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Abstract

When exploring source code in modern integrated development environments (IDEs), 

programmers are prone to disorientation, a state of ‘mental lostness’ which disrupts 

concentration and task focus. Disorientation can result in important information being 

forgotten or overlooked and recovery requires additional time and effort which reduces 

programmer productivity and satisfaction.

 A primary factor in the occurrence of programmer disorientation is the exploration 

interface design prevalent in modern IDEs. Programmers are effectively restricted to 

examining a single fragment of source code at any moment during exploration activities, 

and more significantly, there exists little or no representation or continuity of exploration 

history or context from one source code display to the next. Essentially, source code 

exploration is carried out as a series of perceptually independent glances at the code. This 

manner of exploration, particularly considering the complex and highly fragmented 

nature of source code,  places a significant ongoing mental burden on the programmer 

and leads to a variety of problems associated with maintaining and regaining focus, 

finding particular locations and elements in the code and developing an accurate 

conceptual model of the underlying interconnected implementation. 

 Inline source code exploration is a mechanism for exploring source code in-

context. Contrary to the traditional mechanism of explicitly navigating between isolated 

source code displays, the programmer progressively introduces related source code 

elements into the context of a focal, or primary, source code display in a controlled and 
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interactive manner. The inline style of exploration results in an explicit representation of 

the programmers exploration history/context which serves as a reminder of ongoing focus 

and intent as well as an orientation aid in the code space. The approach also facilitates the 

pursuit of exploratory digressions without the problematic need to leave the originating 

context and supports the examination and comprehension of fragmented source code in a 

single coherent display. 

 This thesis explores the concept of inline source code exploration and specifically 

its application as a means of reducing the occurrence and severity of disorientation 

suffered by programmers during source code exploration activities. 
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Chapter 1 

Introduction

Chapter 1 provides a brief introduction to the thesis. This includes a discussion of core 

background concepts, an explanation of the problem, the proposed solution in a 

preliminary form and a description of the guiding research statement. The methodology, a 

summary of the main findings and a selection of future work is contained in the 

conclusion, Chapter 8. 

1.1 Preamble

The study of human-centered phenomena such as disorientation, navigation and 

comprehension difficulties in modern integrated development environments (IDEs) is an 

increasingly important area of research in computer science and engineering. As software 

systems become ever larger and more complex programmers increasingly rely on the 

usability and cognitive support provided by their IDE to help them deal with the scale 
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and complexity of modern software systems while remaining productive and free of 

unnecessary stress and mental burden.

1.2 Background

Source code exploration is a fundamental and pervasive software engineering activity. 

Prior to, and during, software development and maintenance activities programmers will 

generally spend a considerable amount of their productive time exploring existing source 

code in order to determine and comprehend those areas or features of a system relevant to 

their tasks (Singer et al. 1997; Ko et al. 2005).  However when exploring source code in 

modern integrated development environments (IDEs) programmers are prone to 

disorientation, a condition in which they lose the context or relevancy of their recent 

actions resulting in an invasive disruption to ongoing concentration and task focus (De 

Alwis & Murphy 2006). 

 Disorientation can result in relevant information being forgotten or overlooked 

and recovery requires additional time and effort which reduces overall programmer 

productivity and satisfaction. 

1.3 Disorientation in the computer medium

At the root of disorientation in the computer medium is the ‘keyhole property’ introduced 

by Woods & Watts (1997). The keyhole property describes a common and somewhat 
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fundamental scenario in which a spatially large information space is examined via a small 

window or display capable of presenting only a very limited portion of information to the 

user at any given moment. In essence, the keyhole property is concerned with the spatial 

mismatch between a computerized information space, which is potentially vast, and the 

physical display space available to the user (the computer screen) which is of a limited 

and fixed size. The keyhole property is illustrated in Figure 1.1.

Figure 1.1: A visual representation of the keyhole property. A spatially vast information 

space or network is examined via a display capable of presenting only a limited amount 

of information to the user at any given moment. To explore the information space the user 

needs to ‘navigate’ from one location in the information space to the next examining each 

in isolation. 
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Using a keyhole interface it is generally not possible for the user to view all of the 

information necessary for a given task on a single display. Instead they need to call up 

sequences of discrete displays containing task relevant information located at various 

points throughout the information space. The decisions and actions which drive this 

process form the essence of navigation in the computer medium. 

 However in the absence of sufficient orientation, navigation and information 

synthesization support from the exploration interface the process of exploring complex 

information by navigating between sequences of discrete displays can result in a set of 

‘typical navigation problems’ (Watts & Woods 1999). These problems include ‘getting 

lost’ or ‘disoriented’, where the user is unable to locate information, determine where 

they are in the information space and understand the relevance of the display they are 

currently examining, display thrashing (Henderson & Card 1986), where the user needs 

to switch repeatedly between displays in order to synthesize information from disjoint 

locations in the information space, and as excessive interface management, where the 

user needs to concentrate on extraneous interface adjustment and manipulation activities 

which drain attention and concentration away from primary tasks and goals (Watts & 

Woods 1999). 

 It is important to note that disorientation is a symptom of poor structure in the 

underlying information space in addition to the display system in use. Large, highly 

fragmented and irregularly inter-linked information spaces tend to be more disorientating 

than those which are smaller, less dense and support a more uniform and predictable 

structure (Maneti 1982; Van Dyke Parunak 1989). Disorientation is very much a product 
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of both information size and structure as well as the design of the exploration interface in 

use. 

1.4 Programmer disorientation 

A system of source code, when considered in terms of an information space, is generally 

quite large and exhibits a dense, complex and highly fragmented non linear structure. The 

widespread application of advanced decomposition technologies available in modern 

programming languages in addition to structural phenomena such as control flow scatter 

(Chu-Carroll et al. 2003) and the ‘tyranny of the dominant decomposition’ (Tarr et al. 

1999) result in a trend whereby the implementation of conceptually coherent program 

operations and features is broken into a set of discrete source code fragments and 

elements. These units of code are then scattered over numerous disjoint source code 

documents and locations in the code space. Furthermore the linguistic references and 

semantic relationships connecting disjoint source code elements into a coherent 

implementation are generally dense and arbitrarily organized resulting in a complex 

irregular topology of information. Source code is also visually homogenous. 

 Reflecting the unique structure, complexity and fragmentation exhibited by source 

code, the act of source code exploration is characterized by repeated switching between 

source code documents and elements, finding and re-finding relevant information, perusal 

of complex branching navigation paths, and synthesization of implementation from 

portions of code located as disjoint points throughout code space (Singer et al. 1997; Ko 
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et al. 2005). However, modern IDEs do not provide an exploration interface with 

adequate support for keeping programmers oriented and focused during such activities 

(De Alwis & Murphy 2006). 

 Modern IDEs support a wide variety of exploratory navigation features and 

mechanisms which allow programmers to rapidly navigate through source code as they 

attempt to identify and piece together a mental model of system implementation. 

However, at any given moment the programmer is effectively restricted to examining a 

single fragment of source code - contained in the visible portion of the source code editor 

display (De Alwis & Murphy 2006). More significantly, there is little or no representation 

or continuity of navigation history and context or program structure from one source code 

display to the next. Essentially source code is explored as a sequence of perceptually 

independent displays, each visibly replacing its predecessor and the programmer 

internalizes the burden of maintaining an ongoing sense of orientation and exploration 

context throughout their task. This situation results in a significant cognitive overhead 

which is prone to breaking down due to the inherent fuzziness and limited capacity of the 

programmers short and medium term memory. In the event of an external interruption or 

when the programmer becomes momentarily preoccupied or distracted by a conceptual, 

navigational or interface manipulation concern, orientation and context may be forgotten 

or ‘pushed out’ of memory resulting in a loss of focus, and potentially a state of 

disorientation. To recover from disorientation a programmer may need to retrace their 

recent navigation actions in an attempt to rebuild context and intent or simply restart their 

exploration from a familiar location within the source code. 
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 Programmer disorientation is a complex and multi-faceted problem; however, there 

are a number of basic factors pertaining to IDE interface design which contribute to the 

phenomenon (De Alwis & Murphy 2006). These factors are:

• A lack of navigation history and context

• A lack of support for pursuit of digressions

• Issues comprehending fragmented source code

1.4.1 A lack of navigation history and context

When exploring source code a programmer will generally visit and examine numerous 

source code locations and elements in order to identify and comprehend a particular 

feature or aspect of the software system. However as the programmer navigates from one 

discrete source code display to next there is no visible indication of how they arrived at 

the current source code location and its relationship to previously visited locations. This 

navigational context is important in terms of orientation and way-finding within the 

information space (Kim & Hirtle 1995) and also serves as a reminder of ongoing intent 

and a frame of reference in which the programmer develops their conceptual model 

(Storey et al. 1999; De Alwis & Murphy 2006). 

