a promising way

to get novices started without requiring major learning efforts. However, the empiri-

cal foundation for building natural language interfaces for visualization construction

was very limited, and, therefore, I decided to explore natural language visualization

queries further by asking:

RQ3 What are the elements and characteristics of English natural lan-

guage visualization queries?

To this end, I revisited the laboratory study data to explore the language used in

visualization queries (Chapter 5). Then, I conducted an online survey that asked users

to enter three natural language visualization queries, and coded these specifications

to extend and quantify the model of natural language visualization queries (Chapter

6).

However, the models of visualization construction (RQ2) and natural language vi-

sualization queries (RQ3) describe phenomena and are not practical guidelines on how

information visualization novices can be supported during visualization construction.

To help practitioners who create visualization construction tools, I have investigated

the following research question:

RQ4 How can tools support information visualization novices in con-

structing visualizations?

I derived tool support guidelines by combining the results from the exploratory

laboratory study (RQ2) and the online survey (RQ3) with existing literature (Chapter

7). Then, I applied those guidelines to Choosel as an example of how they can be

used (Chapter 8). Choosel is a programming framework for web-based visualization

applications that supports several visualization types and their coordination.

In summary, I started this research by reviewing existing visualization construction

user interfaces. Next, I researched how information visualization novices instruct a

human mediator to construct visualizations in an empirical study. Then, I further
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explored the characteristics of natural language visualization queries, which could

be used in a language-based user interface approach to visualization construction.

Finally, I came up with a set of practical tool guidelines and applied them to an

example tool.

1.2 Scope

The thesis focuses on supporting information visualization novices in visualization

construction. Information visualization novices are users who create visualizations to

support their primary tasks, but who are typically not trained in data analysis, in-

formation visualization and statistics. The results presented in this thesis are limited

to this particular user group. The scope of this thesis is further limited to desktop

computers with mouse and keyboard user interface elements, and to visualizations

with chosen or spatially constrained display attributes, considering both discrete and

continuous data.

1.3 Contributions

This dissertation makes four main contributions to the field of information visualiza-

tion. Each of these contributions is the outcome of investigating the research question

with the same number as the contribution.

C1 Categorization of Visualization Construction Approaches

I organize the different user interface approaches that support the visualization

construction process, and describe how they have been implemented in existing

research. This provides an overview of the different design options, including

examples, that can be used by tool developers to inform their design choices.

The model also provides researchers with a categorization of the elements found

in visualization construction tools, which can be used in evaluating such systems

and to identify gaps that require further research.

C2 Model of How Information Visualization Novices Construct Visual-

izations

This model describes the process information visualization novices follow when

creating visualizations, the barriers that they encounter during this process, the
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kinds of visualizations they choose, and other patterns that are characteristic of

this activity. This model can be used by researchers to further understand and

explore visualization construction by novices, and to inform cognitive support

guidelines and concepts that address those issues.

C3 Model of Natural Language Visualization Queries

This model describes the characteristics of natural language visualization queries,

including the different semantic elements that appear in them and how they are

connected. It provides additional insight into how information visualization

novices think about visualizations.

C4 Design Guidelines for Visualization Construction Tools

The design guidelines provide guidance on how information visualization novices

can be supported by software tools during visualization construction. They

aid tool developers with principles on how to enhance and design products to

facilitate visualization construction, and they can be used by researchers to

evaluate such systems.

1.4 Organization of the Dissertation

This dissertation is structured around the four research questions and contributions.

It consists of two introductory chapters, six chapters for the four research questions

and contributions, and a conclusion chapter. The studies that I carried out and the

reviews of related work are integrated in the context of these chapters. This has

the benefit that readers who are interested in a particular contribution or research

question only need to read the relevant chapter. After this introduction, there are

the following chapters:

Chapter 2 The Problem of Visualization Construction for Information Visual-

ization Novices

I introduce relevant background material related to information visualization

and define the problem of visualization construction for information visualiza-

tion novices. While this chapter provides an overview of the literature related

to this problem, detailed literature reviews are included in the context of their

corresponding chapters.
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Chapter 3 A Survey of Visualization Construction Approaches

RQ1, C1

I review the research literature on visualization construction tools and derive

a categorization of visualization construction approaches. Then, I examine the

use cases of these approaches and discuss their trade-offs.

Chapter 4 How Information Visualization Novices Construct Visualizations

RQ2, C2

I report on a user study in which I have investigated how information visual-

ization novices construct visualization with the help of a human mediator, and

I derive a model of how information visualization novices create visualizations

by integrating the study results with related work.

Chapter 5 An Initial Exploration of Natural Language Visualization Queries

RQ3, C3

I analyze the language used by participants in the user study represented in

Chapter 4 to come up with an initial model of natural language visualization

queries.

Chapter 6 Understanding Natural Language Visualization Queries

RQ3, C3

First, I report on an exploratory online survey in which I gathered natural

language visualization queries. Then, I propose a model of natural language

visualization queries. This model integrates the findings from the online survey,

the results presented in Chapter 5, related work on natural language specifica-

tions, and English linguistics presented in Appendix F.

Chapter 7 Design Guidelines for Visualization Construction Tools

RQ4, C4

I derive practical design guidelines in four areas: reducing the need for decision

making, supporting the user’s workflow, matching the user’s mental model, and

supporting learning. These guidelines are based on the models of visualiza-

tion construction (Chapters 4), on the model of natural language visualization

queries (Chapters 5 and 6), and on related work.
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Chapter 8 Applying the Design Guidelines

RQ4, C4

I show how the design guidelines presented in Chapter 7 can be applied using

Choosel as an example. Choosel is a programming framework for web-based

visualization applications that supports several visualization types and their

coordination.

Chapter 9 Conclusion

I summarize the contributions of this thesis and discuss future work.
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Chapter 2

The Problem of Visualization

Construction by Information

Visualization Novices

To address the research problem of how information visualization novices construct

visualizations, it is important to understand how it relates to other work and to de-

fine the essential terminology. In this chapter, I start by describing the problem of

visualization construction (Section 2.1). Then, I review how information visualiza-

tion novices are currently supported during visualization construction (Section 2.2).

Finally, I summarize the research on how to facilitate visualization construction (Sec-

tion 2.3). Whereas this chapter aims at providing a sufficient overview to frame the

research presented in this dissertation, detailed literature reviews will be discussed in

the context of their related chapters.

2.1 Background and Definitions

In this section, I describe the context of this research and define central terms. I first

look at information visualization in general (Section 2.1.1). Then, I explain what

visualization construction is and how it fits into information visualization (Section

2.1.2). After that, I describe who I consider to be an information visualization novice

in the context of this thesis (Section 2.1.3). Finally, I state the research problem

“How can information visualization novices be supported in creating visualizations?”

using these definitions (Section 2.1.4).
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2.1.1 Visualizations and Information Visualization

The goal of this thesis is to provide insights into how users people create visualiza-

tions which render data into a graphical form. Colin Ware defines a visualization as

follows:

Definition 1: A visualization is a graphical representation of data or concepts

[169].

At a high level, my research is about supporting users in information visualization.

Information visualization has been defined by Card et al. as “the use of computer-

supported, interactive, visual representations of abstract data to amplify cognition”

[17]. This definition emphasizes the act of using graphical representations of abstract

data generated by a computer, including the manipulation of the representations,

with the goal of aiding our cognition. Other definitions of information visualization,

e.g. “as the communication of abstract data relevant in terms of action through the

use of interactive visual interfaces” [90], differ slightly in that they do not focus as

much on the act of using the visual representations, and in what they define as the

goal of information visualization.

“Information visualization and scientific visualization are subsets of data visualiza-

tion” [43]. According to Card et al., scientific visualization is the visual representation

of “scientific data, typically physically based”, whereas information visualization is

the visual representation of “abstract, non-physically based data” [17]. A newer def-

inition by Munzner is that the “dividing line is whether the spatialization is given

[scientific visualization] or chosen [information visualization]” [136]. However, sci-

entific visualization and information visualization are overlapping fields and many

visual representations could fall into both areas. Tory and Möller introduced a high-

level taxonomy that classifies visualization techniques based on their design models,

i.e. the encoded assumptions about the visualized data. The taxonomy distinguishes

between discrete and continuous design models, and takes into account to what ex-

tent the choice of the display attributes is constrained by the data [160]. Display

attributes are given when they are completely determined by the data (e.g. in a 3D

volume visualization). They are chosen when the visualization designer decides on

the mapping (e.g. mapping time to space). There is a continuum of constrained dis-

play attributes (e.g. 2D map projections) between the extremes of given and chosen
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display attributes. The taxonomy shows that information visualization and scientific

visualization overlap, and that defining the difference based on the physical or non-

physical nature of the data is problematic [160]. Information visualization is more

about visualizing discrete data with chosen display attributes, and scientific visualiza-

tion is more about visualizing continuous data with given display attributes. For this

dissertation, I have chosen to base my definition of information visualization on Card

et al.’s definition, because it defines all essential elements of information visualization

without being restrictive in use cases or goals, and also because it is widely accepted.

Definition 2: Information visualization is the use of computer-supported,

interactive, visual representations of abstract data to amplify cognition [17].

The research presented in this dissertation is concerned with creating visual rep-

resentations with chosen or spatially constrained display attributes, considering both

discrete and continuous data. Spatially constrained display attributes are included,

because projections of data onto 2D maps fall into this category. Next, I describe

and define what I mean by visualization construction.

2.1.2 Visualization Construction

Figure 2.1: Reference model for visualization by Card et al. [17] with visualization
construction parts emphasized in bold.

Visualization construction is a part of the overall visualization process, which is

described by Card et al.’s reference model for visualization [17] (Figure 2.1). The

reference model shows the different steps in the visualization process and how the
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user interacts with the visualization. First, raw data is processed and transformed

into data tables (data transformations). Data tables can be further transformed, for

example, by filtering, adding calculation, and merging tables. The resulting data

tables are then mapped to visual structures (visual mappings), which are generic vi-

sual representation mechanisms such as line charts or maps with their corresponding

visual properties. After the data is mapped to visual structures, views on the visual

structures can be rendered and displayed to the user. Different views show different

parts of the visual structures in different levels of abstraction from different perspec-

tives. View transformations are operations that change those views, e.g. zooming on

a map can change the visible part of the map and the level of detail, but do not change

the visual structure. The user interprets the views with the task in mind, and can

interact with the visualization by changing data transformations, visual mappings

and the current view.

Visualization construction is performed in the intermediate steps of the visualiza-

tion reference model (Figure 2.1). I define visualization construction as follows:

Definition 3: Visualization construction is the process of creating a visualiza-

tion. It involves selecting the data that should be represented graphically, mapping

it to a graphical representation, and configuring the properties of the graphical

representation.

Please note that in this dissertation, I only consider visualizations with chosen or

spatially constrained display attributes.

Visualization construction starts with a set of data tables as input parameters and

results in the construction of a visual structure. It includes transformations on the

data tables, the specification of visual mappings and the configuration of the visual

structure. User interactions that do not change the visual mapping, e.g. selection of

elements, seeing details on demand, zooming and panning, and interactive filtering,

are not part of the visualization construction process. Since visualization construction

starts with the data tables, the transformation of raw data to data tables is by

definition not part of visualization construction.

The main activities in visualization construction are specifying the data tables

and specifying the visual structure (Figure 2.2), which directly relates to the data

tables and the visual structures from the reference model. These activities determine

what data to display and how to display it. Regarding the specification of data ta-
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Figure 2.2: Parts of the visualization construction process

bles, I distinguish further between the initial data selection and data transformations,

e.g. adding calculations. Similarly for the specification of the visual structure, I fur-

ther distinguish between creating visual mappings from the data tables to the visual

structure and configuring visual structure settings that do not depend on the data

tables, e.g. setting font sizes and colors.

The following simple scenario will illustrate the different aspects of visualization

construction. Assume Anna, a user of personal finance software, wants to construct

a bar chart that shows how much money she has spent over the last 12 months in

restaurants. First, she selects all expense records in the restaurant category for the

last 12 months (data selection). Then, she specifies that she wants to see the sum

per month (data transformations). Because she wants to use a bar chart, she maps

the months to the bars and the sum of expenses to the bar length (visual mappings).

Finally, she might increase the font size to improve the readability of the month labels

(visual structure setting). The different steps could require different tool support and

different UI elements to aid Anna.

Now that I have defined the problem of visualization construction, I will describe

the user group that I focus on in this dissertation: information visualization novices.

2.1.3 Information Visualization Novices

There are two dimensions along which professional visualization designers can be

defined: their level of expertise and whether they are creating visualizations for

themselves or for others. Professional visualization designers are typically proficient

in data analysis, statistics, information visualization theory and the programming

of interactive visualizations, and they create visualizations on the behalf of others,

e.g. visualization researchers collaborating with historical geographers to create a

visualization of historic hotel visitation patterns [171]. On the contrary, informa-
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tion visualization novices create visualizations to support their own primary tasks,

e.g. during visual data exploration, and they are typically not formally trained or as

proficient in information visualization. The two dimensions of expertise and goal are

reflected in definitions of users from the areas of information visualization and end

user programming.

Ko et al. define “end-user programming as programming to achieve the result

of a program primarily for personal, rather than public use” [92]. Or, as Nardi

puts it, “end users like computers because they get to get their work done” [116].

The important distinction Ko et al. make is that in end-user programming, when

comparing it to professional programming, the programs are not intended to be used

by others, but to support the primary task of the end-user, e.g. a spreadsheet is

programmed by a teacher to track students’ test scores [92]. I look at information

visualization in a similar way by focusing on users who create visualizations not for

others, but to support their own primary task. The different motivation implies that

they are less willing to learn complicated tools and techniques — they just want to

get their primary tasks done.

In the area of information visualization, Pousman and Stasko, as well as Heer et

al., provide a definition for novice users [69, 129]. Pousman and Stasko include them

in the user population for casual infovis: “Users are not necessarily expert in analytic

thinking, nor are they required to be experts at reading visualizations” [129]. Heer

et al. distinguish between novice, savvy and expert users [69]. According to their

definition, novice users “have experience operating a computer, but no experience

with programming in general, let alone programming visualization techniques”, and

savvy users “have experience performing relatively sophisticated data organization

and manipulation, using a combination of manual processing and limited amounts

of programming or scripting” [69]. Professional visualization designers are similar

to what Heer et al. call expert users: those who “have extensive experience with

interactive graphical software development and the theory and application of data

modeling, data processing, and visual data representation” [69]. Both the definition

by Pousman and Stasko and the definition by Heer et al. distinguish between novice

and expert users along the lines of expertise.

The research presented in this thesis aims at making visualization construction

easier for people who are not professional visualization designers. They create visu-

alizations not for others but for themselves, in order to support their primary tasks.

Information visualization novices can be domain experts in their area of expertise
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(subject matter experts) and the data they are analyzing can be from this area. For

example, a store manager might create several visualizations to take a closer look at

the sales data of his store to see if staffing matches sales patterns. Because creating

visualizations is not the dominating task of their jobs, they are typically not trained

in data analysis, information visualization and statistics. Taking the two different di-

mensions from the related definitions into account, I define information visualization

novices as follows:

Definition 4: Information visualization novices are users who create visu-

alizations to support their primary tasks, but who are typically not trained in data

analysis, information visualization and statistics.

While they might not be experts in information visualization, information visual-

ization novices are typically experts in the domain of the data they visualize. Also,

it is important to clarify that they do not aspire to become professional visualization

designers.

2.1.4 Visualization Construction by Information Visualiza-

tion Novices

After having defined all the basic terminology, I will now rephrase the research prob-

lem of “how information visualization novices can be supported in creating visualiza-

tions” based on those definitions. The goal of this research is to understand how

users “who are not trained in data analysis, information visualization and statis-

tics” can be supported in creating “graphical representations of data or concepts”

“to support their primary tasks” by “selecting the data that should be represented

graphically, mapping it to a graphical representation, and configuring the properties of

the graphical representation”. I only consider visualizations with chosen or spatially

constrained display attributes in this thesis. In the next section, I will summarize

how this problem is addressed in current tools and guidelines.
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2.2 Current Support for Information Visualization

Novices

Helping information visualization novices construct visualizations using software tools

has been important at least since the first spreadsheet systems with charting capabil-

ities came up in the 1980’s. On the one hand, experts offer guidelines for information

visualization novices, e.g. in books, blogs, and seminars (Section 2.2.1). On the other

hand, support for creating useful visualizations is often built into the tools, e.g. by of-

fering a certain subset of visualizations and by automated visualization capabilities.

While user interfaces of visualization construction tools will be surveyed in detail

later (Chapter 3), I briefly summarize tool support and review automated visualiza-

tion systems in Section 2.2.2.

2.2.1 Expert Advice and Guidelines

Expert advice on creating visualizations comes from many different areas and perspec-

tives such as statistics [26, 27, 29, 164, 173, 180, 183], cartography [12], information

design [138, 162, 163], business intelligence [42, 43, 167] and information visualiza-

tion [4, 16, 123, 114, 130, 168, 172, 186]. The advice focuses on visual data analysis,

visual data communication and presentation, using visualization tools and building

visualization systems. While most of the advice is aimed at professional data analysts

and visualization designers, some is written with information visualization novices in

mind [42, 43, 138, 167, 183]. In general, advice on visualization construction focuses

on which process to follow, which visualization types and visual mappings to choose,

and how to adjust the elements of the visualizations to facilitate communication.

When working with visualizations as part of data analysis, visualization construc-

tion is embedded in this process. Cook and Swayne distinguish five steps in the data

analysis process [29]: first, a problem statement is formulated. Then, the data is pre-

pared for analysis, and an exploratory data analysis is performed. The results from

the exploratory data analysis are confirmed using quantitative analysis, and finally the

visualizations are refined for presentation. Advice on the visualization construction

process itself is typically directed at professional visualization designers. The process

is both iterative [114, 130] and sequential [114] in that there are different steps with

feedback loops. Munzner distinguishes between four steps: “characteriz[ing] the task

and data in the vocabulary of the problem domain, abstract[ing] into operations and
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data types, design[ing] visual encoding and interaction techniques, and creat[ing] al-

gorithms to execute techniques efficiently” [114]. In this context, understanding the

user needs and the nature of the data is extremely important [123, 130], and can, for

example, be addressed by domain analysis [123] and iterative prototyping [114, 130].

However, information visualization novices construct visualizations for themselves

and are thus already aware of their visualization needs. Furthermore, novices iterate

quickly, as we will see in Chapter 4, but they have difficulties selecting the appropriate

visualizations. While the process they follow might thus be different, expert advice

on selecting visualization types and designing visual mapping is very relevant.

The two most important factors for selecting a visualization type and for choosing

the visual mappings are the users’ questions or tasks and the nature of the data [130].

The visualization can be seen as the interface between the users’ questions and the

data, and therefore it affects the cognitive processing time that is required to retrieve

the information [18] as well as the accuracy of the retrieved information [28, 103].

For example, the scale of measurement (nominal, ordinal, interval, ratio [154]), which

is a property of the data, affects how accurately different perceptual properties such

as position, length or shape convey information [28, 103, 186]. Thus, the advice

on visualization type selection recommends visualizations based on how accurately

and fast they can answer certain questions on certain types of data. However, there

is no general agreement on task taxonomies for information visualization, i.e. there

are several taxonomies with different tasks [51, 148, 172, 186]. Understanding how

accurately and quickly visualizations are perceived and interpreted is still an open

research problem with active research leading to new insights [10, 94, 188].

I summarize the visualization recommendations given by Few in “Now you see it”

[43] in the next paragraphs. His work is very recent and many recognized experts have

provided their feedback on his book1. Few distinguishes between time-series analysis,

part-to-whole/ranking analysis, deviation analysis, distribution analysis, correlation

analysis and multivariate analysis [43].

When analyzing time-series data, the line chart is the most useful chart for

seeing trends, variability, change, patterns and exceptions [43]. Bar charts are useful

to compare individual values, e.g. monthly aggregates, between several groups [43].

Box plots show changes in distributions over time very well [43]. Dot plots can be

1Lyn Bartram, John Gerth, Pat Hanrahan, Marti Hearst, Jeffrey Heer, Robert Kosara, Jock
Mackinlay, Naomi Robbins, John Stasko and Hadley Wickham read a preliminary draft and provided
their expert feedback on “Now you see it” [43]
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helpful if the data has irregular intervals or many missing data points [43]. Finally,

radar charts and heatmaps are useful for comparing cyclic patterns, and scatterplot

matrices with trails show changes in two dimensions over time well [43]. Applying

additional techniques such as running averages, trend lines, banking to 45◦ [26], cycle

plots, and choosing a useful aggregation time interval is also advantageous in time-

series analysis [43].

When performing part-to-whole and ranking analysis, bar charts showing

sorted percentage values are the most useful visualizations [43]. If the values are

in a small range, dot plots with a modified scale can be applied [43]. Cumulative

contributions can easily be seen in Pareto charts [43]. For analyzing ranking changes

of time, bump charts (line charts of rankings) should be used [43]. Other techniques

that are helpful for part-to-whole analysis are scale transformations (e.g. log, square

root) and grouping by percentiles [43].

Deviation analysis is the comparison of values to a reference such as a target or

the previous time period [43]. The differences between actual and reference values

should be shown in bar charts when comparing individual values or in line charts when

comparing trends over time [43]. Techniques such as expressing values as percentages

or showing reference lines (e.g. acceptable deviation) are helpful in deviation analysis

[43].

In distribution analysis, understanding the spread, center and shape (including

gaps, peaks and outliers) of the distribution is essential [43]. Histograms (bars) are

the most common distribution visualization and are good for seeing the shape of

the distribution as well as the values for individual groups [43]. Frequency polygons

(lines) are useful for seeing the shape of a distribution and for comparing the shapes

of multiple distributions [43]. Strip plots show all individual values, but hide the

shape of the distribution [43]. Stem-and-leaf-plots contain all details while allowing

the user to perceive the shape of the distribution [43]. They also have the advantage

that they can easily be constructed by hand. For comparing multiple distributions,

box plots, multiple frequency polygons, multiple strip plots and distribution deviation

bar charts can be used [43]. To enhance distribution visualizations, techniques such

as jittering and low dot opacity in strip plots, choosing a consistent and appropriate

interval size for histograms and frequency polygons, and enhancing the visualizations

with statistical summaries (e.g. median, min, max, standard deviation) can be applied

[43].

When analyzing correlations, the scatterplot is the best visualization for two
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quantitative variables [43]. For multiple pairs of variables, Few recommends scatter-

plot matrices [43]. If there are more than two quantitative variables, table lenses with

bars or dots can be used [43]. The goal of the correlation analysis is to see the shape

of the distribution and to find clusters, gaps and outliers [43]. Applying techniques

such as optimizing the aspect ratio in scatter plots, reducing overplotting by changing

fill or alpha of dots, adding reference regions and trends lines, as well as removing

outliers is recommended [43].

Multi-variate analysis means finding similarities and differences among several

items across several dimensions [43]. Few recommends using interactive parallel coor-

dinate plots with brushing, filtering and clustering functionality [43]. Heat maps are

also useful [43].

All these different options and guidelines emphasize that data analysis is a knowledge-

intensive task, and interpreting the visualizations can be difficult. It is, therefore,

important for an analyst to simplify and adjust visualization for presentation.

When creating visualization for communication purposes, determining the mes-

sage and considering the audience are essential [42, 183]. The message and the audi-

ence determine the extent to which the presentation should be simplified. It is thus

important to consider both the questions that should be answered using the visual-

ization and the nature of the data to select appropriate visualization types and visual

mappings [12]. The focus of the audience can then be directed to the central infor-

mation by highlighting it [42] and by muting secondary information [163]. Besides

these paramount decisions, there are many other aspects to consider. For example,

Yau covers how to adjust and simplify labels and axes for readability, how to add

meaningful descriptions, and how to adjust colors and strokes, among other things

[183].

However, we cannot assume that information visualization novices aspire to be-

come professional visualization designers or data analysts, and thus they might not

be motivated to dedicate much time to learning how to design effective visualizations.

Tool specific books such as “Excel Charts” [167] are already closer to the needs of

information visualization novices, but it remains important that visualization con-

struction tools offer built-in support for information visualization novices. I will look

at such tool support in the next section.
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2.2.2 Tool Support

Building best practices into visualization construction tools is a great way to support

information visualization novices in visualization construction. As Few puts it, “good

products make it as easy as possible for people to do things well and difficult to

do things poorly” [43]. This can be achieved by providing good default values, for

example for colors, grids and axes. It is also important to offer a palette of useful

visualizations, organized by task and potentially data. I survey user interfaces for

visualization construction in detail in Chapter 3. But first, in the next section, I

summarize the research on how visualization construction tools can automatically

provide appropriate default visualizations to the user.

Several automatic visualization systems have been developed to help users to cre-

ate visualizations. They produce visualization specifications based on user-selected

data and implicitly or explicitly represented visualization knowledge. I distinguish be-

tween data-driven, task-driven, and interaction-driven approaches. Wills and Wilkin-

son distinguish between automatic and automated visualization [182]. Automatic vi-

sualization systems decide what data to show, and automated visualization systems

decide how to show already selected data and relationships. I assume that users have

already selected the data they want to analyze, and thus I limit this discussion to

previous research on automated visualization systems.

Data-driven approaches analyze the meta-model of the data and potentially

instance data to generate visualization specifications. Mackinlay addressed the prob-

lem of how to generate static 2D visualizations of relational information in his APT

system [103]. His system, APT, uses an ordered list of data attributes that should

be visualized, the meta-model of the data, and the instance data itself as inputs. It

searches the design space of all possible visualizations, which is represented as an

algebra, and then filters possible designs using expressiveness criteria and then ranks

them using effectiveness criteria. Gilson et al. developed an algorithm that maps data

represented in a domain ontology to visual representation ontologies [49]. Their visual

representation ontologies encapsulate single visualization concepts, e. g., tree maps.

A semantic bridging ontology is used to specify the appropriateness of the different

mappings. The main limitation of data-driven approaches is that they do not take

other information such as the user’s task, preferences or device into account. Task-

driven and interaction-driven approaches usually build on the data analysis ideas

present in data-driven approaches, but go beyond them.
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The effectiveness of a visualization depends on how well it supports the user’s

task by making it easy to perceive important information. This is addressed by task-

driven approaches. Casner’s BOZ system analyzes task descriptions to generate

corresponding visualizations [20]. The two core ideas of his approach are to replace

logical operators such as querying or comparison with faster perceptual operators,

and to reduce visual search during tasks by showing related information at the same

location. However, BOZ requires detailed task descriptions formulated in a structured

language and is limited to relational data. The SAGE system by Roth and Mattis

extends APT to consider the user’s goals [143]. It uses a more complex character-

ization of the data set, which includes domain information on data attributes and

extended meta-data, as well as information on table relationships such as uniqueness

and cardinality. It first selects visual techniques based on their expressiveness, then

ranks them according to their effectiveness, refines them by adding additional lay-

out constraints (e.g. sorting), and finally integrates multiple visualization techniques,

if necessary. The user’s information seeking goals, e. g., looking up values easily or

seeing correlations, are applied in several of those steps to create visualizations that

support these goals.

Visual data analysis is an iterative and interactive process in which many vi-

sualizations are created, modified and analyzed. Thus, it is important to update

visualizations as the analysis progresses. Interaction-driven approaches consider

either the user interaction history or the current visualization state to generate vi-

sualizations that support this process. Mackinlay et al. have developed heuristics

that use the current visualization state and the data attribute selection to update

the current visualization or to show alternative visualizations [104]. These heuristics

use the data types properties (e.g. categorical, quantitative) and the current visual-

ization configuration to suggest visualizations. These heuristics are used when the

data attribute selection changes, and when the user wants to switch the visualiza-

tion without changing the selected data attributes. The created visualizations are 2D

visualizations of relational data and include tables as well as small multiple views.

However, the heuristics do not leverage task, user and device information, and adding

additional visualization templates requires updating the heuristics.

Another approach to suggesting more appropriate visualizations during visual data

analysis is monitoring users’ interactions with visualizations to detect patterns in the

interaction sequences, and to infer visual tasks based on repeated patterns [50]. The

current visualization state and the inferred visual task are then used to recommend
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more suitable visualizations. Interaction-driven approaches leverage implicit state

information such as the interaction history, but they consider neither task information

that is explicitly expressed by the user, nor user preferences or device constraints.

Automated visualization of semantic web data is challenging because it is often

heterogeneous and lacks consistent schemas. Cammarano et al. developed an algo-

rithm that maps semantic web data to visualization attributes [15]. The user selects

a set of objects to visualize, picks a visualization template and specifies a sequence

of keywords for each visualization attribute. The algorithm then identifies data at-

tribute paths starting at the input objects that match the keyword sequences. While

the user has to select the visualization type and specify keyword sequences for the

visual mappings, the algorithm addresses the problem of finding matching data at-

tribute sequences in heterogeneous semantic web data.

Expert advice, tool support and automated visualization are useful approaches

for supporting the user. However, it remains unclear how they fit into the overall

visualization construction process that information visualization novices employ, and

how useful they are in supporting information visualization novices. In order to

provide and evaluate tool support for visualization construction, I need to understand

how information visualization novices actually construct visualizations. In the next

section, I summarize empirical research on visualization construction.

2.3 Empirical Research

Information visualization novices are very interested in creating their own visualiza-

tions. Viégas et al. analyzed usage patterns for ManyEyes, an online visualization

tool aimed at information visualization novices, for the first two months of deploy-

ment starting in January 2007 [165]. They found that there was quite some interest in

a visualization tool for information visualization novices, with more than 100K user

sessions, 1463 registered users, and 1700 user-created visualizations (created by 29%

of the registered users). Given this interest, it may be surprising that little work has

been done on empirically researching how users can be supported during visualization

construction. While many different types of visualization construction user interfaces

have been developed2 and other aspects of interacting with visualization tools have

2The different types of visualization construction user interfaces are reviewed in Chapter 3.
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been explored in depth3, our understanding of how information visualization novices

construct visual mappings and structures remains limited.

Several case studies present how visualizations are created from a designer’s point

of view [130] or as a close interaction between designers and users [171]. These studies

found that an iterative process of prototyping visualizations is essential: detours are

often unavoidable and can provide valuable knowledge. While these studies provide

insights into the visualization construction process, they assume experts create the

visualizations for users, whereas my goal is to study how information visualization

novices create visualizations for their own use.

Two studies have looked at how information visualization novices create multiple

coordinated view interfaces by configuring and composing visualization components

[120, 134]. North and Shneiderman studied if users can successfully construct their

own coordinated-visualization interfaces using their Snap system [120]. Snap adds

a draggable snap button to each visualization that can be coordinated. When that

button is dragged onto a snap button from another visualization, the visualizations

are coordinated and a dialog for the exact coordination configuration is shown. They

conducted a qualitative user study with 6 participants (3 analysts and 3 program-

mers). Each subject was trained in using the tool for 30 to 45 min and then given 3

tasks. They found that all subjects quickly learned how to use Snap and successfully

created their own coordinated-views user interfaces, with a lot of creative variation be-

tween the solutions of the subjects. The participants used exploratory trial-and-error

when they were unsure of what to construct, and sometimes forgot how the current

view coordination worked when it became too complicated. North and Shneiderman

also observed that analysts thought of interface construction as data exploration, and

programmers perceived it as component-based programming.

Ren et al. studied the usability of DaisyViz, an environment that allows users to

specify and run a model of the visualization application [134]. In DaisyVis, users can

configure and coordinate visualizations either using dialogs and a visual modelling

interface, or by editing the underlying xml model file. Ren et al. conducted a user

study with 10 participants. The participants were given 3 tasks in which they created

a multiple coordinated view interface for a specific scenario. Eight participants com-

pleted all tasks, 4 of them in less than 100 minutes. Ren et al. found that participants

preferred directly editing the XML files if they are familiar with the tool, although

3For example, view interaction (e.g. [93, 148, 184]), individual analytical processes (e.g. [3, 51,
128]), and team level analytics (e.g. [77, 139]) have been well studied.
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concept naming issues slowed them down.

Hepting compared an interface that combines several visual mapping controls

with a visualization preview (flat interface) to a (hierarchical) interface that shows 10

alternative visualizations to choose from and then refines the alternatives based on

the choice [71]. He conducted a comparative user study with 34 participants using a

between-subjects design. After a training phase, the participants were asked to find

the answers to 6 statistical questions using the visualization interface. He found that

while the visualization choices made using both interfaces were quite similar, users

preferred the flat interface.

Heer et al. evaluated Prefuse, a Java library for visualization design, in a user

study with 8 participants who were familiar with Java and the development envi-

ronment [67]. After a short tutorial, the participants were asked to perform three

visualization programming tasks on social network data. All but one participant suc-

cessfully completed all tasks. Heer et al. found that “the most common difficulty was

structuring the dataflow appropriately”. They also discovered concept naming issues.

Heer et al. observed that the participants did not use the API documentation much,

and that they reused example code using copy-and-paste when starting with tasks

(scaffolding).

In summary, while there is a demand for enabling information visualization novices

to construct visualizations [165], our knowledge about how information visualization

novices actually construct visualizations and what challenges they encounter is limited

to a specific user interface [67, 71, 120, 134]. We know that visualization construction

is an exploratory process [67, 71, 120, 130, 171], and that the naming of concepts is

important [67, 120, 134], but these findings are at a high level.