 In the absence of an explicit representation of navigation context, the programmer 

maintains a working sense of context in short term memory. Not only does this result in a 

significant ongoing mental burden, but in the event of an external, interface or conceptual 

distraction the programmer may forget their context and consequently their intent. Loss 
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of context is a common situation in modern IDEs and is often used interchangeably to 

describe programmer disorientation (De Alwis & Murphy 2006). Programmers will often 

forget how or why they arrived at a particular source code element or location and its 

relevance to their overall task or current exploration goals. 

1.4.2 Pursuit of digressions 

When exploring source code programmers are continually faced with the possibility of 

exploratory digressions.  An exploratory digression occurs when a programmer 

temporarily suspends their current exploration path and intent in order to pursue (or is 

distracted by) a side path. Exploratory digression may in turn spawn further digressions 

(Embedded digressions - Foss 1989a), and eventually the primary intent may be forgotten 

due to an overloading of short term memory. Because digressions are not explicitly 

recorded by the IDE, and the original context of the digression is not maintained, it is 

easy for the programmer to forget their original intent or simply fail to return from a 

pursued digression. 

1.4.3 Synthesizing information 

The fragmented nature of source code means that it is often necessary to consider 

information from a number of related source code locations and synthesize an overall 

picture or mental model of a given program feature or operation (Chu-Carrol et al. 2003). 

Because only a very limited portion of source code may be displayed at any given 
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moment, the programmer may need to repeatedly switch or flip between related source 

code displays in order gain the necessary overview or interpretative context. This 

behavior is known as thrashing (Henderson & Card 1986) and requires the programmer 

to concentrate on interface manipulation activities and maintain additional information in 

working memory. The distraction and interface adjustment associated with thrashing 

behavior may cause the programmer to lose track of their intent and become disoriented. 

1.5 Inline source code exploration

To reduce the incidence of programmer disorientation and generally alleviate the mental 

burden on programmers during source code exploration activities, modern IDEs need to 

provide support for maintaining navigation history and context, managing digressions 

and simultaneously examining related portions of source code with minimal interface 

adjustment. This should then allow the programmer to focus additional mental effort on 

the primary task of examining and comprehending the source code and subsequently  

increase productivity. 

 A promising approach to this problem is inline source code exploration (Desmond 

et al. 2006). Inline source code exploration is a technique for exploring source code in 

context, meaning that fragments of source code may be examined in parallel with 

surrounding or adjacent source code during exploration tasks and activities. The essential 

premise is that instead of explicitly navigating between isolated displays of source code 

(See Figure 1.2), which results in a continuous loss of navigation context, the 
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programmer progressively introduces related portions of source code, inline, into the 

context of a focal source code editor display (See Figure 1.3).

Figure 1.2: Explicit navigation between discrete source code displays. Each new display 

replaces the previous during the exploration process. This style of exploration results in a 

loss of navigation context, problems associated with exploratory digressions and 

difficulty comprehending fragmented source code. 

 Figure 1.3: Inline exploration. Each new source code element is introduced into the 
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context of the focal source code display. A representation of the programmers navigation 

history is maintained in terms of the visited source code elements themselves. 

Inline exploration of source code facilitates a visible navigation history and context 

which is built up as the programmer progressively “expands” into the software space 

related to the primary source code document. Fundamentally a visible context should 

reduce the burden on the programmer to maintain necessary navigational context in 

memory and also serve as an orientation and navigation cue and a visible reminder of 

exploratory intent. 

 Inline exploration also implicitly provides support for managing digressions. The 

programmer can explore an exploratory digression or side path without losing track of the 

original context and the digression itself is also recorded in terms of visible navigation 

context. This may be sufficient for the programmer to evaluate the digression without the 

risk of forgetting the original goal or neglecting to return from the pursued digression. 

 Inline exploration also supports the simultaneous examination of multiple related 

source code elements in a single display.  This may reduce the incidence of thrashing and 

support the programmer’s task of understanding how program elements are related and 

how they interact with one another thus support the development of an accurate 

conceptual model.
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1.6 Research

The goal of this research is to explore the use of inline source code exploration as a 

technique to alleviate programmer disorientation, and reduce the general mental burden 

on programmers during source code exploration activities. The work aims to determine 

the feasibly of an inline source code exploration model, identify the advantages and 

disadvantages of the approach, and explore design concerns and usability. The guiding 

research questions is thus:

What are the advantages and disadvantages of inline source code exploration, and what 

effect does it have on programmer disorientation?
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Chapter 2 

Disorientation in the Computer 
Medium

“-the user does not have a clear conception of relationships within the system, does not 

know his present location in the system relative to the display structure, and finds it 

difficult to decide where to look next within the system.”      

- Elm & Woods (1985).

Disorientation has been identified and studied in a variety of domains such as hypertext 

systems (Conklin 1987; Foss 1989a; Foss 1989b; Kim & Hirtle 1995; Edwards & 

Hardman 1999), spread sheets (Watts-Perotti & Woods 1999), menu systems (Maneti 

1982), software development environments (De Volder 2003; De Alwis & Murphy 2006; 

Kersten & Murphy 2005), computerized nuclear power plant operating instructions 

(Woods & Roth 1988) and medical monitoring systems (Cook and Woods 1996). 

Disorientation refers to a temporary state of mental lostness which disrupt a users 
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concentration and focus during complex tasks in the computer domain. The phenomenon 

can result in important or relevant information being forgotten or overlooked, and 

recovery requires additional time and effort which negatively affects a users productivity 

and satisfaction. 

 This chapter describes what disorientation is, and why it occurs in the computer 

medium. A particular focus is on the type(s) of disorientation which occur during 

hypertext exploration activities. The justification for this focus is that many of the 

disorientation problems experienced by programmers during source code exploration are 

very similar to those experienced by users of hypertext systems (De Alwis & Murphy 

2006; Storey et al. 1999). This reflects the very similar structure shared by both 

information mediums. However the investigation and understanding of disorientation in 

the hypertext domain is significantly more mature and thus presents a convenient 

platform on which to understand the phenomenon at a level of depth which is currently 

unavailable in the source code exploration literature. 

2.1 Fundamentals

At the root of disorientation in the computer medium is what Watts-Perotti & Woods 

(1999) describe as the ‘navigation phenomenon’. The information space or virtual data 

field maintained in a computer system is typically far larger, in a spatial sense, than the 

available physical display space available to the user - represented by the physical 
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computer screen. This mismatch is referred to as the “keyhole property” (Watts & Woods 

1997) and illustrated in Figure 2.1.

Figure 2.1: The keyhole property. A spatially large information space is examined via a 

limited display. 

Examining a large information space via a keyhole display means that it is generally not 

feasible for the user to examine all of the information required for a given task 

simultaneously in a single display. Instead the user needs to decide which portions of the 

information space to call up and examine in a sequential manner. The decisions and 

actions which drive this process form the essence of navigation in the computer medium.

 However the keyhole display makes it difficult for the user to locate and 

remember information and to synthesize a coherent overall picture from pieces of 

information located at disjoint locations throughout the information space. Typical 
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problems that users experience are ‘getting lost’ or ‘disoriented’ in the information space, 

where the user is unable to determine where they are and the relevance of what they are 

examining, as display thrashing (Henderson & Card 1986) where the user has to 

repeatedly switch between related displays in order to correlate information and as 

interface management where the user needs to expend additional concentration on 

interface adjustment and manipulation activities (Watts & Woods 1997).

 An example of the problems associated with a keyhole display is reported by Elm 

& Woods (1985). Designers attempted to convert the existing paper based instructions for 

nuclear power plant emergencies procedures into a computerized format similar to html 

pages. 

people became disoriented or “lost,” unable to keep procedure steps in pace with plant

behavior, unable to determine where they were…(in the display space), unable to decide

where to go next, or unable even to find places where they knew they should be

(i.e., they diagnosed the situation,knew the appropriate responses as trained operators

yet could not find the relevant procedural steps in the network). 

 - Woods & Roth (1988) p. 10

It is telling to note that the operators became so disorientated by the computerized 

instruction system that they had to abandon their task completely. This is the essence of 

disorientation in the computer medium. 
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 Two other factors are also of fundamental importance when considering 

disorientation in the computer domain, the structure of the underlying information space 

and the structure of display interface in use. Large, irregular information spaces tend to 

be more disorientating than those which are small and more uniform. The introduction of 

some semblance of uniformity within an information network can dramatically improve 

navigability and aid in preventing disorientation (Van Dyke Parunak 1989). However 

regardless of the size or uniformity of the underlying information space, It is the role of 

the display interface to expose the underlying structure and  help the user navigate in the 

space without becoming disorientated. 

2.2 Lost in hyperspace 

A classic example of a keyhole scenario is represented by hypertext systems. A hypertext 

system is composed of a database containing textual nodes of information linked together 

into an information network (a hyperspace) and a display system capable of presenting 

the contents of a node in an on screen display.  A node display may contain any number 

of links, presented as selectable portions of text or other visual artifacts, which represent 

pointers to other nodes in the information network. When a link is selected by the user 

the referenced node is located and opened in the on-screen display. A prototypical 

hypertext system is illustrated in Figure 2.2.
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Figure 2.2: A hypertext system which is composed of an underlying network of 

information nodes and directed links (the hyperspace), and a display system capable of 

displaying the contents of a node on screen and facilitating navigation between 

individual nodes via links. 

Browsing or exploring a hypertext system refers to the process of visiting sequences of 

nodes (displays) and links to locate and assimilate information related to user tasks and 

goals.
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 During hypertext browsing activities three distinct categories of disorientation 

have been identified in the literature (Foss 1989a; Foss 1989b). These categories are:

• Navigational disorientation

• Task disorientation 

• Informational disorientation 

2.2.1 Navigational disorientation 

Navigational disorientation also known simply as ‘disorientation’, ‘getting lost’ (Conklin 

1987) or ‘being lost in hyperspace’ (Edwards & Hardman 1989) occurs when a user 

becomes spatially lost when exploring a hypertext system. Conklin (1987) describes the 

problem as ‘the tendency to lose ones sense of location or direction in a non linear 

document’. 

 A hypertext system facilitates the fragmentation of a coherent body of information 

into a collection of textual nodes connected via a network of directed links. When 

exploring a hypertext system the user needs to maintain a sense of where they are in the 

network, how they arrived at the current location and how to navigate to nodes which are 

known or expected to exist (Thüring et al. 1995). This information is important for way-

finding and navigation activities (Kim & Hirtle 1995) and understanding the semantic 

content of the system and developing an accurate conceptual model (Thüring et al. 1995).
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 In the absence of external orientation aids provided by the display interface the 

user maintains a sense of orientation in working memory which tends to be both limited 

and erroneous. As a result, in large topologically complex information networks users are 

prone to losing track of their location and having difficulty remembering and finding 

information of interest. Foss (1989a) explains that navigational disorientation is an 

inherent aspect of hypertext systems as a hyperspace may contain hundreds of nodes of 

information linked together in a complex topology yet only a very small number may be 

examined on screen at any particular moment. 

 Symptoms of navigational disorientation include failure to locate information in 

the network (retrieval failures), navigational problems such as looping and inefficient 

paths, lack of closure (uncertainty whether the extent of the network is known or whether 

information may have been forgotten or passed by) and not knowing if a link will bring 

up relevant or sought after information (Foss 1989b). Edwards and Hardman (1999) 

characterize navigational disorientation as:

• Not knowing where to go next

• Knowing where to go, but not knowing how to get there

• Not knowing the current position relative to the overall structure

To recover from navigational disorientation users have been observed to return to a 

familiar location within the information network to restart exploration or backtrack to 

previously visited nodes in an attempt to regain context (Foss 1989b).
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2.2.2 Task disorientation 

Task disorientation also known as ‘task overload’ (Foss 1989a) or ‘cognitive 

overhead’ (Conklin 1987) refers to problems managing and keeping track of goals and 

digressions during exploration activities. These problems originate from the cognitive 

demands placed on the user when exploring a complex information system.  Conklin 

(1987) describes cognitive overhead as “the additional effort and concentration necessary 

to maintain several tasks or trails at any one time”. The phenomenon is succinctly 

described by Foss (1989a) in terms of the “embedded digression problem”. 

 The embedded digression problem describes the process by which a user suffers 

from disorientation when pursuing multiple paths or digressions through an information 

network. When following a path through the network, which is generally driven by a 

particular task or goal, the user may encounter an interesting aside thus branching from 

the main exploration path into a digression. The current task is mentally put ‘on hold’ by 

the user as the digression is processed. However the digression may take an unexpected 

amount of time, or may in turn spawn further digressions (embedded digressions) which 

can lead to the original task(s) being forgotten due to the limited attention and working 

memory of the user. McAleese (1999) elegantly summarizes the phenomenon as when 

“the user keeps following chains of thought until the original goal is lost”. 

 It is interesting to note that exploratory goals may also be forgotten when users 

are required to concentrate on navigational or interface management issues such as 

locating nodes in the network, recovering from problems such as getting lost and 

arranging the interface (Foss 1989a). 
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 Symptoms of task disorientation include users forgetting why they moved to a 

particular location (What was I doing?), confusion as to what they had intended once 

arriving at a location (What was I going to do?), forgetting to return from digressions and 

neglecting to pursue planned digressions (Foss 1989b). 

2.2.3 Informational disorientation 

The final category of disorientation experienced during hypertext exploration activities is 

informational or conceptual disorientation. Informational disorientation pertains to 

difficulties comprehending, synthesizing and summarizing the semantic content of the 

information examined during a period of exploration. Foss (1989a) describes this 

problem in terms of the “Art museum phenomenon”.  The ‘Art museum phenomenon’ 

describes a situation where subsequent to viewing a large number of nodes of information 

the task of forming a coherent abstraction or comprehension of the overall content can be 

difficult for the user. The art museum metaphor is derived from a hypothetical visit to an 

art museum in which a person might look at hundreds of paintings yet be unable to 

describe a particular painting in detail or describe how particular styles of art have 

influenced one other. 

 Symptoms of the art museum phenomenon include a lack of detailed memory for 

any particular node that was examined and an inability to summarize or abstract what was 

learned during a exploration or browsing session (Foss 1989a). 
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2.3 Factors inducive to disorientation 

Disorientation experienced during information exploration activities is a factor of both 

the structure of the underlying information network as well as the display system or 

exploration interface in use. 

2.3.1 Structure of the information space and its role in disorientation

Van Dyke Parunak (1989) explains that the complexity of the topology connecting an 

information network affects a user’s ability to navigate within that space. Simple, regular 

topologies, such as linear, ring or hierarchy allow the user to employ a variety of 

navigation strategies and the scope for users getting lost and disoriented is low.  There is 

a definite spatial organization within the network which the user can exploit as an 

orientation and navigational aid. For instance Conklin (1987) notes that in a linear 

network the user has two choices when attempting to find information, either before the 

current location or after. In an arbitrarily complex network the choice is not so straight-

forward. Van Dyke Parunak (1989) explains that as the size and topological complexity 

of the network increases, the number of available navigation strategies decreases and 

there exists more ways for the user to move between different nodes of information. This 

richness and variety of navigational options leads to problems such as getting lost and 

disoriented. Van Dyke Parunak (1989) concludes that arbitrary topologies offer the least 

number of navigation strategies and thus the greatest scope for user disorientation. 
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 Kim & Hirtle (1995) note that path complexity is a factor which negatively affects 

navigation performance and the acquisition of mental maps in a hypertext system. Path 

complexity refers to the number of decision or branch points along paths through the 

network. Foss (1988) notes that when a lot of interesting links are located in close 

proximity the user may be distracted from their main task and suffer from embedded 

digression problems leading to task disorientation. 

 Thüring et al. (1995) describe that ‘the fragmentation characteristic’ inherent in 

hypertext systems hinders a user’s ability to construct a mental representation of 

information distributed across a number of nodes in a hyperspace. Essentially the greater 

the level of fragmentation in a hyperspace (the finer the granularity of related information 

nodes) the more effort required by the user to synthesize an overall mental model due to 

the keyhole effect (only a limited number of nodes may be displayed on the screen at any 

given moment). 

 Differentiation and homogeneity are also significant factors in terms of potential 

for disorientation in an information space. Differentiation refers to the ability to 

distinguish between fragments of information (Kim & Hirtle 1995) and homogeneity 

(Nielsen 1990) refers to a situation where the appearance or presentation or information 

in a information space makes it difficult for users to differentiate. When the information 

contained in an information space is visually homogenous users are unable to recognize 

previously visited locations, thus making them confused about the path they have taken 

(Nielsen 1990). 
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 In summary large, irregular, highly fragmented and visually homogenous 

information networks are much likelier to induce disorientation on behalf of users.

2.3.2 Structure of the exploration interface and its role in disorientation

While poor structure of the underlying information network is a factor inducive to 

disorientation, it is the role of the display interface to help the user maintain orientation, 

synthesize information across displays and avoid navigation problems.  

 Watts-Perotti & Woods (1999) maintain that the degree of visual momentum 

exhibited by a display interface dictates the level of disorientation and navigational 

problems experienced by the user.  