In this dissertation, I aim to increase our understanding of how information vi-

sualization novices construct visualizations, and how these novices can be better

supported by tools. First, I review the literature on visualization construction user

interfaces to increase our knowledge about the available user interface approaches

(Chapter 3). Then, I conduct a user study to learn about the visualization con-

struction process that information visualization novices follow by exploring how they

communicate visualization specifications to a human mediator (Chapter 4)4. Next,

I research natural language visualization queries (Chapters 5 and 6) to provide an

4After the study presented in Chapter 4 had been published [53], further studies that investigated
how visualization are created have been conducted [99, 37]. The results of these studies are discussed
in the context of Chapter 4 and 7.
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empirical foundation for natural language based visualization construction user inter-

faces that I identify as a compelling alternative approach for the initial construction

of visualizations. Finally, I distill the different models and related work into practical

guidelines (Chapter 7) and show how these are applicable to tools (Chapter 8).
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Chapter 3

A Survey of Visualization

Construction Approaches

To inform the design of visualization construction tools for information visualization

novices, it is important to understand what user interface approaches to visualization

construction have been developed. While these approaches have not been explicitly

designed with novices in mind, understanding their use cases, trade-offs and limita-

tions is essential for selecting approaches that fit the needs of novices. In this chapter,

I answer the following research question:

RQ1 What visualization construction approaches have been developed?

I have systematically surveyed the literature on visualization construction user

interfaces (Section 3.1). I have identified six distinct visualization construction ap-

proaches (Section 3.2). The primary use cases of these approaches and limitations of

the survey are discussed in Section 3.3.

3.1 Literature Survey Method

I have systematically surveyed the literature on visualization specification user inter-

faces (UIs) for both specifying visual structures and creating visual mappings that

had been published in 12 major InfoVis and HCI venues (Table 3.1). In this sec-

tion, I describe the scope (Section 3.1.1), the selection criteria (Section 3.1.2) and the

process (Section 3.1.3) of the literature review.
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3.1.1 Scope

This literature survey is limited to UIs for standard desktop computing platforms with

mouse/keyboard-input. In line with the scope of this thesis, I focused on single 2D vi-

sualizations composed of discrete high-level graphic elements such as rectangles, thus

excluding the coordination of multiple views as well as pixel-based rendering/mapping

methods.

I define visualization specification as the step from data tables to visual structures

in the visualization reference model by Card et al. [17]. It includes specifying the

visual structure and specifying the visual mappings. Before visualization specifica-

tion, the data is transformed into data tables that can easily be mapped. After the

visualization has been specified, the user interacts with views of it. I exclude data

preparation, filtering, and manipulation prior to visualization, as well as interaction

with the visualization after generation (e.g. brushing, selecting, or changing the

viewpoint) which does not modify the visual structure, as well as the definition of

what interactions are possible. Similarly, styling of visual elements, e.g. selecting

fonts or colors that are independent of visual mappings (theming), is out of scope.

Because I am concerned with specification and mapping in general, I do not focus on

individual visualization types (e.g. treemaps or bar charts), but, instead, focus on the

techniques used to specify and map data to these visualizations.

3.1.2 Selection Criteria

I selected relevant publications from major visualization and HCI journals and con-

ferences. The criteria that I used to select publications are the following:

Time - I selected publications published between 1990 and 2010. I chose 1990 as

a start date because it marks the approximate beginning of the visualization

field with the first IEEE Visualization conference and I did not find relevant

publications in CHI before 1990 in an initial search.

Publication Type - I limited my investigation to full research papers, which I define

for the purpose of this survey as having 6 or more pages. I excluded short papers,

poster papers and demonstrations.

Journals and Conferences - I selected major visualization and HCI related jour-

nals and conferences (Table 3.1).
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Venue Time3 # Sel. Selected Publications

Vis 1990 - 20052 1 [79]
InfoVis 1995 - 20052 11 [24, 41, 47, 89, 96, 119]

[140, 141, 152, 155, 170]
VAST 2006 - 2010 2 [75, 86]
PacificVis 2008 - 2010 1 [131]
EuroVis 1999 - 2010 4 [49, 122, 158, 159]
CHI 1990 - 2010 4 [36, 67, 115, 142]
UIST 1990 - 2010 5 [19, 70, 73, 113, 144]
IUI 1993 - 2010 4 [21, 32, 72, 82]
AVI 1994 - 20101 1 [6]
TVCG 1995 - 2010 (1/1 - 16/6) 14 [13, 23, 33, 44, 80, 66, 95, 104]

[108, 145, 147, 149, 156, 165]
TOCHI 1994 - 2010 (1/1 - 17/2) 1 [14]
IVS 2004 - 2010 (3/14 - 9/3) 4 [8, 40, 153, 185]

Table 3.1: Surveyed conferences and journals, and the publications that were selected.

3.1.3 Review Process

I determined which publications to include in the review following this process:

Pre-selection - I went through all the proceedings and journal issues, and selected

papers based on title, abstract and content, especially UI screenshots. For CHI

after 2000, I also filtered based on the conference track, because we found only

unrelated papers in non-relevant tracks. If the track was out of scope, its papers

were not inspected. If the paper title was out of scope, the paper was not further

inspected. Overall, 252 full research papers were pre-selected.

Detailed Selection - I went through the pre-selected papers again and read the

relevant content of the publication to determine if it falls into the scope defined

in Section 3.1.1.

Review and Final Selection - Each selected paper was read fully by me and an-

other researcher with a computer science background. The content was reviewed

in detail and a final decision was made if the paper matched the selection cri-

teria. The visualization specification approaches described in the paper were

1AVI is a bi-annual conference. It started in 1992, but the 1992 proceedings were not accessible.
2The InfoVis and Vis proceedings became part of TVCG after 2005.
3For journals, the volumes and issues are shown below the years.
4For IVS, I was unable to access the volumes for 2002 and 2003.
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Approach Publications

Visualization Spreadsheet [24, 79, 80]
Visual Builder [8, 14, 21, 40, 70, 86, 113]

[115, 131, 142, 144, 185]
Textual Programming [13, 21, 36, 41, 44, 67, 66]

[82, 96, 149, 152, 159]
Visual Dataflow Programming [32, 47, 75, 89, 95, 122]

[140, 145, 147, 158]
Structure Selection and Editor [6, 14, 23, 49, 104, 108]

[119, 141, 153, 165]
Fixed Algebra Configuration [19, 33, 72, 73, 155, 156, 170]

Table 3.2: Visualization Specification Approaches and Corresponding Publications.

then identified and added to the classification. The classification was created in

an iterative and exploratory way as we reviewed more and more publications.

From the 252 pre-selected publications, I present the 52 publications that con-

tain full specification approaches. Papers that only presented individual lower-level

techniques such as color-mappings are not included.

3.2 Findings

A visualization specification approach is a cohesive way of creating a visualization

specification. Approaches are composed of lower-level techniques, e.g. UI elements

for specific types of color mappings. I identified six major visualization specification

approaches from our review of the literature on visualization specification (Table 3.2).

Each of these is described in detail below.

3.2.1 Visualization Spreadsheet

A visualization spreadsheet displays a matrix of visualizations (Figure 3.1). They

facilitate the rapid comparison and adjustment of different visual mapping settings.

There are two variations of visualization spreadsheets that are different in how

the visualizations are modified. In the first variant, a few specific values of two

configuration settings (e.g. visual mappings) are shown as rows and columns, and

the cells contain visualizations of their combinations (while leaving other configura-

tion settings fixed) [79, 80]. When the user selects a cell, row or column from the
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Figure 3.1: Visualization Spreadsheet Example [24]
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spreadsheet, a value for that setting is selected and options for a new setting can

be displayed instead. The second variant of visualization spreadsheets [24] allows

the user to select cells, rows, and columns, and to apply operations to them (such

as loading data, manipulating the content of cells, or setting the visual mappings).

Visualization spreadsheets often use other techniques such as textual programming

languages for defining operators and scripts to augment their functionality.

3.2.2 Visual Builder

A visual builder interface (Figure 3.2) for visualization specification consists of a

palette containing visual element prototypes and an assembly area. The UI concept

is similar to the one of graphics editor software such as Adobe Photoshop. It facilitates

the construction of custom visualizations by enabling the user to put different visual

elements together and to map data to them.

The user selects visual elements from the palette, e.g. rectangles, and adds them

to the assembly area. The elements in the palette can be restricted to atomic visual

elements [115], or they can contain composites [142]. Visual elements in the assembly

area can typically be moved and resized using direct manipulation. Constructing the

layout can be supported with guides, grids and constraints [21]. The assembly area

can show either a model of the visualization [8, 21, 70, 86, 131, 142] or a preview of

what the actual visualization would look like [115, 144, 185]. Additional dialogs and

property boxes are often used to support the detailed configuration of visual elements

and visual mappings, e.g. [8, 131, 185].

3.2.3 Textual Programming

Any regular programming language that provides access to the graphics system and

to data storage can be used to create visualizations. Concepts and algorithms for

creating visualizations can be encapsulated in libraries [44, 67] and domain-specific

languages (DSLs) [21, 149, 152]. These libraries and DSLs can provide support for

some specific visualizations, e.g. treemaps and maps [149], or for many different types

of visualizations [13]. The flexibility of programming languages and paradigms has

led to a variety of different ways to create visualizations using textual programming.

It is beyond the scope of this research to describe all the different trade-offs of these

programming notations, e.g. using the cognitive dimensions framework [56].
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Figure 3.2: Visual Builder Example [115]
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Figure 3.3: Visual Dataflow Example [140]

With regards to visualization specification, the surveyed environments differ in the

extent to which they are embedded into larger visualization systems. For example, the

user can be supported by providing easy access to example programs for modification

(scaffolding) and by checking for potential high-level visualization problems in the

modified programs [36]. There are also differences between the libraries and DSLs in

how tightly the definition of visual structure is coupled with the definition of visual

mappings, in the available degree of visualization structure specification, and in the

way data can be selected when defining visual mappings.

3.2.4 Visual Dataflow Programming

The dataflow programming approach for visualization specification is based on the

idea that operators change the data along a pipeline until it is entered into visual-

izations. In visual dataflow environments, data sources, operators, and visualization

models are typically represented as nodes which get connected through edges to form

a data flow (Figure 3.3). The operators transform the data that comes from the data

sources before it gets passed into the visualizations. Visual dataflow environments

have been very prominent in scientific visualization (i.e. modular visualization envi-
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ronments), but they have been used for information visualization as well [47, 89, 140].

Williams et al. presented a classification of the elements of visual dataflow systems

for visualization, including a discussion of design decisions and trade-offs [181]. With

regard to visualization construction, the main differences are whether previews of

the visualization are shown as part of the dataflow [40, 140] or not [47, 89], and to

what extent operators have a visualization representation as in [40]. Since the visual

dataflow itself is often not important for analyzing the visualization, a mode that

hides the visual dataflow is available in some tools, e.g. [140]. While user interfaces

in this category usually represent the dataflows as node-link diagrams to the user,

other representations such as spreadsheets [122] or lists of operators [75] can be used

as interfaces. There are typically a vast number of potential dataflows that can be

assembled and thus it has become important to automatically suggest pipeline parts

or full pipelines given partial pipelines [75, 95, 147, 158].

3.2.5 Structure Selection and Editor

In this approach, the user selects the data to visualize and then picks a visual structure

to represent it in. The main distinguishing criteria of this approach are the separation

between the initial visualization selection steps and the refinement of the selected

visualization. The selection of the visual structure can be part of a wizard, e.g. as

in many popular spreadsheet applications such as Microsoft Excel, but it can also

be done by selecting a menu item or a toolbar button. The extent to which the

created visualizations can be configured without having to go back to selecting a

new visual structure varies between not allowing for any tuning [6], allowing for

changing some mappings and configuring some parameters [108, 165], and allowing

for the reconfiguration of the visual mappings [23]. If the approach is integrated into

a different approach such as visual algebra configuration, a flexible reconfiguration of

the visualization is possible without having to select the visual structure again [104].

3.2.6 Fixed Algebra Configuration

The user configures the visualization by specifying the visual mappings to a fixed set

of visual properties and by configuring some additional options, both of which are

exposed in a UI with a fixed layout. For example, the UI for the Polaris/Tableau

table algebra exposes axis, retinal property, grouping, sorting and layer shelves for

configuring the visual attribute mappings and dropdowns for selecting the mark type
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Figure 3.4: Fixed Algebra Configuration Example [155]
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[155, 156] (Figure 3.4). The key difference in the visual builder approach is that the

visual structure composition is not exposed to the user. The user is instead restricted

to the part of the visualization design space that is standardized and exposed through

the fixed set of visual properties in the UI.

3.3 Discussion

In this section, I discuss the main use cases of the six different visualization construc-

tion approaches, how they relate to data presentation and data analysis, gaps between

the UI and the visualization, and finally the limitations of this literature survey.

3.3.1 Use Cases

Each of the different visualization construction approaches has different strengths

that fit particular use cases well:

Textual Programming does not restrict which visualizations and interactions can

be designed, nor does it limit the programmer to specific data formats, al-

though libraries encapsulate and thus support certain visualizations and data

formats better. Given the high effort and skill level that is required for program-

ming visualizations, the main use cases of this approach are creating custom

interactive visualizations and exploring data in non-standard ways,

e.g. when analyzing semi-structure data.

Visual Dataflow Programming lets users rapidly assemble data transformation

and visualization pipelines. However, it restricts the user to using the available

operators and visual structures1. Its main use case is transforming non-

standard data using several operations and rendering it in standard

visualizations. The primary advantage of visual dataflow programming is that

it allows users who are not necessarily familiar with programming to experiment

with applying different data transformations.

Visualization Spreadsheets allow the user to incrementally apply and preview

different visual mapping. The main use case is exploring different visual

1Visual Dataflow Programming was originally used for scientific visualization, where the spatial
structure of the visualization is determined by the data. When applied to information visualization,
visual structures need to be supplied as operators.
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mappings for a standard data set. The advantage of visualization spread-

sheets is that they are readily accessible.

Fixed Algebra Configuration lets the user rapidly change which data is displayed

and how it is displayed. The main use case is rapid data exploration. The

visual structures are usually limited by the underlying visual algebra, and the

data has to be formatted in a standard way.

Visual Builder allow users to assemble basic visual items and to map data to it

without requiring programming skills. The primary use case of visual builders

is to create custom visualizations for presentation purposes. Visual

builders provide a lot of flexibility in the visual structures that the user can

create. However, they restrict the types of data sources that can be used, and

do not provide support for data transformations beyond basic visual mappings.

Structure Selection and Editor is an approach that requires data to be format-

ted in a standardized manner and restricts the user to a given set of visual

structures. Its primary use case is presenting structured data in standard

visualizations. The main advantage is that this approach does not require

advanced programming, data processing or visualization skills.

Thus, each approach has a specific use case for which it works well. In the next

section, I will describe how the different specification UIs relate to data presentation

and data analysis.

3.3.2 Data Presentation vs. Data Exploration

The two main use cases of visualization are data presentation, i.e. creating visual-

ization to communicate insights, and data exploration, i.e. creating visualizations to

understand the data and to find insights. While the same visualization type can be

used for both purposes, each purpose has different requirements on the visualization

construction environment. Data exploration emphasizes rapid data-centric visual-

ization construction, whereas data presentation emphasizes the clear communication

and the visual form itself.

For example, I found two distinct ways of specifying visual mappings in the litera-

ture review: data-driven vs. visualization-driven mapping specification. In

data-driven visual mapping specification, the user selects a data attribute or element
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and assigns a visual attribute or element to it. In visualization-driven visual mapping

specification, the user starts with a visual element or property and assigns a data

element to it. While these two ways of specifying visual mappings appear to be very

similar, I believe that the order in which they require decisions to be made (data-

driven: first data attribute, then visual property; visualization-driven: first visual

property, then data attribute) needs to fit the user’s mental processing for her/his

task. If there is a mismatch, this might impact the user’s workflow. For example, it

might be that a data-driven mapping specification works well for rapid visual data

analysis where the user’s focus is on understanding data, but not for visual communi-

cation tasks where the user’s focus lies on creating a visual design to present already

determined data elements and attributes to others.

Visualization construction for data presentation purposes is supported best by

the visual builder and the structure selection and editor approaches. The former is

better suited for the creation of custom visualization, whereas the latter is useful for

presenting data in a common visual structure such as a bar chart. If the focus is on the

visual mappings only, the visualization spreadsheet approach is useful as well. When

more flexibility in interaction and graphic design is required, textual programming can

be an option if the effort is warranted by the benefits.

The Fixed Algebra Configuration approach is best suited for visually exploring

structured data in a standardized format. When more data exploration flexibility

in the analysis is required, visual dataflow programming is a good alternative. For

non-standard data sets and analysis problems, one can apply textual programming.

In addition to the different use cases, I identified three gaps that can impede

visualization construction.

3.3.3 Distance between UI and Visualization

The goal of visualization specification is creating visualizations. Thus, the end prod-

uct ’visualization’ is what the user wants to achieve by manipulating a ’visualization

specification’ that is exposed through the UI. It is important for users to understand

how changes they make to the visualization specification UI affect the actual visual-

ization they want to produce. I believe that the more accurate that understanding

is, the easier it will be for users to create the visualizations they have in mind.

I have found that three kinds of distances influence how easy it is to gain this

understanding: temporal distance between manipulating the specification and see-
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ing the changes in the visualization, spatial distance between the specification UI

and the visualization, and conceptual distance between the concepts exposed in

the specification UI and the concepts that the visualization is made up from. For all

three kinds of distances, reducing the gap between the visualization specification UI

and the actual visualization should be beneficial, because it helps the user to relate

his or her actions to their effect on the visualization.

The reviewed systems differ in how quickly visualizations are created from the

specifications (temporal distance). Some systems provide immediate feedback, e.g. sev-

eral visualization spreadsheets [79, 80] and fixed algebra configuration systems [155,

156]. Other approaches, e.g. textual programming, can require re-compilation and

re-running of the visualization to get feedback. Keeping the feedback loops as short

as possible, e.g. using previews, should help users understand how their manipula-

tion of the specification affects the visualization, and enable them to rapidly try out

alternatives.

I also found differences in how closely specification UI elements are related to

the visual structure elements (spatial distance). For example, the visual mappings

for the visual structure elements can be defined in close vicinity to the visualization

elements [115] or representations of them [142]. On the other hand, the specification

can be completely separate from the visualization or a visual representation of it, as

in textual programming approaches.

Finally, there is likely a conceptual distance between the visualization specification

UI and the actual visualization as well. For example, in Polaris/Tableau the axis

shelves are used for different purposes such as determining the length of bars, splitting

into small multiples and so forth [155, 156]. While this is intuitive from an axis shelf

paradigm point of view, there is a concept gap for concrete visualizations such as bar

charts, where bar length would be conceptually closer than a generic axis shelf.

The relevance of these distances is supported by some well established principles in

HCI input design. For example, direct manipulation and dynamic queries [2] are gen-

erally recommended (to reduce spatial distance and temporal distance respectively),

and there is empirical evidence that the perceptual structure of a task should match

the control structure of the input device [78] (to reduce conceptual distance).
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3.3.4 Limitations

There are several limitations to the approaches presented in this survey. There is

some overlap between the approaches, and there are cases were there is no clear cut

border. The approaches themselves are based on a systematic literature review and

discussions between two researchers with a computer science background on how to

classify the individual papers. However, others might arrive at a slightly different

categorization into approaches. Finally, the set of approaches is not exhaustive - for

example, recombining lower-level elements might yield new approaches.

3.4 Summary

Specifying visual structures and mappings is an important aspect of visualization

construction. I surveyed full research papers from 11 major visualization journals

and conferences to learn about the UIs that support this task. I found six differ-

ent visualization specification approaches and identified their main use cases. The

approaches exhibit different challenges for the user and fit at different points in the

spectrum between data analysis and presentation.

However, no visualization construction approach has been empirically studied with

information visualization novices. Initially, I planned to conduct a user study where

information visualization novices use what I consider the most promising approach

for data exploration: fixed algebra configuration. However, during the pilot studies it

became apparent that there is a considerable learning barrier and a strong influence

of the user interface on the visualization construction process. Thus, I decided to

explore how information visualization novices communicate visualization specification

to a human mediator who constructs the visualizations on their behalf (Chapter 4).

Later, I identified natural language visualization queries as an alternative visualization

construction approach that is potentially well suited for the initial construction of

visualizations, i.e. before the first refinement, by information visualization novices. I

empirically studied natural language visualization queries to provide the foundation

for building such interfaces (Chapters 5 and 6).
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Chapter 4

How Information Visualization

Novices Construct Visualizations

To identify where and how information visualization novices could be supported dur-

ing visualization construction, I studied how they communicate which visualization

they would like to see during the visual data analysis process in a laboratory setting1.

This has allowed me to describe the visualization construction process information

visualization novices follow in detail without being constrained to a specific interface,

which was identified as a limitation of current work in Chapter 2.3. My research goal

was to explore how information visualization novices construct visualizations, and,

specifically, to understand the processes used in mapping data elements to visualiza-

tion attributes. The research question is:

RQ2 How do information visualization novices construct visualizations?

I will discuss the study design next (Section 4.1), then present the findings of

the user study (Section 4.2), and finally integrate them with other research results

(Section 4.3).

4.1 Study Design

In this section, I discuss the study design, its limitations and the design choices I

made. I conducted an exploratory observational study in a laboratory setting with

a human mediator2 who used the visualization construction software on behalf of
1This study has been presented at InfoVis 2010 [53].
2I was the mediator in all study sessions.
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the participants. Because information visualization novices are typically not exposed

to advanced visualization tools and are unlikely to perform many in-depth visual

analytics tasks, field studies and survey research were not viable strategies. I chose

to let participants construct and analyze real visualizations, because I believe that

actually seeing the underlying data rendered in the specified visualizations provides

essential feedback for designing visual mappings. Creating and refining visualization

through a mediator was less dynamic than direct interaction with visualization tools,

and this might have impacted the observed process. While I believe that such direct

interaction would be more iterative and dynamic, I argue that elements of the process

will be the same, and that by introducing communication with a mediator, I achieved

deeper insight into how users think about visualizations, similar to a think-aloud

protocol.

4.1.1 Pilot Studies

The study design was shaped in a series of five pilot studies with four participants.

The same person participated in the first two pilots. In the first pilot, the partic-

ipant directly used Tableau Desktop 4.1, as my initial goal was to understand how

information visualization novices create visualizations with fixed algebra configura-

tion user interfaces (Chapter 3). This pilot revealed that there was a considerable

learning barrier and that the user interface and instructions influenced the partici-

pants’ behaviour, and I could not determine whether problems occurred because of

the interface or lack of understanding of how to create visual mappings. After the

first pilot, I switched to an approach where the participants told a human mediator

how they wanted the data to be visualized, and the mediator, in turn, created the

visualizations for the participants. In contrast to Wizard-of-Oz approaches, partici-

pants were aware that the visualizations were created by a human mediator, and the

goal was not to simulate a system, but to shield participants from the tool interface.

By hiding the interface, I aimed to reduce tool and instruction bias while preserving

the iterative loop of constructing, seeing and refining visualizations. In the last three

pilots and in the study, the mediator was in a different room and used predefined

messages to communicate with the participant to further reduce the influence on the

participants’ behaviour.

Similar to the influence of the software interface, I found in the first two pilots

that the task questions strongly influenced the visualization construction process
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and which visualizations were constructed, and participants focused too much on

understanding the specific questions. To remove the influence of the questions, I

switched to an open data exploration task after the first two pilots. I improved the

setup further in the last three pilots by adding a board with visualization samples,

improving and standardizing how the human mediator responded, and refining the

predefined messages as well as the task instructions.

4.1.2 Participants

Participant ID 1 2 3 4 5 6 7 8 9
Age 22 22 21 23 20 21 24 20 21
Gender M F F F F F M F F
DA D D W M M N W N W
# of VCCs 13 11 18 18 22 13 29 18 8

Table 4.1: Participants. Data Analysis (DA) performed Daily (D), Weekly (W),
Monthly (M), Never (N). # of VCCs indicates number of visualization construction
cycles created by participant (Section 4.2).

Nine 3rd and 4th year business students participated in the study (see Table

4.1 for details). I selected business students to guarantee that they understand the

concepts of the sales data set (Section 4.1.5). To recruit participants, the study

was announced in four business classes. It was also posted to two business student

mailing lists and flyers were put up on bulletin boards across campus (Appendix A).

Although the number of participants may seem low, I believe it is appropriate for

my exploratory research approach because the findings were saturated in the 150

visualization construction cycles (Section 4.2) that were the unit of analysis.

The participants were between 20 and 24 years old with a median age of 21. The

participants had been using computers between 8 and 18 years (median 11). All

participants used computers for at least one hour per day, and often more. The

frequency of how often participants performed data analysis varied from daily to

never. Seven out of nine participants reported that they were familiar with statistics,

but only three used statistics regularly. All participants were familiar with graphs

and charts.

I chose participants with no specific experience in visualization and with back-

grounds that supported the understanding of basic business data, because the data
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set contained sales data. I recognize that selecting business students limits the gener-

ality of the results. Nevertheless, I believe that the results are similar to other groups

of information visualization novices, because the impact of the data set and domain

on the visual mapping process itself is limited. Also, while I did not observe significant

inter-participant variations on the level of visualization construction cycles (Section

4.2), it is possible that individual differences such as cognitive style [98] influenced

the visualization construction behaviour, as variations have been observed by Kang

et al. [85] for the sensemaking process.

4.1.3 Procedure

For each participant, there was a separate study session that lasted about 1 hour and

45 minutes. It started with a computer-based background survey. Next, the materials

for the observation phase, i.e. the sample visualizations, the task instructions, the

visualization cheat sheet, and the data attributes were explained (Appendix B). The

participant was invited to ask questions, and was given a 5 minute training phase to

become familiar with the procedure. The goal of the training phase was to reduce

the influence of learning. I still observed minor learning effects in some sessions,

but those were usually limited to the first few minutes and participants were able to

construct visualizations during that time. After the training phase, I observed how

the participant created and analyzed visualizations for 45 minutes. Participants were

encouraged to verbalize their thoughts. The study session concluded with a follow-up

interview in which the participant was asked about any encountered problems and the

created visualizations. The interview was also used to clarify any other observations

made during the observation phase.

4.1.4 Setting and Apparatus

Participants were seated in a usability lab throughout the procedure. The two op-

erators3 were in a control room linked by video and audio, except while the initial

instructions were being given (Figure 4.1). The participants’ workspace (Figure 4.2)

consisted of a 19” LCD monitor that was used to display the constructed visual-

izations, a board with 16 example visualizations, a notepad and three colored pens.

The participants were observed using cameras and a microphone. Three cameras

3I was operator 1 (mediator) in all study sessions. The role of operator 2 was filled by three
different researchers, all with a computer science background.
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Figure 4.1: Layout of Usability Lab

recorded the workspace and the participant’s actions from an above, a back-left and

a back-right viewpoint. The participants’ screen was also recorded.

Operator 1 (mediator) observed the participant on three monitors, and had a dual

monitor workstation on which he created the requested visualizations using Tableau

4.1 (Figure 4.3). One monitor output was duplicated to the participant’s screen.

In response to a visualization request, the mediator moved the visualization window

to his private screen, created or adjusted the visualization, switched to presentation

mode and moved the window to the duplicated screen (see Operator 1 Guidelines in

Appendix B). By switching to Tableau’s presentation mode, the controls and data

attributes were hidden. I chose Tableau Desktop 4.1 as the visualization software,

because it is a state of the art visualization software that allowed me to rapidly create

and modify a diverse set of visualizations on behalf of the participants. One limitation

of this study is that the range of visualizations which could be created with Tableau
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Figure 4.2: Participants’ Workspace

Desktop 4.1 and the defaults provided by the tool still influenced the created visual-

izations and the mediator responses to some degree. However, a further reduction of

tool influence was not possible, because I needed a software tool to allow for rapid it-

erative visual data exploration within a study session. Also, separating mediator and

participants in different rooms might have led to increased miscommunication, and

waiting for visualizations to appear might have influenced the participants to switch

to different questions before finishing their current analysis. However, I considered re-

ducing the mediator influence more important than retaining realistic communication

because it increases the reproducibility of the study.

In addition to creating visualizations, the mediator was also able to display text

messages to the participant. Whenever the participants asked for clarification, a

visualization could not be created or requested data was not available, the mediator

responded to the participant using text messages. Predefined responses were used

whenever possible. The audio channel from mediator to participant was only used
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Figure 4.3: Workspace of Operator 1

if text messages did not suffice, which happened rarely. Operator 2 controlled the

recording and took notes to inform the follow-up interview (see Operator 2 Guidelines

in Appendix C).

4.1.5 Task and Materials

The participants were asked to explore a fictitious sales data set and look for interest-

ing insights. They were told to imagine that they were new employees in a company,

and their supervisor had asked them to analyze the sales data of the last 4 years and

report their insights. The instruction to look for insights was solely intended to guide

the participants. I did not analyze their insights, and not all participants reported

their insights in a think-aloud manner.

I used the superstore sales example data set from Tableau Desktop 4.14. It con-

tains about 8,400 sales records with 28 different attributes. This data was chosen

based on two important characteristics: it contained enough attributes to support

interesting exploration tasks for 45 minutes, the length of the study, and participants

4http://www.tableausoftware.com/products/desktop
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Figure 4.4: Board with 16 Sample Visualizations. The board showed 5 variations of
bar charts (D, E, I, N, O), 4 variations of scatter plots (A, B, H, P A & B only use
1 dimension for numerical values), 3 variations of line charts (C, F, G the line in F
was not chronological), a pie chart (M), a histogram (J), a map (L), and horizontal
lines with changing width and color (K).

were unlikely to be familiar with the data and make preconceived assumptions about

it.

Participants received a task sheet (Appendix D) containing the available data at-

tributes, the visual properties that could be mapped (color, shape, size, label, position,

animation), the possible operations (filtering, sorting, grouping, calculations, visual-

ization history), and the task description including a short scenario. The participants

also had a notebook for sketches and notes, and a board of 16 example visualizations

labelled by letters (Figure 4.4). I chose to provide sample visualizations, because

I noticed in the pilots that participants tended to use only the visualizations with

which they are most familiar. I selected a broad range of different visualizations that

are possible in Tableau 4.1 by choosing from the Tableau visualization samples web

page and adding three standard visualizations (samples D, E, M). I aimed at cover-

ing as many visual elements and visualization types as possible in samples of similar
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visual complexity. The visualizations were put on a board so they were all visible. I

intentionally put more common visualizations (bar, line, and pie charts) on the less

prominent parts of the board (left, bottom, and top), hoping that participants would

give greater consideration to visualizations that are presumably less familiar.

4.1.6 Follow-up Interview

The goal of the follow-up interview was to elicit more information about the designed

visual mappings and the experienced difficulties. The interviewers followed an inter-

view guide (Appendix E) that contained questions about those topics. The interview

was audio-recorded. Operator 2 selected a diverse set of about five different visualiza-

tions that the participant created during the observation session, and asked about the

reasons for choosing those visualizations. The interviewers showed the corresponding

video passages and visualizations to help the participants in remembering them. They

also asked about the encountered difficulties and what might have helped to resolve

them. At the beginning of the interview, the participants rated their understanding of

the data set and their preference for familiar visualizations on a 5 point Likert scale.

The interviewers also asked them about the reasons for preferring or not preferring

familiar visualizations.

4.1.7 Data Analysis Approach

I analyzed the video and interview material using the qualitative data analysis ap-

proach outlined by Creswell [30]. The transcribed material was coded in several

passes during which the codes were developed, refined and consolidated. Themes

that emerged from the codes were compared to the interview data and the raw video

material to check their validity and to provide richer descriptions of the themes. I also

analyzed the code occurrences to gain insights into the distributions and likelihoods

of the underlying events.

I used visualization construction cycles as units of analysis. I define visualization

construction cycles (VCCs) as instances during which the participants created and

refined a visualization. They ended when the final visualization was displayed. New

VCCs started when the participants changed their analysis questions, switched to

different data or started creating a new visualization. Minor refinements were not

considered to be new VCCs. I observed 150 visualization construction cycles, ranging

between 8 and 29 per participant, with a median of 18 (Table 4.1). The VCCs are
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not statistically independent samples, because each participant created several VCCs.

However, on the level of VCCs, the observations reported here were evident across all

participants, and I did not observe that individual differences had a big influence.

To prepare the data for analysis, the entire interview and most of the video mate-

rial was transcribed. The only parts of the video that were not transcribed completely

were the participants’ interpretations of the visualizations; only passages that led to

changes of the visualization, led to switching the analysis goal, or exposed difficulties

interpreting the visualization were transcribed. The video transcription also included

gazes, gestures and sketching.

The analysis was an iterative process with three to five passes in which I developed,

refined and consolidated codes. First, codes were attached to transcribed passages.

These codes described what was immediately apparent from the data, e.g. ‘[refer-

ence to] sample visualization’, ‘time span’ or ‘[reference to] visual property’. Next, I

grouped codes and their context into themes, e.g. ‘data attribute selection’. When

grouping codes into higher-level codes and themes, the relationship between the codes

was taken into account, e.g. words linking codes together as in ‘[. . . ] consumers down

the y-axis [. . . ]’. In this example, ‘consumers’ was coded as ‘data attribute’ and ‘y-

axis’ was coded as ‘visual property’. Taking the linking word ‘down’ into account,

the passage was coded as ‘visual mapping’.

For each VCC, I identified how it was entered, between which main activities

(themes identified in exploratory coding) transitions happened, and where difficulties

occurred. The findings across all VCCs were then summarized and are presented in

Section 4.2. Interview material was used to support and explain themes that emerged

during coding. Background survey data was evaluated in the context of particular

observations, e.g. the preference of familiar visualizations.