 Visual momentum is ‘a measure of a computer user’s ability to extract relevant 

information across views and displays’ (Woods 1984). The idea is inspired from concepts 

used in cinematography to measure the impact from one view to another on the 

observer’s cognitive process, in particular the extraction of task relevant information 

(Hochberg 1986). When visual momentum in an information display system is low or 

absent, information is presented as a series of discrete isolated displays. Woods (1984) 

explains ‘Each transition to a new display becomes an act of total replacement; both 

display content and structures are independent of previous ‘glances’ into the database’. 

Without visual momentum between displays the user carries the mental burden of 

maintaining exploration context and reorienting to the new display with each navigational 

transition. 
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 In contrast, an interface exhibiting a high degree of visual momentum supports 

the continuity of structure and content from one display to another. Woods (1984) 

describes ‘when visual momentum is high, there is an impetus or continuity across 

successive views that supports the rapid comprehension of data following the transition to 

a new display’. A high level of visual momentum between displays leads to a situation in 

which interface mechanisms become transparent and the user is allowed to focus fully on 

user level goals and tasks. 

 Essentially high visual momentum implies that a user expends little mental effort 

to place new displays in the context of the larger system. Conversely, low visual 

momentum requires users to spend more mental effort in putting new displays into the 

existing context. Design techniques to increase visual momentum include display 

overlap, long-shots, landmarks, bookmarks and spatial dedication (Watts-Perotti & 

Woods 1999).  

2.3.2.1 Long-shots

A long shot is a high-level overview of the information space which the user can exploit 

as an orientation, navigation and comprehension aid. The long shot allows the user to 

relate the current display to previous displays and to establish a frame of reference to aid 

in comprehending upcoming displays, thus helping to alleviate both navigational and task 

disorientation. 
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 An example of a long shot is a graphical overview of the underlying information 

network which highlights the users current location along with previously visited and 

upcoming locations.

2.3.2.2 Functional-overlays

A functional overlay displays the context surrounding the display currently being 

examined. Generally this allows the user to avoid navigation and consider multiple 

related pieces of information in a single display, thus helping to relieve navigational, task 

and informational disorientation. 

 An example of a functional overlay is a pop-up window containing the contents of 

a link in a hypertext system. The user can examine the contents of the pop-up window 

while simultaneously examining the original link location and its surrounding context. 

2.3.2.3 Landmarks

A landmark is a prominent and easily identifiable feature or element in the information 

space which, at a glance, provides information about orientation and location to the user. 

Landmarks are used to aid users in reorienting to the structure of the information space as 

well as providing a mechanism to return to known locations. The classic example of a 

landmark is the ‘home’ button in a hypertext system. 
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2.3.2.4 Bookmarks

Bookmarks record positions of interest in an information space. The use of bookmarks 

allows the user to store a set of pertinent locations in a central and easy to access area of 

the display space. This means that the user can access relevant information without the 

need to exhaustively search through the network. Removing the need to exhaustively 

search alleviates navigational and task disorientation. Furthermore bookmarks may be 

used as a record of the interesting elements discovered during a complex task thus 

helping to alleviate informational disorientation. 

2.3.2.5 Spatial dedication

Spatial dedication is concerned with the organization of the information space so that 

information is spatially arranged. This means that information is consistently kept in a 

certain place within the system. Spatial dedication provides users who are familiar with 

the spatial structure a memory aid facilitating navigation to desirable information without 

the need to exhaustively search through the information network. This alleviates both 

navigational and task disorientation. 

 Watts-Perotti & Woods (1999) describe spatial dedication as a mechanism used to 

remain oriented in spread sheet environments. Users were observed returning to known 

locations in a given sheet based on natural spatial encoding. This mechanism allows the 

user to remain focused on their task. De Alwis & Murphy (2006) also observed 

programmers using specific spatial locations within source code documents to quickly 
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locate frequently visited method bodies and the location of variable definitions (generally  

at the top of a given source file) without exhaustive scrolling. 

2.4 Tools and techniques to alleviate disorientation 

In response to the various categories of disorientation encountered when exploring 

hypertext systems a variety of technologies have been developed to alleviate the various 

aspects of the phenomenon and support the user to remain focused and oriented in the 

information space. Many of these techniques are based on or match the the design 

techniques to increase visual momentum as outline in Chapter 2 Section 3. 

2.4.1 Overview maps

Conklin (1987) proposes that one of the major technological solutions to the problem of 

navigational disorientation is the use of graphical browsers or overview maps. A 

graphical browser is a tool capable of rendering the structure of the underlying 

information network in a 2d or 3d display thus creating a virtual spatial environment 

which can be exploited by the human visiospatial system. Typical examples of graphical 

browsers appear in hypertext systems such as NoteCards (Halasz et al. 1986) and 

Intermedia (Garrett et al. 1986). Watts-Perotti & Woods (1999), in a study of spreadsheet 

users, found that the provision of a printed map of a spread sheet structure reduced 

perceived disorientation on behalf of users. 
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 Thüring et al. (1995) also propose that to decrease the cognitive overhead on 

users, and thus increase the comprehensibility of a hypertext system, a graphical map or 

presentation of the information space should be provided which enables the user:

• To identify their current position with respect to the overall structure

• To reconstruct the way that led to the current position

• To distinguish between different options for moving on from this position

However there are a number of challenges with respect to overview maps which limit 

their usefulness at alleviating disorientation. Due to screen space limitations only a small 

portion of a very large network overview may be visible to the user at any particular 

moment. Furthermore as the complexity and density of the network increases the 

overview becomes more difficult to use and interpret and thus its usefulness quickly 

dissipates. Foss (1989a) explains that “browser graphs containing more than 10-15 nodes 

approached the user’s saturation point”. In such a scenario a form of distorted view or 

fisheye is generally required - or alternatively the overview may be filtered to display 

only pertinent nodes based on some defined criteria. 

2.4.2 Search/Query mechanisms

A second technological solution to navigational disorientation proposed by Conklin 

(1987) is the application of database style search/query mechanisms. Instead of browsing 

for nodes/links in the network, the user executes a search based on criteria such as 
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keywords, arbitrary strings or node/link attributes such as author, type etc. The user can 

then navigate directly to the required information and bypass the need for searching 

through the information network.

 Fast arbitrary navigation systems are also important in terms of task 

disorientation. For instance a user might be exploring at one point in the network and 

suddenly want to check some information located at a distant node. By the time the user 

has navigated across the network, dealing with the associated navigational overhead, they 

may have forgotten their original intent or become lost.

2.4.3 Guided Tours/Beaten tracks

A guided tour or beaten path (Van Dyke Parunak 1989) is a predefined or recommended 

path through an information network which is laid out by the author or a power user. The 

user relinquishes the flexibility of open exploration by following a series of clearly 

marked links and nodes. The task and navigational disorientation associated with 

browsing is avoided and the user is free to concentrate on reading and comprehending the 

information content. However guided tours are still prone to conceptual disorientation 

associated with information fragmentation. Guided tours are considered useful for 

introducing a hyperspace to new or novice users.
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2.4.4 Visual/Interactive browsing summary/history

Foss 89a proposes an innovative suite of hypertext browsing tools designed to alleviate 

the disorientation associated with embedded digressions and the art museum phenomena. 

The primary facet of the tool suite is to provide the user with a visible and interactive 

history of their browsing activities. 

2.4.4.1 Graphical history list

A graphical history list (Foss 1989a) is designed to support the management of 

exploratory digressions and promote user orientation by providing a list of the nodes and 

local neighbourhoods visited by the user during a browsing session (See Figure 2.3). The 

list is displayed on screen and contains an entry for each node visited during a session. 

When an entry is selected a ‘mini browser’ is opened showing the local neighbourhood 

associated with the visited node. The mini browser distinguishes between visited and non 

visited neighbouring nodes and may be computed to a given depth. 

 The graphical history list supports digressions as users have a record of the nodes 

that have been visited and can easily return to unexplored neighbouring nodes via the 

mini browsers. The mini browser also allows the user to regain context at previously 

visited nodes and distinguish unexplored neighbouring nodes.



44

Figure 2.3: A graphical history list (top right) containing an ordered list of the nodes 

previously visited by the user. ‘Mini-browsers’ depicting the local neighbourhood 

surrounding the selected nodes are displayed in centre.

2.4.4.2 Graphical history tree

A history tree (Foss 1989a) is similar to a graphical history list in that it records the nodes 

visited by a user during a browsing session. However the history tree displays the user’s 

navigation path hierarchically and includes a precise temporal ordering (See Figure 2.4).
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Figure 2.4: A graphical history tree displaying the users navigation path through the 

hyperspace. Branches indicate digressions inferred from cycles in the users navigation 

history. 

When a cycle is detected in the navigation path it is treated as a completed digression and 

added to the tree as a branch with the revisited node as root. The history tree allows the 

user to visualize their navigation path through a hypertext system in terms of paths and 

digressions. Selecting an entry in the history tree opens the corresponding hypertext node 

in an onscreen display. 
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2.4.4.3 Summary boxes

Summary boxes (Foss 1989a) are designed to facilitate note taking during a hypertext 

browsing session, thus aiding informational tasks. If a summary box is open on screen all 

nodes visited by the user are opened with a blank ‘twin’ node. The user can enter notes in 

the twin or copy interesting information from the original node into the twin. The original 

node and the twin are dynamically entered into a history list contained in the summary 

box (See Figure 2.5). 

Figure 2.5: A summary box containing the visited nodes and associated ‘twin’ or 

summary cards. Pertinent notes and information may be copied from the original nodes 

into the summary cards during browsing activities.
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The summary box is designed to mitigate the art museum phenomenon as the user may 

examine the summary box after a browsing session and view a list of the frames visited 

annotated with notes and other information deemed pertinent during the session.

2.4.4.4 Summary tree

Summary trees (Foss 1989a) are much like history trees in that they record the user’s 

movements through the hypertext network as a temporally ordered hierarchy of nodes. 

However in a summary tree the user is free to add annotations to the tree in the form of 

notes and arbitrary links between nodes. An example summary tree is illustrated in Figure 

2.6. The summary tree is designed to allow the user to build a custom conceptual map or 

diagram which may or may not be isomorphic to the actual structure of the hypertext 

network itself. The conceptual diagram helps the user to summarize and comprehend the 

information encountered during a browsing session.
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Figure 2.6: An annotated summary tree. The summary tree allows the user to arbitrarily 

annotate a representation of their browsing history.

2.4.5 Preservation of context 

Preservation of context is a technique which allows the user to examine information in 

the context of previously examined information. The SEPIA browsing interface (Thüring 

et al. 1995)  displays the contents of the current or active information node and the 

contents of its immediate predecessor in a dual display as the user explores the system. 

Thüring et al. (1995) explain that preserving the context of the previously explored node 

supports the “given-new-strategy” (Clark and Haviland 1974). When new information is 

displayed in context with previous information it becomes easier for the user to make 

meaningful connections and relationships between the information units. The impression 

of fragmentation in the information network is also reduced. 
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2.5 Summary  

This chapter discussed the core tenets of disorientation in the computer medium, with a 

particular focus on the hypertext exploration domain. A particular focus on hypertext was 

made as it shares a very similar structure to source code. 

 Disorientation refers to a state of mental lostness which users encounter when 

exploring or browsing large information spaces. During hypertext browsing activities 

three types of disorientation have been identified, navigational disorientation where the 

user loses their sense of location and orientation in the information network, task 

disorientation where the user has difficulties managing tasks or digressions and 

informational disorientation where the user has difficulties comprehending and 

summarizing information. 

 Disorientation is induced by the structure of the underlying information network 

as well as the structure of the display system in use. Large, fragmented and visually 

homogenous information spaces exhibiting an irregular topology have the greatest scope 

for user disorientation. A high level of visual momentum in the display interface reduces 

the incidence of disorientation and helps users focus on tasks and goals. 

 A variety of technologies have been developed to alleviate the various aspects of 

disorientation during hypertext exploration activities. The technologies include overview 

maps, search/Query mechanisms, the provision of interactive browsing history and 

preservation of context. 
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Chapter 3 

Lost in Code Space

“During informal conversations, developers have mentioned to us that they occasionally 

become lost or disoriented when they explore a system. The disorientation involves losing 

the context or relevancy of their recent actions to their overall goal.”      

- De Alwis & Murphy (2006).

Programmers have reported, and have been observed to suffer from disorientation during 

source code exploration activities, even when working in advanced modern integrated 

development environments (De Alwis & Murphy 2006). This chapter discusses 

programmer disorientation, specifically in the context of source code exploration 

activities in an IDE setting. 

 Initially a number of structural properties of source code which are inducive to 

disorientation are discussed. This perspective provides an important foundation for 

ongoing discussion and links into the discussion of information structure and its role in 
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disorientation discussed in Chapter 2 Section 3.1. Then an analysis of the interface design 

of a state of the art modern IDE is presented. The focus of this analysis is to identify 

interface characteristics and limitations which contribute to the disorientation, such as 

lack of visual momentum (Chapter 2 Section 3.2). Finally a number of existing 

technologies and research tools designed to alleviate disorientation in the IDE are 

described and their scope and effectiveness considered. 

 The aim of this chapter is to explore the conceptual landscape associated with 

programmer disorientation in modern IDEs and highlight issues in the space.

3.1 Source code exploration

Before discussing the issue of programmer disorientation during source code exploration 

activities, it is useful as a preamble to first consider the nature of source code exploration 

itself. Contrary to the myth of a new programmer joining a development team and 

attempting to ‘learn the system’ in a single exploratory session, source code exploration is 

generally carried out on an ‘as needed’ basis and in the context of specific software 

development and maintenance tasks (Singer et al. 1997). 

 Due to the sheer size and complexity of modern software systems it is generally not 

feasible for an individual programmer to maintain a detailed knowledge or 

comprehension of a software system on an ongoing basis. Instead programmers will 

explore and comprehend portions of the system as needed, driven by their immediate task 

requirements. This generally involves exploring just enough of the system to identify 
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those constructs and interactions implementing a particular aspect or feature prior to 

making necessary changes or enhancements.

 Once a change task has been satisfactorily completed, the in depth-knowledge of 

the source code gained during the exploration and discovery phase rapidly fades into an 

abstract overview. The programmer will simply re-explore portions of the system in detail 

when encountered during subsequent tasks. 

 This high level approach to exploration and discovery in software systems has been 

described as ‘just in time comprehension’ (JITC) (Singer et al. 1997) and highlights the 

core and pervasive nature of source code exploration as a programmer activity.

  

3.2 Disorientation in code space

Programming languages provide linguistic tools and constructs which facilitate the 

decomposition of complex systems and operations into discrete program elements (for 

instance interface, type, method and fields declarations in an object oriented system). 

These elements are organized into a set of physical storage units - generally source code 

documents - and linked using a variety of expressive referencing mechanisms to achieve 

desired system structure and behavior. In essence, source code may be considered as a 

non-linear information space composed of inter-referenced program elements, similar in 

structure to a complex hyperspace (Storey et al. 1999; Schümmer 2001). See Chapter 2, 

Section 2 for a discussion of hypertext systems and the structure of a hyperspace for 

reference.  
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 Programmers repeatedly explore within ‘code space’ in order to assimilate a 

comprehension or ‘mental model’ of system implementation prior to and during software 

development and maintenance activities (Singer et al. 1997;Ko et al. 2005). This 

conceptual model allows programmers to reason about the system and make informed 

decisions related to the performance of their tasks.

 Chapter 2, Section 3.1 described that certain properties of an information space 

such as size, fragmentation, visual homogeneity and complexity of topology can increase 

the likelihood of users becoming lost and disorientated during exploration activities. A 

realistic system of source code is generally quite large, highly fragmented and exhibits a 

dense arbitrary arrangement of semantic relationships and cross-references with no 

inherent or uniform spatial structure to guide the user. Source code is also visually 

homogenous. 

 These properties, individually, and particularly when combined in a single 

information space, represent a significant potential for disorientation. In fact one could 

justifiably argue that source code manifests a worst case scenario in terms of scope for 

disorientation in an information space. A number of properties of source code are 

particularly inducive to disorientation. These properties, developed from existing research 

literature, are:

• A high level of fragmentation

• A dense and irregular topology of references and semantic relationships

• Visual homogeneity
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3.2.1 Fragmentation

Fragmentation refers to the degree to which a coherent or conceptually related body of 

information is broken up and stored at non adjacent points in an information space.  A 

high level of fragmentation results in a larger and more topologically dense information 

network meaning that users need to navigate greater distances and synthesize greater 

amounts of information during specific exploration tasks. Moreover, the greater 

separation and displacement of related information makes it more difficult for users to 

construct an accurate conceptual model and comprehend the information content 

(Thüring et al. 1995). In Chapter 2, Section 2 the discussion of disorientation in hypertext 

systems highlighted that fragmentation is a significant underlying factor in navigation, 

task and informational disorientation. 

3.2.1.1 Source code fragmentation

Fragmentation is an inherent characteristic of source code resulting from the application 

of decomposition and abstraction principles in software design and implementation. The 

practice of separating concerns and decomposing complex systems and operations into 

cohesive units of implementation generally results in greater flexibility and reusability in 

a software system (Parnas 1972; Kiczales et al. 1997). However decomposition also 

negatively impacts explorability and comprehensibility by increasing the level of 

fragmentation in the associated source code (Chu-Carrol et al. 2003). 
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 In modern software systems it is common for the source code representing a 

conceptually coherent portion of system implementation to be broken into numerous 

discrete program elements which are then spread over a series of source code documents. 