4.2 Findings

I found that there were three main activities in the iterative visualization construction

process: data attribute selection, visual template selection, and visual mapping spec-

ification (4.2.1). The major barriers were translating questions into data attributes,

designing visual mappings that support answering these questions, and interpreting

the visualizations (4.2.3). The participants often omitted parts of the visualization

specification (4.2.4), and used simple heuristics or preferred visualizations they were

already familiar with, such as bar, line and pie charts (4.2.5).
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4.2.1 Visualization Construction Process

In the visualization construction cycles (VCCs), the participants started by creating

a visualization specification, and after the system visualized the data according to

that specification, the participants interpreted the visualization and refined the spec-

ification. The visualization specification consisted of data tables, visual structures

(i.e. visualization types and their properties) and visual mappings (i.e. connections

between attributes and visual properties) that are similar to those from the visual-

ization reference model by Card et al. [17]. The participants used different modes of

expression, i.e. gestures, verbal statements, and sketches, to communicate the visu-

alization specification. The gestures included pointing at sketches, samples, and the

current visualization, as well as drawing shapes in the air, e.g. circles for pie chart

or waves for lines. The modes of expression were used separately and combined. I

observed three different specification activities (data attribute selection, visualization

template selection and visual mapping specification). Together, these three specifica-

tion activities indicated which visualization should be created. Figure 4.5 summarizes

the steps taken by the participant to construct visualizations.

The participants started either by selecting data attributes (74 times), by choosing

a visualization template (64 times overall, 30 times referring to the current visualiza-

tion as part of the analysis flow) or by specifying visual mappings (12 times), e.g. by

starting to draw a sketch. I was able to identify a concrete hypothesis or question in

29% of the VCCs. For example, one participant asked at the beginning of a visual-

ization construction cycle “What are our best sellers? What do we make the most

money on?”

The participants then moved to different specification activities or waited for the

visualization to be displayed. There was no common temporal order in which these ac-

tivities happened. Instead, the participants seemed to switch between data attribute

selection and visual mapping specification. The visual template was selected at differ-

ent points during that process, but typically only once per visualization construction.

Participants specified at least the data attributes that should be used, either directly

or as part of the visual mapping specification or the visualization template. Waiting

and looking at the screen indicated that they expected the visualization to appear,

and was observed after all three activities. Because the participants often omitted

information (4.2.4), the different elements of the visualization specification are not

necessarily complete and connected. For example, operations that need to be applied
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Figure 4.5: Consolidated Transitions and Activities in VCCs. The numbers and
sizes indicate how often an activity or transition between activities occurred. The
numbers in brackets show how often a VCC ended after an activity. All numbers
are aggregated over all VCCs. Arrows originating in “system displays visualization”
indicate refinements performed by the participants. Arrows originating in the VCC
box at the top indicate how VCCs were started.

to data attributes might be missing, or the visual mappings might be incomplete.

During data attribute selection, participants expressed which data attributes

and relationships they wanted to see in the visualization without mapping them to

any visual property, for example: “Can I see the sales per state?” This specification

often also included expressing the expected level of abstraction, filtering, sorting, and

operations that should be applied. For example, one participant asked for filtering

to concrete categories this way: “Can I see the furniture data for Washington State

divided by the customer segment in terms of sales [. . . ]?” Another participant ex-

pressed the level of abstraction for a data property and the application of the totals

operations like this: “Can I see the regional sales for each year for the past 4 years

and then the total?” Sometimes, the participants also expressed the cognitive opera-

tion they planned to apply, e.g. “[. . . ] to compare that time to order priority”. Data

attribute selection covers only the data attributes that are selected without referring
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to visual properties. The participants could also implicitly add data attributes to the

visualization by including them in visual mapping specification or visual template

selection activities. I did not include such references to data attributes in the data

attribute selection activity.

For visualization template selection, participants decided how they wanted to

visualize the data by picking a template. Visualization templates are structures that

specify the visualization composition and potentially visual mappings and concrete

data attributes. I noticed during the analysis that templates could be categorized

within three classes: visualization types remembered by the participants, e.g. “Can I

see this as a bar chart” (49 times), the current visualization that was on the screen (39

times), and the samples that were available on the board, e.g. “Can I see something

like [. . . ]?” (77 times). A visual template selection could sometimes be categorized in

more than one class, e.g. when the participants mentioned the name of a visualization

and pointed to the sample board. Participants used three aspects of the template:

visualization structure, concrete mappings that were apparent in the template and

data attributes that were used in the template. Templates were typically selected

once during the process, although there were instances where participants did not

select a template or changed their initial selection. Even when participants sketched

visualizations, they did not arbitrarily map data attributes to visual properties, but

used known templates such as line charts, bar charts or trees.

The visual mapping specification linked a data attribute to a visual property.

For example, one participant specified a visual mapping as follows: “[. . . ] the thickness

shows the shipping cost [. . . ]”. The linking between visual property and data attribute

was either in the sentence structure, e.g. using intermediate words such as “shows”,

“to”, and “on”, or in the synchronicity of gesture and data attributes vocalization,

e.g. one participant said “and the profits [. . . ]” and moved her finger along the y-axis

of one sample visualization in parallel. When using the current visualization as a

template, visual mappings were often expressed as replacements of already mapped

data attributes: “[. . . ] instead of region have the different shipping modes [. . . ]”.

Sometimes, participants expressed the mappings in more detail by describing how

value ranges from the data attribute should be mapped to the visual property, e.g. “a

size mapping so that more sales relate to a larger circle”. The expression of the visual

mappings often triggered a refinement of the data attribute selection, e.g. by adding

additional data attributes, or by adding operations such as average. A few times, it

led to the insight that the selected template is ineffective and triggered the selection
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of a different template.

After the visualization was shown, participants interpreted it. If the participants

wanted to change the visualization in some way, this was typically the first thing they

mentioned, and happened about 5-20 seconds after it became visible. Sometimes,

they noticed something they wanted to change later during the interpretation, but

this was rare. I observed four kinds of refinement: participants altered data attributes

(32 times), modified visual mappings (32 times), changed the appearance (19 times),

and switched to a different template (10 times). These changes triggered the creation

and interpretation of a new visualization. Appearance refinements did not change

the visual mappings or data attributes, but were changes to superficial attributes of

the visualization such as the size, the fonts, and the position of legends. During

the interpretation phase, the participants requested interactions such as showing

the names of items on a scatter plot using mouse-over. I treated actions that did

not change the visualization specification as interaction, not as part of the creation

process. As a result of the interpretation phase, insights and new hypotheses were

generated.

4.2.2 Modes of Expression

The participants used different modes of expression, i.e. gestures, verbal statements,

and sketches, to select visual templates and to specify visual mappings. The gestures

were both pointing at sketches, samples, and the current visualization; and gesturing

pictures in the air, e.g. circles for pie chart or waves for lines. The modes of expression

were used on their own and in combination, especially verbal statements with deictic

references and gestures. For example, when selecting visual prototypes from the

board with the sample visualizations, the participants often pointed at the sample

and said the letter or name of the sample. Similarly, they pointed to parts of sample

visualizations or sketches when they specified visual mappings, and used different

colored pens to indicate categorical color mappings.

4.2.3 Barriers

Three steps in the VCCs turned out to be challenging: translating questions into

data attributes, constructing visualizations that help to answer these questions from

a set of data attributes, and interpreting the visualizations. The users all encountered

various barriers that led to frustration and wrong conclusions, and impeded the overall
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analytics process significantly. When frustration increased, participants switched to

a different question or goal. Also, problems earlier in the process typically led to

problems at later stages, e.g. problems during visual template selection often led to

interpretation problems, because an ineffective template was chosen.

Decomposing questions and abstract goals into data attributes required

the participants to decide which data attributes to choose. Although this worked

well in most cases, sometimes it was problematic, e.g. one participant mentioned that

the 28 data attributes were overwhelming: “I have the questions in my head, like

[. . . ] where is most profit coming from? But I just don’t know how to translate that

[. . . ] because there are so many different categories and data attributes to choose

from.” Another participant used the high-level concept of ‘popularity’ like a data

attribute, but was unable to translate this into a specific data attribute. Yet another

participant wanted to investigate if one product category should be dropped, but did

not know what data to look at: “It looks like office supplies is doing less well than

the [other product categories]. I am not sure where I would go from there through

using this data.”

The next step, designing the visual mappings, was the most problematic step

during visualization construction. Seven participants had difficulties with this step at

least once. I observed expression difficulties, and also noticed complete failures to pick

visualization templates and to design visual mappings. For instance, one participant

expressed all the required data attributes and the presentation goal, but then stopped

after trying to sketch the visualization: “Actually, I don’t know how I would want

to see that never mind”. Another participant wanted to create a visualization that

showed if there is a Pareto distribution among the customers: “What I would like to

know is whether there is just a small core of customers [. . . ] accounting for a large

portion of the overall sales.” He then thought how this could be visualized, but failed

after considering a bar chart and trying to sketch his idea: “I can’t think of a way

that would show that very easily — let’s look at something different then.” Several

minutes later, he revisited that problem and succeeded in specifying a visualization.

Yet another participant struggled with visual template selection and often selected

visual templates that did not match selected data attributes well, resulting in useless

visualizations, e.g. trying to see ‘time since order placed’ and ‘ship modes’ on a

scatter plot, which resulted in a scatter line with heavy over plotting, because the

ship mode dimension was categorical. Seven participants completely omitted template

and visual mapping selection 20 times overall. One participant, who omitted visual
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template selection a couple of times, said during the interview: “I was hoping [. . . ] I

could get an answer from somebody which would be the best way to look at this

data.”

High visual complexity, due to a high number of data items, occlusion, and very
spiky line-chart profiles
Unfamiliar visualization types, e.g. scatter plots
Ineffective scaling of measurement mappings (axes, color, size)
Ineffective width/height ratio
Ineffective size of the visualization
Difficulties understanding semantics of measurements, including the selec-
tion operation (e.g. average, sum)
Ineffective levels of abstraction, either too high or too low
Readability problems, e.g. bright colors, small font sizes and ineffective posi-
tioning of labels and legends
Missing numbers

Table 4.2: Common Interpretation Problems

All participants had problems interpreting visualizations. The main sources

of confusion and problems are displayed in Table 4.2. For example, one participant

misinterpreted a sorted bar chart as a trend, because the height of the bars was

falling. Participants tried to solve these issues by changing the visual mappings or

the aesthetics of the visualizations, but I observed several cases among four partici-

pants which led to interpretation mistakes and frustration. In general, interpretation

problems led either to a refinement and clarification of the visualizations, if they were

discovered by the participants, or to interpretation mistakes and wrong conclusions,

if they remained undetected.

4.2.4 Partial Specification

I observed a strong tendency towards omitting parts of the visualization specifica-

tion among all participants. This trend was prevalent at all steps of the visualization

construction process, i.e. selecting the data attributes, selecting the visualization tem-

plate, and specifying the visual mappings. The importance of the omitted information

ranged from complete steps, e.g. not specifying the visualization template, to smaller

details.

The most common forms of partial specification I observed were: not specifying
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visual mappings for selected data attributes (63 times); not specifying which oper-

ator to apply to measurement data attributes if they are grouped together or that

they should not be grouped (62 times); not specifying data attributes for higher level

concepts such as time, location, importance or measurements (30 times); not speci-

fying a visualization template when visual mappings were insufficiently specified (20

times); and not specifying level of abstraction for time (10 times). Also, participants

almost never mentioned the presentation goal, e.g. comparison or looking for trends,

and omitted data attributes if they mentioned concrete data values, especially when

filtering, e.g. “Could I look at Washington state [implies data attribute ‘state’] for

furniture [implies data attribute ‘product category’], specifically, and maybe look at

the profit on that in terms of a bar chart [. . . ]”.

Typically, several things were left unspecified in each visualization construction

cycle. For example, consider the following specification made by one participant:

“Can I see something like C [points at sample depicting line chart] just annually over

the four years with the sales and the profit and see those as separate colors?” This

specification leaves out the visual mappings except the color mapping, it does not

mention how composite values should be calculated, it does not specify which data

attribute for time should be selected, and it omits the presentation goal.

However, the omitted information could often be inferred from the context.

I observed four sources that participants seemed to use for such default reasoning:

data values implying data attributes, matching structure and types of selected data

attributes and visualization properties, visual mappings from visualization templates,

and the current analysis session state.

To give an example for matching structure, one participant asked “Could I just see

the furniture data for Massachusetts divided by product subcategory in terms of total

sales with a bar chart?” Here, the mappings to concrete visual properties such as bar

length and bars are not specified, but it is obvious that the bars should represent the

product subcategories and the bar length should encode the total sales per product

subcategory. This is because the structure and type of the selected data attributes

(category with related measurement) matches the structure of the visualization (bars

with bar lengths). The example also shows that data values, e.g. ’Massachusetts’,

imply their data attributes, e.g. ’state’ in the filter expression ’for Massachusetts’.

I observed that participants seemed to assume defaults based on the mappings

visible in the visualization templates and the current state of the visualization. This

was particularly true for time attributes. For example, one participant omitted the
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specification of a time mapping and did not pick a data attribute for time, but looked

confused when the mediator responded that more data attributes were required, and

immediately said “I guess quarter, if we did it by quarter?” The requested visual-

ization template contained a time mapping and quarter was used as time unit in the

previously analyzed visualization, so a reasonable default could have been inferred.

4.2.5 Visualization Choices

The most popular visualizations were bar (34% of constructed visualizations exclud-

ing data tables), line (23%) and pie charts (13%). Maps were also used frequently

(12%). Two factors seemed to influence their visualization choices: familiarity with

visualization types and heuristics based on selected data attributes and operations.

Preference for familiar visualizations was a prevalent theme; it is discussed in detail

below. Some of the heuristics I observed were pie charts for whole-part analysis, line

charts for trend analysis, and maps for information on geographical entities. I also

observed a couple of cases where participants used bar charts instead of line charts

for trend analysis. While I was able to identify those heuristics and observed that

they were used frequently, I do not know what other heuristics were used or how

consistently they were applied.

I observed that participants strongly preferred visualization types that

they were familiar with, typically line, bar, and pie charts. The pilots indicated

that this preference would be interesting, and thus I added specific questions ad-

dressing this issue to the background questionnaire and follow-up interview. The

participants were first asked about their familiarity with visualization types in the

background survey, then I observed their visualization choices during the observation

session, and finally they were asked about their preferences for familiar visualizations

in the follow-up interview (Appendix E).

In the background questionnaire, participants were asked to choose known visu-

alization types from 16 samples, and rank those by their familiarity. These visual-

izations were different from the samples on the board: samples on the board only

depicted visualizations that are possible in Tableau, whereas these samples also in-

cluded node-link diagrams and tag clouds. Participants were familiar with 4 to 14

of these visualizations. I counted which visualization types were in their top three

choices. Pie charts (selected by nine participants), bar charts (by eight) and line

charts (by five) were the more popular visualizations. Next, I counted how often
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each visualization type was created during the observation session. I found that

those three diagram types accounted for over 70% of the constructed visualizations

(excluding data tables).

The participants reported a strong subjective preference for familiar visualiza-

tions. Four participants said they always used familiar visualization (5 on a 5-point

Likert scale from 1=never to 5=always used familiar visualizations), four participants

said they almost always used familiar visualizations (4 on the Likert scale), and one

participant slightly preferred familiar visualizations (3.5 on the Likert scale). They

reported that they preferred familiar visualizations because they understand them

well and the visualizations can be quickly and simply applied. Some participants

mentioned that they would use a broader range of visualizations if they knew more

about them, and also that they can understand complex visualizations, but find it

too hard to produce them.

4.2.6 Semantic Information, Additional Data and Prediction

Several times, participants requested additional semantic information to clarify their

understanding of data attributes. For example, several participants asked what the

data attribute “time to ship” represented. Similarly, participants requested informa-

tion outside the scope of the data set, typically to explore hypotheses. For example,

three participants asked for the location of the company warehouses, stores or head-

quarter and one requested demographic data. I also observed several times that the

participants wanted to predict the impact of a decision that they were considering as

a result of their data analysis: “What I am wondering is if the company could just

focus on technology [. . . ] maybe that would save money”.

4.3 Discussion

Based on the findings, I propose a model of the barriers information visualization

novices encounter and a model that describes how they might think about visual-

ization specification. I also discuss their visualization choices in the light of other

studies.
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Figure 4.6: Barriers in Information Visualization Novices’ Visual Data Exploration
Process. Barriers are indicated with lightning bolts. 1: selection barrier; 2: visual
mapping barrier; 3: interpretation barrier

4.3.1 Barriers in the Visual Data Exploration Process

The steps that are challenging for information visualization novices- translating ques-

tions into data attributes, constructing visualizations, and interpreting the visualiza-

tions (Section 4.2.3) - are related to converting between different representa-

tions: concepts that are part of the mental model of the user, data that are contained

in databases and information repositories, and visualizations. Figure 4.6 depicts a sim-

plified model of the overall visual data exploration process I observed in the study.

The information visualization novices face a data selection barrier (1, selection bar-

rier) when they try to find the right data attributes and relevant data sets for their

higher level questions which are expressed in concepts as part of their mental model.

For selecting the right data attributes, they have to understand the meaning of the

attributes and how they relate to the higher-level concepts. After selecting the data,

the next barrier (2, visual mapping barrier) is to transform these data into a visual

representation that supports answering their questions. Finally, the visualization

needs to be related back to the concepts in the mental model to make sense out of it,

which was again a source of challenges that I observed in the study (3, interpretation

barrier).

This model shares the main elements (users’ cognitive processing / mental model,
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data, visualization) with more complex models of the visualization process (e.g. [17,

25, 150, 169]), but was simplified by only including those activities and elements

that are relevant to the barriers that I observed. I did not include interaction with

visualizations, because I did observe this due to my study design, but I recognize that

this might be an additional source of difficulties [99, 100].

Previous work in information visualization provides further insight into barriers

to visual analysis. The worldview gap and the rationale gap described by Amar and

Stasko [5] refer to difficulties relating the visualization to higher-level analytical ac-

tivities (interpretation barrier). Kobsa reports high cognitive setup costs when using

Spotfire (visual mapping barrier) as well as general interpretation problems (inter-

pretation barrier) in his study of three visualization systems [93]. Lam surveyed

32 user studies on information visualization and derived a framework of interaction

costs that includes costs for choosing a data subset (selection barrier) [100]. In their

study of visual analytic roadblocks for novice investigators, which was conducted

after the study reported here, Kwon et al. found that participants have difficulties

choosing appropriate views (visualization barrier) and interpreting visualizations (in-

terpretation barrier) [99]. They also observed that the participants’ expectations of

the interactive visualization components offered by the system did not match the

offered functionality initially, and that the participants adapted their mental mod-

els of the visualizations during the study [99]. The visual mapping barrier and the

interpretation barrier might, thus, partially be caused by inaccurate mental models

of the visualizations. Related barriers are also well-known in user interface design in

general. Norman’s gulf of evaluation is similar to the interpretation barrier and the

selection and visual mapping barriers represent the gulf of execution in visualization

construction [118]. To bridge the gulf of execution, we need to understand the mental

model visualization novices have of visualization specification.

4.3.2 Mental Model of Visualization Specification

While the different models of the visualization process [17, 25, 150, 169] take user

interaction and input into account, they emphasize visualization construction as the

transformation of raw data into visual representations. Although this is a very use-

ful description of the algorithmic processing, the observations from the user study

indicate that information visualization novices think differently about visualization

specifications. Liu and Stasko have discussed the role of mental models in information
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visualization research [101]. They define mental models in Information Visualization

as “functional analogue representations to an external interactive visualization sys-

tem” that preserves properties of the system and the underlying data, and that can

be used in mental simulations [101]. Mental models of visualization specification can

be an aspect of such larger mental models that represent whole information visual-

ization system. The results from the user study presented here suggest some central

characteristics of the mental models information visualization novices have about

visualization specification:

1. Separation between data/concept space and visual structure. The

participants thought about data attributes and concepts often without visual

structures or properties being involved, e.g. when they formulated hypotheses

or initially selected data attributes. This indicates that they perceive these to

be separate from the visual structure.

2. Limited distinction between data attributes and concepts. The par-

ticipants had trouble distinguishing between concepts and data attributes and

converting from concepts to data attributes. Instead, they tried to use higher

level concepts in the visualization mappings, and had more trouble with data

attributes that less closely resemble higher level concepts (e.g. ‘time to ship’

was harder to use than ‘sales’). This indicates that they only used lower-level

data attributes such as ‘time to ship’ because the higher-level concepts were not

available.

3. Concrete values can be used instead of data attributes. The participants

frequently used data values, e.g. concrete product line names, instead of the data

attributes.

4. Relationships between concepts, data attributes and values. The par-

ticipants were aware of relationships between concepts, for example that profit

can be calculated for product lines, and that orders could be analyzed over time

because they have at least one time attribute. They used those relationships

when defining which data should be displayed in the visual structure, even when

they do not define how these relationships are mapped on the visual structure

side (4.2.4).

5. Composite elements in visual structures. The participants used higher-

level elements in visual structures, such as bars, pies, tree nodes, states on a
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map directly. These composite elements are constrained in the way that they

are drawn. For example, the bars are rectangles which are aligned to the axes.

The composite elements expose both standard visual properties such as color

and specific visual properties such as bar height. Both types of visual properties

were used by the participants, which indicates that they understood how the

composite elements are compiled and which visual properties they expose.

6. Visual structure templates. As discussed before, the participants used tem-

plates that define the general elements and composition of the visualization,

e.g. a map or a line chart. This indicates that they consciously think about

those elements, especially when they are aware of their names.

7. Linking between data/concept space and visual structure. The par-

ticipants linked the concepts and data attributes they wanted to see to visu-

alizations, either in a generic form (“show me sales by product line in a pie

chart”) or by applying specific visual mappings from concepts/data attributes

to elements and properties from the visual structure. This shows that they are

aware of the need to create links between the two.

While these characteristics reflect the lack of visualization experience on the part

of information visualization novices, I believe that they can provide a better under-

standing of the kinds of visualizations novices can construct easily, and where they

have difficulties. The proposed mental model can be used to provide better cognitive

support for visualization constructions tasks, as I will discuss in Chapter 7. The

participants’ mental models might have influenced their visualization choices as well.

4.3.3 Visualization Choices

One interesting finding of the study was that the participants preferred a small set of

familiar visualizations (bar, pie and line charts), which accounted for more than two-

thirds of all created visualizations (Section 4.2.5). This limited usage pattern was also

reported by Kwon et al. in a user study on visual analytics for novice investigators [99]

and by Elias and Bezerianos in a user study of dashboard creation and customization

for information visualization novices [37]. However, the usage statistics for Many Eyes

show that many different types of charts were used [165]. Bubble charts, network

diagrams, tag clouds, and tree maps were the most popular visualizations for Many
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Eyes5.

This difference might be explained by the task the users perform and by their

background. In the user study reported here as well as in Kwon et al.’s user study,

the participant’s task was to analyze data in order to gain insights [53, 99]. In the user

study by Elias and Bezerianos, the participants were asked to create dashboards and

to answer concrete questions [37]. In contrast, the usage statistics that were reported

for Many Eyes were collected as part of a field study, in which the participants’ task

was not controlled [165]. It could be the case that communication, not analysis, was

the main goal for many visualizations created within Many Eyes. Whereas people

might spend quite some time choosing and preparing visualizations that they want

to present to others, they might stick to graphical representations that they know

and understand when it comes to analysis. Similarly, the the participants in the

study reported here had a business background, which might explain why they have

chosen charts that seem to be common in business (bar, line, pie charts). Populations

with different backgrounds, e.g. natural sciences or engineering, might have different

preferences, although these simple data charts might be fairly well known, as the

background survey of a user study with 24 participants from the university population

by Isenberg et al. indicates [77]. In the Many Eyes field study [165], the participant’s

background was not controlled and the variety in backgrounds might have lead to a

variety in visualization choices.

There were many cases where guidelines (e.g. [43]) suggest different visualizations

than those chosen by the participants, e.g. participants often used pie charts to per-

form whole-part analysis, whereas Few [43] recommends bar charts. The participants

also used maps in cases where they wanted to compare measurements among states,

where bar charts would have been preferable as well. Kwon et al. also observed that

participants in their study chose visualizations that were ineffective for their tasks [99].

This indicates that gaps in the visual literacy of information visualization novices can

have an adverse impact on their ability to construct effective visualizations. However,

it remains an open question to which extent familiarity affects the effectiveness of vi-

sualizations. On the one hand, the strength of visualizations is leveraging parallel

pre-attentive processing [169]. On the other hand, the compatibility of task formula-

tion with the visual structure correlates with task performance [187], which indicates

5Usage Distribution: Bubble Chart 15%, Network Diagram 12%, Tag Cloud 11%, Treemaps 10%,
Bar Chart 9%, Line Graph 9%, World Map 8%, Scatterplot 7%, US State Map 7%, Stack Graph
for Categories 4%, Block Histogram 4%, Stack Graph 3%, Pie Chart 1% [165]
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that there are potential effects beyond simple pre-attentive processing. Since practice

leads to the cognitive automation of tasks [133], it might be more efficient for infor-

mation visualization novices to choose visualizations they are familiar with, because

they can automate the basic interpretation of these visualizations and can use their

cognitive resources to focus on higher-level insights.

4.4 Summary

In this chapter, I reported on an exploratory user study in which the participants

constructed visualizations with the help of a human mediator. I found that three ac-

tivities were central to the iterative visualization construction process: data attribute

selection, visual template selection and visual mapping specification. The major

barriers faced by the participants were translating questions into data attributes, de-

signing visual mappings, and interpreting the visualizations. Partial specification was

common, and the participants used simple heuristics and preferred visualizations they

were already familiar with, such as bar, line and pie charts. From my observations, I

derived abstract models that describe barriers in the data exploration process, uncov-

ered how information visualization novices think about visualization specifications,

and illustrated their visualization choices.

Natural language played an important role in the specification of visualizations.

In many cases, the mediator was able to construct visualizations on behalf of the

participants based on their verbal communication alone. This intrigued me and I

further explored natural language visualization queries to understand their charac-

teristics (Chapters 5 and 6). If they could be analyzed automatically, this might open

the door to natural language visualization construction user interfaces, which might

be especially helpful for information visualization novices.

In addition, the barriers information visualization novices encounter during visual-

ization construction, the specifics of their mental model of visualization construction,

and the nature of their visualization choices provide opportunities for tool support.

I derived practical guidelines on how to support information visualization novices

during visualization construction, which I discuss in Chapter 7.
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Chapter 5

An Initial Exploration of Natural

Language Visualization Queries

The best known approaches for rapid and intuitive visualization construction, which

is particularly relevant in the context of visual data analysis, are the visualization

spreadsheet, the structure selection & editor, and the fixed algebra configuration

(Chapter 3). For the initial visualization construction, the structure selection & editor

approach is especially well suited. However, it forces users to make their decisions

in a certain order and to prematurely commit to their choices when they finish the

structure selection dialog. In addition, “GUIs work well only when the number of

alternative items or actions is small” [117]. Thus, when the structural complexity

of data repositories and the number of visualization options grow, the visualization

specification approaches mentioned above can become overwhelming.

In my laboratory study (Chapter 4), I observed that the participants were able to

specify visualizations using natural language. The trend towards natural language-like

queries [62] and the increasing availability of modern command line interfaces em-

bedded in web search engines [117] indicate that natural language visualization

queries, i.e. short written visualization specifications, could be a compelling alterna-

tive visualization specification approach. Natural language visualization query user

interfaces could help information visualization novices to surmount the data selection

and visual mapping barriers (Section 4.3.1) in one step, thus facilitating rapid visu-

alization construction. Since such a user interface would mostly rely on textual user

input, it could also easily integrate visualization decision making support and take

the user’s mental model into account.
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However, before we can build such user interfaces, we need to understand the char-

acteristics of natural language visualization queries. To arrive an empirical grounded

understanding of natural language visualization queries, in this and the next chapter

I address the following research question:

RQ3 What are the elements and characteristics of English natural lan-

guage visualization queries?

In this chapter, I revisit the data from the laboratory study (Chapter 4) to come

up with an initial model of the different classes of natural language visualization

queries and their semantic structures and patterns. This lays the foundation for my

online survey and the model of natural language visualization queries that I describe

in Chapter 6.

5.1 Method

The goal of this first analysis was to come up with an initial descriptive model of the

semantic elements, their relationships and other patterns that are specific to natural

language visualization queries by information visualization novices. For this purpose,

I answer three descriptive questions that address different aspects of RQ 3 (“What are

the elements and characteristics of English natural language visualization queries?”):

RQ 3.1 What are the different syntactic classes of natural language visualization

queries?

RQ 3.2 What are the semantic elements of natural language visualization queries?

RQ 3.3 What patterns that are relevant to visualization specification can be found

in natural language visualization queries?

Since the participants in the study (Chapter 4) communicated their visualiza-

tion specifications in a dialog with the use of gestures and contextual references, the

data needed to be cleaned to resemble written queries without an initial visualization

context. Therefore, I only considered the initial visualization specification in each

visualization construction cycle (VCC). I also excluded VCCs in which the previ-

ous visualization was referenced or which were not understandable without gestures,

sketches or references to example visualizations. This reduced the effect of context
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and, thus, the need for considering the near-side pragmatics of the expressions. Given

these restrictions, I selected 56 visualization specifications (out of 150 VCCs). I fur-

ther removed introductory passages, e.g. “could I see”, and I reduced corrections

made by the participants to their final formulation, e.g. “for Massachusetts - actually,

no - for the whole country” was changed to “for the whole country”. While selected

visualization specifications are based on verbal expressions, I believe that they are,

nevertheless, useful for initial model building. However, it is important that the model

is further refined and validated using written queries (Chapter 6).

Figure 5.1: Example of two specifications annotated by two coders. While the names
and the level of detail are different, the annotated segments and concepts are similar.
For example, on the left side “pie chart” in 4-13 is annotated as “VM” (visualization
method), and on the right side it is annotated as “CT” (chart type). The annotations
on the right side are more detailed - however, I excluded fine-grained labels such as
“OPC” (operator connector) in “sum of sales” from the taxonomy.

Two other researchers with computer science backgrounds and I independently

coded the selected specifications using an exploratory qualitative coding approach1.

The goal that we agreed upon before the coding was to label specification parts with

their role regarding visualization construction and to look for overall patterns. Each

coder split the queries into meaningful parts, which could be single words as well as

phrases, and annotated these parts with their abstract concepts/meaning regarding

visualization construction (Figure 5.1). After we finished our coding, we compared

our codes and the corresponding text passages. The annotations created by the

different coders were similar, except for the names of the codes and their level of

detail, e.g. whether connector terms such as ‘of’ were coded as separate concepts. We

agreed on the set of names and the classification presented in the next section. This

classification integrates our codes. We chose to leave out the lowest level of detail

(e.g. specially labeling connector words such as ‘of’ in ‘sum of sales’). We also talked

about our general observations and only included those that we all agreed upon here.

1I did not calculate intercoder agreement, because we had no coding schema before the study. It
was the goal of the study to develop such a schema.
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The results were consolidated into the findings that are presented in the next section.

5.2 Findings

In the 56 selected visualization specifications, there were two distinct syntactic classes

of natural language visualization queries: phrases and questions (RQ 3.1). While

questions start with question-specific words such as ’what’ or ’how’, many other

features such as data selection are similar in both types. In particular, six distinct

categories of semantic elements were identified (RQ 3.2):

Filters were used to specify which subset of the data should be included in the

visualization. They described constraints on the data, in the simplest case

using just data values. Filters were often indicated by keywords such as ’for’,

’in’ or ’that’. Several of these keywords were only used in a specific context,

e.g. ’over’ is used in a time interval specification.

Groupings were used to specify in which units of aggregation the data should be

summarized in the visualization. For example, ’per country’ stood for putting

all records with the same country value in the same group. Similar to filters,

groupings were often indicated by keywords, e.g. ’each’, ’by’ or ’broken down

into’. They sometimes had several levels as in ’by quarters for each year’.

Measurements were numerical data attributes or calculations that should be dis-

played for each group. Because these groups usually contained several elements,

aggregation was often required and thus the results of calculations, not the raw

values, were typically shown in visualizations. For example, ’how much profit’

or ’sum of sales’ indicated that a sum, in this case ’profit’/’sales’ should be

calculated.

Visualization Methods were descriptions of the generic visualization types such

as ’bar chart’ that should be used to display the data. They included connect-

ing elements, e.g. “a bar chart showing” would be considered a visualization

method.

Visual Element Mappings described how visual elements and properties such as

’x-axis’, ’color’ or ’bar’ should be linked to data elements. For example, “profit

on the y-axis” was a visual element mapping.
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Intentions described the goals the participants had when creating the visualization,

or patterns they are looking for. For example, ’in comparison to’ indicated that

they wanted to compare two aspects of the data.

The data-oriented categories filter, grouping and measurement specifications in-

clude references to concrete elements of the data set, as do visual element mappings.

In the selected specifications, data structure, data value and unit references were used

(RQ 3.2):

Data structure references pointed to meta-level elements of the data set. For

example, if there was ’city’ column in the data set, then ’city’ would be a data

structure reference. Data structure references were sometimes enumerated and

appeared in both plural form and singular form. They were also abbreviated or

consisted of synonyms.

Data value references pointed to concrete values in the data set. For example, if

a value of the ’city’ column was ’New York’, then ’New York’, ’NYC’ and ’Big

Apple’ were considered data value references. The data value references varied

in how difficult it is to resolve them to a specific element from the data set.

They were sometimes enumerated.