As a result, exploration and comprehension activities often require a significant amount 

of navigation between the relevant source code elements and assimilation of a conceptual 

model from non-adjacent locations in the code space. An activity which is prone to 

disorientation (Thüring et al. 1995). See Chapter 2, Section 3.1 for a discussion of 

fragmentation and its role in disorientation.  

3.2.1.2 Control flow scatter

Chu-Carrol et al. 2003 describe fragmentation of source code in terms of ‘control flow 

scatter’ because a prominent manifestation of the phenomenon is that the control flow 

related to coherent portions of system behaviour is heavily in-directed over a series of 

source code documents and therefore difficult to visualize, examine and reason about as a 

coherent whole.  

 Control flow scatter is a pervasive phenomenon which may be considered 

alongside the evolution of program language design and corresponding decomposition 

paradigms. As early monolithic systems became difficult to manage due to increasing size 

and complexity, the concept of procedural decomposition was developed to enable 

programmers to break up complex program operations into manageable units. Procedural 

decomposition resulted in significant gains in terms of expressiveness, reusability and 

manageability in software systems. However, because control flow could be in-directed 
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arbitrarily in and out of procedure definitions located across various program modules, 

the process of exploring code became more effortful and cognitively demanding. 

 The advent of the object oriented paradigm introduced further scope for scatter. In 

addition to the arbitrary indirection of control flow between method definitions, control 

flow could be indirected into complex type hierarchies involving inheritance and 

polymorphism. For instance, in an object oriented environment an abstract method 

declaration may be ‘implemented’ by any number of type related methods. Therefore to 

understand control flow the programmer may also need to explore and comprehend the 

type structure of the system. 

3.2.1.3 Cross cutting concerns

The existence of cross cutting concerns in a system also contributes to source code 

fragmentation.  A cross cutting concern is an aspect or feature of a software system the 

implementation of which cannot be sufficiently localized within the code space (Harrison 

& Ossher 93; Kiczales et al. 1997). Programming paradigms in general support 

modularization along a single dimension, a fundamental limitation of modern language 

technologies referred to as ‘the tyranny of the dominant decomposition’ (Tarr et al. 1999). 

In a realistic software system, not all concerns can be cleanly modularized using the 

dominant decomposition. Instead they end up scattered haphazardly across the code space 

and tangled into the implementation of existing modularized concerns and in some 

instances other cross cutting concerns (See Figure 3.1).
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 Cross cutting concerns contribute an additional layer of fragmentation to source 

and significantly impinge on explorability, essentially forcing conceptually related 

portions of code to reside arbitrarily at non-adjacent locations in a code space while 

providing no interconnecting network of references to guide the programmer. 

Figure 3.1: A visual representation of a crosscutting concern before modularization 

(above) and after modularization using AspectJ (below). The code associated with the 

concern is localized into a single aspect construct which uses point cut definitions to 

affect base code in a non invasive manner.

3.2.2 Topology

Topology refers to the density and spatial layout of the links connecting units of 

information to form the structure of an information space. As described in Chapter 2, 

Section 3.1, a uniform or regular topology helps users to navigate and remain oriented by 
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reducing route complexity and providing a degree of structural predictability within an 

information space (Van Dyke Parunak 1989). Furthermore in Chapter 2, Section 2.1 and 

2.2 the issue of an regular structure is highlighted as a factor in both navigational and task 

disorientation. 

 Certain types of information space support an inherent topological spatialization 

which can help the user remain oriented while others may be authored to manifest a 

uniform or predictable structure. A spread sheet, for instance, has an inherent two 

dimensional structure which may be exploited by user’s natural spatial encoding 

capabilities. For instance if the user knows that a particular collection of data is always 

located at the top left hand corner of a given sheet they can use this spatial encoding to 

find said information with minimal effort and thus remain focused on the task at hand. On 

the other hand the author of a hypertext system (which does not have a natural 

spatialization) may decide to apply a hierarchal or linear topology to the information 

network in order to help the user remain oriented during reading and browsing activities. 

If a hyperspace is too conceptually complex to apply a regular structure, the author may 

decide to ‘cut’ or add links in order to simplify the overall topology and prevent the user 

from becoming lost (Brown 1989). 

 Source code does not manifest a natural spatialization and programmers rarely 

have the opportunity to devise or improve topological uniformity within a code space. 

Due to the sheer size and semantic complexity of software systems, source code generally 

exhibits an extremely dense and irregular topology of cross-references and semantic 
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relationships between individual program elements. Figure 3.2 illustrates the potential for 

topological complexity and density in source code.  

Figure 3.2: A visual representation of fragmentation and topological complexity in source 

code. This graph (oriented from left to right) depicts the control flow associated with the 
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generation of a webpage containing a single image in a modern webserver (nodes 

represent procedure definitions and arcs represent procedure calls).

3.2.3 Visual homogeneity

During exploration activities visual differentiation between information helps users to 

encode and remember route details and identify familiar information and landmarks 

within an information space (Kim & Hirtle 1995). Source code is visually homogenous 

meaning that it can be difficult, at a glance, to distinguish one fragment of source code 

from another. Furthermore there is little scope for natural landmarks, namely fragments 

of code which visually stand out and provide orientation cues to the programmer. See 

Chapter 2, Section 3.2.3 for a description of the concept of the landmark and its 

importance in helping users remain oriented.  

3.2.4 Discussion

The uniquely disorientating structure of source code is largely an unavoidable situation 

particularly in realistic large scale software systems. The need to express and model 

highly complex systems and operations in a flat textual space while maintaining 

engineering metrics such as flexibility, reusability and extensibility invariably leads to a 

fine grained decomposition and a dense, complex topology of references between 

program elements. Additionally factors such as sloppy design and implementation, 

unanticipated evolution and the ‘tyranny of the dominant decomposition’ add further 
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scope for fragmentation and topological complexity in code space. Source code is also 

naturally visually homogenous.  

 In other domains such as hypertext systems, the author of an information space 

can modify the underlying structure in order to help readers remain oriented. The level of 

fragmentation can be minimized where possible and a smaller and more uniform 

topology of links deployed. However, this type of structural engineering is generally not 

feasible with source code due to its semantic underpinnings. Programmers would need to 

have the ability to change the structure of the underlying language technology itself 

which is rarely possible (see Bryant (2002) for related work). 

 Ultimately the burden of keeping a programmer oriented and focused during 

software development and exploration activities is the responsibility of the exploration 

interface in use, which is in most cases an integrated development environment (IDE). 

3.3 Exploration in Integrated Development 

Environments

Source code exploration is generally carried out in the context of an integrated 

development environment, more commonly referred to as an IDE. An IDE combines a 

comprehensive set of exploration, development, analysis and debugging tools and 

facilities into a single integrated and consistent application. This means that 

programmer’s can carry out most aspects of their development and maintenance tasks 

without the need to repeatedly switch application context.
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 This section looks at the source code exploration facilities provided by a state-of-

the-art modern IDE. The aim is to explore the core interface design and the various 

mechanisms available for programmers to navigate and explore source code. Using this 

base of knowledge, the issue of programmer disorientation is discussed, highlighting how 

certain factors of the interface design contribute to the phenomenon. 

 The discussion focuses primarily on the Eclipse IDE (Eclipse 2009a). Eclipse was 

chosen as it represents the state of the art in modern IDE technology. Eclipse has also 

benefited from a comprehensive effort to address suspected issues related to programmer 

disorientation (referred to in the IDE community as ‘loss of context’) (Eclipse 2009b). It 

was considered acceptable to focus on a single IDE as interface style is generally 

consistent across modern IDEs. For instance during the research associated with this 

thesis a variety of modern IDEs were encountered and studied including Eclipse (Eclipse 

2009a), Netbeans (Netbeans 2009), IntelliJ IDEA (Intellij 2009) and Microsoft visual 

studio (Microsoft 2009).  All exhibit the same basic structure and provide similar features 

from a source code exploration point of view. This reflects the relative maturity in IDE 

interface design and technology. 

 It should be noted that from this point on when the term ‘Eclipse‘ is used it 

specifically refers to the Eclipse platform with the Java development toolkit (JDT)

(Eclipse 2009c) installed. Eclipse is an extensible IDE platform upon which the JDT 

provides Java specific tools and features.
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3.3.1 Interface basics

The Eclipse interface is based around two high level visual elements, namely editors and 

views. Editors facilitate the presentation and editing of source code documents (and other 

text based artifacts such as property and configuration files etc.) while views support 

exploration, present information and provide an interface construct to IDE tools. 

 Editors are located in a fixed central editor. Views are ‘docked’ around the edges 

of the editor area and may be moved and stacked on top of one another in a tabbed 

fashion. This allows a variety of views to be visible and accessible to the programmer 

simultaneously in a single application window (See Figure 3.3). 

Figure 3.3: The Basic Eclipse IDE interface. The layout is composed of editors stacked in 

a central editor area surrounded by a collection of stacked views.

Eclipse is ‘editor oriented’ meaning that each source code document is opened in its own 

individual editor display which is located in the central editor area (De Alwis & Murphy 

2006). The editor area is tabbed so that multiple editor displays may be open at any given 

o
u
tlin

eeditors

editor tabs

problems, tasks

p
a
ck

a
g
e

menu and toolbars

e
xp

lo
re

r

Figure 1: The Eclipse Java perspective as shipped with Eclipse 3.0 M7.

with classes in different packages, branches can be kept open showing more of the
surrounding context.

Eclipse supports many sophisticated program navigation traversals such as finding
all callers of a method, all references to a field, or the declaration of a class. Many
such functions are tied to hot-keys, meaning they can be invoked with little effort. The
environment also maintains a web browser-like stack-based traversal path, supporting
switches between editors as to the order in which they were traversed.

Eclipse features an incremental Java compiler that rebuilds only the necessary parts
of the program upon each file save. The compilation results are dynamically fed into
views such as the problems view, which shows syntax errors across the source code;
side-effects of changes thus become immediately apparent to the developer.

3.5.2 Developer Tool Use
The developers observed chose relatively small to medium tasks. Table 1 presents a
rough summary of their work tasks along with a self-assessed estimation of the task
complexity in comparison to their normal tasks; an asterisk (*) indicates that the task
proved to be more complex than expected due to difficulties that arose during the task.

The developers used four other standard tools in addition to Eclipse: Lotus Notes
for their e-mail; Lotus Sametime as an instant messenging service; Bugzilla, an issue-
tracking system, for managing problem reports (PRs) and feature enhancements for
Eclipse projects; and Google for searching documentation.

Developers also spent time on other related tasks during the study period, such as
responding to queries from users and other developers via e-mail, instant messaging,
visits by other developers, and triaging and responding to PRs. These other tasks were
often interleaved during down-time, such as occurred during builds, waiting for Eclipse
to start, or when fetching and committing files to or from the version control system.
Although not formally verified, many of the e-mails received seemed to pertain to
Bugzilla-generated e-mails in response to changes to PRs.

The Eclipse source code is managed by CVS [3] using facilities provided as part of
the Eclipse environment.

8
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moment. The programmer can switch between the set of open editors using the visible 

editor tabs running along the top of the editor area. 

3.3.2 Source code exploration

Eclipse supports a wide variety of source code navigation and exploration facilities 

allowing programmers to rapidly traverse and examine the code space during exploration 

activities.  The primary exploration facilities provided by Eclipse are categorized in the 

following list: 

• Hierarchal Project browsing

• Search

• Hypertext style exploration via cross-references

• Index based navigation 

• Exploratory views

• Tab based navigation

• Navigation History

• Bookmarks and tasks

3.3.2.1 Hierarchal project browsing

The primary exploratory view in Eclipse is the ‘package explorer’ which is generally 

located to the left hand side of the editor area. The package explorer presents a 
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hierarchical overview of the programmers workspace from projects to source folders to 

packages down to individual source files and program elements. Essentially the package 

explorer allows the programmer to browse the work space and project structure. 

 Like all exploratory views in Eclipse the package explorer supports navigation to  

program elements. If a program element contained in the package hierarchy is double 

clicked by the programmer, the corresponding program resource or construct is opened 

and displayed in the central editor area. In the case when an interface, type, method or 

field is selected, the corresponding source file is opened in an editor, and the fragment of 

code corresponding to the declaration is scrolled into the visible editor viewport and 

highlighted to draw the users attention. 

3.3.2.2 Search

Eclipse provides a variety of search facilities. The code space may be searched for 

keywords, or more specifically for particular program elements such as types, methods, 

fields or interfaces. The programmer can also search for all references to a particular 

program element or all declarations of a particular element such as an abstract method 

declaration or an interface type. Search may be initiated from the main Eclipse toolbar, 

which brings up a dedicated search dialog, or directly on words appearing in the source 

code editor presentation. This is achieved via context menu options such as ‘find all 

references in project’ or ‘find all declarations in workspace’. 

 When a search has been executed, the results appear in the ‘search results’ view, 

located, by default, below the central editor area. The search results view displays the list 



66
of matches resulting from the most recently executed search. Clicking on an individual 

match will open the corresponding source code element in an editor display.  

3.3.2.3 Hypertext style exploration via program cross-references

The most widely used form of source code navigation in Eclipse is hypertext or ‘web’ 

style navigation between related program elements via program cross-references 

(Murphy et al. 2006). As discussed earlier in this chapter, the structure of source code 

closely resembles that of a complex hyperspace with program declarations serving as 

information nodes and  program references as directed links. Thus hypertext style 

navigation is a natural application considering the underlying information structure.

 Hypertext style navigation is initiated when the programmer holds the Ctrl key  

and moves the mouse pointer over the visible source code editor display (the use of a 

modifier key distinguishes between navigation activity and placement of the editor caret). 

When a reference is encountered under the mouse, such as a method, type or field 

identifier, the associated word of source code transforms into a hyperlink, adopting the 

traditional underlined blue font to indicate that navigation is possible. When the 

hyperlink is activated, the corresponding source code declaration is opened and 

highlighted in a source code editor display. 
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3.3.2.4 Index based navigation

Eclipse supports indexing into code space based on type or resource name. From the 

main application window the programmer can call up the ‘open type’ or ‘open resource’ 

dialogs using specific key combinations. The name of a type or resource is then entered 

into the dialog and all matching artifacts in the system are displayed as an alphabetically 

ordered list. The programmer can click on a particular match and the corresponding type 

or resource is opened in an editor display. 

 Index based navigation in Eclipse allows programmers to navigate directly to 

types and resources in a code space that are known to exist, without exhaustive 

exploration, searching or browsing via exploratory views. The system is particularly 

usable due to support for wild cards and incremental evaluation of matches. The 

programmer can search for a type or resource when only a portion of the name is known 

and can evaluate numerous permutations of a given wild-card query without leaving or 

reopening the dialog.

3.3.2.5 Exploratory views

Most other exploratory navigation in Eclipse is facilitated by the various exploratory 

views which come bundled with the JDT. The type hierarchy view provides a hierarchical 

overview of the type structure associated with a particular class in the system, this 

includes super class, implemented interfaces and sub classes. A sub pane in the hierarchy 

view presents a detailed summary of all fields and methods declared locally and inherited 
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from the type hierarchy. The call hierarchy view allows the programmer to view all 

callers and callees of a particular method definition and to navigate control flow in either 

direction. Finally, the outline view displays a compact outline of the currently visible 

source code document (the contents of the focused source code editor). The outline view 

displays imports, fields, methods along with status such as visibility and signature. When 

the outline view is open it automatically updates itself to the currently focused source 

code editor instance. 

3.3.2.6 Tab navigation

During a particular development or maintenance task the programmer can flip between 

the set of open source code documents using the editor tabs located across the top of the 

editor area. Tabs are arranged in first opened order from left to right. When the number of 

open source code documents exceeds the available tab space, the programmer can use a 

drop down panel to view and filter all open documents as an alphabetically ordered list. 

3.3.2.7 Navigation history

To facilitate back tracking and revisiting of previous locations, Eclipse maintains a record 

of the programmer’s navigation history. Navigation history is stored as a list of source 

code locations ordered chronologically with duplicated entries removed. The programmer 

can move back and forward through navigation history using buttons located in the main 

Eclipse toolbar. History can also be viewed and indexed as a drop down menu containing 
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a list of filenames. The maximum number of entries in the navigation history is 50. If this 

window is exceeded, the oldest entries in the list are discarded. Because navigation 

history is one dimensional, forward history is cleared when a location is visited which 

deviates from existing forward history. For instance, if the programmer backtracks from a 

given location and then pursues an alternative route the backtracked route is discarded in 

favour of the newly pursued route.  Eclipse does not provide support for multiple routes 

or digressions in its navigation history.

3.3.2.8 Bookmarks and tasks

Eclipse supports the notion of bookmarks. A programmer can select a particular source 

code location or fragment of code and ‘bookmark’ it using a context menu action. The 

bookmarked location is then recorded, and appears in the bookmarks view for perusal at a 

later date. The bookmarks view supports navigation to bookmarked locations allowing 

the programmer to navigate to pertinent locations in the code space without the need to 

browse or search. 