Unit references pointed to specific values from dimensions that represented the

scale of values in the data set, e.g. time. Many references to time related

units such as ’day’ or ’quarter’ were found in the participants’ visualization

specifications.

Similar to the data references in filters, groupings and measurements, visualization

types and parts were referenced as part of visualization methods and visual element

mappings (RQ 3.2):

Visualization types references pointed to the overall graphical structure that

should be displayed. For example, ’bar chart’ or ’map’ are well-known graphical

arrangements.

Visualization element references pointed to individual graphical elements, such

as ’bars’ or ’x-axis’, that should be displayed. This also included retinal prop-

erties that can be configured, such as ’color’ or ’shape’.
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In summary, six categories of semantic elements and five types of references were

identified in the 56 selected visualization specifications (RQ 3.2). The categories

can be grouped into data-oriented, visualization-oriented and task-oriented categories

(Figure 5.2). Data-oriented categories use (different) data references and graphic-

oriented categories reference elements of the visual structure. The categories were

used as the basis for the token coding in the online survey study (Section 6.2.6).

Figure 5.2: Categories of semantic elements and references. The categories are
grouped into data-oriented, graphic-oriented and task-oriented categories, and use
different types of references (as indicated by the lines).

In addition to the identified categories of semantic elements and references, we

also identified five cross-cutting patterns that are part of expressing visualization

specifications using natural language (RQ 3.3). While these patterns are only a small

subset of the linguistic patterns that are present in the selected samples, they are of

particular importance for the purpose of visualization specification, which was the

lens that we used for this analysis.

Variability of expression. In natural language, the same meaning can be expressed

in many different ways, e.g. by choosing different synonyms, by selecting active

vs. passive tense, or by using determiners vs. adverbs of quantification (Ap-

pendix F). We found several occurrences of this phenomenon, e.g. “what are
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the sales for furniture for each year” was also formulated as “show me the

furniture sales by year”.

Partial specification. The natural language visualization queries often lack ele-

ments that would be required to directly translate them into visualizations,

e.g. exact visual mappings and operators. This is described in detail in the

findings from the exploratory visualization construction study (Section 4.2.4).

Contradictory specification. There were several contradictions in the selected

specification. For example, one participant first specified that the data should

be split up “into months”, but later in the specification said that s/he wants

to see it “by year and quarter”. However, this effect might be due to repairs in

spoken language [84] that I was not able to fully correct in the data preprocess-

ing.

Semantic linking expressions and keywords. There were often phrases or key-

words that linked different semantic elements. For example, a visualization type

was often linked to the data specification by various uses of the verb “show”,

e.g. “showing the. . . ”, “that shows the. . . ”, and “show me. . . ”. Another exam-

ple of this is that the data specification can be linked to the visualization type

by the prepositional phrase “in a [visualization type]”.

Cross-references were connecting different parts of the visualization specification

that are not necessarily next to each other. For example, ’who’ at the beginning

of a question indicates that the subjects are people. Such remote references

are part of constituent movement in English Wh-questions (Appendix F.2).

Similarly, personal pronouns were used, e.g. in the phrase “customers and the

profit that they bring”, “they” refers to “customers”.

The model of natural language visualization queries presented here is an impor-

tant first step towards understanding natural language visualization specification. It

is comprised of six categories of semantic elements (measurements, groupings, filters,

visual element mappings, visualization methods, intentions), five types of references

(data structure references, unit references, data value references, visualization element

references, visualization type references), and five cross-cutting patterns (variability

of expression, partial specification, contradictory specification, semantic linking ex-

pressions and keywords, and cross-references).
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However, the model is based on spoken natural language visualization queries

and a single underlying data set. It was meant to be an initial exploration of the

feasibility of analyzing natural language visualization queries. To extend the model

to written queries and multiple data sets, I conducted an online survey study (Chapter

6). Then I derived a model of natural language visualization queries that is based on

the findings from these two studies, on related work and on English Linguistics.
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Chapter 6

Understanding Natural Language

Visualization Queries

Visualization construction user interfaces that leverage natural language visualiza-

tion queries might help information visualization novices when creating a particular

visualization the first time, i.e. before refining it. However, to construct such a user

interface, one needs to understand the characteristics of such queries. Developing a

model of English natural language visualization queries is challenging because there

is no available corpus for this specific kind of written input. While the analysis of

the natural language visualization queries from the exploratory visual analytics study

(Chapter 5) provided an initial model, it is of limited generality because it is based on

spoken queries. The scope of this research is focused to desktop computer interfaces

where written queries would be applicable (Chapter 2). Therefore, in this chapter,

I report on an online survey study that explores the following research question for

written queries and in more detail:

RQ3 What are the elements and characteristics of English natural lan-

guage visualization queries?

The research question is broken down into nine sub-questions (Section 6.1.4) that

are answered by quantitative and qualitative analysis of natural language visualization

queries that were collected in an online survey.

In this chapter, I first describe the survey method (Section 6.1). Then, I present

my findings (Section 6.2) and review the related work (Section 6.3). Finally, I describe

a model of natural language visualization queries that is based on my findings and

on the related work (Section 6.4).
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6.1 Method

Eliciting natural language inputs for a type of system that does not exist yet is

challenging. A typical research method to prototype natural language systems is

conducting Wizard-of-Oz studies [31]. In a Wizard-of-Oz study, the participant be-

lieves that s/he is using a computer system, when s/he is in fact communicating to

a human operator who remotely triggers changes in the participant’s user interface.

This is helpful in developing dialog-based natural language systems, since “human

dialogue is a very complex activity” which is hard for computer systems to process

[31]. However, Wizard-of-Oz studies are expensive to conduct, because a system that

can be remotely operated needs to be developed, and because lengthy study sessions

with the operator need to be conducted per participant.

Since I am only interested in the initial queries and not a full dialogue, the major

advantage of Wizard-of-Oz studies becomes irrelevant. Instead, it is important to get

natural language visualization queries from a larger number of participants to improve

generality. Survey strategies can help in collecting data from many participants and

thus in achieving a higher generality [107]. Therefore, I chose to administer an online

survey to gather natural language visualization queries.

However, surveys are typically used to elicit preferences, behavior, or factual in-

formation [177]. In contrast, I wanted to elicit queries that users would enter into an

imaginary system. For this reason, I developed and tested the survey instrument in

several iterations.

6.1.1 Survey Development

The major challenge with this study was finding task descriptions that clearly commu-

nicated the goal of specifying visualizations to information visualization novices and,

at the same time, did not direct them towards specific forms of expression, e.g. ques-

tions. Finding the right wording was crucial in particular, since the words in the task

description had an immediate influence on what words and concepts the participants

had in mind when formulating the queries. Finding a clear and non-leading task

description was important because I wanted to elicit a realistic and representative set

of natural language visualization queries.

To meet this challenge, I developed the survey in several iterations. First, I

piloted the initial paper draft of the survey with two colleagues from the CHISEL

group. I changed the task formulation based on their feedback. I received further
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feedback on an electronic draft of the next version of the questionnaire from two IBM

collaborators and from other CHISEL colleagues. The feedback until this point led us

to provide three different data sets that participants could choose from: soccer world

cup, academy awards and countries. My hope was that every participant would be

interested in at least one of these data sets.

Then, I sent the first version of my online survey out to the CHISEL group for

further piloting. This led to reducing the number of elicited queries to three per

participant as well as to several minor changes in the appearance of the survey. Next,

I elicited feedback from my IBM collaborators which led to adding a page to the

questionnaire that asked the participants to describe the displayed visualizations.

After I felt sufficiently sure that the survey was ready to be tested by information

visualization novices, I asked five pilot participants (four in person on campus, one

electronically) to fill out the questionnaire and to give us feedback. Their input led

to major changes in the wording of the task and data descriptions. For example, I

explained queries as “phrases that describe what you want or expect to see”. I also

added another page in which I asked the participants to describe the visualization

that they had in mind for each of their queries. After those changes, I asked two more

information visualization novices on campus in person to fill out the survey and to

give us feedback. They only suggested minor improvements, so I felt certain that the

survey was ready to be deployed. Overall, I piloted the survey with seven information

visualization novices (four female, three male) and came up with the survey design

which is described next.

6.1.2 Survey Design

The survey consisted of four pages (introduction page, queries page, visual displays

page, and descriptions page) and was expected to take between 5 and 10 minutes to

complete (Appendix G). On each page, the participants could move to the next page

(finish the survey on the last page) or withdraw from the survey.

The introduction page (page 1) contained a brief overview of the tasks in the

survey and an estimate of how long it would take. The page also showed the consent

form of the study and asked the participants for their consent. The introduction page

allowed the participant to choose one data set from the “Academy Awards”, “Soccer

World Cups”, and “Countries” data sets. I randomized the order in which the data

sets appeared in the selector.
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Academy Awards Countries World Cup

Nominal Best picture winner Name Host
Best director winner Capital Winner

List Best picture nominees States / Provinces Teams

Year Year Founded in Year

Numerical # of awards (best picture) Total area # of games
# of viewers Population # of spectators
# of awards Avg. life expectancy Avg. goals per game

Table 6.1: Data attributes in the study data sets.

The queries page (page 2) asked the participants to enter three queries on the

data set they have chosen. First, the task was described as follows: “Below, you will be

asked to imagine 3 queries which you would enter into a system that responds to textual

queries with information graphics such as charts.” Next, a brief description of the

data set including the data attribute for each row was given. For each data set, there

was a year attribute, two nominal attributes, one list attribute, and three numerical

attributes (Table 6.1). I have chosen this selection of data attributes to guarantee

a certain degree of similarity among the data sets while at the same time covering

common types of data. The page contained three example rows for the selected data

set to give the participants an idea of what kind of data they could expect. Then,

they were asked to write down three queries on the data set given the following

scenario: “You are exploring the [country/World Cup/Academy Awards] data set and

are interested in seeing summaries, trends and details. You are using a computer

system that responds to your textual queries by displaying information graphics such

as charts. Please write 3 queries (phrases that describe what you want or expect to

see) that you would enter into such a system to produce the visual displays of the

data”. The participants were also asked on this page if they agree with the following

statement “I have an interest in the information in the [country/World Cup/Academy

Awards] data set” using a 5-point Likert scale (I strongly agree/I agree/I neither agree

nor disagree/I disagree/I strongly disagree).

The visual displays page (page 3) asked about the visual displays the users

had in mind (imagined visualizations) when formulating the queries. The queries the

participants entered on page 2 were shown again, and they were asked if they agree

with the statement “I had concrete visual displays in mind when I formulated the

queries” on a 5-point Likert scale. Then, they were given the chance to describe the
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visual display they had in mind for each query.

The descriptions page (page 4) asked the participants to describe three charts

with up to seven words each. The charts were related to the data set the participants

had chosen, but unrelated to their queries. The data set description was repeated

to remind the participants of its content. For each data set, a bar chart, a timeline

and a scatterplot were shown. Twenty data points were displayed in each chart. All

dots in the timeline were labeled. Three data points in the scatterplot had labels and

arrows pointing at them. The order of the charts was randomized.

6.1.3 Survey Deployment

The survey was linked from the IBM Many Eyes website1 between September 13th,

2010 and October 15th, 2010, inclusive. During that time period, 75 participants

filled out the survey. They entered 225 natural language visualization queries (out of

which 160 had associated imagined displays) and 225 visualization descriptions.

6.1.4 Research Questions

In this study, I addressed nine descriptive sub-questions of RQ 3 (“What are the

elements and characteristics of English natural language visualization queries?”), out

of which eight are in addition to what was investigated in Chapter 5. I started by

revisiting RQ 3.3:

RQ 3.3 What patterns that are relevant to visualization specification can be found

in natural language visualization queries?

Then, I explored the syntactic and semantic characteristics of the queries in more

detail:

RQ 3.4 How long are natural language visualization queries?

RQ 3.5 What is the distribution of the syntactic classes of natural language visual-

ization queries?

RQ 3.6 What are the major semantic challenges in interpreting natural language

visualization queries?

1http://www-958.ibm.com/software/data/cognos/manyeyes/
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RQ 3.7 What is the distribution of semantic elements and features in natural lan-

guage visualization queries?

The survey also asked which visualizations (visual displays) the participants have

in mind while formulating the queries. I explored the following research questions

using this data:

RQ 3.8 What is the distribution of the imagined visual displays?

RQ 3.9 How customized are the imagined visual displays?

RQ 3.10 How are the imagined visual displays related to the natural language visu-

alization queries?

Finally, I compared the natural language visualization queries to the visualization

descriptions that I gathered in the survey:

RQ 3.11 How similar are visualization descriptions to natural language visualization

queries?

6.1.5 Data Analysis

I analyzed the data gathered in the survey iteratively using both qualitative and

quantitative methods. For each part of the survey, I started out with an exploratory,

qualitative investigation of the phenomena in the data. In many cases, I developed

categories that model these findings and then coded the data to quantify the preva-

lence of those categories and potential interactions between categorizations. The

qualitative and quantitative results guided us in selecting further analyses and in

refining previous analyses.

Many of the analyses involved categorical coding, e.g. annotating the data with

syntactic type, answer type and semantic distance per query. For all classifications

that are based on coding, the data was independently annotated by two coders2, and

Cohen’s kappa was calculated to measure inter-coder reliability [102]. After that,

the differences between the annotations were discussed among the coders, and they

agreed on a final classification for each disagreement.

2I coded the data for all categories. I worked together with two other coders: someone with a
computer science background and someone with a business background.
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For analyzing the relationship between two nominal or ordinal factors, I

applied Fisher exact tests3 and calculated Cramérs V (ϕc) to estimate the strength

of the relationship [55]. The size of the effect (i.e. the strength of the relationship)

was interpreted based on df ∗4 using the standards proposed by Cohen ([55], p. 628).

When calculating a Fisher exact test was not possible due to limited computational

resources, I applied a G-test with Williams correction (to correct for small expected

values)5. Significance is reported at the .01 level to reduce data mining bias. For test-

ing the relationship between two nominal or ordinal variables, the limitation that the

sample is not fully independent (because each participant entered three queries) is not

relevant, because I am making “inferences about the the population of classifications,

not of sentences”6.

In addition to the tests described above, descriptive statistics, tables and graphics

were used to present the distributions in the data. Also, more specific statistical

methods are described in the context of the analysis.

6.1.6 Limitations

Each research method and study has inherent trade-offs [107]. The chosen survey

strategy trades off realism and precision to gain generality. This choice was made

because the model from the lab study, while being precise, is of limited generality. To

describe the limitations of this research, I assess the empirical validity of the study

by describing threats to construct validity, internal validity, external validity and

reliability [35].

Construct validity “focuses on whether the theoretical constructs are inter-

preted and measured correctly” [35]. Because of the bottom-up exploratory approach

applied in this study, the categorizations emerged from the data itself and are not

immediately linked to previous theories. I ensured that the categories are meaningful

by asking the second coder for each category about the category terms and definitions

before they coded the data. In addition, I used terms of similar concepts whenever

there was a clear correspondence, e.g. for the semantic elements of the queries.

Internal validity “focuses on the study design, and particularly whether the

3Chi-square tests for independence were problematic because of low expected values for some
cells in the contingency tables.

4Size of factor with the least levels minus one.
5G-Tests are reported with G, X2df , and p values, Fisher exact tests only with p value.
6http://stats.stackexchange.com/questions/26431/chi2-test-correcting-for-not-fully-

independent-sample
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results really do follow from the data” [35]. The iteration between qualitative and

quantitative analysis as well as the coding of the data by two coders ensures that

the resulting categories and distributions represent the textual data accurately. In

addition, I checked for interactions between the variables to identify confounding

factors such as interest in the data set.

However, the collection of three queries and three visualization descriptions per

participant means that the individual differences between the participants are an

important confounding variable as well. The participants might also have been biased

by the presentation of the data sets and the task. I mitigated this problem as much

as possible by refining the task and data set presentation in several pilots. However,

it might not have been clear that the data set is limited to the data attribute list in

the examples, which might have caused participants to formulate more queries that

require external information than they would have otherwise.

The ratings on the 5-point Likert scales used in the survey might be distorted due

to acquiescence bias (i.e. tendency to positively agree with statements) and central

tendency bias (i.e. tendency to avoid extreme answers). To mitigate this problem, I

have carefully created the Likert scales following accepted standards.

External validity “focuses on whether claims for the generality of the results

are justified” [35]. The generality of the queries that are entered into the survey is

limited to the IBM Many Eyes audience, which I assume are people who are fairly

computer savvy and have some interest in visualization, but who are not experts in

that field. The deployment on Many Eyes might have influenced the visualizations and

the visualization terminology the participants had in mind, since they were familiar

with what is presented on the Many Eyes website.

In addition, the data sets of the study have an influence on the results. To mitigate

the data set bias, I offered three different data sets to choose from. However, the

collected queries are biased towards the countries data set, which was chosen by

57% of the participants and contributes to 62% of the visualization queries. This

might also have influenced the imagined visualizations, as maps are often preferred

for geographical data.

The complexity of the data sets and the lack of an underlying task also limits

the external validity. I have chosen data sets that contain seven data attributes in

a single table, which I consider an appropriate for a novice audience. More complex

data sets might lead to different results. Similarly, a concrete task that requires

in-depth exploration of the data set might lead to different queries. However, for



81

building my model (Section 6.4), I also integrate my findings from Chapter 5, which

are based in queries from a more in-depth exploration of a more complex data set.

Reliability “focuses on whether the study yields the same results if other re-

searchers replicate it” [35]. The study was administered online and can be executed

by any other researcher. While the different categorizations are valid and have a high

inter-coder reliability, other researchers might find additional patterns in the data.

Overall, while there are certain limitations to the internal and external validity

of the study, the main findings reflect what I found in the previous laboratory study.

This means that while additional terms might appear in future studies and while the

distributions might be different, the interactions, and expression patterns reported

here are reliable.

6.2 Findings

In this section, I present the results of the data analyses, but I do not further interpret

them. Instead, they are integrated into and discussed in the model of natural language

visualization queries (Section 6.4). The findings are reported in the order of the

analysis steps. The gathered data was analyzed on several levels:

Participant level: I analyzed the participants’ data sets choices and their interest

to see if they are correlated and if there are any biases towards certain data

sets.

Query level: Then, I examined the answer types for the queries to filter out non-

visualization queries7. For the visualization queries, the word and token counts

(RQ 3.4), the syntactic types (RQ 3.5), and the semantic distance (RQ 3.6) were

analyzed. In addition, I looked at the features of valid visualization queries8

(RQ 3.7).

Token level: At the token level, I analyzed how often certain words and tokens

appear and how they can be grouped together (RQ 3.7). I also report other

semantic patterns that I found (RQ 3.3).

Imagined display level: On the level of imagined display descriptions, I classified

them into visualization types (RQ 3.8), looked at the extent to which they

7Visualization queries are queries for which visualizations are the expected answer type.
8Valid visualization queries are visualization queries that can be answered with the data from

the data set.



82

Data Set 1 2 3 4 5 All
Countries 3 1 11 24 4 43 (57%)
Academy Awards 1 3 10 3 17 (23%)
World Cup 1 9 5 15 (20%)
All 4 2 14 43 12 75

5% 3% 19% 57% 16% 100%

Table 6.2: Selected data sets and interest ratings (1 = I strongly disagree; 2 = I
disagree; 3 = I neither agree nor disagree; 4 = I agree; 5 = I strongly agree)

were customized (RQ 3.9), and analyzed how they relate to their corresponding

visualization queries (RQ 3.10).

Description level: I analyzed how the visualizations descriptions that the partic-

ipants had entered are different from and similar to the visualization queries

(RQ 3.11).

6.2.1 Choice of Data Sets and Interest Ratings

To understand if there is a bias in the choice of data sets and in the interest ratings, I

analyzed their distributions. Of the 75 participants who answered the survey, 43 had

chosen the countries data set, 17 had chosen the academy awards data set and 15 had

chosen the world cups data set (Table 6.2). Most participants were interested in the

data set about which they formulated queries. For the 5-point Likert scale question

“Do you agree with the following statement? I have an interest in the information in

the data set.” the mean and mode was “I agree”, and the inter-quartile range was

1 (“I agree”). The distribution was shifted towards “I agree”. When comparing the

interest ratings to a normal distribution with a mean of 3 and a similar maximum value

over 5 bins (σ = .7, µ = 3, n = 75, bin1 = 1, bin2 = 15, bin3 = 43, bin4 = 15, bin5 = 1),

there were significant differences (p < .0001). There was no significant difference in

the interest ratings between the different data sets (p = .1628).

While the interest ratings showed that the participants were interested in the data

sets, as I had hoped for when I designed the study, the bias towards the countries data

set might have limited the generality of the results. A possible explanation for this

is that geography knowledge is taught in high school, whereas the Academy Awards

and soccer world cups are not common knowledge, but related to special interests.

However, I believe that the bias towards the countries data set has been sufficiently
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mitigated, because I had developed an initial model based on the laboratory study

data (Chapter 5), and because 43% of the participants had chosen either the Academy

Awards or the World Cups data set.

6.2.2 Answer Type

During the exploration of the queries and the imagined visual displays, it became

apparent that not all queries could be mapped easily to visualizations. In addition

to visualization queries, which were the target of this study, I identified overview

queries, textual fact queries, and invalid queries. Overview queries, e.g. “Is there

any trend?”, were queries in which the participant expected automatic data analysis

to take place, with the results being shown in an appropriate way. They did not

contain any data attributes or concepts. Textual fact queries were queries for which

answers were best represented as text, e.g. simple facts (“number of female director

winners”) and explanations (“What makes this director award winning?”). Finally,

invalid queries were queries that are formulated in languages other than English

(e.g. Spanish, SQL) or that were impossible to interpret (e.g. “nominee contains”). I

found that this classification was important to exclude queries for which visualizations

were not appropriate answers from further coding.

The inter-coder agreement on the answer types was very strong (Cohen’s kappa

.876). The 7 disagreements were mostly due to different opinions on when visualiza-

tions would be the expected answers. In the consolidated classification, most answer

types were visualizations (194 / 225 queries, 87%). Automatic analysis and overview

(10 / 225, 4%), textual facts (11 /225, 5%) and invalid queries (10 / 225, 4%) were

less prominent.

I further looked into how many different answer types a single participant expected

in her 3 queries. 64 participants (85%) had the same appropriate answer type for all

three queries, and 11 (15%) had two different types. Not a single participant expected

three different answer types. This tendency towards a single answer type indicates

that each participant thought about visualization queries in a consistent way.

There was a significant relationship (p = .0001) with a medium effect size (ϕc =

.232, df ∗ = 2) between the data set and the answer type classification of a query (Table

6.3). The ‘Academy Awards’ and ‘World cup’ data sets had relatively fewer queries

that could be answered with visualizations (75% and 82%, respectively) compared

to the ‘countries’ data set (92%). This might have been due to the affinity of the
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Data Set V AO TF I V AO TF I
Countries 119 7 3 92% 5% 2%
Academy Awards 38 1 8 4 75% 2% 16% 8%
World Cup 37 2 3 3 82% 4% 7% 7%

Table 6.3: Data set (rows) vs. answer type (columns), absolute values and percentage
within data set. The answer types are visualization (V), automatic analysis and
overview (AO), textual fact (TF), and invalid query (I).
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Figure 6.1: Histogram of words and tokens per visualization query.

‘countries’ data set towards map visualizations that the two other data sets lack.

Based on this exploration of the answer type, I focused on the visualization

queries in the next sections. In particular, I looked at how many words and tokens

they contained, at their syntactic types, at how closely related they were to the data

set, and into the patterns of token distribution.

6.2.3 Length of Visualization Queries

Visualization queries in the study were between 1 and 33 words long, with a median

of 7 and a mean of 7.8 (RQ 3.4). More than three quarters (76 %) of the visualization

queries were between 3 and 10 words long. The distribution of queries by their word

count is shown in Figure 6.1. I also tokenized the queries by counting words that were

subsets of data attributes (e.g. “average goals per game”), data values or data set



85

names as a single token, and by doing the same for semantic concepts (e.g. “census

dissemination unit”). Visualization queries in the study were between 1 and 33 tokens

long (median: 6, mean: 6.6). 73 % of the visualization queries were between 3 and 9

tokens long. The distribution of queries by their token count is also shown in Figure

6.1.

In contrast, several studies have found that most search engine queries are between

1 and 3 words long [61]. An analysis of the log files showed that queries with up to

3 words accounted for 75 % of all queries in the meta-search engine dogpile.com [81].

Visualization queries thus were considerably longer than typical search engine queries,

even after tokenization. This indicates that they are more complex than search engine

queries. In the next section, I looked at the syntactic types of visualization queries

to investigate this further.

6.2.4 Syntactic Classification

In the model from the laboratory study (Chapter 5), I distinguished between phrases

and questions as the syntactic type of queries. However, during an initial exploration

of the visualization queries from the survey, it became apparent that some queries

were just simple enumerations of keywords, and others were worded as commands.

Therefore, I distinguished between questions, commands (e.g. “Show me . . . ”),

enumerations (i.e. lists of keywords without any syntactic structure beyond con-

junctions such as “and”), and fragments (i.e. queries with syntactic structure that

are not full sentences).

The inter-coder agreement on the syntactic types of the tokenized queries was

very strong (Cohen’s kappa .953). The 6 disagreements were mostly due to different

opinions on what constitutes fragments vs. enumerations. In the consolidated classi-

fication of the 194 visualization queries (RQ 3.5), there were 96 fragments (49.5%),

47 questions (24.2%), 26 commands (13.4%) and 25 enumerations (12.9%). In con-

trast to web search, where keyword-based input is common [61], 87.1% of the queries

(fragments, questions, and commands) contained syntactic structure (Appendix F.2).

The syntactic type was related to the number of tokens. Enumerations were

typically very short (min: 1, median: 2, mean: 2.32, max: 5), fragments (min: 2,

median: 6, mean: 6.90, max: 33) and commands (min: 2, median: 7, mean: 6.6, max:

11) were about 4 tokens longer, and queries (min: 4, median: 8, mean: 8.383, max:

16) had the most tokens on average (Figure 6.2). The different lengths of visualization
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Figure 6.2: Box plot of tokens per visualization query by syntactic type.

and search engine queries might thus have been caused by their different syntactic

types: keyword enumerations for search engine queries vs. commands, fragments and

questions for visualization queries. Besides the syntactic complexity on the query

level, I also looked at the semantic challenges.

6.2.5 Semantic Distance to Data Set

In the initial exploration, I found that several queries were fairly unrelated to the

data attributes and values in the data set. Therefore, I investigated the semantic

distance of visualization queries to the data set. I define semantic distance as the level

of semantic understanding that is required to successfully process the visualization

query. To measure this distance in detail, each visualization query was classified into

one of four increasingly challenging semantic distance categories (RQ 3.6):

Matched Terms. The visualization query only contains exact terms from the data
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Synt. Type
Sem. Dist. E F C Q Total
Matched T. 8 27 12 6 53 (27.3%)
Synonyms 4 11 8 5 28 (14.4%)
Related C. 1 16 3 13 33 (17.0%)
External D. 12 42 3 23 80 (41.2%)

25 96 26 47

Table 6.4: Semantic distance distribution compared to the syntactic type of the
visualization queries. Numbers are counts of visualization queries. Syntactic type: E
= enumeration of keywords, F = fragment, C = command, Q = question.

set (data attributes, data values, data set name) or subsets of them, terms from

closed word classes (e.g. “for”, “and”, “by”), visualization terms (e.g. “bar

chart”, “color”, “red”, “line”), and intentions (e.g. “compare”, “comparison”).

Synonyms. The visualization query contains at least one synonym for a data at-

tribute, a data value, or the data set name.

Related Concepts. The visualization query contains at least one concept that has

to be semantically interpreted, e.g. “population density” or “oldest”. This

means that the concept carries additional meaning, e.g. in the form of implied

operators, filtering, or sorting, and that the concept thus cannot be directly

mapped to a data attribute. However, the visualization query can be answered

using the data that is available in the data set.

External Data. The visualization query contains concepts and terms that require

additional external data for producing the correct visualization result.

The inter-coder agreement was good (Cohen’s kappa .639). Most differences were

on how to classify visualization queries with explicit calculations (e.g. using grouping

terms such as “by” or “per” – queries classified as matched terms in final classifica-

tion), superlatives (e.g. “highest” – later “highest” classified as matched terms, other

superlatives as related concepts), and data attributes with additional parts at the end

(e.g. “population size” – classified as synonyms).

There was a medium sized significant interaction effect between semantic distance

and syntactic type (p = .0011, ϕc = .211, df ∗ = 2, Table 6.4). Between 40% and 50%

of enumerations, questions and fragments required external information, whereas this

was only the case for 11% of the commands. The interactions between semantic



88

distance and interest rating (p = .0201) and between semantic distance and data set

(p = .0437) were not significant at the .01 level.

The semantic distance categories build on top of each other and represent signif-

icant computational and research challenges at each step (RQ 3.6). While matched

terms can be fairly easily resolved, identifying synonyms requires word sense (Ap-

pendix F.3) disambiguation, understanding the meaning of semantic concepts re-

quires additional reasoning and background knowledge, and integrating external data

requires information retrieval and data integration. In this study, only 27.3% of the

queries could be answered by a system that can only resolve matched terms (Table

6.4). If a system could disambiguate word senses, it could answer up to 41.7% of the

visualization queries. With related concept understanding, it could correctly answer

up to 58.7% of the queries, and to fully answer 100% of the queries, it would also

need to be able to find and integrate external information correctly.

The different semantic distances and syntactic types show that there is consider-

able variation in the visualization queries. I looked into this further by analyzing the

features of the visualization queries.

6.2.6 Features of Valid Visualization Queries

The syntactic types and the average number of tokens per query indicated that vi-

sualization queries have a rich syntactic and semantic structure, which was also the

case with the queries from the laboratory study data set (Chapter 5). To explore

this structure in detail, I coded the role of each token (except determiners, e.g. ‘the’

and ‘a’) in the context of its query for all valid visualization queries. I define valid

visualization queries as visualization queries that can be answered within the data

set, i.e. visualization queries with a semantic distance other than “external data”.

There were 114 valid visualization queries containing a total of 674 tokens. Punc-

tuation was not included in the tokens. The tokens were labelled using labels from

9 categories: data, abstract concepts, intentions, groupings, filters, order, operations,

visualization, and supporting words, e.g. conjunctions. The categories contained 27

main labels, for example “data attribute”, “intention”, and “visualization element”.

They were initially based on the categorization from the findings of the lab study lan-

guage analysis (Figure 5.2), but I extended when I encountered additional categories,

e.g. “sorting”. Because of the large number of tokens, the categorization was validated

by a second coder who only labelled a randomly selected sample of 50 tokens within
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Figure 6.3: Queries binned by the number of specified data attributes/concepts.

their context. For the sample, the inter-coder agreement was good (Cohen’s kappa

.707). The 12 disagreements were mostly about the classification of question words

and their parts (e.g. “What are”, “Is there any”) into filtering questions vs. generic

data-related question terms.

Each visualization query specified the data that should be displayed, either using

data attributes or using data-related concepts (e.g. population density). Between

1 to 5 data attributes/concepts were specified per query (median: 2, mean:

1.833). 84% of the visualization queries contained one or two data attributes/concepts

(Figure 6.3). 21 queries (18.4%) contained visualization elements, e.g. visualization

types, properties, aspects, or elements. Of those 21 queries, 15 contained only the

visualization type. In other words, specific visualization terms like visualization parts

(e.g. ‘line’) or attributes (e.g. ‘color’) were only mentioned in 5 queries (4.4%). In-

tentions appeared in 34 queries (29.8%), operators in 23 queries (20.2%), orderings in

21 queries (18.4%), filters in 18 queries (15.8%), and groupings in 12 queries (10.5%,

RQ 3.7). In summary, no feature (e.g. intentions, filters) appeared in more than

30% of the queries.

There were significant interaction effects between the syntactic type and

each query feature except intention and operators, as well as for queries with-

out any features (Table 6.5). Queries without features were most often enumerations;

visualization and grouping elements typically appeared in fragments and commands;
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No Feature G V OP IN OR FI Queries
p < .0001 .0019 .0011 .0342 .0906 .0071 .0008
ϕc .5428 .3615 .3454 .3331 .3903

Enumeration 10 2 1 13
Fragment 6 12 13 16 12 7 7 54

Command 3 8 5 9 4 23
Question 2 2 11 10 10 24

Total 21 12 21 23 34 21 18 114

Table 6.5: Feature distribution and number of queries by syntactic type. Features:
Grouping, Visualization, Operator, Intention, Order, Filter. ϕc is only shown for
significant interactions.

Cluster (features ordered by separation step) Size Percent
no order, intention 34 29.8%

no order, no intention, no visualization, no grouping, no operator 24 21.1%
no order, no intention, visualization 16 14.0%

order, filter 14 12.3%
no order, no intention, no visualization, no grouping, operator 12 10.5%

no order, no intention, no visualization, grouping 7 6.1%
order, no filter 7 6.1%

Table 6.6: Feature clusters with more than 4 members from monothetic analysis
clustering of binary variables.

and order and filter elements were more likely to appear in questions.

To understand how those features co-occurred, I performed a divisive hierarchi-

cal clustering using MONA (Monothetic Analysis Clustering of Binary Variables). I

included clusters with less than 4 members into their parent cluster9. The resulting

clusters are shown in Table 6.6. The separation occurred in the sequence “order”,

“intention”, “visualization”, “grouping”, “operator”, where the next separation only

took place if the previous features was not present. The features “grouping”, “op-

erator”, “filter” and “visualization” were cross-cutting in that they sometimes (in

clusters of less than 4 members) co-occurred with the main feature. In addition,

order often occurred together with filtering, mainly in constructs such as “top 10

highest. . . ”. Intention expressions also did not typically co-occur with other features

(26 queries, 22.8%), e.g. as in “compare size to area”. Finally, 21 queries (18.4%) had

no features at all — they were specified using only data attributes and concepts.

9MONA completely separates the elements in the data set.
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the 47 a 10 for 5 on 3
by 31 all 7 related 5 highest 3

and 23 how 7 which 5 time 3
of 18 with 7 total 4 average 3

show 12 are 6 each 4 top 3
to 12 map 6 correlation 4

between 12 relationship 6 graph 4
is 11 me 6 compare 4

what 10 compared 6 produce 3
per 10 number 5 rank 3

Table 6.7: Tokens that appeared at least 3 times in the 406 tokens from valid visual-
ization queries that were not bound to a specific data set and that were not numbers.
Visualization and analysis related terms are bold.

Intention Keywords #
comparison compared, compare, vs, comparison 14
relationship relationship, related, relation 11
correlation correlation, correlate, correlations 7
distribution distribution 1
trend trend 1

Table 6.8: Keywords and number of appearances by intention (See Appendix H for
all features).

6.2.7 Token Frequencies, Classes and Patterns

The 35 tokens that appeared at least 3 times in the visualization queries and that were

not data-set specific are listed in Table 6.7. Visualization and data analysis related

terms (e.g. “map”, “relationship”) were fairly prominent, considering that stopwords

such as “and”, “the”, and “by” are very common in natural language. These visual-

ization and data analysis terms were part of the domain-specific vocabulary that was

used to refer to concepts in that space.

Based on the token coding, I was able to identify keywords and indicators that

belong to the different token classes and to group them according to their semantics

(RQ 3.7). There were 5 distinct kinds of intentions that the participants explicitly

expressed: comparison, relationship, correlation, distribution and trend (Table 6.8).

Similarly, the same operators were indicated using different keywords. For example,

division was indicated by the phrases “per” and “divided by”, and counting was
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indicated by the phrases “total”, “how many (times)”, and “number of (times)”.

Sorting was explicitly indicated using synonymous terms such as rank, order, and

sort. In addition, it was often expressed implicitly as part of filtering expressions like

“top 10. . . ” that use superlatives, e.g. highest or largest. Besides top-n expressions,

filters were either indicated through the question itself (e.g. “What are the oldest

countries?”) or as constraints on the main terms (e.g. “countries with higher number

of. . . ”). Appendix H contains all keywords and indicators for the different query

features. Due to the limited number of tokens and queries, it was more useful to

describe the main observations instead of describing single token groups in detail:

Distinct semantic domains. The participants referred to concepts from the do-

main of the data set (e.g. World Cup, countries), from the visualization domain

(i.e. visualization types, elements and properties), from the data analysis do-

main (e.g. operators, intentions), and from related domains such as abstract

temporal and spatial concepts.

Variability of expression. The participants used many different ways to refer to

the same semantic concept, for example by using synonyms or different syntac-

tical constructs. This was similar to what I had observed for the lab study data

(Chapter 5). However, there were many recurrent patterns and commonly used

words that cover the most frequent references to certain semantic concepts.

Stopwords carry meaning. Terms from closed word classes (Appendix F.1) that

many applications remove as stopwords, e.g. “by”, “and”, or “which”, carried

meaning that can be important in the interpretation of a visualization query.

For example, “which” can indicate filtering constraints, and “by” can indicate

grouping.

Almost no data values used. In contrast to the queries from the lab study (Chap-

ter 5), the participants used almost no data values references in their queries.

This might have been due to the depth of the data analysis, i.e. participants of

the survey just asked initial question without receiving a response, whereas the

lab study participants explored the data in depth for 45 minutes.

After analysing the queries at different levels, I looked into how they related to

the visualizations that the participants had imagined while writing the queries.
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Interest in Visual Displays in Mind Total
Data Set SD D NAD A SA

SD 3 1 4 5%
D 1 3 5 2 11 15%

NAD 2 11 3 16 21%
A 1 8 22 3 34 45%

SA 1 1 4 4 10 13%
Total 4 2 14 43 12 75 100%

5% 3% 19% 57% 16% 100%

Table 6.9: Likert scale agreement ratings for the statements “I had concrete visual
displays in mind when I formulated the queries” and “I have an interest in the infor-
mation in the data set” (SD = I strongly disagree; D = I disagree; NAD = I neither
agree nor disagree; A = I agree; SA = I strongly agree).

6.2.8 Imagined Visualizations

Besides understanding the queries and their constituents, it was important to analyze

how they related to the visualizations the participants had in mind. In this section,

I describe what visualizations the participants had imagined when they entered the

queries, if any, and how these visualizations related to those queries.

Most participants reported that they thought of concrete visualizations

when formulating the queries (Table 6.9). Their ratings on a 5-point Likert scale

for the question “Do you agree with the following statement? I had concrete visual

displays in mind when I formulated the queries.” had a mode and median of “I agree”,

and the inter-quartile range was 2 (“I neither agree nor disagree” to “I agree”). The

distribution was shifted towards “I agree”. When comparing the interest ratings to

a normal distribution with a mean of 3 and a similar maximum value over 5 bins

(σ = .9, µ = 3, n = 75, bin1 = 3, bin2 = 18, bin3 = 33, bin4 = 18, bin5 = 3), there were

significant differences (p = .0007).

There was a significant interaction with a large effect size between having an

interest in the data set and imagining visualization while formulating the queries

(p = .0091, ϕc = .424, df ∗ = 4, Table 6.9). Participants who were interested

in the data set were more likely to also have had visualizations in mind

during query formulation. There was also a significant interaction with a medium

effect size between imagining visualizations while formulating visualization queries

and the syntactic type of the visualization query (G = 42.08, df = 12, p < .0001,

ϕc = .269, df ∗ = 3, Table 6.10). When the query was expressed as a fragment
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Syntactic Visual Displays in Mind Total
Type SD D NAD A SA

Enumeration 4 13 6 2 25 13%
Question 3 12 10 21 1 47 24%
Command 3 2 4 12 5 26 13%
Fragment 1 12 16 49 18 96 50%
Total 11 26 43 99 26 194 100%

6% 13% 22% 45% 13% 100%

Table 6.10: Likert scale agreement ratings for the statements “I had concrete visual
displays in mind when I formulated the queries” (SD = I strongly disagree; D = I
disagree; NAD = I neither agree nor disagree; A = I agree; SA = I strongly agree)
compared to the syntactic type of the visualization query.

or command, participants had visualizations in mind more than 65% of

the time, whereas that ratio was less than 50% for questions and keyword

enumerations. The interaction between data set and imagining visualization (p =

.0308) and between semantic distance and imagining visualizations (G = 17.16, df =

12, p=.1548) were not significant at a .01 level.

Each participant could report the visualization s/he had in mind for each of her

queries. The visualization types of all the 136 imagined visualizations for visualization

queries that were entered by participants who did not disagree that they had visual-

izations in mind while formulating the queries (“I had concrete visual displays in mind

when I formulated the queries” >= 3) were coded by two coders. The inter-coder

agreement was very strong (Cohen’s kappa .857).

Seventeen out of the 136 imagined visualization descriptions did not actually de-

scribe any visualizations, 9 descriptions contained 2 visualization types, and 1 de-

scription contained 3 visualization types. Thus, 130 visualizations were described in

119 descriptions. Those 130 visualizations were classified into 18 distinct visualization

types. The two most prevalent visualization types, map and bar chart, were present

in about 58% of the imagined visualizations, whereas the 11 least occurring visual-

ization types only accounted for 13.45% of the imagined visualizations (Table 6.11).

This indicates that visualization type choices are governed by a power-law

distribution (RQ 3.8).

There was a significant interaction with a medium effect size between the imagined

visualization type and the data set (p=.0034, ϕc = .329, df ∗ = 2, Table 6.11). For

the countries data set, participants had comparatively often maps (41%) and bubble
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Visualization Count Percent Data Set Customization
C WC AA T T+C C

Map 35 29.41 % 28 6 1 5 27 3
Bar Chart 34 28.57 % 14 12 8 26 8
Bubble Chart 12 10.08 % 10 2 6 2 4
Line Chart 9 7.56 % 1 5 3 7 2
Scatter Plot 9 7.56 % 6 2 1 3 6
Table 8 6.72 % 3 2 3 8
Pie Chart 7 5.88 % 4 1 2 5 2
Other 16 13.45 % 10 3 3 8 3 5
Total 119 68 31 20 63 45 11

100.00 % 57% 26% 17% 53% 38% 9%

Table 6.11: Distribution of imagined visualization types. Multiple imagined visualiza-
tion per query were possible. ‘Other’ consists of 10 visualization types that occurred
between 1 and 3 times each. Data sets: C = Countries, WC = World Cup, AA =
Academy Awards. Customization categories: T = only visualization type, TC = vi-
sualization type and visual mapping, C = only visual mapping. Percentages for data
sets and customization are based on total number of imagined visualizations (130).

charts (15%) in mind, whereas bar charts (39%) and line charts (16%) were more

prevalent in the World Cups and Academy Awards data sets. The prevalence of

maps in the countries data set was likely due to the geographical nature of this data

set.

I observed three different levels of customization in the imagined visualizations.

Participants either just mentioned a visualization type (e.g. “line chart of goals per

game”), or they just described visual elements such as circles and their visual map-

pings (e.g. “Discrete spheres showing population by size and number of states by

internal division”), or both (e.g. “line graph with time as the X axis”). Those three

levels of customization were coded for the 119 imagined display descriptions by two

coders with strong agreement (Cohen’s kappa .725). Most imagined display de-

scriptions just mentioned the visualization type (53%) or the visualization

type in combination with a visual mappings (38%). Only 9% of the imagined

visualization descriptions did not explicitly mention a visualization type (RQ 3.9).

There was a significant interaction with a large effect between the imagined

visualization type and the degree of customization (p < .0001, ϕc = .503, df ∗ =

2, Table 6.11). Bar charts, line charts, tables and pie charts were mostly mentioned

without further customization of visual mappings (> 70% per visualization type).
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Single N Grouped Two N Grouped Time Geo
Bar C Bubble C Bump C Scatter P Line C Timeline Map
N + E N + E N + N + E N + N + E N + T T + E N + Eg

N + C N + C N + N + T T + Eg

N + T Cg

N + B

Table 6.12: Data type to imagined visualization mappings that occurred at least
2 times in the 79 annotated query / imagined visualization type pairs (excluding
tables). Data types: Numerical (N); Categorical (C), includes nominal attributes
and list attributes; Bins (B); Entity (E); Year (T). Maps always had geographical
attributes (marked as g).

Maps and scatter plots were typically mentioned in combination with an explicit

definition of at least some visual mappings (> 65% per visualization type). There

was no significant interaction between the degree of customization and the interest in

the data set (p=.0218) or the data set (p=.0128) at the .01 level.

To learn more about how the imagined visualizations related to the queries, I

qualitatively analyzed all 79 imagined visualization type / annotated query pairs10.

I first looked at whether the imagined visualization type would support the data

types that the participant specified in the query. The visualizations that the

participants had in mind supported the data that was specified in their

queries for 92.5% of the pairs. In the 6 cases where visualization did not support

the data, the participants specified either too little (e.g. just a nominal attribute for a

bar chart) or too much data attributes to be displayed. Two participants also specified

that they wanted to see rankings in bubble charts, which is not well supported by

this type of visualization.

The data types that the participants typically specified for the different imagined

visualizations are listed in Table 6.12 (RQ 3.10). The participants often used

simple heuristics: time related data was shown on timelines and lines charts; ge-

ographically related data was shown on maps; single numerical attributes related to

categories were shown on bar and bubble charts; and several numerical attributes

related to categories were shown on bump charts and scatter plots. In addition, the

participants often assumed that the entity type that was represented by a data

entity (e.g. country, World Cup, Academy Award) was implicitly used whenever

10There are just 79 of those pairs, because only valid visualization queries, i.e. those that could
be answered with the available data, were annotated.
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it was appropriate. For example, showing the “top 10 average life expectancies”

in a bar chart implied that the bars should represent countries, the underlying data

entity.

Out of the 79 analyzed pairs, only 15 annotated queries contained a visualiza-

tion type (19%). This means that while they had a visualization type in mind, the

participants did not explicitly specify the visualization type about 81% of

the time. Considering that they imagined different visualization types for similar

data specifications (Table 6.12), this means that the participants did not exactly

specify what visualization to produce. In addition, there were multiple cases

where the participants expected the visualization to provide more data beyond what

they had specified. For example, one participant imagined a box plot (which visual-

izes a five-number summary of a distribution) as a result for the query “show me the

average life expectancy in each country”. Thus, there was underspecification both in

terms of the visualization and in terms of the data that should be displayed.

6.2.9 Descriptions

Each participant entered a description of a bar chart, a timeline and a scatterplot

that corresponded to the data set that had been chosen by the participant. I analyzed

those descriptions to understand how similar such descriptions are to the queries that

the participants entered (RQ 3.11).

Since many descriptions were merely comments on the usefulness and the aesthet-

ics of the presented visualizations, I classified them into the 3 categories descriptions

of visual elements and data (135 descriptions), opinions on usefulness, understand-

ability, aesthetics, and meaning (79 descriptions), and both (11 descriptions). The

intercoder reliability was very strong (Cohen’s kappa .892, n = 225, 12 disagreements).

I excluded the 79 opinions from further analysis and removed the opinion parts from

the 11 other descriptions that contained them. For example, “impenetrable scatter”

was changed into “scatter”, and “strange plot of winner by year with the alphabet

on the y axis” was changed into “plot of winner by year with the alphabet on the y

axis”.

I qualitatively analyzed the queries. The only aspect that was coded by 2 coders

was if there were data and visualization parts in a description. However, the given

visualizations and 7-word guideline from the task description might have affected

the results from the qualitative analysis. The differences to visualization queries
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Data Set D V VD Total
Countries 46 7 24 77
Academy Awards 18 13 1 32
World Cup 31 6 37
Total 95 20 31 146

Table 6.13: Data and visualization information in visualization descriptions by data
set. D = data only, V = visualization type or part only, VD = both data and
visualization element or type.

were the syntactic types of descriptions, which information was contained in the

descriptions, and the occurrence of concrete data value descriptions. However, there

were similarities between visualization queries and descriptions at a lower level,

i.e. the basic terms and syntactic structures used in them.

In terms of their syntactic type, most descriptions were fragments (e.g. “scatter

plot of pop vs life expectancy”) and keyword enumerations (e.g. “single bar country

subset land”), and a few descriptions were formulated as questions (e.g. “how is life

expectancy related to population size”) and full sentences (e.g. “it shows the national

population relative to the life expectancy at birth”). Obviously, descriptions were not

written as commands. However, several full sentences resemble commands, i.e. by

replacing for example “show me” with “it shows”, a command query can be reworded

as a descriptive sentence.

The information in descriptions was less complete than the information in queries,

i.e. it would often not have been possible to reproduce the same visualization or a

visualization that shows the same data from the description alone. Overall, only 94

out of the 146 descriptions described the data in the visualization well enough to

achieve such a reproduction. For example, many descriptions only considered the

visual elements, something that had not occurred in the visualization queries.

To investigate this further, the descriptions were classified into data, visualiza-

tion, and visualization/data descriptions. The intercoder agreement was very strong

(Cohen’s kappa .922, n=146, 6 disagreements). 86.3 % of the descriptions contained

at least one data attribute or concept, and 34.9 % of the description contained vi-

sual elements or types (Table 6.13). There was a significant interaction between the

data and visualization features of the descriptions and the data set (p < .0001) with

a medium effect size (ϕc = .346, df ∗ = 2, Table 6.13). Participants who had cho-

sen the Academy Awards data set entered more purely visual descriptions, whereas
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Bar chart Scatter plot Timeline
bar chart x 8 scatter plot x 5 timeline x 9
bar graph x 4 scattergram x 2 time diagram
histogram scatter x 2 time plot
column chart bubblechart 2-way historical chart
bar diagram two polegraph scatter plot over time
line graph plot scattergram
table diagram placemat

plot x 2
graph

Table 6.14: Terms the participants used to refer to the visualization type of the
graphic that they were asked to describe.

those who had chosen the World Cup data set entered more descriptions that only

described the data. There was no significant interaction between the visualization

type and the data and visualization features (p = .983). Besides the descriptions

that only considered the visual elements, there were also descriptions that focused on

particular findings in the visualization, while at the same time describing the data

attributes in the graphic. For example, “best picture in 2000 = most viewers” is such

a concrete finding that at the same time outlines the main dimensions of the graphic

(best pictures, years, number of viewers).

Visualization descriptions were similar to visualization queries when it comes to

the terms and basic syntactic structures that were employed. For example,

connecting terms like “vs” and visualization terms such as “bar chart” and “x-axis”

were used similarly. In the same way, constructs such as “relationship between [data

attribute A] and [data attribute B]” were used in both visualization queries and

descriptions.

The participants used a wide variety of terms to refer to the visualization

type (Table 6.14). The most commonly used terms are the well-known labels for these

three visualizations and synonyms that recombine the basic element with a different

generic term (“bar graph”, “time diagram”). However, the participants also used

terms of closely related visualizations (“histogram”, “bubblechart”), of unrelated vi-

sualizations (“line graph” for bar chart), idiosyncratic terminology (“two polegraph”,

“placement”), and generic visualization terms (“plot”, “diagram”, “graph”).
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6.2.10 Summary

I have described the method and the findings from a survey study on natural lan-

guage visualization queries. The data was analyzed at the participant, query, token,

imagined display and description levels to gain insight into the nature of visualiza-

tion queries. In the next section, I summarize related empirical studies on natural

language specifications, and in Section 6.4 I present a model of natural language

visualization queries based on my findings and the related work.

6.3 Related Work

Several studies have empirically investigated natural language specifications [68, 110,

111, 124, 125]. I summarize those findings ordered by their year of publication.

Heer and Stone created a probabilistic color naming model with 153 distinct color

names based on a survey dataset containing over 3 million color name / color pairs

and over 100,000 unique color name responses [68]. They found that there was a

long tail of color name responses, that there was considerable overlap and

naming confusion in the colors indicated by the 153 color names, and that

the areas of the CIE L*a*b* color model with less naming confusion correspond

to the basic color terms identified by Berlin and Kay (black, white, red, green,

yellow, blue, brown, purple, pink, orange, and grey [11]).

Metoyer et al. conducted a study in which a describer explains a visualization over

the phone to an interpreter, who tries to recreate that visualization [110]. In their

study, there were 10 describer-interpreter pairs who completed 8 visualization tasks

each. They found that the participants avoided specific units and used relative

terms that referred to existing elements instead (e.g. “. . . blue bar is on the

x-axis. . . ”) to describe the visualizations, and that whitespace was treated as an

object. The descriptions were often ambiguous. Metoyer et al. suspect that

this is because the describers used semantic concepts such as chart types that

both the describers and the interpreters are aware of. Pairs that used such “semantics

[. . . ] produced the most concise descriptions” and reproduced the visualization more

successfully. However, one pair used almost no semantics, but many units, with above-

average success and completion time, which indicates that there might be different

specification styles.

Park et al. conducted a lab study in which they asked 10 designers and 6 pro-



101

grammers to describe interactions and graphical responses that were displayed on the

screen [125]. They found that there was “significant commonality [. . . ] in terms

of the verbs, syntax and structure [. . . ]”. However, expertise has an influ-

ence on the used terminology and on the verbosity of the descriptions. The

designers, who had more expertise with visual concepts, used very similar names for

some concepts, whereas the programmers used “more varied language”. Also, par-

ticipants used metaphors and examples when they did not know more concise terms.

Park et al. also found that the attributes of objects were often not mentioned

if they could be inferred, e.g. a concrete color name would indicate that the color

attribute was affected.

Pane et al. conducted two studies (first study with 14 fifth-graders, second study

with 19 adults) that investigate how non-programmers express solutions for program-

ming tasks [124]. Among other things, they found that mathematical operations

were preferably expressed using natural language and only seldom using math-

ematical notation. Similarly, intervals were mostly expressed using natural

language (e.g. using terms such as “above, from [. . . ] to”). However, there was in-

consistency in whether those terms were intended to be inclusive or exclusive. Sort-

ing was commonly expressed using concept keywords (e.g. “alphabetical”)

and range expressions (e.g. “from highest to smallest”). Pane et al. also found

that participants avoided writing complex boolean conditionals, that there

were only few uses of negation, and that set operations were expressed as

aggregates (and not using loop / iteration).

Miller conducted a study in which 14 undergraduate students were asked to

write detailed instruction procedures for 6 human resources data processing prob-

lems (e.g. listing employees according to certain criteria) [111]. He found that the

provided solutions were intended for other people and, thus, contained terms that

require semantic understanding and world knowledge. For example, the par-

ticipants typically only specified the attribute value when the attribute could

be inferred. Set operations were specified on an aggregate level. The syntax

was extremely variable and could be complex. Most sentences were written

in an imperative style, and some were declarative or conditional. Miller also found

that the participants used a rich and large vocabulary. However, there was a long

tail of word usage: the size of the lexicon could have been cut into half leaving the

96% of the sentences intact.

In the next section, I integrate the related work presented here with the findings



102

from my two studies (Chapter 5, Section 6.2) and with English linguistics (Appendix

F) to come up with a descriptive model of natural language visualization queries.

6.4 A Model of Natural Language Visualization

Queries

Natural language visualization queries are a distinct form of expression with a specific

use of vocabulary, syntax and semantics. In this section, I summarize the findings

from my two studies and related work in a Type I theory (Theory for analysis, says

“what is” [57]). While it does not have explanatory or predictive power, this theory

provides a foundation for further research on natural language visualization queries

and can be used to inform the design of natural language visualization construction

user interfaces.

6.4.1 Vocabulary

A rich vocabulary is employed in natural language visualization queries. There

are many synonyms for the different visualization types and intentions (Chapter 5,

Sections 6.2.7, 6.2.9), as well as for the color names [68]. This is similar to the

degree of terminology variation that was observed by Miller for natural language

descriptions of data processing problems [111]. The frequency of term usage

resembles a Pareto distribution. Again, this was found for color names [68] and

visualization types (Section 6.2.9). Additionally, Miller observed that reducing the

size of the lexicon by 50% leaves the 95% of the natural language data processing

instructions intact [111], implying a similar distribution. This distribution is not

surprising because the distribution of words in English follows Zipf’s law [179], which

is just another way of looking at the same phenomenon as a Pareto distribution [1].

The frequent (salient) terms are clearly defined. There is little naming

confusion for basic color terms [68], and frequently used visualization terms such as

“bar chart” and “timeline” are also clearly defined (Section 6.2.9). However, there is

also considerable overlap between terms. For example, the colors that different

color names refer to do often overlap [68]. Similarly, there was overlap between what

counts as a timeline and what counts as a scatter plot (Section 6.2.9). The overlap

effect goes beyond synonyms, because the terms do not refer the same entity, but

there is an intersection in what they refer to. Interestingly, expertise reduces
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this variation of terminology. For example, designers in the study by Park et

al. described certain concepts with very similar words, e.g. “fade in/out” [125].

Salient terms with clear definitions, overlap between terms and the effect of ex-

pertise can be explained by how we learn, identify and use concepts [133]. We learn

to identify concepts by first associating them with specific exemplars, which are then

generalized into prototypes. Together, exemplar- and prototype-based reasoning are

a heuristic in which we identify objects using their superficial concept resemblance.

The usage of the heuristic is guided by our belief networks, which help us identify

the relevant aspects of a concept. Thus, as we learn more about a category, both

our beliefs and our prototypes and exemplars are increasingly accurate, whereas they

can be too broad or too narrow in early stages of learning. In addition, the degree of

knowledge of a word (which ranges from “never encountered” to being “fluent with

the word) varies by person and word [178].

The word and concept knowledge of every speaker is different, because it stems

from different experiences, but also similar, because words and concepts are used for

communication and refer to similar ideas and entities. Thus there is a large degree

of overlap in the (subjective) meaning of different concepts across a population of

speakers. This explains the overlap in color names and visualization terms. Then,

as speakers learn more about a concept, it is likely that their definition more closely

resembles a commonly accepted definition of this concept, which explains the effect

of expertise. Finally, this learning effect is, of course, more prevalent for common

concepts, since one gets exposed to them more often, which explains why salient terms

are well defined. Therefore, common visualization types (e.g. bar charts, maps), colors

and operators (e.g. sum) are much more consistently used compared to less known

ones.

6.4.2 Syntactic Style and Query Length

Natural language visualization queries exhibit a considerable variation in the

syntactic style and in the amount of syntactic structure. About half the

queries were fragments (i.e. queries with some syntactic structure that are not full

sentences), about a quarter were questions, and about one eighth were commands

(imperative sentences) and keyword enumerations (Section 6.2.4). This is in contrast

to natural language descriptions of data processing instructions, which mostly have

an imperative style [111], and in contrast to regular English sentences, which can be
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modelled and parsed using context-free grammars (Appendix F.2). An implication

of this difference in the amount of syntactic structure is that the semantic compo-

sitionality principle (Appendix F.3) is not always applicable. Not every aspect

in the assembly of the parts of the sentence is necessarily meaningful. In the extreme

case, i.e. keyword based queries, the order of the parts can even be irrelevant.

Natural language visualization queries are considerably longer than search

engine queries (Section 6.2.3). They are on average 6.6 tokens long (Figure 6.1),

whereas search engine queries are between 1 and 3 words long [61]. This is caused

by the difference in syntactic style between natural language visualization queries

and search engine queries. Fragments, questions, and commands are much longer

than keyword enumerations (Figure 6.2), and search engine queries are mostly using

keywords [61].

6.4.3 Semantics and World Knowledge

Interpreting natural language visualization queries requires semantic and

world knowledge [110] (Sections 6.2.5, 6.2.7), similar to natural language process

description [111]. Applying this knowledge is required for understanding the meaning

of what has been written and for inferring essential information that has been left

out.

The terms in the query stem from data-independent semantic domains

such as the (overlapping) domains of visualization, of data analysis, and of spa-

tial and temporal concepts, and data-dependent semantic domains such as the

World Cup, soccer and tournament domains (Section 6.2.7). The use of terms from

data-dependent domains falls into four classes of semantic distance: matched terms,

synonyms, related semantic concepts, and external data (Section 6.2.5). It is likely

that users are not consciously aware of the terminology that is used in the

data set or of the boundaries of the available data (Section 4.3.2). However,

from a computational perspective, each step beyond matching the terms in the data

adds a challenge, for example finding and integrating external data or incorporating

concept networks with attached meanings. Interestingly, commands were much

more likely to contain only matched terms or synonyms (Section 6.2.5), but

further research is required to confirm this relationship.

In addition to understanding the semantics of the terms in the query themselves,

it is also essential to infer information that has been omitted from the queries.
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For example, when concrete attribute values are specified, the attributes themselves

are often left out [111, 125] (Section 4.2.4), because they can be inferred from the

value by using world knowledge about the value, e.g. leveraging that “Canada” is

a “country”. Similarly, visual mappings, aggregate operations, data attributes for

concepts, and abstraction levels for time are often omitted (Section 4.2.4).

There are two explanations for this behavior. First, partial specification might be

caused by a desire to keep communication efficient. Information that can be

readily inferred from the context (pragmatics) or from world knowledge (semantics)

would just add unnecessary details to a sentence that is already clear, and the in-

formation content of those details would be low. Thus, to keep the communication

efficient, details with low information content would be left out. Second, the mental

models might not be precise enough and, thus, users might not be consciously

aware that those details exist and can be specified.

6.4.4 Visualization Type Expectations and Choices

Most people have visualizations in mind when formulating visualization queries

(Section 6.2.8). However, the visualization is usually not specified in the nat-

ural language visualization query (Section 6.2.6). There are several possible reasons

for this. It might be that users think that the imagined visualizations are obvious

given the rest of the query, or that the users lack the words to clearly describe the

visualization, or that the expression effort is too high, or that they are just not aware

of the possibility. The imagined visualizations are mostly described on the level of

the visualization type and visual mappings are rarely mentioned (Section 6.2.8) and

different terms are used for the same visualization types (Section 6.2.9). This sup-

ports the hypothesis that information visualization novices lack the terms to

clearly describe the visualizations they have in mind, and that, therefore, the

effort to include visualization types or mappings in the natural language visualization

queries is too high.

Information visualization novices strongly prefer familiar visualization types

(Section 4.2.5). Beyond this general preference, the expected visualizations can

be described by simple heuristics (Table 6.15). However, these general heuristics

describe the expectations of information visualization novices, and different users

might know additional visualization types and expect different results.



106

1 N + * C Bar Chart, Bubble Chart
1 N + 1 C (whole-part) Pie Chart
2 N + * C Scatter Plot, Bump Chart
1 T + * N Line Chart
1 T + * C Timeline
1 G + * N/C Map

Table 6.15: Heuristics describing the expected visualizations [Section 6.2.8, Section
4.2.5]. Data types: Numerical (N), Categorical (C), Time (T), Geo (G).

6.4.5 Types of Query Elements

Query elements are parts of the query, i.e. words and phrases, that belong together

and are reused in different queries. For example, the phrase “how many”, which

indicates a count operation, is used in different queries. There are four types of

such elements in natural language visualization queries: data-set specific terms, data

manipulation terms, visualization terms, and intention terms.

Data-set specific terms reference parts of the data set or concepts related to

it. This includes data attributes (Chapter 5, Section 6.2.6), data values (Chapter 5),

and domain-related concepts such as units (Chapter 5, Section 6.2.7). Information

visualization novices do not explicitly distinguish between these types of data-specific

terms when referring to parts of the data set (Section 4.3.2). However, they are aware

of the concrete semantic relationships between the different terms in a particular

domain (Section 4.3.2).

Data manipulation terms represent procedures that should be applied to the

data set in order to produce the desired output. They provide the context for the

data-specific terms. Information visualization novices use filter terms (e.g. “for”)

(Chapter 5, Section 6.2.7), grouping terms (e.g. “by”) (Chapter 5, Section 6.2.7),

operation term (e.g. “sum of”) (Chapter 5, Section 6.2.7), and order terms (e.g. “sort

by”) (Section 6.2.7). Data manipulation terms are well-known elements of query

languages. For example, SQL contains filters (WHERE), groupings (GROUP BY),

operations (e.g. SUM), and order expression (ORDER BY).

Visualization terms represent concepts from the graphical domain. They in-

clude visualization types (e.g. “bar chart”) (Chapter 5, Section 6.2.9), visual elements

(e.g. “x-axis”) (Chapter 5), visual properties (e.g. “color”) (Chapter 5), and visual

mapping expresion (e.g. “is on the”) [110](Chapter 5). Information visualization

novices distinguish between those elements and can assemble composite structures
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(Section 4.3.2). However, visualization types are by far the most prevalent type of

visualization term in natural language visualization queries.

Intention terms, e.g. “compare”, refer to the goals of the user (Chapter 5,

Section 6.2.7). They indicate what the user plans to do with the results of the natural

language visualization query, and are, thus, very different from data- or visualization-

related terms.

This model of query element types has many commonalities with established mod-

els such as SQL [22] and VizQL [156], which is to be expected, because many of query

elements are essential to data manipulation. However, this model is a description of

the different parts of natural language visualization queries and not a technical query

language or algebra with defined semantics. It contains several elements that are

not part of the aforementioned query languages: the use of domain-specific concepts,

visualization types11, and intentions. These additional elements could potentially be

incorporated in well-defined query languages such as SQL.

6.5 Summary

To extend our understanding of natural language visualization queries beyond the ini-

tial exploration that was presented in Chapter 5, I analyzed the queries, descriptions

and imagined visualizations that participants entered in an online survey. Based on

my previous research, on the findings from this survey, and on related work, I derived

a theory for the analysis of natural language visualization queries. This theory de-

scribes various aspects of such queries including the vocabulary, the syntactic style,

the query length, the use of semantics and world knowledge, the visualization type

expectations and choices, and the query elements.

The models presented in this chapter and in Chapter 4 describe how information

visualization novices construct visualizations and what the characteristics of natural

language visualization queries are. However, they do not provide practical advice

on how to create or evaluate visualization construction tools. In the next chapter, I

present practical guidelines of how tools can provide better visualization construction

support. These guidelines are based on the models and on related work.

11VizQL is concerned with visual properties, visual elements and mappings from data into visual
form.
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Chapter 7

Design Guidelines for Visualization

Construction Tools

Visualization construction is challenging for information visualization novices. They

encounter data selection, visual mapping and interpretation barriers, their mental

models of visualization construction are inaccurate, and they only use a limited num-

ber of visualizations (Chapter 4). In addition, natural language visualization queries

have specific characteristics that can be leveraged (Chapter 6). This is an oppor-

tunity to create tools that support information visualization novices in visualization

construction by addressing these challenges. In this chapter, I derive a set of guide-

lines for such tool support. The research question is:

RQ4 How can tools support information visualization novices in construct-

ing visualizations?

I combined the tool guidelines proposed in related work on visualization construc-

tion [37, 58, 69, 99] and visualization tools [39, 148] with additional guidelines that

were derived from the findings and models presented in Chapter 41, and from the

model of natural language visualization queries presented in Chapter 6. I have cate-

gorized the guidelines into four major areas: reducing the need for decision making

(Section 7.1), supporting the user’s workflow (Section 7.2), matching the user’s men-

tal model (Section 7.3) and helping the user to learn (Section 7.4). These categories

are not strictly separate, but overlap and reinforce each other. For example, support

1These additional guidelines have been published as part of the InfoVis 2010 paper on Chapter
4 [53]



109

the users’ workflow by providing tools that are flexible and allow for rapid iterations

also facilitates learning.

7.1 Reducing the Need for Decision Making

The more decisions required to construct a visualization, the harder it will be for in-

formation visualization novices, because each decision takes effort and is a potential

obstacle, especially when starting to learn a new visualization system. Therefore, it is

important to reduce the number of required decisions during visualization construc-

tion as much as possible — in other words, “to constrain the parameter space that

users have to explore” [69].

Reducing the number of decisions might imply limiting the users, as there may be

“an apparent fundamental tradeoff between flexibility and accessibility in visual anal-

ysis, in that increased expressiveness necessitates greater expertise when it comes to

[. . . ] visual representation” [69]. However, in terms of user interface design, reducing

the number of required decisions does not necessarily mean reducing the user involve-

ment or the number of configuration options. The user is often kept in the loop by

making a few high-level decisions, such as choosing a visualization template or picking

one of several automatically generated visualizations, instead of many small detailed

decisions. Also, the different configuration options could still be available, but they

could be less accessible and default settings could be used if the user does not specify

them. There could also be a “gentle slope” of different degrees of accessibility, with

sophisticated options that require visualization expertise being less accessible than

basic options [105].

Reducing the need for decision making is particularly relevant for the initial vi-

sualization construction, which can serve as a base for further refinement. Elias and

Bezerianos have observed that information visualization novices use “basic charts

with measures they thought important [. . . ] as a starting point for customizing and

refining to answer different questions” [37]. Similarly, Heer et al. found that all sub-

jects in their user study of the Prefuse toolkit “at least initially used a ‘cut and paste’

method [. . . ], reusing existing sample code while performing tasks” [67]. While the

latter is related to the idea of scaffolding in learning — that is, providing support

to enable a student to achieve a goal while facilitating learning how to achieve the

goal without this support in the future [60] — the sample code or examples can be

regarded as basic visualizations that are then adapted.
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When the user is not required to make certain decisions during visualization con-

struction, these decisions must be made by somebody else. Either the decision making

process or the results of the decisions are built into the tool by the tool designer (built-

in visualization design), or other users make the decisions (collaborative visualization

design). Both approaches allow these decisions to be customized for the user’s sce-

nario to varying degrees.

7.1.1 Built-in Visualization Design Support

There are several ways of building visualization decisions into tools: by choosing useful

default values [69], by providing visual templates [37], by incorporating automatic

visualization [37, 69, 99] and by visualization optimization [99]. While they primarily

address the visual mapping barrier (Section 4.3.1), defaults and templates could also

be used to provide default data attributes (e.g. for temporal or spatial dimensions) or

related sets of data attributes (e.g. those used for common analyses) to address the

data selection barrier (Section 4.3.1).

The tool can provide default values for different visualization settings such as

scales, colors, and size [69]. These are often fixed or based on simple heuristics

(e.g. choosing a color mapping based on whether the data is nominal or quantita-

tive), and thus, typically not tailored to the user’s scenario. If an intermediate level

of flexibility is required, the tool could offer the user several different predefined set-

tings to choose from, e.g. several predefined color palettes, in addition to selecting

a default palette and to letting the user assign colors manually. Default values are

important because users often leave out information (Sections 4.2.4, 6.4.4). Provid-

ing defaults and predefined settings can also facilitate learning by educating the user

about sensible choices [69]. Due to the limited tailoring to the user’s data analysis

scenario, default values work best when there are established best practices for a

certain setting that can be applied to a large set of visualizations.

Visual templates, e.g. bar charts, are used heavily by information visualization

novices during visualization construction (Section 4.2.1), are the main visualization-

specific element used in natural language visualization queries (Chapters 5, 6), and

are potentially elements of their mental model of visualization construction (Section

4.3.2). They encapsulate a flexible layout of visual primitives, e.g. lines, rectangles or

circles, and supporting visual elements, e.g. grids, axes, and labels. Visual templates

can be implemented in tools and offered to the user as choices, e.g. as in the chart
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creation wizards of typical spreadsheet software. This allows the user to choose a

visualization template that fits his current needs, although there is the risk that the

user chooses an ineffective visualization (Section 4.3.3). Visual templates and default

values are often complementary, e.g. the color palette and the line widths in a pie

chart template could be determined by defaults. Similarly, visual templates can be

combined with automatic visualization heuristics, which can, for example, sort and

filter templates [37, 104].

Automatic visualization helps users with designing visual mappings, which is

difficult for information visualization novices (Section 4.3.1). Their lack of visualiza-

tion knowledge can lead to the construction of non-optimal visualizations (Section

4.3.3), and users often don’t specify the visualization they want to see, despite having

expectations that can be modeled by heuristics (Section 6.4.4). However, they can

express which data attributes they want to look at and how those relate, how they

want to split, filter and sort the data set, and what operations to apply with less

effort and difficulty (Sections 4.2, 6.4.5, Chapter 5). Tool support that suggests or

even selects visualizations could help users to surmount the visual mapping barrier

[37, 69, 99]. It can provide a high degree of customization towards the user’s scenario

by taking data structure and distribution, semantic meta-data, presentation goal and

other information into account.

Visualization suggestions could be displayed both after the user described what

data s/he wants to look at and in the context of the current visualization, like the

‘Show Me’ approach [104]. The former would help the user create visualizations from

scratch, while the latter would help with refinement. I believe that the suggestions

should be thumbnail previews based on the data selected by the user, because this

would help them to evaluate the usefulness of suggestions in the context of the chosen

data. Previews could be displayed using a gallery-based approach [49, 106], enabling

easy comparison of alternatives. This could help the users to familiarize themselves

with alternate visualizations which might represent the data in a more useful way,

and, thus, address the problem that users prefer visualizations they are familiar with,

even though they may be less effective.

Suggestions could be generated by the algorithms from research on automatic

visualization (Section 2.2.2) or leveraging visualization type expectation heuristics

(Section 6.4.4). Based on the findings from my studies (Sections 4.2, 6.2, Chapter

5), I believe that, in addition to the actual data attributes, both semantic meta-

information and the presentation goal should be used to guide the automated vi-
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sualization algorithms. Semantic meta-information includes attribute types as well

as connections between the data attributes. For example, if there are meta-data

that state how three hockey stats are related ‘points = assists + goals, goals ≥ 0,

assists ≥ 0’, and the user wants to visualize those three data attributes for several

players, the system can use this information to show a stacked bar chart instead of a

simple bar chart with one bar per data attribute. Knowing the presentation goal is

essential in order to create visualizations that support the user in successfully ana-

lyzing data. While several automatic visualization algorithms take this into account

(e.g. [20, 143]), the goal remains hard to elicit [104]. One possible approach is to

monitor the user’s behavior [50]. I observed that users sometimes stated goals such

as ‘compare” (Section 4.2), and that they often seemed to have an intuitive under-

standing of how well a visualization supports them in reaching their goal. This could

be leveraged to elicit the presentation goal, for example by presenting them a gallery

of visualizations that are tuned towards different goals, and letting them pick what

they think best supports their task.

Mackinlay et al. report positive user feedback on the Show Me functionality in

Tableau, particularly for novice users and for learning purposes [104]. However,

the usage logs that they collected indicate that automatic visualization functionality

which involves selecting multiple data attributes to either automatically create a

visualization or to show a set of automatically generated alternatives was only used

modestly (5.6%) by skilled users [104]. Similarly, for their study of a dashboard

construction tool with 8 novice and 7 expert users, Elias and Bezerianos reported

that only novice users experimented with alternative chart recommendations and two

of them learned new visualization this way [37]. While only information visualization

novices experimented with different alternatives, all participants said the tool, which

used the visual template feature combined with automatic visualization heuristics,

helped them “create appropriate charts fast” [37]. Novice users also rated their tool

significantly higher than expert users in terms of functionality (6 vs. 4 on a 7 point

Likert scale) and satisfaction (6.5 vs. 5 on a 7 point Likert scale). While it is not clear

if and how the visualiation suggestion feature has contributed to this, I believe that

the combined evidence of Mackinlay et al.’s collected feedback [104], the observations

and ratings of novice users in Elias and Bezerianos study [37], and the observations

from my exploratory user study (Chapter 4) indicate that visualization suggestions

are indeed a useful support for information visualization novices.

Besides fully designing the visualizations using automatic visualization, it is also
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possible to optimize visualizations that the user selected or designed. This can

reduce difficulties with interpreting the visualizations [99] (interpretation barrier, Sec-

tion 4.3.1). High visual complexity and ineffective scaling in particular were frequent

problems during interpretation that can be addressed by optimizations. By analyzing

the available screen real-estate and the data distribution, automatically generated vi-

sualizations can be improved on two levels: by choosing visualization types that work

best for the given screen real-estate and number of data points, and by optimizing the

visualizations using techniques such as clutter reduction [38] or banking lines to 45◦

[64]. Optimizing visualizations is more customized towards the user’s scenario than

defaults, because the techniques take the data into account and are often specialized

for certain visualization types. It complements other tool support techniques such as

automatic visualization, visualization templates or default values.

With built-in visualization design support, the visualization decisions are effec-

tively delegated to the tool designers, who have encoded their decisions or decision

making patterns into the tool. Such support can only work well within the scenarios

that the designers imagined and constructed the tool for, and the user still needs to

enter some information and make some decisions for this kind of support to work well.

Another means to achieve support in these situations is to get help from co-workers

or experts, which I will discuss next.

7.1.2 Collaborative Visualization Design

Collaborating with other users can also help information visualization novices in con-

structing visualizations [69, 99]. For example, savvy users can “train or guide novice

users” [69] and create visualizations that can be used by novice users [69, 99]. Such

collaboration between end users (novices) and local experts (savvy users) is common

in end user development [116]. It can be in the form of novices using visualiza-

tions or visualization templates created by savvy users in advance, or in the form

of situation-specific help by savvy users, e.g. by answering questions or giving ad-

vice. Collaborative visualization design support is more tailored towards the user’s

scenario than built-in tool support, because local experts can flexibly take this into

account. Thus, it can be of help when built-in support is too generic, and typically

complements the tool functionality.

While reducing the need to make visualization design decisions simplifies creating

visualizations, it is important that such support is embedded in the user’s workflow,



114

as I will discuss next.

7.2 Supporting the User’s Workflow

Visualization construction does not stand on its own — it is a small step in the larger

context of data analysis and sensemaking. The users’ workflows and strategies are

aimed at higher-level goals, for example Kang et al. observed four distinct strategies

in investigative analysis [85]. It is, therefore, important to both consider how the

exploratory visualization construction workflow itself should be supported (Section

7.2.1), and how it should be embedded into the larger analytical context (Section

7.2.2).

7.2.1 Supporting the Visualization Construction Process

I observed that information visualization novices construct visualization through a

series of exploratory refinements, often without a specific ordering of the single steps

(Section 4.2.1). This can be regarded as a search for a visualization that is good

enough to support the user in reaching his/her goal. This is particularly important

for information visualization novices who try out different visualization designs, in

contrast to more experienced users [37]. It should, thus, be easy for users to try out

different visualizations, and mistakes in their choices should not hamper them too

much. The key ideas in increasing the efficiency of this exploration process are mak-

ing visualization construction more flexible, shortening the visualization construction

feedback loop, reducing the likelihood of creating ineffective visualizations and reducing

the cost of creating ineffective visualizations. By implementing these ideas through

various techniques, tools can encourage the user to rapidly explore different visualiza-

tion configurations. This serves three purposes: finding an appropriate visualization,

seeing the data from different perspectives and gaining experience with the visualiza-

tions.

In order to make visualization construction more flexible, tools should not

prescribe in which order data attributes selection, visual template selection and visual

mapping specification should take place. It should also be possible to make many

small changes, such as adjusting colors or single visual mappings, and the user should

not be forced to prematurely commit to his choices, e.g. always going through a full

wizard although only minor tweaks are required.
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Shortening the visualization construction feedback loop means reducing

the time from when the user has an idea for creating or changing a visualization

to when s/he actually sees the changed visualization. Such rapid feedback in the

form of usable visualizations can help the users to stay immersed in the process of

visualization creation and exploration. The visualization construction feedback loop

can be shortened by reducing the time until the user has successfully changed the

visualization specification, and by reducing the time until this specification is actually

rendered2. Being able to rapidly create visualizations has also been recommended by

Heer et al. [69].

Several techniques can help to shorten the feedback loop. When a new visualiza-

tion is created that is not a refinement of previous visualizations, it is important to

overcome the data selection and visual mapping barriers (Section 4.3.1). This can be

achieved by choosing an input representation that is as close as possible to the mental

model of the user, e.g. by using natural language visualization queries (Chapters 5 and

6), and by leveraging automatic visualization tools to construct effective and expected

visualizations (Sections 2.2.2, 6.4.4). To enable rapid iteration, the visualization user

interface should be amodal [69], i.e. visualization design and usage should be merged

into a single user interface. Having separate design and usage modes, e.g. as in pro-

gramming, introduces a gap that increases the time until the user gets feedback on

his changes. This gap even exists if both modes are part of the same user interface,

but the user is required to explicitly switch between them. In addition to introducing

a gap, modes can be confusing, even if they are as simple as preventing changes to a

part of the visualization by locking it down [37]. The visualization should be updated

immediately after a specification change without requiring another action by the user

such as pressing a ’render’ button. If there are larger changes required, previews

should be displayed whenever possible.

When information visualization novices can freely explore different visualization

configurations, there is a certain risk that they will design visualizations that do not

support their tasks well (Section 4.3.3). This can be mitigated by helping them to

choose good visualization and by helping them to quickly reverse bad choices and

try out different visualizations instead. The likelihood of creating ineffective

visualizations can be reduced by guiding the user, for example by suggesting ap-

propriate visualizations and by reducing the number of visualization decisions s/he

2I will focus on means to reduce the time required to change the visualization specification.
Rendering the visualization is outside the scope of this thesis.
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has to make (Section 7.1.1), and by helping them in learning how to design good

visualizations (Section 7.4). The guidance can go as far as restricting the user by

making it impossible to construct ineffective visualization, for example when certain

heuristics (e.g. having less than 10 wedges in a pie chart) are violated. However, it

might often be better to allow the user to violate those rules, especially when there

might be exception, and to warn him/her about these potential problems.

When allowing for flexible visualization construction, reducing the cost of cre-

ating ineffective visualizations is important, because it is likely that information

visualization novices will explore different visualization options and need to correct

and adjust their choices [37]. Being able to make small changes to the visualiza-

tion quickly, as mentioned earlier, is an important aspect of this, but there are other

techniques as well. Undo/redo is an established user interface pattern that limits

the impact of mistakes. Elias and Bezerianos observed that it was often used as an

exploration strategy [37]. Providing extended history functionality such as graphi-

cal histories [63] and the ability to take snapshots of the current visualization [37]

could reduce the costs of making mistakes further, and thus motivate information

visualization novices to explore different visualization options.

Overall, the tool should encourage information visualization novices to explore

different visualization configurations rapidly. However, it is also important to consider

how visualization construction can be embedded into the overall visual data analysis

process.

7.2.2 Integration into Visual Data Analysis Workflows

Rapid visualization construction is only relevant and useful in the larger context of

visual data analysis. Therefore, I propose that it is important to embed tool support

for flexible visualization construction into tool support for visual analytics. Several

studies have found that visual data analysis workflows are flexible and that there are

individual differences [77, 85]. It is also reasonable to expect that open exploration

and question-driven exploration will often be intertwined [69], adding to the need

for flexibility. Making visualization construction itself flexible (Section 7.2.1) plays

a central role in facilitating dynamic data exploration, but is in itself not sufficient.

It is also important that it is seamlessly integrated (i.e. without modal breaks) with

other tool support for the visual data analysis process.

However, users employ different strategies such as ‘overview, filter and detail’
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or ‘find a clue, follow the trail’ in visual data analysis [85], which might require

strategy-specific tool support, and thus, specific additions and constraints to

support visualization construction in the context of that strategy. For example, the

strategy ‘overview, filter and detail’ identified by Kang et al. [85], which is similar to

the visual information-seeking mantra by Shneiderman: ‘overview first, zoom and fil-

ter, then details-on-demand’ [148], can be supported through specific user interfaces3.

For instance, hierarchical aggregation techniques for overview visualization [39] can

be combined with advanced drill-down functionality [58] to facilitate the ‘overview,

filter and detail’ exploration strategy. Guimarães et al. recommend allowing for “ag-

gregation hierarchy definition at runtime” and supporting “dynamic and interactive

aggregation” [58]. In this case, the visualization construction user interface needs

to be tailored to the constraints of creating hierarchical aggregations, e.g. by dy-

namically suggesting visualizations on drill-down while allowing the user to adjust

them. However, understanding how visualization construction user interfaces can be

adapted to such contexts is an open research question that is beyond the scope of

this thesis.

Besides integrating visualization construction tools into the support for the user’s

visual data analysis strategy, aspects such as data access, insight provenance

and result dissemination need to be considered as well. They connect the visual

data analysis — and thus visualization construction — to the organizational context

in which it takes place. In order to have applicable results which can be presented

to others (result dissemination), it needs to be clear how they were derived (insight

provenance) from the organization’s data repositories (data access).

Data access often happens as part of visualization construction (Section 4.2.1),

and making it as seamless as possible is thus crucial. The users need to be able to

access external data sources, e.g. spreadsheet files, as well as data sources that are

connected to the visual analysis system, e.g. the organization’s data warehouse, and

they need to integrate them when necessary. Importing spreadsheet files, for example,

can be made easy by supporting the import of tab delimited flat text files [69]. The

search for data attributes needs to be flexible and specific at the same time, which

represents a challenge. When searching connected data warehouses, including seman-

tic search functionality might be useful, as the users’ mental models might not match

the actual data model (Section 4.3.2). Another option is to consider the user’s current

3Many examples for different types of data are referenced in Shneiderman’s task by data type
taxonomy [148].
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analysis context and goals to direct, rank and prune data searches, which is similar

to decision making on behalf of the user (Section 7.1). Closely integrating connecting

to data repositories and searching for data into the visualization construction process

using such means can help information visualization novices to overcome the data

selection barrier (Section 4.3.1).

Insight provenance — “a historical record of the process and rationale by which

an insight is derived” [51] — is closely related to visualization construction. Each vi-

sualization that a user constructs can potentially contribute to the insights s/he gets

from the data and is thus relevant for insight provenance, even if the user quickly

changes this visualization. Extended history functionality, which facilitates exploring

different visualizations (Section 7.2.1), is an essential element of manual provenance.

For example, creating visualization snapshots and taking notes on them has been

implemented in several visualization construction tools for information visualization

novices [37, 165]. Besides a synergy between insight provenance and helping the

user to explore different visualizations, it can also be used to inform visualization

suggestion algorithms [50]. Thus, adding insight provenance facilities to a visualiza-

tion construction tool help with visualization construction, and making visualization

construction more dynamic and flexible helps with insight provenance.

The results of visual data analysis are often disseminated to others in various

forms, e.g. as presentations [128] or by sharing interactive visualizations online [165].

Sharing interactive visualizations lowers the barrier between analysis and commu-

nication and can facilitate collaboration [69] and collaborative visualization design

(Section 7.1.2). It is, therefore, important to integrate result dissemination into

visual analytics tools [69] and to provide ways of fine tuning visualizations for pre-

sentation purposes. For example, changing captions, axes labels, and color schemes,

adding explanation and highlighting parts of the visualization for story telling are

important at this stage and should be supported by the visualization construction

tool.

I consider a tight integration between visualization construction and other visual

data analysis activities to be very important to enable successful visual analytics for

information visualization novices, because the differences between activities might

not be apparent to them and they are likely to switch opportunistically between

activities. However, providing a user interface that fits well into the workflow of

information visualization novices is only one aspect of adapting to the user. It is also

important to consider their mental model of visualization construction in the design
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of the user interface, as I will discuss next.

7.3 Matching the User’s Mental Model

The mental model of visualization specification that information visualization novices

have (Sections 4.3.2, 6.4) does not accurately reflect how visualizations are algorith-

mically created. Whereas they understand the difference between the data/concept

space and the visual space as well as the need to create links between those two

spaces, information visualization novices leave out important details (Sections 4.2.4,

6.4.4) and are imprecise (Sections 6.4.1, 6.4.3). They don’t distinguish between data

attributes, values and abstract concepts, and they usually refer to composite visual

elements and visual templates. In order to allow visualization construction without

major upfront learning efforts, visualization construction tools need to compensate

for those inaccuracies in addition to supporting the user’s workflow (Section 7.2).

Reducing the need to make visualization decisions (Section 7.1) helps information

visualization novices to create visualizations even though their mental models of vi-

sualization construction do not contain all details required to create full visualization

specifications. On top of providing defaults, templates and automatic visualization,

using terminology known to the user, inferring visualization settings and providing

appropriate visualizations based on the user’s visual literacy can make up for the lim-

itations of the mental model information visualization novices have of visualization

construction.

Providing labels using terminology that is known to the user helps informa-

tion visualization novices, who are not familiar with tool-specific terms, to connect

what they already know to what is being displayed in the tool and thus contributes

to learning (Section 7.4) as well as to reducing the initial usage barrier. It has been

observed in several studies that idiosyncratic or unfamiliar terms can confuse and

slow down users [37, 67, 99, 120, 134]. While there is a large variability in terms that

different people use [48], the Pareto distribution of the terminology makes it possible

to choose salient terms in many cases (Section 6.4.1). In addition, one could show

synonyms and detailed information in popup windows to aid users in understanding

the main terms [37]. A caption generation system such as the one described in [112]

could be leveraged to create such descriptions. The two main parts of the unfamil-

iar terms problem are generating labels that explain the visualizations, e.g. legends,

and providing labels for the visualization construction user interface, e.g. template
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selectors.

Labels that explain the visualization connect data terms, which are often

known to the users, to visual elements, and help information visualization novices to

surmount the interpretation barrier (Section 4.3.1), i.e. bridge the gulf of evaluation

[118]. To explain how the data is mapped into the visualization, Heer et al. recom-

mend providing contextual information involving “legends, scales, labels, popup-ups,

titles and explanations of visualization mappings” [69]. A caption generation system

[112] could be leveraged to create such explanations and labels.

Labels for the visualization construction user interface help users execute

appropriate interactions [99] and, thus, surmount the data and visualization barriers

(Section 4.3.1), i.e. bridge the gulf of execution [118]. Because the space for labels is

often limited, detailed information about the functionality of a user interface element

can be provided on demand, e.g. in tooltips [37, 99]. The user’s terminology can also

be leveraged in interfaces that permit text or voice input by recognizing synonyms and

semantics. This can help to narrow the gulf of execution further. Another important

consideration regarding the terminology is localization [37]. Providing labels and

explanations in the local language of the user can assist them in understanding the

meaning of user interface elements and visual mappings.

Besides only knowing an idiosyncratic subset of relevant visualization terms (Sec-

tion 6.4.1), information visualization novices often omit parts when specifying visu-

alizations. Partial specification was a prevalent pattern in the exploratory user study

(Section 4.2.4) and in the online query survey (Sections 6.4.3, 6.4.4), and similarly

incomplete specifications were found for programming in natural language [111, 124].

Miller suggests that targeting people instead of computers as receivers of the in-

struction might be a cause [111]. However, Pane et al. found that imprecision and

underspecification also occur when users know the computer is receiving the instruc-

tions [124]. I believe partial specification in the context of visualization construction

happens for two main reasons: information visualization novices have simplistic men-

tal models of visualization specification, and therefore, do not consider certain aspects

(Section 4.3.2), and they omit elements that are implicit in the context or can be in-

ferred from other parts of the specification to keep communication efficient (Section

6.4.3). To allow information visualization novices to construct visualizations even if

they only partially specify them, visualization systems need to infer visualization

settings from partial specifications. Information visualization novices assume

that the settings from visualization templates and from their current analysis session
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are taken into account (Section 4.2.4). Visualization recommendations algorithms

(Section 7.1.1) can leverage this information to generate visualizations that are tai-

lored towards the user’s current context. Similarly, the structure of the data can be

used to infer data attributes from data values, and similarities in the structure of the

data and in the visual structure can be leveraged, for example by matching compo-

sition relationships (Section 4.2.4). In addition to that, choosing appropriate default

values for aggregation operators (e.g. sum, average) can help to create the visualiza-

tions information visualization novices expect in most cases. By flexibly dealing with

partial specification, the system could respond in a way that information visualiza-

tion novices perceive as intuitive, thereby increasing their efficiency in creating the

intended visualizations.

It is an open research question to what extent efficient understanding of a visual-

ization depends on pre-attentive processing and to what extent it depends on other

cognitive functions that are subject to automation via practice (Section 4.3.3). Fa-

miliarity with visualizations is likely to have a positive influence on the user’s ability

to work with them, and thus it might make sense to provide appropriate visu-

alizations based on the user’s visual literacy. Such a system could model the

user’s visual literacy, either by monitoring their choices or by letting them configure

the model. The visual literacy model could be used by visualization recommendation

algorithms to suggest visualizations that the user can understand easily, and help

them surmount the interpretation barrier (Section 4.3.1).

While supporting the user’s mental model lowers the barrier to constructing vi-

sualizations, information visualization novices need to increase their knowledge of

information visualization and the specific tool set to analyze data more efficiently.

7.4 Supporting Learning

Information visualization novices have only limited knowledge of visualization and

visualization construction by definition (Section 2.1.3). I assume that their experi-

ence with the visualization construction tool is also limited, since more experience

would lead to an increased knowledge of visualization and visualization construction.

However, such an understanding is essential to effectively create and interpret visu-

alizations. Therefore, I believe that it is not just important to enable information

visualization novices to create visualizations, but to support them in learning how to

construct, use and interpret visualizations.
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Research on learning to use software systems has found that novice users tend to

prefer task-driven, trial-and-error exploration [34, 135, 137] and collaboration [34, 87].

Novices only scan manuals and tutorials to gain an initial overview of the system

[135, 137]. The reasons might be time pressures in work settings [137] and “difficulties

to map from the current goal [. . . ] to a goal realisable in the current state of the

environment” [132]. While collaboration is a well-accepted learning approach [59,

157] that increases learning achievement and student satisfaction [59], undirected

exploration might not be effective, because “in so far as there is any evidence from

controlled studies, it almost uniformly supports direct, strong instructional guidance

rather than constructivist-based minimal guidance during the instruction of novice to

intermediate learners” [91]. Even learning approaches that are only partially directed,

such as exercises, are faster and less error prone than undirected exploration [174].

As Kay has summarized, “[novices] are inefficient and often aimless when engaging in

exploratory learning, have difficulty controlling their learning activities and knowing

where to search for answers, and scan or act upon information very quickly” [88].

Given this disparity between typical learning behavior of novices and what we

know about optimal learning behavior with regards to knowledge retention and trans-

fer speed, it is important to consider how tool support can integrate more systematic

learning approaches into the contextual, task-driven, exploratory learning strategies

that information visualization novices are likely to use. Three main learning themes

need to be distinguished in this context: learning to use and interpret visualizations

(Section 7.4.1), learning to choose visualization types and visual mappings (Section

7.4.2), and learning the user interface of the tool. The last theme is addressed by

general usability guidelines such as the ones proposed by Shneiderman [148] and is

not further discussed here, because it is not specific to visualization and visualization

construction. To aid users in learning to create and use visualizations, four strategies

seem to be promising: providing contextualized help on demand, linking to tutorials

that explain the concepts, providing context-sensitive suggestions, and supporting col-

laboration. In the next two sections, I will outline how these strategies relate to using

(Section 7.4.1) and to creating visualizations (Section 7.4.2).

7.4.1 Learning to Use and to Interpret Visualizations

Information visualization novices have only a limited knowledge of visualization types.

While they might be familiar with basic visualizations such as line charts, pie charts
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and bar charts (Section 4.3.3), it is unlikely that they know how to use more sophis-

ticated visualizations such as treemaps. The knowledge of how to use and interpret

visualizations is specific to each visualization type, although general visual literacy

can be helpful in learning new visualization types.

Providing contextual help that is embedded in the visualization, e.g. “legends,

scales, labels, pop-ups, titles and explanations of visual mappings” [69], can help the

user understand how his specific data is mapped into the visual form. However, if

information visualization novices do not know how to interpret a visualization yet,

they need further assistance. Since users prefer and work more effectively with con-

textual help [9], tutorials or general usage information that is contextualized by using

the data and the visual mappings from the current screen could be provided on de-

mand. The contents of such a contextualized help could also be trimmed down

to match what can be seen currently, and potentially even overlaid on top of the

default screen to help the user connect it to what she sees when working with the

software. The information shown in help tooltips, which contains interaction infor-

mation or concept descriptions depending on the underlying user interface element,

can be contextualized in a similar way [99].

The contextual help and tooltips can link to tutorials that explain how to

interact with and how to interpret a particular visualization type. Such tutorials

could provide an overview of all the options and interactions that are possible for a

particular visualization, e.g. using worked examples, which have been shown to be

an effective instructional method [91]. Similarly they could give examples that show

which patterns can typically be observed in the current visualization type, and how

to interpret them.

The system could also statistically analyze the underlying data of the visualization

and show information on prominent features it detects, for example outliers,

gap or trends. It could also point out strengths and weaknesses of the current visu-

alization, as well as potential interpretation problems. While this information will

most likely be obvious to experienced users, it could aid novice users in learning how

to interpret a particular type of visualization.

Collaboration with others can also support information visualization novices in

learning how to interpret and how to use particular visualization types. It is a learning

method that users are likely to choose [34, 87] and that increases learning achievement

and student satisfaction [59]. Considerations for creating collaborative visualiza-

tion systems [65, 76] in general apply here, especially for supporting settings in which
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groups of learners collaborate. However, the main consideration for supporting a sin-

gle learner is to provide collaborative features that can be used when she is stuck or

needs a second opinion. In this case, the collaboration is initiated by the user, is spe-

cific to a problem or a question, and is considerably shorter than the full visual data

analysis. This implies that integrating mechanisms to support synchronous and asyn-

chronous distributed collaboration — different place / same time and different place

/ different time in terms of Applegate’s place-time matrix [7] — is more important

than supporting co-located collaboration, e.g. asking coworkers in the same office, be-

cause this can easily be done without any tool support. Distributed collaboration

functionalities that address user-initiated, short term help seeking are for

example synchronous mechanisms such as screen sharing and chat or audio-chat and

asynchronous mechanisms such as Q&A websites and sample visualization reposito-

ries. Synchronous collaboration can be used to ask remote coworkers or experts for

help or for a second opinion without stopping the work on the current visualization.

Asynchronous features can be used to find answers to similar problems others had, to

ask questions if no immediate answer is required, and to find example interpretations

for similar visualization types.

Learning to use and to interpret specific visualization types is an important first

step in learning how to use a flexible visualization system. However, to leverage the

full potential of such a system, it is essential that information visualization novices

learn how to choose the best visualization types and visual mappings to effectively

and efficiently analyze their data.

7.4.2 Learning to Choose Visualization Types and Visual

Mappings

In order to choose the visualization type and the visual mappings that best sup-

port their current questions, data and personal preferences, information visualization

novices need to understand the different visualization options that are provided by the

tool and the trade-offs between them. A large aspect of understanding the visualiza-

tion options is being familiar with the different visualization types. Thus, learning

how to interact with the different visualization types and how to interpret them (Sec-

tion 7.4.1) is an essential part of learning to create visualizations, and tools should

entice users to try out and learn new visualizations. In addition to that,

information visualization novices need to understand which visualizations they
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should choose for which question and for which type of data, and how dif-

ferent configuration options impact their accuracy and efficiency in interpreting the

visualizations. Tools can facilitate learning how to create the most appropriate vi-

sualizations for their tasks by easing the exploration of visualizations, by suggesting

alternative visualizations and mappings, by explaining advantages and disadvantages

of specific visualization types and visual mappings, and by supporting collaborative

visualization design (which is covered in Section 7.1.2).

The visualization design process itself is iterative (Section 4.2.1) and novice users

prefer exploratory trial-and-error strategies for learning software systems [34, 135,

137]. Although this is not the most effective learning approach [91], it should be

well supported so that information visualization novices get the most out of this

typical default approach that they spent pursuing anyways. This can be achieved

by improving the support for the visualization construction process (Section 7.2.1),

i.e. by reducing the risk and increasing the speed of visualization design.

Information visualization novices are more likely to get exposed to a wider range of

visualization options if they can construct and change visualizations fast and without

fearing to make mistakes that cost them a lot of time.

Suggesting alternative visualizations and mappings (Section 7.1.1) can fur-

ther help information visualization novices to explore different visualizations, espe-

cially visualization types and mappings they are unfamiliar with. This can be used in

conjunction with user interface agents that “observe, track, and capture the [user’s]

mental model by the history of interaction and task failures” [99] to provide help if

the user fails to match the functionality of the tool to their expectations.

Helping users try out many different visualizations provides them with an idea of

the different visualizations that are possible. However, they also need to learn the

advantages and disadvantages of different visualization types and visual mappings.

Providing explanations of why certain visual mappings are used can enable infor-

mation visualization novices to make better visual mapping decisions in the future.

For example, the advantages and disadvantages of visual mappings and visualization

types can be included in description pop-ups, and reasons for their usage can be

given. When the system suggests visualizations or infers defaults, it should provide

explanations about why it has chosen those items and what their advantages and

disadvantages are. This will help users to decide which visualization to pick and

which inferred default they might want to change. Given the theoretical aspects that

influence the choice of visualization type and visual mapping, providing tutorials
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that explain the different theoretical concepts that are involved can help information

visualization novices in acquiring a more fundamental understanding of the trade-offs

between the different visualizations.

7.5 Summary

In this chapter, I have presented design guidelines for visualization construction tools

that are aimed at information visualization novices (Table 7.1). These guidelines are

based on empirical findings ([37, 94]; Chapters 4, 5, and 6) and on properties of the

underlying problem (Sections 2.1.2, 2.1.3). I have structured the guidelines into four

areas: reducing the need for decision making, supporting the user’s workflow, match-

ing the user’s mental model and supporting learning. In each of these areas, I have

identified several mechanisms that can guide the evaluation and the design of visu-

alization construction tools. In the next chapter, I use the Choosel, a programming

framework for web-based visualization applications that supports several visualiza-

tion types and their coordination, as an example to show how these guidelines can be

applied to visualization construction tools.
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• Reducing the Need for Decision Making (Section 7.1)

– Built-in Visualization Design Support (Section 7.1.1)

∗ Default values

∗ Visual templates

∗ Automatic visualization

∗ Visualization optimization

– Collaborative Visualization Design (Section 7.1.2)

• Supporting the User’s Workflow (Section 7.2)

– Supporting the Visualization Construction Process (Section 7.2.1)

∗ Flexibility

∗ Shorten the feedback loop

∗ Reduce the likelihood of creating ineffective visualizations

∗ Reduce the cost of creating ineffective visualizations

– Integration into Visual Data Analysis Workflow (Section 7.2.2)

∗ Strategy-specific Tool support

∗ Data access

∗ Insight provenance

∗ Result dissemination

• Matching the User’s Mental Model (Section 7.3)

∗ Using familiar terminology

∗ Labels that explain the visualization

∗ Labels for the visualization construction user interface

∗ Infer visualization settings from partial specifications

∗ Provide appropriate visualizations based on the user’s visual literacy

• Supporting Learning (Section 7.4)

– Learning to Use and to Interpret Visualizations (Section 7.4.1)

∗ Contextualized help

∗ Link to tutorials

∗ Show information on prominent features

∗ Collaborative visualization

∗ Distributed collaboration support for user-initiated, short-term help seeking

– Learning to choose visualization types and visual mappings (Section 7.4.2)

∗ Reducing the risk and increasing the speed of visualization design

∗ Suggesting alternative visualizations and mappings

∗ Providing explanations

∗ Tutorials that explain visualization concepts and trade-offs

– Learning tool usage (general usability guidelines)

Table 7.1: Summary of Design Guidelines for Supporting Visualization Construction
for Information Visualization Novices
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Chapter 8

Applying the Design Guidelines

The design guidelines for visualization construction tools (Chapter 7) synthesize the

results from my studies and from related research literature. To provide an example of

the usefulness of these guidelines in addition to their grounding in empirical studies,

I apply them to the user interface of the Choosel visualization framework, which was

developed by me in parallel to my studies.

First, I describe Choosel and the visualization applications that were built based

on Choosel (Section 8.1). Then, I show how the design guidelines are reflected in the

Choosel user interface and explain how it could be further improved (Section 8.2).

8.1 The Choosel Visualization Framework

Choosel [52] is a programming framework for web-based visualization applications

that was developed with information visualization novices in mind. It was extracted

from BioMixer1 [46, 166], a visualization workbench for exploring biomedical on-

tologies which I started developing in 2009. In addition to BioMixer, Choosel has

been used as the foundation for two other visualization workbenches (the WorkIte-

mExplorer [161] and an example mashup workbench2 [52]) and for two interactive

infographics (a coordinated map, timeline and bar chart visualization of historical

earthquakes3; and a treemap of crowd documentation4 [126]). These tools have been

used by various audiences ranging from biomedical researchers and software engineers

1http://bio-mixer.appspot.com/
2http://choosel-mashups.appspot.com/
3http://earthquakevisualization.appspot.com/
4http://crowd-documentation.appspot.com/
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Figure 8.1: Choosel workspace with four coordinated visualizations: a map, a bar
chart, a scatter plot and a tag cloud. The selections (shown in orange) in map, scatter
plot and tag cloud are synchronized. The item under the mouse pointer (China) is
highlighted in yellow across the different visualizations and shown as partial bar in
the bar chart.

to casual internet users.

First, I describe the workbench user interface (Section 8.1.1). Then, I explain the

specifics of BioMixer and WorkItemExplorer (Section 8.1.2). Finally, I report on the

usability studies that have been conducted on Choosel, BioMixer and WorkItemEx-

plorer (Section 8.1.3).

8.1.1 Workbench User Interface

The Choosel workbench user interface (Figure 8.1) supports multiple coordinated

visualizations that can be individually configured by the user. Each visualization is

contained in a separated window inside the workbench that can be moved, resized

and annotated with a title.

Data items and sets of data items are represented as “pills” in the user interface,
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Figure 8.2: Dragging and dropping of data sets. The data set “countries” is
dragged on top of the scatterplot, but has not been dropped in yet. Regions of the
screen where the data set cannot be dropped are grayed out to emphasize the potential
drop targets. These drop targets include visualizations, other data sets and selection
drop zones (“add selection”). The scatterplot shows a preview of what it would look
like after the mouse button is released. A short tooltip message describes what would
happen if the user dropped the data set into the scatterplot.

e.g. the “Countries” pill in Figure 8.1. These pills can be dragged and dropped into

visualizations (Figure 8.2). This adds the data set that is represented by the pill

to the visualization. The user can create new sets by selecting the visual items of

a visualization (e.g. bars in a bar chart): clicking a visual item toggles the selection

state. These selection sets are represented as pills as well and can be dragged and

dropped into the visualization, e.g. to create filtered visualizations. By dragging and

dropping pills into the selection slot at the top right of a visualization (Figure 8.2),

the selections in multiple views can be synchronized.

Choosel uses context menus and tooltips to provide additional information and

operations (Figure 8.3). For example, datasets can be removed from a visualization

by clicking on the “remove” link in the context menu for the corresponding pill in the

bar on top of the visualization. The context menus are shown on right-clicking user
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Figure 8.3: Context Menus and Tooltips. A: The context menu for data sets
allows users to rename them and to remove them from the view. An additional
explanation describes how renaming and dragging works. B: The tooltip for a single
data item shows detailed information about the data item. The pill on top of the
tooltip represents a data set that contains just that item. It can be dragged similar
to other pills.

interface elements such as pills and data items or automatically after hovering with

the mouse on top of them for .5 seconds.

The aggregation of data items into visual items and the mapping from data at-

tributes to visual attributes can be configured for each visualization. The user can

expand the side panel of the visualization to see and change the configuration options

(Figure 8.4). Changes of the visual mappings are immediately reflected in the visu-

alization. The side panel can also contain visualization settings that are independent

of the data, e.g. whether the map is rendered as a terrain map or a satellite map.

Choosel also supports more generic features such as the workspace persistence and

sharing as well as undo/redo. My goal was to integrate visualization construction and

coordination into the visual data analysis process, such that users do not recognize

the difference and remain in their visual data analysis flow. After having described

the basic workbench functionality in this section, I explain the specifics of BioMixer

and WorkItemExplorer next.



132

8.1.2 Domain Specific Workbenches

The Choosel framework allows developers to create visualization workbenches for

specific domains. WorkItemExplorer and BioMixer are two such workbenches for

exploring software developments tasks and biomedical ontologies.

WorkItemExplorer (Figure 8.5) is “an interactive visualization environment

for the dynamic exploration of data gathered from a task management system (e.g.,

tasks, iterations, and developers)” [161]. It addresses the problem that with the

increased complexity of task repositories which integrate comments, tags, and source

code links, “developers and managers need to maintain an awareness of the abundance

of artifacts and the connections between them” [161]. The WorkItemExplorer loads

data from task repositories and provides seven types of visualizations to show the

data graphically: lists, tag clouds, node-link diagrams, bar charts, pie charts, heat

bars and timelines.

BioMixer is a “web-based collaborative ontology visualization tool” [46]. It ad-

dresses the problems of how to visualize mapped concepts from multiple ontologies

and how to enable collaboration in ontology visualization. BioMixer uses ontology

concepts and mappings from BioPortal, a library for biomedical ontologies [121]. It

provides node-link diagrams (Figure 8.6), tag clouds, lists, and timelines to visualize

Figure 8.4: Visual Mapping Configuration. The user can configure the grouping
of data items into visual items and the visual mapping from data attributes to visual
properties using the dialog elements in the side panel.
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this information. Additional visualizations such as a mapping overview graph and a

mapping matrix visualization are under development [166]. Facilitating collaborative

ontology visualization is a key goal of BioMixer. To that end, it supports workspace

sharing and embedding views in external websites as well as adding comments and

notes to the workspace [46].

8.1.3 Usability Studies

Two usability studies have been conducted on Choosel-based workbenches. In April

2010, I carried out a preliminary of the Choosel mashup workbench and of BioMixer

with eight information visualization novices [52]. In October 2011, two researchers

carried out a study on WorkItemExplorer with four post-doctoral researchers as par-

ticipants [161].

The April 2010 study focused on identifying usability issues and studying user

interaction. The results of the usability evaluation indicate that the main concepts

implemented in Choosel, especially multiple windows, enhanced drag and drop inter-

action, and highlighting of items and sets support the visual data exploration process

in a useful and intuitive way [52]. However, I discovered several usability issues that

Figure 8.5: WorkItemExplorer screenshot from [161]. “The user is exploring the
correlation between severity and priority of work items using a bar chart that shows
work items grouped by priority, and a pie chart grouped by severity” [161].
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impeded the users’ understanding of the tool. Using resource sets to create filtered

views and synchronized selections was not always intuitive, and several views lack

customizability [52].

The October 2011 study focused on how participants answer typical software

developer questions using WorkItemExplorer [161]. The participants’ feedback was

position: “ ‘very usable’ (Participant A), ‘the best part is that I can click, select stuff

and move it and see what it looks like in another view’ (Participant C), and ‘very

cool interface’ (Participant D)” [161]. “Participants used different views to solve the

same tasks. This is an indicator that there are many different ways to gain insights

using WorkItemExplorer, allowing for a broad range of insights as well as serendipity”

[161].

Figure 8.6: Node-link diagram generated with BioMixer. Each node represents
a biomedical concept. The color of the nodes is determined by the ontology of the
concept, concepts from the same ontology have the same color. Parent-child relation-
ships among concepts are shown as blue, solid arcs and mappings between similar
concepts from different ontologies are shown as dotted lines between the nodes.
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8.2 Applying the Design Guidelines to Choosel

In Chapter 7, I derived a set of design guidelines for visualization construction tools

(Table 7.1) from the results of my studies and from related empirical research. In this

section, I go through each guideline and describe how it is supported in Choosel.

8.2.1 Reducing the Need for Decision Support

Built-in Visualization Design Support

Choosel automatically assigns default values for different visual parameters such as

highlighting and selection colors, the size of dots in scatterplots, the number of axis

tick marks, and the settings of the visual templates (e.g. the default type of map).

The default visual mappings are chosen based on the data type of the data attributes:

the first data attribute with a matching data type is chosen for each visual property,

and the sum operator is used when the data attribute is numerical.

These default values and the visual mapping default algorithm can be configured

and changed by the application developer. However, their configuration is not acces-

sible to the workbench user. Choosel could be improved by providing users with the

option to change their preferences for default values, by providing more intelligent

algorithms for selecting visual mappings, and by validating the default values against

best practices and empirical studies.

Choosel-based workbenches contain a number of visual templates, e.g. bar

charts, node-link diagrams and tag clouds. Visualizations are specified by select-

ing a visual template and then configuring the visual mappings. The assignment of

default visual mappings when data is added to a visualization leads to a gentle slope

of complexity, where the user can decide to change the visual mappings, but is not

forced to specify them. In much the same way, the user can configure the settings of

a visualization if she wants to.

Choosel could be improved by providing more kinds of visualization templates5

and by providing more settings and configurable visual properties for these templates.

Another improvement would be to allow the user to switch from one visual template

to another, while trying to preserve the perceptual effectiveness of the visual mappings

as much as possible.

5I have implemented bar charts, pie charts, scatter plots, text lists, tag clouds, node-link diagrams,
maps, timelines, heat bars, and I have experimented with treemaps and matrix diagrams.
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Choosel contains a simple algorithm to assign default visual mappings, but it does

not contain any automatic visualization features beyond that. Major improve-

ments would include the automatic selection of a visualization type for a data set and

a more sophisticated automatic assignment of visual mappings. Together with allow-

ing the user to switch from one visual template to another, this would help eliminate

the currently required premature commitment to a visualization type. Additionally,

alternative visualization configurations could be calculated for each visualization and

presented as previews in the side panel or as popups.

Similar to automatic visualization, visualization optimization is not part of

Choosel yet. Once automatic visualization functionality is integrated, this would be

a next step to improve it further.

Collaborative Visualization Design

Choosel supports asynchronous collaboration in several ways. The workspaces can

be shared and each user can edit them. Notes, visualization comments and renaming

of windows and data sets allow for the annotation of elements and provide discus-

sion channels for collaborators. Pre-configured visualizations from workspaces can be

embedded into webpages, and website visitors can modify and re-open them in their

own workspaces to explore the data further.

The two major improvements that could help with collaborative visualization

design are synchronous (real-time) collaboration facilities and adding extended history

mechanisms. Real-time updates of workspaces where more than one user is active,

the inclusion of a chat, and indications where other users are working would make

collaboration much more tightly coupled and efficient. Extended history mechanisms,

i.e. similar to version control and branching, but more automatic, would allow users

to go down their own exploration paths and to merge their results with the work of

others.

8.2.2 Supporting the User’s Workflow

Supporting the Visualization Construction Process

Choosel makes the visualization construction process more flexible by pro-

viding a wide range of visualization settings and mapping configurations, and by

allowing the user to change them in any order once the visualization type has been
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selected and the data was added. However, it requires premature commitment to the

visualization type, which can be removed with automatic visualization as discussed

above. Choosel could be further improved by allowing the user to design the visual-

izations on a more fine-grained level than visual templates. For example, being able

to specify marks similar to the visual builder approach (Chapter 3) would give the

user even more flexibility. This would be very helpful for presentation purposes, but

it is not clear how it aids visual data exploration, which is the main goal of Choosel.

In addition, being able to specify more complex visual mappings, e.g. involving more

complex mathematical functions and calculations, would be an improvement that

could be beneficial for visual data exploration.

To shorten the visualization construction feedback loop, Choosel provides

previews of how visualizations would look like when the user drags a data set over

them, and it immediately updates the visualizations when the visual mappings are

changed. The feedback loop could be reduced further by automatically providing

suggestions of different visualization alternatives with previews, as mentioned above.

Choosel does not allow data attributes to be mapped to visual properties when

their data types do not match, but it does nothing besides that to reduce the likeli-

hood of creating ineffective visualizations. It could be improved by calculating

how useful certain visualizations are and by ranking the options in the visual mapping

dialogs accordingly, or by showing warning signs on potentially problematic selections

before the user chooses them. Similarly, automatic visualization could only suggest

appropriate visualizations.

To reduce the cost of creating ineffective visualizations, Choosel provides

undo/redo functionality. An extended history mechanism with previews, annotations

and branching would be an improvement beyond that, as the user could create “safe

points” to go back to after trying out different visualization options. Also, as discussed

before, removing the premature commitment to a visualization type would reduce the

cost of creating ineffective visualizations. Finally, detecting ineffective visualizations,

showing warnings, and suggesting alternative visualizations might help prevent the

user from spending too much time on an ineffective visualization.

Integration into Visual Data Analysis Workflow

One of the design goals of Choosel was to provide a single mode for construction and

use the visualizations. This is in contrast to tools that distinguish between design
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time and use time, e.g. tools based on the textual programming approach (Chapter

3). The rational for eliminating this distinction is to help the user to stay in the flow

of data analysis.

One of the major trade-offs that was made with Choosel was to allow for generic

data exploration and flexible data mashups and not to focus on supporting specific

tasks, for example in the software engineering domain [54]. This lack of strategy-

specific tool support makes using it for well-defined tasks more challenging. How-

ever, as the user study of WorkItemExplorer shows, it can be used for standard

tasks and its flexibility allows for different ways to approach them [161]. In addition,

domain-specific workbenches can add task-specific visualizations and functionality.

For example, BioMixer contains task-specific embedded visualizations for showing

all paths of a given ontology concept to the ontology root, for showing the concept

neighbourhood of a given concept, and for showing the mappings from and to a

given concept [46]. A potential improvement would be integrating support for spe-

cific tasks while not sacrificing the current exploration flexibility and without adding

much complexity. For example, predefined workspace configurations for tasks or spe-

cific step-by-step guidance could help users with common data analysis tasks.

Domain-specific Choosel workbenches such as BioMixer and WorkItemExplorer

provide data access to the domain-specific data sources. The basic mashup work-

bench could be improved by adding more data sources than just comma-separated

value files, e.g. Excel spreadsheets or integrating into online repositories such as

Google docs.

To help with insight provenance, Choosel provides annotation facilities such

as visualization comments, workspace notes, and renaming windows and data sets.

Adding an extended history mechanism, as outlined before, would improve insight

provenance further.

By sharing workspaces and embedding visualizations into external websites, re-

sults can be disseminated from within Choosel. Adding more dissemination mech-

anisms, e.g. sending out visualizations per email or exporting PDFs and images that

can be integrated into presentation slides, would help users further in sharing their

findings.
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8.2.3 Matching the User’s Mental Model

Choosel aims at using familiar terminology. For example, labels from the actual

data are used wherever possible, and domain-specific workbenches can reconfigure

the labelling to match the requirements of that specific domain.

The tooltips and popups that are available for many user interface elements in

choosel help in explaining the visualizations. In addition, the visual mappings

can be lookup up in the side bar, and Choosel provides automatic axis labeling for

several types of charts. Visualization explanations could be improved by adding more

legends and labels to the charts, and by automatically generating sensible captions.

Choosel also contains labels for the visualization construction user interface,

and popups that explain them. To improve on the terminology that is used in Choosel,

the next step would be to carry out user studies, e.g. A/B testing with different

versions of the terminology.

Because it requires automatic visualization, Choosel does not support inferring

visualization settings from partial specifications at this point. Once automatic

visualization capabilities are available, Choosel could be improved by exposing data

attributes in the user interface and allowing the user to choose the subset of these

data attributes that should be visualized, without requiring him to explicitly define

visual mappings.

Finally, to provide appropriate visualizations based on the user’s visual

literacy, one would need to model the user’s visual literacy. This could be achieved

by having her enter her preferences, or by determining them automatically, or by a

mix of both. Once the user’s visual literacy has been modelled, this model can be

incorporated into the automatic visualization facilities. Currently, Choosel supports

neither automatic visualization nor modelling of the user’s visual literacy.

8.2.4 Supporting Learning

Learning to Use and to Interpret Visualizations

Choosel provides contextual help features such as popups and context menus that pro-

vide additional information about the current visualization. However, while the axis

labels are naturally contextualized, i.e. using terms from the current visualizations,

the texts in the popups and the tutorials are not. Using contextualized help tem-

plates to explain how a particular visualization works could make this visualization
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easier to understand and the particular type of visualization easier to learn.

BioMixer and the Choosel mashup workbench contain several tutorials, both

in text and using videos. However, there are no links from the contextual help to

the tutorials, and the tutorials themselves do not explain specific visualization types.

Adding more detailed tutorials on how to interpret the visualizations and integrating

these tutorials into other help functionality would help users in learning about these

specific visualizations.

Choosel could be improved by adding data analysis techniques, e.g. data mining

and automated application of statistics, to highlight and show information on

prominent features such as outliers, peaks, and trends. This would help users in

interpreting visualizations.

The collaborative visualization features mentioned before, especially real-time

collaboration, would also be helpful in supporting users in learning how to use Choosel.

To make it easy to get help when problems arise, it would be important to give the

user a way to invite somebody else to take a look at the visualization through those

collaboration facilities to answer their questions, e.g. to help them understand a vi-

sualization.

Learning to Choose Visualization Types and Visual Mappings

Many of the Choosel features that have been discussed above help with reducing

the risk and increasing the speed of visualization design and with suggesting

alternative visualizations and mappings. In addition to these features, learning

how to choose visualization types and visual mappings can be supported by provid-

ing explanations, i.e. describing why a particular visualization was chosen and what

its strengths are, and by providing generic tutorials that explain visualization

concepts and trade-offs.

8.3 Summary

I have presented the Choosel visualization framework, its user interface and the

WorkItemExplorer and BioMixer workbenches that I have built using it. Then, I

briefly reported on the results of two usability studies. Finally, I applied the design

guidelines presented in Chapter 7 to Choosel and showed how they can be used to

identify potential improvements such as the integration of automatic visualization
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algorithms and the support of real-time collaboration.
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Chapter 9

Conclusion

Despite the success of information visualization in helping experts to consume and

to explore large amounts of information, it remains challenging for information vi-

sualization novices to construct visualizations. This limitation inhibits information

visualization novices from fully exploiting the dynamic data exploration process. In

response, the goal of this research has been to understand how information visual-

ization novices can be supported in constructing visualizations . This thesis

contributes new models of how information visualization novices create visualizations

with an emphasis on natural language specifications, categorizes the existing tools,

and provides guidelines on how to provide tool support for information visualization

novices.

9.1 Review of Thesis Contributions

This dissertation makes four contributions to the field of information visualization,

and in particular to supporting information visualization novices in visualization con-

struction:

C1 Categorization of Visualization Construction Approaches

To understand what visualization construction approaches have been developed,

I conducted a systematic literature survey (Chapter 3). While these approaches

have not been explicitly designed with information visualization novices in mind,

understanding their use cases, trade-offs and limitations is essential for select-

ing approaches that fit the needs of novices. I found six distinct approaches

(textual programming, visual dataflow programming, visualization spreadsheets,
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fixed algebra configuration, visual builder, and structure selection & editor), and

identified the use cases for each approach. The categorization of visualization

construction approaches can be used by researchers to design studies that com-

pare different approaches and by practitioners to choose the approaches that fit

their use cases best.

C2 Model of How Information Visualization Novices Construct Visual-

izations

To learn about the process that information visualization novices follow when

constructing visualizations during data exploration and about the challenges

that they face, I conducted an exploratory laboratory study in which they ex-

plored fictitious sales data with the help of a human mediator (Chapter 4).

I found that three activities were central to the iterative visualization construc-

tion process: data attribute selection, visual template selection, and visual map-

ping specification. The major barriers faced by the participants were translating

questions into data attributes, designing visual mappings, and interpreting the

visualizations. Partial specification was common, and the participants used

simple heuristics and preferred visualizations they were already familiar with,

such as bar, line and pie charts. From my observations, I derived abstract mod-

els that describe barriers in the data exploration process and uncovered how

information visualization novices think about visualization specifications.

C3 Model of Natural Language Visualization Queries

Specifying visualizations through natural language queries is an intriguing al-

ternative to the visualization construction approaches that I identified in C1.

Such queries might be especially useful for the initial construction of visualiza-

tions by information visualization novices. This idea came to my attention in

the lab study where participants used verbal expressions in addition to gestures

and sketching in their visualization specifications. As a first step towards such

interfaces, I aimed at building an empirically founded description of natural

language visualization queries.

To understand the characteristics of natural language visualization queries, I

revisited the visualization queries from the laboratory study (Chapter 5) and

conducted an online survey study (Chapter 6). I found that a rich and diverse

vocabulary and syntax is used in natural language visualization queries. The
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terms in the queries come from different domains and interpreting them requires

semantic and world knowledge. Typical query elements are data-set specific

terms, data manipulation terms, visualization terms and intention terms. I

also derived additional heuristics that describe the visualization expectations of

information visualization novices.

C4 Design Guidelines for Visualization Construction Tools

To provide practical guidelines on how to design tools that support visualization

construction by information visualization novices, I synthesized existing guide-

lines and the results from my studies (Chapter 7). I identified reducing the

need for decision making, supporting the user’s workflow, matching the user’s

mental model, and supporting learning as major topics and provided individual

guidelines for each of them. The guidelines aid tool developers with principles

on how to enhance and design products to facilitate visualization construction,

and they can be used by researchers to evaluate such systems. I gave an example

of how the guidelines can be applied by analyzing how the Choosel visualization

tool supports them and how it could be extended (Chapter 8).

The models and guidelines developed in this thesis provide a foundation that opens

up the avenue for future research on visualization construction and on supporting

information visualization novices.

9.2 Future Work

While the contributions of this dissertation are a first step towards understanding

how to support information visualization novices in visualization construction, there

is still a lot of research that needs to be done to further our knowledge in this area.

9.2.1 Analysis, Descriptions and Qualitative Explanations

Contributions C2 and C3 describe “what is” (Theory for Analysis, [57]), namely

the characteristics of the visualization construction process and the characteristics

of natural language visualization queries, and provide some qualitative explanations

for those characteristics (Theory for Explanation, [57]). However, these descriptions

and explanations are based on two empirical studies and the review of related work,

and more studies need to be carried out to increase the generality and the realism of
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the theories. Replicating the empirical studies, for example with different participant

groups, and conducting different types of studies such as field studies and survey

research are promising ways to achieve this goal.

9.2.2 Cause-Effect Relationships and Predictions

While theories for analysis, description and qualitative explanation conceptualize

which objects and patterns exist in the area of visualization construction by informa-

tion visualization novices, they do not establish quantified cause-effect relationships

and baselines that can be used to predict the effects of different factors. For example,

user groups from different application domains such as business or physics are likely

to be familiar with different types of visualizations. However, it is not clear how these

differences in visual literacy affect the visualization construction behavior of informa-

tion visualization novices from these domains. To create theories for explanation and

prediction [57], research needs to be conducted to identify potential cause-effect rela-

tionships, to develop testable propositions, and to evaluate these propositions. The

resulting predictions would be of use for practitioners. For example, understanding

the effect of visual literacy differences between user groups can help designers who

develop tools with visualization construction components for a particular audience.

9.2.3 Develop and Evaluate Visualization Construction Tools

Building tools that provide visualization construction functionality and specifically

help information visualization novices is the ultimate goal that this research aims to

support. My categorization of visualization construction approaches (C1) provides

typical designs that can be implemented or combined to create new approaches. My

exploration of natural language visualization queries (C3) lays the foundation for new,

language-based construction approaches, and my design guidelines (C4) provide guid-

ance for many additional aspects of creating visualization construction user interfaces.

Building visualization construction user interfaces and evaluating them using differ-

ent methods such as laboratory experiments, longitudinal field studies and software

instrumentation is an essential next step to develop a theory for design and action

[57] that clearly explains how to design and implement such user interfaces.
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9.2.4 Novel Interaction Paradigms

The research in this dissertation is limited to mouse and keyboard interactions on

desktop computers. Novel interaction paradigms such as multi-touch tablets, large

multi-touch surface displays, gesture input, speech input, and a multi-modal com-

bination of them have been gaining traction in the last years. These approaches

are potentially more user-friendly and easier to learn than desktop interfaces. Fu-

ture research needs to explore how visualizations can be constructed by information

visualization novices using such interfaces. One particularly promising direction of

research is sketch-based visualization construction on multi-touch interfaces.

9.2.5 Data Exploration and Analysis for Novices

Visualization construction is just one part of the data exploration process. To make

the vision of information visualization for the masses a reality, one needs to con-

sider the whole process from locating and cleaning data sources over the actual data

exploration to the eventual dissemination. We need to study how information visual-

ization novices perform these activities, and how their behavior is different from that

of experts.

9.3 Concluding Remarks

The amount of data that is available to us is ever increasing, and thus is the infor-

mation that could be extracted from it. However, data needs to be analyzed to gain

meaningful insights that can drive important decisions. This analytical capability is

restricted to those who know how to use data analysis tools. To maximize the benefits

that we get from the vast amounts of data at our disposal, it is, thus, paramount to

aim at enabling almost everybody to analyze and learn from it. I hope that this dis-

sertation will help us in designing novel visualization systems with little or no entry

barriers that contribute to democratizing data analysis.
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Appendix A

Exploratory Lab Study:

Recruitment



 
University of Victoria 
CHISEL Computer Human Interaction & Software Engineering Lab 

 

 

Participants needed for User Study 
The University of Victoria's Computer Human Interaction & Software Engineering Lab 
is conducting a new user study. For this study we are currently looking for participants. 

Description of the Study: 

This study will investigate how casual users explore and analyze information using 
graphs and charts. You will explore simulated sales data using graphs and charts that 
you create. You will also be asked to provide your opinion on the difficulties you may 
encounter and on the reasons why you created particular charts. The study results are 
expected to improve the design of user interfaces for visual analytics, allowing casual 
users to visually explore data more easily. 

Participation: 

• Timeframe: March 9th, 2009 to March 27th, 2009.  
• The study will last approximately 2 hours.  
• Your involvement in this study will remain strictly confidential.  

Restrictions: 

• We are looking for 2nd, 3rd or 4th year BCom or MBA students. 

Remuneration: 

• Each participant will receive $20 as remuneration.  

Contact: 

If you want to participate please contact Lars Grammel by email or phone. 
 
E-mail: lgrammel@cs.uvic.ca  
Tel.: (250) 472-5776 
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Appendix B

Exploratory Lab Study: Operator

1 Guidelines



 1 

Operator 1 Guidelines 

Before Study 
1. auto-adjust participants monitor in usability lab 
2. check hand microphone 
3. greet participant, introduce participant to operator 2 
4. consent form 
5. background survey 

a. mention visualizations on paper for second-to-last question 
b. mention answer to last question if all visualizations are known is 0 
c. answer questions participant might have 

i. expert user: no CS/programming knowledge but general computer 
usage (Word, Excel, Windows, Firefox etc) 

ii. Data types: if participant does not know names - select not 
familiar; knows names - familiar, often uses types - very familiar 

6. main phase 
a. explain what cameras are used, visible area for top camera (markers) 
b. tell participant to read task and make sure participant understands task 

i. emphasize that participant is free to explore whatever he wants 
c. example visualizations 

i. participant should read and understand each example 
ii. emphasize that examples give ideas, can be reused by replacing 

attributes and reusing components, visualizations don’t have to be 
as complicated as the examples 

d. mention other modes of expression (drawing, gestures, speech) 
e. explain how we respond and work and that there is a response time lag 

i. show example visualization of different data on screen to give the 
participant an idea of what to expect 

ii. explain how participant can communicate what visualizations he 
wants in whichever way he is comfortable with 

f. explain how operators communicate using the message area 
g. mention that participant should read captions of visualizations to make 

sure that this is what he requested 
i. if the visualization is not what the participant requested, he should 

state so and try to rephrase it 
h. explain data set in detail (one entry for each order) 
i. explain default properties 

i. time property (being order date) 
ii. location property (being state) 

j. explain possible granularities for date properties (e.g. year, week) 
k. explain operations & mappings 

i. emphasize that filtering can be used to explore subsets 
l. mention that participant should say thoughts, questions, goals out loud 
m. tell that message window will indicate when to start 

7. 5 minute learning phase (how the study works), including questions by participant 



 2 

Canned Responses 
We have a tool that shows canned and custom messages to the participant in a message 
area on the screen. {0} is a variable for inserting custom text from the text input field. 
The tool changes the background color to red for 1.5 seconds for all messages except 2) 
to alert the participant that the message has changed. The following canned responses are 
available: 
 

1) {0} (for showing custom messages) 
2) Awaiting input… (shown when waiting for requests from participants) 
3) Creating the visualization… (shown when creating graphics with Tableau) 
4) Could you repeat that? (repetition if we did not understand something) 
5) Please specify how the data should be visualized. (error message if the 

specification of the visualization is missing) 
6) Please specify how {0} should be visualized. (error message if the 

specification of a visual mapping for a particular data attribute is missing) 
7) Please repeat what data should be visualized. (repetition if we did not 

understand what data attributes were selected) 
8) Please repeat how the data should be visualized. (repetition if we did not 

understand how data should be visualized) 
9) Please repeat how {0} should be visualized. (repetition if we did not 

understand the visual mapping of a particular data attribute) 
10) Requested visualization requires more data attributes. (error message if 

selected visualization requires more attributes) 
11) Cannot visualize {0} as requested. (error message if data attribute / request 

cannot be shown in the requested visualization) 
12) Cannot visualize {0} on a map. (error message if data attribute / request 

cannot be shown in a map visualization) 
13) Unable to create requested visualization. Please choose different visualization. 
14) Please start now. (at the beginning of the study) 
15) Thank you. You completed the main phase of the study. (at the end of the 

study) 
16) Please write bigger. (reminder to participant if we have trouble reading his 

notes) 
17) Please specify what you would like to see. (to elicit input if participant does 

not seem to provide further input) 
18) Please verbalize your thoughts. (reminder to participant if he forgets to think 

aloud) 
19) This information is not available. (error message if participants requests 

information that is not available in the data set) 
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Behavior 
o Assume participant wants to change current visualization where appropriate 
o Require explicit mapping where that is not the case 
o Do not perform mappings that are not explicitly state, with explicitly stated 

meaning either 
o Verbal mappings 
o Using gestures on sample visualization 
o Using sketches 

o If less measurements specified than required to create a sample visualization, 
leave out mapping of additional measurements 

o If less dimensions specified by user than required to create a sample visualization, 
leave out mapping of additional dimensions 

o If visualization cannot be created without additional measurements / dimensions, 
display message 8) from above. 
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Steps to Create the Sample Visualizations 
A. Set message to “Creating Visualization” 
B. Switch to edit model 
C. Begin with duplicating the template with the default settings  

a. (caption above visualization) 
D. Do visualization specific steps 
E. Switch into presentation mode 
F. Adjusts height and width of diagram, rows and columns 
G. Set message to “Awaiting Input” 
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A 
1. Measure A � Columns 
2. Measure B � Color 
3. Dimension A � Level of Detail 
4. Dimension A � Text 
5. Dimension A � Rows 

a. (Right-Click � Show Header � No) 
6. Columns � Sort Ascending 
7. (Right-Click Axis � Add Reference Line) 
 

B 
1. Measure � Columns 
2. Dimension A � Rows 
3. Dimension B � Rows 
4. Dimension C � Color 
5. Dimension D � Level of Detail 

C 
1. Measure A / Date � Columns 

a. (Right-Click � All Values) 
2. Measure B � Rows 

a. (Right-Click � Average) 
3. Dimension A � Color 
4. (Right-Click � Annotate � Area) 
5. (Right-Click Axis � Add Reference Line) 
6. Create group (Dimension A), subgroup with 

main value, enable other 
7. Created Group � Size 

a. Adjust sizes to highlight main value 

D 
1. Dimension A � Rows 
2. Dimension B � Columns 
3. Double-click Measurement A 
4. Double-click Measurement B 
5. Drag measure values to rows 
6. Drag measure names to columns 
7. Dimension C � Color 
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E 
1. Dimension A � Rows 
2. Dimension B � Columns 
3. Dimension C � Columns 
4. Double-click Measurement A 
5. Double-click Measurement B 
6. Drag measure values to rows 
7. Drag measure names to columns 
8. Dimension C � Color 
9. Copy Measure Values to Text 

F 
1. Measurement A � Rows 
2. Measurement B � Columns 
3. Marks � Line 
4. Dimension A (date) � Path 
5. Dimension A (date) � Text 

G 
1. Dimension A (date) � Columns 
2. Dimension B � Rows 
3. Marks � Line 
4. Measurement A � Rows 

a. Right-Click � Show Header � False 
5. Increase Line Size (Slider below Size) 
6. Measurement A � Color 
7. Palette (Red-Blue-Diverging, Steps, Reverse) 

H 
1. Measure A � Rows 
2. Measure B / Date � Columns 

a. Right-Click � continuous 
b. Right-Click � all values 

3. Dimension A � Level of Detail 
4. Measure C � Color 
5. (Right-Click on Mark � Annotate � Mark) 
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I 
1. Dimension A (date) � Columns 

a. Click on + to add quarter 
b. Filter if required 

2. Measure A � Rows 
3. Dimension B � Color 

a. Wash-out colors 
4. Marks � Bar 
5. Right-Click Measure A � Add Table 

Calculation � Percent of Total � Dimension 
B 

6. Measure B � Size 
7. Measure B � Text 
8. Table � Grand Total for Columns 

J 
1. Create Bins for Measure A (Right-click, 

create bins) 
2. Measure A Bins � Columns 

a. Right-Click � all values 
3. Measure B � Rows 
4. Marks � Bar 
(Right-Click � Annotate � Area) 

K 
1. Measurement A / Date � Columns 

a. Month 
2. Dimension A � Rows 
3. Markers � Line 
4. Measurement B � Size 
5. Measurement C � Color 
6. Palette � Red-Green-Diverging, Inverted 

L 
1. Geographic Locations (double-click) 
2. Measure A � Color 

a. Wash-out colors 
3. Measure A � Text 
4. Measure B � Size 
5. Palette � Reverse Red-Blue-Diverging 
6. (Right-Click � Annotate � Area) 

 



 8 

M 
1. Dimension A � Columns 
2. Dimension B � Rows 
3. Dimension C � Column 
4. Marks � Pie 
5. Dimension D � Color 
6. Measure A � Text, Angle, Size 

N 
1. Dimension A � Rows 
2. Dimension B � Rows 
3. Measurement A � Columns 
4. Dimension C (2 Values) � Color 

a. Change colors 
5. Dimension C (2 Values) � Size 

a. Hide Card 
6. Analysis � Stack Marks � Off  
7. (Add Reference Line � Entire Table � 

Average) 
8. (Right-Click � Annotate � Area) 

a. Format � Border � None 
[if different measurements should be mapped, use 
special field “measurement names” for color & 
size and “measurement values” for columns] 

O 
1. Dimension A � Columns 
2. Dimension B � Rows 
3. Measure A � Rows 
4. Measure A � Color 
5. Measure A � Text 
6. (Right-Click on Mark � Annotate � Mark) 

a. Right-Click on Annotation � Format 
i. Shading 
ii.  Border 
iii.  Type � Single Edge 

P 
1. Measure A � Columns 
2. Measure B � Rows 
3. Dimension 1 � Color 
4. Dimension 2 � Shape 
5. (Right-Click on Mark � Annotate � Mark) 
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Appendix C

Exploratory Lab Study: Operator

2 Guidelines



 1 

Operator 2 Guidelines 

Before Study - Setup Equipment 
1. Close Windows Messenger in System Tray 
2. Select participant as user ID in Ovo Studios (in Main Ovo window) 
3. Setup recording 

a. Click “setup capture sources” (in Capture Source Status window) 
b. Set up video streams (in Lab Controls window): 

Ovo vid 01 tripod cam 01 [BACK LEFT] 
Ovo vid 02 tripod cam 02 [TOP] 
Ovo vid 03 wall cam 01 [BACK RIGHT] 

c. check zoom and position of Wall Cam 01: should show participant, screen 
and desk (operator 1 could sit in participants place) 

d. check that tripods are in the correct mode 
e. check that audio recording is active on Video Top window 

4. Setup screens in operator room (in Lab Controls window): 
Far left mon free choice for operator 2, also 

switch between VGA (screen) 
and Composite mode (video) 

Operator 2 

Ctr left mon tripod cam 01 [BACK LEFT] Operator 1 
Ctr right mon wall cam 01 [BACK RIGHT] Operator 1 
Far right mon tripod cam 02 [TOP] Operator 1 

5. Start recording (record button in “Capture Sources Status” window) when ready 

During the Study – Observe participant, control rec ording 
1. Observe the participant 

a. Write down requested visualizations 
i. visualization type 
ii. time 
iii.  context 
iv. sheet or dashboard, including number (from visualization software) 

b. Write down difficulties 
i. Time 
ii. Context 
iii.  What the participant said in this context (point-form) 

2. Pre-Select visualizations and difficulties for follow-up interview 
a. 5 visualizations (criteria: representative or interesting) 
b. 3 difficulties (criteria: representative or interesting) 

3. Control recording 
4. Stop recording after observation part of study is finished (stop button in “Capture 

Sources Status” window) 

Follow-up Interview 
Please refer to follow-up interview guide. 
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Appendix D

Exploratory Lab Study: Task Sheet



 

Superstore Sales Data Attributes 
The sales data consists of the orders customers placed over the last 4 years. The following data attributes 
are available: 
 

o Product Name (1263 products) 
o Product Category (Furniture, Office 

Supplies, Technology) 
o Product Sub-Category (17 sub-

categories) 
o Customer (794 customers) 
o Customer Segment (Consumer, 

Corporate, Home Office, Small Business) 
o Ship Mode (Delivery Truck, Express Air, 

Regular Air) 
o Container (Jumbo Box, Jumbo Drum, 

Large Box, Medium Box, Small Box, 
Small Pack, Wrap Bag) 

o Order Priority (urgent, high, medium, 
not specified, low) 

o Order Date (date, from 2005 to 2008, 
default time property)  

o Ship Date (date, from 2005 to 2009)  
o Region (central, east, south, west: from 

US) 
o State (location, US, default location 

property) 
o Zip Code (location, US) 
o Supplier (17 suppliers, including ‘other’) 
o Discount (%) 
o Order Quantity (#) 
o Base Margin (%) 
o Profit ($) 
o Profit Ratio (%) 
o Sales ($) 
o Shipping Cost ($) 
o Unit Price ($) 
o Time since Order Placement (days) 
o Time to Ship (days)

 

 

Visualization mappings 
o Color mapping (e.g. sales to color) 
o Shape mapping (e.g. customer segment to 

shape) 
o Size mapping (e.g. shipping cost to size) 
o Label mapping (e.g. discount to labels) 
o Position mapping (e.g. profit to x-axis) 
o Slicing / animation (e.g. animation over 

order date) 

Available operations  
o Filtering (e.g. top 10 or attribute values) 
o Sorting (e.g. ascending by profit) 
o Grouping (e.g. creating own categories of 

suppliers) 
o Calculations  (e.g. count, average, 

minimum, maximum) 
o Overview of created visualizations 
o Go back to visualizations created earlier 

 

Task 
Assume you are a new employee in a store that sells furniture, office supplies and technology to customers 
in the US over the internet. Your task is to analyze the sales data of the last 4 years in order to report your 
understanding of the data set and your insights to your supervisor. You have 45 minutes for this task. 

You can communicate with the system using verbal communication, gestures, and sketches. The following 
additional resources are available to you: example visualizations (on board), available data attributes (see 
above), possible visualization mappings including examples (see above), and available system operations 
(see above). 

Please state explicitly what your goals, intentions and thoughts are throughout the study. This is very 
important to the success of this study. 
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Appendix E

Exploratory Lab Study: Interview

Guide



Follow-Up Interview Guide 

Understanding of the data set 
In order to get an impression of how the users perceive their understanding of the dataset, operator 1 / 
operator 2 asks them: 

o How confident are you in your understanding of the data set?  

From very confident (5) to very unsure (1): rating on 5-point Likert scale 

Reasons for choosing a visualization 
Operator 2 selects 5 representative (e.g. typical visualizations for the requested visualization types, 
interesting visualizations) visualizations the participant has requested during the observation session. For 
each of those occurrences, the corresponding Tableau (visualization software) sheet with the visualization 
is shown to the participant. Operator 2 reminds the participants of the context of the visualization and asks: 

o What were the reasons for choosing this visualization in this situation? 

Also, it is important for us to understand to what extend they preferred visualizations they were already 
familiar with (e.g. pie charts, bar charts). Operator 2 asks the following question: 

o To what extent do you think you preferred visualizations you were already 
familiar with? 

From always (5) to never (1): rating on 5-point Likert scale 

Experienced Difficulties 
We also want to elicit the participant’s point of view on the difficulties he/she experienced. Operator 2 
identified 3 of those difficulties during the observation. To give the participant the option to express what 
difficulties he perceived, operator 2 asks: 

o What difficulties did you encounter during the study? 

For up to 3 of those difficulties (noticed by operator 2 or the participant), operator 2 asks the participant: 

o What do you think is the reason why you got stuck at this point? 
o What information would have helped you to overcome this problem? 

For the difficulties noticed by operator 2, operator 2 reminds the participant of the context and the chosen 
visualization (if applicable). 

Recommendations 
Another main goal of the follow-up interview is to get an understanding of how recommendations could 
help the users in visual analytics. For this purpose, operator 1 explains to the participant what 
recommendations are (e.g. system suggests to use certain visualization for understanding currently selected 
data attributes), and then asks them the following questions: 

o Do you think recommendations might have helped you? 
o What information would be valuable to you in recommendations? 

Other comments 
Finally, we want to give the participants the opportunity to make any other comment they want: 

o What other comments do you have on this study? 
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Appendix F

English Linguistics

In this appendix, I summarize English Linguistics based on the books by Fromkin et

al. [45] and by Jurasfky et al. [84]. The linguistic knowledge that a speaker has of a

language is called mental grammar, and the descriptive grammar of a language is

an idealized form of the mental grammars of all its speakers. The descriptive grammar

of a language can be separated into “its lexicon (the words or vocabulary [. . . ]), its

morphology (the structure of words), its syntax (the structure of phrases and

sentences and the constraints on well-formedness of sentences), its semantics (the

meanings of words and sentences) and its phonetics and phonology (the sounds and

the sound system or patterns)” [45]. I summarize the concepts of English morphology

(Section F.1), syntax (Section F.2) and semantics (Section F.3) in the next sections.

The lexicon is explained in the context of these sections. I excluded phonology and

phonetics, because spoken natural language visualization queries are outside the scope

of this work.

F.1 Morphology

Morphology is the study of how words are constructed from morphemes. Words are

“meaningful linguistic units that can be combined to form phrases and sentences” [45].

Each word belongs to a word class. Word classes to which new words are continuously

added (i.e. nouns (N), verbs (V), adjectives (A), adverbs (Adv)) are called open word

classes. Word classes that have a relative fixed membership are called closed word

classes. In English, prepositions (P), determiners (D), pronouns (Prn), conjunctions

(C), auxiliary verbs (Aux), and numerals are closed word classes. In addition to the
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closed and open word classes, there are also words with unique functions, e.g. negatives

(no, not), greetings and the existential ‘there’. The boundary between two words is

typically indicated by a space in written English. However, there are exceptions,

for example compound words such as “New Year’s” (one word meaning Jan 1st)

and contractions such as “he’s” (two words meaning he is). Morphemes are the

“minimal information bearing unit[s] in a language” [84]. They can be categorized into

lexical, grammatical, and derivational morphemes, and clitics. Lexical morphemes

(e.g. Bianca, promise, friend, fair) “refer to items, actions, attributes, and concepts

that can be described with words or illustrated with pictures” [45]. They are also

called stems and supply the main meaning to a word. A root is a lexical morpheme

to which other morphemes are added. Grammatical morphemes (e.g. -ed, -ly, -s)

“signal the relationship between a word and the context in which it is used” [45].

Derivational morphemes (e.g. -ly, -ful) are used to create new words. Clitics

(e.g. ’s, an) are words that are phonological attached to other words, e.g. using ’s as

the reduced form of is. Morphemes of all four types form the lexicon of a speaker.

There are four methods of combining morphemes to form words that are important

to natural language processing: inflection, derivation, compounding, and cliticization.

Inflection is the combination of a word with a grammatical morpheme to satisfy the

syntax of a phrase or a sentence. In English, nouns, verbs, and some adjectives can be

inflected. Nouns can be combined with morphemes that mark plural (e.g. -s, -es) and

with morphemes that mark possessive (e.g. ’s). Verbs can be modified by morphemes

to indicate grammatical tense (present, past and past participle), person and number

(3rd person singular in present tense) as well as progressive, perfect and passive

construction. Comparative and superlative forms of adjectives are constructed using

inflection as well. For all three word classes that can be inflected in English, there are

both regular and irregular lexical morphemes. Whereas regular stems can be inflected

using rules (e.g. by attaching the suffix -er to an adjective to create its comparative

form), inflected forms of irregular stems do not or only partially resemble their stem

(e.g. stem good, comparative form better) and need to be memorized by the speaker

of a language. Inflection does not change the word class of a root. Derivation is

the word-building activity of combining existing roots with derivational morphemes.

New words can be added to open word classes (nouns, verbs, adjectives, adverbs),

but not to closed word classes (e.g. prepositions, determiners). Derivation with some

morphemes changes the word class of the root, e.g. -ment changes it from verb to noun,

whereas derivation with others keep the word class constant, e.g. when re- is applied
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to verbs. Another word-building method is compounding, i.e. the concatenation of

multiple lexical morphemes. Compounds have a lexicalized meaning that is different

from the compositional meaning of its elements and that has to be memorized. For

example, the compound “New Year’s” refers to Jan 1st, while the non-compound

version refers to the next year. The first parts of compounds are stressed in speech,

even if it is an adjective, whereas typically nouns are stressed. In English, the broad

meaning and the word class of a compound are determined by its last word (head-

final principle). Finally, cliticization is the combination of a word with a clitic,

e.g. adding the clitic ’ve to I.

While morphology explains how single words are composed, English sentences

follow structural rules as well. These are described in the next section on English

syntax.

F.2 Syntax

Only certain combinations of words produce grammatical, well-formed sentences.

This indicates that speakers of the language are aware of a set of rules (syntax)

that govern which sequences of words are considered to be acceptable sentences. Sen-

tences are composed of constituents. These constituents themselves are recursively

composed of other constituents such as words and phrases (“sequences of adjacent

words that form a syntactic unit”) [45]. This structure, which indicates the hierarchi-

cal and linear arrangement of the parts, is called constituent structure. In addition

to constituent structure, syntactic dependencies between words and phrases affect

which sentences are considered to be well-formed. Together, constituent structure

and syntactic dependencies govern the syntactic organization of English sentences.

While a full review of the English grammar is beyond the scope of this thesis1, I will

outline the basic concepts of English constituent structure and syntactic dependencies

in this section.

The basic constituent order of English is Subject-Verb-Object. The full con-

stituent structure, however, is much more complicated. A central element of syntactic

organization are phrases. Each phrase contains a head and any complements that

are selected by the head. The head is always the leftmost word of the phrase in

English and its lexical category (word class) determines the phrase type (Table

1Interested readers are referred to “The Cambridge grammar of the English language” [74].
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Phrase Type Lexical Category Examples (Head bold)
of Head

Verb Phrase (VP) Verb (V) sent tennis balls to the king
Determiner Phrase (DP) Determiner (D) the king

a dark forest
Noun Phrase (NP) Noun (N) king of Scotland

queen
Adjective Phrase (AP) Adjective (A) angry at Petruccio
Prepositional Phrase (PP) Preposition (P) in the forest
Complementizer Complementizer That Lysander had fall in love
Phrase (CP) that his ship was lost

Table F.1: Example phrase types (taken from [45]).

F.1). English is a configurational language, i.e. it has a set of phrase structure

rules, which define the positions of different phrase types. Phrase structure rules

can be represented as context-free rewrite rules, and the constituent structure in

English can be modelled as a Context-Free Grammar (CFG). A CFG consists

of a set of context-free rewrite rules, a set of terminal (i.e. words) symbols, a set

of non-terminal symbols (e.g. phrase types), and a start symbol. Each context-free

rewrite rule consists of a single non-terminal symbol and a sequence of terminal and

non-terminal symbols into which the single symbol can be rewritten. If a sentence

can be derived through a series of rule expansions from the start symbol (derivation),

it is part of the language that is generated by the CFG.

However, constituent structure does not fully explain which sentences are consid-

ered grammatical and which ones are not. In addition to the constituent structure,

syntactic dependencies, i.e. the influence of particular words or morphemes on

other words and morphemes in a sentence, determine the well-formedness of sen-

tences. I will briefly describe the syntactic dependencies of selection, case, and agree-

ment here. Categorical selection refers to the choice of the lexical classes of the

complements of a phrase by the head of the same phrase. For example, the verb

surround selects a DP as its complement. Head words can also select the semantic

properties of their complements (semantic selection). E.g. the DP complement

of the head verb surround must be a concrete object such as a house. In English,

agreement is the dependency between number (singular/plural) and gender (mas-

culine/feminine/neutral) properties of DPs and verbs, and between determiners and
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nouns (e.g. these books, the book). The Subject-Verb Agreement Rule states that

“a verb in the present tense must agree with its subject in English” [45], e.g. -s is

added for third person singular. Case affects English pronouns and is determined

by their position in the sentence (nominative case - subject, accusative case - object,

genitive case - possessor). Case and agreement are expressed morphologically, which

means that they affect the morphology of the dependent words. Other syntactic de-

pendencies include remote dependencies (e.g. movement of words in wh-questions),

negative polarity item licensing (“Portia did not see anything”) and reflexive

pronouns (“Macbeth cut himself ”).

Syntax explains which sentences can be considered well-formed and how such

sentences are composed of phrases and words, but it does not reveal how meaning

gets associated with those sentences.

F.3 Semantics and Pragmatics

(Linguistic) semantics is the study of the meaning of expressions and sentences. It

encompasses the study of how the structure of sentences represents meaning rela-

tionships (semantic theory) and the study of how words carry meaning (lexical

semantics). Semantics is closely related to pragmatics, the study of how context,

e.g. situations or larger text passages, influences meaning.

A central idea is that “the meaning of a sentence is determined by the meanings

of its parts and by the ways in which those parts are assembled” (semantic com-

positionality). To study the influence of the sentence structure on its meaning,

semantic theory separates between the sentence structure itself and the denotation

of its atomic parts. Several aspects of the meaning of a sentence can be concluded

from just its structure, without considering the meaning of its parts. For example, a

sentence S1 can entail another sentence S2, i.e. whenever S1 is true, S2 is also true

(e.g. Julius Caesar was a famous man entails Julias Caesar was a man). Entailment

can be studied more formally using extensional semantics that distinguish between

the sentence (meaning representation) and the world model (extension), e.g. using

first order logic or description logic. While the syntax of a sentence has an important

influence on how its meaning is composed, semantic mechanisms such as relating two

sets using either determiners or using adverbs of quantification (‘Most text books are

boring’ vs. ‘Usually, text books are boring’ ) are independent of syntax in that they

can be shared by different syntactic categories.
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Relationship Example

Homonym: same word, bank1: financial institution
unrelated word senses bank2: sloping mound
Polyseme: same word, bank1: financial institution
semantically related word senses bank3: building of financial institution
Synonym: different words, couch/sofa, car/automobile
identical meaning
Antonym: different words, long/short, up/down, dark/light
opposite meaning on same scale
Hyponym / Hypernym: different car/vehicle, mango/fruit, chair/furniture
words, more specific/general sense
Meronym / Holonym: different wheel/car
words, part/whole sense

Table F.2: Relationships between word senses [84].

Semantic theory, however, does not consider the denotation of the individual

words. This is addressed by lexical semantics, the linguistic study of word mean-

ing. The lexicon of a speaker does not contain plain words and morphemes, but

represents them as part of lexemes, which combine them with their meaning. Each

lexeme can have multiple word senses, which are “discrete representations of one

aspect of the meaning of a word”. For example, the word ‘bank ’ has the meanings ‘fi-

nancial institution’, ‘building belonging to a financial institution’, and ‘sloping mound

bordering a river ’, among others. Because “the difference [between word senses] is

really one of degree”, it is “very difficult to decide how many senses a word has” [84].

Word senses are related in different ways (Table F.2).

While word senses and their relationships bring meaning to individual words,

semantic roles and restrictions are an important representation of background

knowledge on predicates and their arguments. For example, the sentence ‘Sasha broke

the window’ represents an event e with the roles breaking(e), breaker(e, Sasha), bro-

kenThing(e,y), window(y) that relates the general predicate ‘break’ to this sentence.

Thematic roles (e.g. agent, experiencer, force) are an abstraction over the roles of

different predicates. Unfortunately, it has been difficult to define a standard set of

such thematic roles. This has been addressed by the idea of approximate prototype

roles, and by having frame-specific semantic roles for specific script-like structures.

While semantic roles express the meaning of predicate arguments, semantic re-

strictions limit which kinds of concepts can be used as arguments for a concrete
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verb. Background knowledge such as semantic role knowledge, and the structure of

sentences are important aspects that explain the meaning of sentences.

However, according to relevance theory, the receiver “uses all kinds of information

available to get at what the speaker intended to convey” [97]. Besides semantic theory

and lexical semantics, context is another important source of information. It can

refer to the previous and the subsequent part of a text, to the situation in which

an utterance occurs, and to common ground between different actors. (Near-side)2

pragmatics deals with the effects of context on the meaning of sentences. This

includes the resolution of ambiguity and vagueness, of proper names, of indexical3,

demonstrative4, and anaphora5 references, and of common ground.

F.4 Summary

Together, morphology, syntax, semantics and pragmatics account for how speakers

assemble and interpret sentences. While linguistics is a vast field of study that has

discovered many general principles and rules of natural languages, in this thesis, I

am concerned with the specifics of visualization queries. In particular, I want to find

out what patterns there are in such queries, how they are related to general English

linguistics and how they differ from it.

2Far-side pragmatics are concerned with effects beyond the expression itself, e.g. what is achieved
by saying something. They are outside the scope of this thesis.

3Indexical expressions have a constant meaning, but vary in content from context to context,
e.g. personal pronouns such as ’I’.

4Demonstratives are deictic words that indicate entities, e.g. this, that, these [176].
5Anaphora are “types of expressions whose reference depends on another referential element”,

e.g. herself in the sentence “Sally preferred the company of herself” [175].
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Appendix G

Natural Language Visualization

Queries Survey



Task

Consent

Data Set

Page 1 of 4

In this study, you will first be asked to imagine 3 queries which you would
enter into a system that responds to textual queries with information graphics
such as charts. Then you will be asked to describe three different graphical
views with up to 7 words each.

This study will take approximately 5-10 minutes.

Please review the consent form below.

Printable version

You are being invited to participate in a study 
entitled "Data Analysis Query Survey" that is 
being conducted by Lars Grammel and Margaret-Anne 
Storey. 

The purpose of this research project is to 
investigate what data analysis queries people 
formulate when provided with a textual interface. 
This research is important because it allows us to
design better user interfaces that allow for more 

I understand and agree with the above conditions for participating
in this study.

Please choose the data set you would like to use:

Academy Awards

Soccer World Cups

Countries

Next Abort

02-May-2011 127.0.0.1:8888

http://127.0.0.1:8888/ 1/2



Task

Data

Queries

Interest

Page 2 of 4

Below, you will be asked to imagine 3 queries which you would enter into a
system that responds to textual queries with information graphics such as
charts.

There are 82 Academy Awards (Oscar) ceremonies in the data set. For each
ceremony, different values such as year, best picture winner, number of
viewers etc. are available. 

Here are 3 example award ceremonies from the data set: 

Year Best
Picture
Winner

Number of
Awards Won by

Best Picture

Number
of

Viewers

Best
Director
Winner

Best Picture Nominees Number
of

Awards

2010
The Hurt
Locker

6
41.62
million

Kathryn
Bigelow

Avatar, The Blind Side,
District 9...

24

2000
American
Beauty

5
46.53
million

Sam
Mendes

The Green Mile, The
Insider, The Sixth Sense...

24

1989 Rain Man 3
42.77
million

Barry
Levinson

The Accidental Tourist,
Dangerous Liaisons,
Gorillas in the Mist...

22

Please imagine the following situation: You are exploring the Academy
Awards data set and are interested in seeing summaries, trends and details.
You are using a computer system that responds to your textual queries by
displaying information graphics such as charts.

Please write 3 queries (phrases that describe what you want or expect to
see) that you would enter into such a system to produce the visual displays of
the data in the text fields below.

1 

2 

3 

Do you agree with the following statement?

I have an interest in the information in the Academy Awards data set.

I strongly disagree

I disagree

I neither agree nor disagree

I agree

I strongly agree

Next Abort

25-Feb-2011 127.0.0.1:8888/keywordstudy

http://127.0.0.1:8888/keywordstudy 1/1



Task

Data

Queries

Interest

Page 2 of 4

Below, you will be asked to imagine 3 queries which you would enter into a
system that responds to textual queries with information graphics such as
charts.

There are 195 countries in the data set. For each country, different values
such as name, capital, total area, population etc. are available. 

Here are 3 example countries from the data set: 

Name Capital Total
area

(sq mi)

Population Founded
In

States /
Provinces

Average Life
Expectancy at

Birth

Canada Ottaw a 3,854,085 33,965,000 1867
British Columbia,

Ontario, Quebec...
80.7

United
States

Washington,
D.C.

3,784,191 308,354,000 1776
California, Texas,

Haw aii...
78.2

Germany Berlin 137,847 82,329,758 1949
North Rhine-
Westphalia,

Bavaria, Saxony...
79.4

Please imagine the following situation: You are exploring the country data set
and are interested in seeing summaries, trends and details. You are using a
computer system that responds to your textual queries by displaying
information graphics such as charts.

Please write 3 queries (phrases that describe what you want or expect to
see) that you would enter into such a system to produce the visual displays of
the data in the text fields below.

1 

2 

3 

Do you agree with the following statement?

I have an interest in the information in the country data set.

I strongly disagree

I disagree

I neither agree nor disagree

I agree

I strongly agree

Next Abort

25-Feb-2011 127.0.0.1:8888/keywordstudy

http://127.0.0.1:8888/keywordstudy 1/1



Task

Data

Queries

Interest

Page 2 of 4

Below, you will be asked to imagine 3 queries which you would enter into a
system that responds to textual queries with information graphics such as
charts.

There are 18 FIFA World Cup tournaments in the data set. For each
tournament, different values such as year, host, winner, teams etc. are
available. 

Here are 3 example tournaments from the data set: 

Year Host Number of
Games

Number of
Spectators

Winner Teams Average
Goals per

Game

2006 Germany 64 3,359,439 Italy
France, Germany,

Portugal...
2.3

1994
United
States

52 3,587,538 Brazil
Italy, Sw eden,

Bulgaria...
2.71

1966 England 32 1,635,000 England
West Germany,
Portugal, Soviet

Union...
2.78

Please imagine the following situation: You are exploring the World Cup data
set and are interested in seeing summaries, trends and details. You are using
a computer system that responds to your textual queries by displaying
information graphics such as charts.

Please write 3 queries (phrases that describe what you want or expect to
see) that you would enter into such a system to produce the visual displays of
the data in the text fields below.

1 

2 

3 

Do you agree with the following statement?

I have an interest in the information in the World Cup data set.

I strongly disagree

I disagree

I neither agree nor disagree

I agree

I strongly agree

Next Abort
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Visual Displays

Page 3 of 4

Please tell us if you had concrete visual displays, e.g. charts, in mind for the
queries you just formulated.

You formulated the following queries:

1) "a"
2) "b"
3) "c"

Do you agree with the following statement?

I had concrete visual displays in mind when I formulated the queries.

I strongly disagree

I disagree

I neither agree nor disagree

I agree

I strongly agree

If you had visual representations in mind for the different queries, please briefly
describe them below:

"a"

"b"

"c"

Next Abort
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Task

Data

Descriptions

Please describe the 3 views shown below with up to 7 words for each view.
The views show data from the Academy Awards data set. Please be aware
that the views are not related to the queries you entered.

There are 82 Academy Awards (Oscar) ceremonies in the data set. For each
ceremony, different values such as year, best picture winner, number of
viewers etc. are available. 

Here are 3 example award ceremonies from the data set: 

Year Best
Picture
Winner

Number of
Awards Won by

Best Picture

Number
of

Viewers

Best
Director
Winner

Best Picture Nominees Number
of

Awards

2010
The Hurt
Locker

6
41.62
million

Kathryn
Bigelow

Avatar, The Blind Side,
District 9...

24

2000
American
Beauty

5
46.53
million

Sam
Mendes

The Green Mile, The
Insider, The Sixth Sense...

24

1989 Rain Man 3
42.77
million

Barry
Levinson

The Accidental Tourist,
Dangerous Liaisons,
Gorillas in the Mist...

22

Please describe the following views:

Please describe the view shown above with up to 7 words.
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Please describe the view shown above with up to 7 words.
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Please describe the view shown above with up to 7 words.

Submit Abort
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Task

Data

Descriptions

Please describe the 3 views shown below with up to 7 words for each view.
The views show data from the Countries data set. Please be aware that the
views are not related to the queries you entered.

There are 195 countries in the data set. For each country, different values
such as name, capital, total area, population etc. are available. 

Here are 3 example countries from the data set: 

Name Capital Total
area

(sq mi)

Population Founded
In

States /
Provinces

Average Life
Expectancy at

Birth

Canada Ottaw a 3,854,085 33,965,000 1867
British Columbia,

Ontario, Quebec...
80.7

United
States

Washington,
D.C.

3,784,191 308,354,000 1776
California, Texas,

Haw aii...
78.2

Germany Berlin 137,847 82,329,758 1949
North Rhine-
Westphalia,

Bavaria, Saxony...
79.4

Please describe the following views:

Please describe the view shown above with up to 7 words.
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Please describe the view shown above with up to 7 words.
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Please describe the view shown above with up to 7 words.

Submit Abort
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Task

Data

Descriptions

Please describe the 3 views shown below with up to 7 words for each view.
The views show data from the Soccer World Cups data set. Please be aware
that the views are not related to the queries you entered.

There are 18 FIFA World Cup tournaments in the data set. For each
tournament, different values such as year, host, winner, teams etc. are
available. 

Here are 3 example tournaments from the data set: 

Year Host Number of
Games

Number of
Spectators

Winner Teams Average
Goals per

Game

2006 Germany 64 3,359,439 Italy
France, Germany,

Portugal...
2.3

1994
United
States

52 3,587,538 Brazil
Italy, Sw eden,

Bulgaria...
2.71

1966 England 32 1,635,000 England
West Germany,
Portugal, Soviet

Union...
2.78

Please describe the following views:

Please describe the view shown above with up to 7 words.
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Please describe the view shown above with up to 7 words.
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Please describe the view shown above with up to 7 words.

Submit Abort
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Keyword #
by 10
per 1
across (“population distribution across states”) 1

Table H.1: Grouping keywords and number of appearances.

Visualization Keyword Type Keywords #
Visualization Type map, histogram, graph, bar chart, 19

bar graph, scatter plot, bubble chart,
timeline, table, chart

Visualization Type Connectors on a, of, showing 11
Visual Properties area, size, x, y, color, shading 6
Visual Mappings related to, =, geographically 4
Visual Elements bubbles 1

Table H.2: Visualization classes, keywords and number of appearances.

Operator Keywords #
division per, ratio between, divided by 10
count number of, number of times, how many times 6
sum total 3
average average 3
time since since 2

Table H.3: Operator classes, keywords and number of appearances.

Intention Keywords #
comparison compared, compare, vs, comparison 14
relationship relationship, related, relation 11
correlation correlation, correlate, correlations 7
distribution distribution 1
trend trend 1

Table H.4: Intention classes, keywords and number of appearances.

Indicator Keywords #
Superlative -est, most 10
Explicit keyword rank by, order by, sorted by 9
Top first n, top n, n [superlative], major 6

Table H.5: Ordering indicators and number of appearances.
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Filter Indicator Keywords #
Question keyword which, what, who 12
Superlative -est, most 10
Top first n, top n, n [superlative], major 6

Table H.6: Filter keywords and number of appearances.
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