 Eclipse also supports the concept of tasks which are very similar in nature to 

bookmarks but have additional task related state such as priority and a completion flag. 

Tasks may also be automatically recorded via specific comment patterns such as ‘TODO’ 

and ‘FIXME’. The programmer can simply create a comment containing a predefined (or 

custom defined) keyword pattern and Eclipse will automatically enter a corresponding 

task in the tasks view. 
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3.3.3 Programmer disorientation in the IDE

The study of programmer disorientation during source code exploration activities in the 

IDE setting is still an emerging area of research, and literature pertaining to the topic is 

rather space. 

 Janzen & De Volder (2003) describe that programmers often become disoriented 

when switching between exploratory IDE views (for instance the package explorer, 

hierarchy view, search results view etc.) due to fragmentation of exploration history 

across a set of views, which eventually leads to a loss of context and consequently 

disorientation. Kersten & Murphy (2005) explain that programmers suffer from 

information overload when switching task focus due to a lack of explicit task state in the 

IDE. Elves (2005) describes that programmers often become ‘altogether lost’ when 

navigating the complex web of references and relationships between source code 

documents. 

 The most significant recent work on disorientation in the IDE is provided by De 

Alwis & Murphy (2006). Based on informal reports of programmers becoming ‘lost’ and 

disoriented during software development and exploration activities, the authors carried 

out an exploratory field study in an attempt to gain a greater understanding of the 

phenomenon. A group of professional software developers were observed, on site, for a 

number of hours as they carried out their daily development tasks using the Eclipse IDE. 

The effort resulted in a characterization of programmer disorientation and more 

significantly, identified a number of factors (many of which are concerned with interface 



71
design) which contribute to disorientation during source code exploration and 

development activities in the IDE. 

 De Alwis & Murphy (2006) characterize programmer disorientation as a 

combination of navigational disorientation and task disorientation, both of which are 

deeply inter related. 

 Navigation concerns the decisions and actions which facilitate a programmers 

coherent movement and transfer of focus through a system of source code. Navigational 

disorientation occurs when a programmer:

• has lost their sense of location and direction in the code space (What am I 

looking at?)

• is unable to locate information of interest (Why cant I find?)

• has lost their recent history, is unable to remember how they came to their 

current or past locations (What was I doing?)

Task disorientation is associated with the programmers goals and intent as they explore a 

system. Task disorientation occurs when a programmer:

• cannot remember their intent having arrived at a location (What was i going to 

do?).

• has pursued, or was distracted by,  an alternate problem and has failed to return 

to the original task
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The characterization of programmer disorientation proposed by De Alwis & Murphy 

(2006) is reminiscent to that of disorientation in the hypertext domain (see chapter 2). 

Programmers suffer from the same fundamental spatial and navigational disorientation in 

code space as well as issues managing multiple threads of concentration (embedded 

digressions) and maintaining ongoing intent. Interestingly, informational disorientation is 

explicitly excluded from the characterization. The authors highlight a distinction between 

conceptual disorientation and spatial disorientation within an information space (Mayes 

et al. 1990), concluding that a degree of conceptual disorientation is to be expected 

during intense knowledge discovery and refinement activities such as source code 

exploration. Therefore, while conceptual disorientation is acknowledged it was not 

considered to be a significant part of the characterization. 

 De Alwis & Murphy (2006) also identify a set factors which they believe contribute 

to the incidence of programmer disorientation. These factors are based on an analysis of 

the various incidents of disorientation observed during their study. 

Factors inducive to programmer disorientation (De Alwis & Murphy 2006) include: 

• A lack of navigation history

• Thrashing to obtain context 

• A lack of support for the pursuit of digressions

• Problems associated with a lack of code familiarity
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3.3.3.1 A lack of navigation history

As previously discussed in this Chapter (3), Section 3, modern IDEs support a wide 

variety of exploratory navigation facilities enabling programmers to rapidly navigate 

between source code documents and elements located throughout a system of source 

code. A programmer can browse the project structure (See Chapter 3, Section 3.2.1), 

navigate via program cross references (See Chapter 3, Section 3.2.3), search for particular 

keywords of program elements (See Chapter 3, Section 3.2.2 and 3.2.4), traverse the 

history stack (See Chapter 3, Section 3.2.7), leverage exploratory views (See Chapter 3, 

Section 3.2.5) and make use of bookmarks and task definitions (See Chapter 3, Section 

3.2.8). The ease of motility facilitated in modern IDEs is essential due to the inherent 

fragmentation and topological complexity of code space (See Chapter 3 Section 2). 

 However Eclipse, like all other IDEs that were studied during this research, 

effectively restricts the programmer to a single editor display at any moment during 

exploration activities. This is primarily due to screen space limitations. The situation 

epitomizes the ‘keyhole property’ discussed in Chapter 2, Section 1, that being a spatially 

sizeable information space (the set of source code documents/elements making up the 

system) is examined via a limited aperture (the visible viewport of the focal editor 

display). 

 As a programmer navigates from location to location within a system of source 

code, the visible editor display is continuously replaced to reflect the current or focal 

source code location. There is no visible indication of how the programmer arrived at the 

current location or how it relates to previously visited elements and the structure of the 
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surrounding system. Essentially, source code is explored as a series of isolated source 

code editor displays, each replacing its predecessor and the programmer internalizes the 

burden of maintaining exploration context and orienting to each new display as it appears 

on the screen. This situation is indicative of a significant lack of visual momentum in the 

exploration interface. See Chapter 2, Section 3.2 for a discussion of visual momentum.

 During their study, De Alwis & Murphy (2006) observed that programmers had 

difficulties remembering the path leading them to their current source code location and 

consequently the reason  as to why they had come to arrive there. To regain context 

programmers were observed to backtrack to previously visited locations, recovering the 

relationships that brought them to the current location in an attempt to rebuild context and 

refresh their memory of the intent being pursued. If this strategy failed programmers were 

observed to close all open editor displays and restart their task from a familiar location in 

the code space. 

 

3.3.3.2 Thrashing to obtain context

Thrashing (Henderson & Card 1986) is a behaviour associated with disorientation which 

is commonly associated with keyhole displays (Watts-Perotti & Woods 1999) such as that 

presented by modern editor oriented IDEs. When a user needs to correlate, compare or 

contrast information located at disjoint points in an information space, which cannot be 

brought together in a single display due to interface constraints, they tend to repeatedly 

navigate or flip between displays containing relevant information in order to gain the 

necessary overview to accomplish their goal. 



75
 During their study De Alwis & Murphy (2006) observed programmers repeatedly 

scrolling and jumping within and between source code editor displays. Thrashing activity 

requires the programmer to store additional information in working memory (the context 

being shared across the different views) and focus attention on interface manipulation 

activities as opposed to their underlying task. This kind of extraneous activity may be 

distracting enough for the programmer to lose their focus and become disoriented.

3.3.3.3 A lack of support for pursuit of digressions and insufficient task context

A digression occurs when a programmer suspends their current task or intent to pursue or 

is distracted by another, perhaps unrelated task or intent. A digression may in turn spawn 

further digressions and eventually the original task or intent may be forgotten. For 

instance a programmer might receive an email from a colleague while investigating a bug 

they have noticed in the system. The disruption results in the programmer focusing on 

replying to the email for a given period of time. Once finished the programmer may no 

longer remember their original bug related task and neglect to resume their work on it. 

Alternatively the programmer may remember the original task but may have forgotten 

most of the associated context which then needs to be rebuilt, requiring additional time 

and effort. 

 Because there is no explicit manifestation of task context in the IDE the burden 

rests on the programmer to manage suspended tasks in memory and recreate the context 

of suspended tasks once resumed. During the study, programmers were observed having 
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problems with digressions, often pursuing digressions without recording the original task 

and thus failing to resume the suspended task at a later time.

 Digressions may also occur at a more fine grained level during source code 

exploration activities (see Embedded digressions (Foss 1989a) in  Chapter 2, Section 2). 

The act of investigating source code results in a continuous stream of small scale 

digressions, which could also be described as threads of thought (De Alwis & Murphy 

2006). For instance when investigating a piece of code, the programmer may be obliged 

to investigate an associated piece of code in another area of the system and so on. 

Eventually, due to a lack of explicit navigation context, the programmer may eventually 

forget their original intent which may cause important information to be overlooked. 

 

3.3.3.4 Code familiarity

During the study participants reported that the exploration of unfamiliar source code was 

a significant cause of disorientation. Participants described that developing a mental 

model of unfamiliar code was difficult, and that they would often loose track of their 

location and become lost in unfamiliar areas of the system. 

3.4 Mitigating programmer disorientation

Programmer disorientation is a significant concern in modern IDE design. Recovering 

from a state of disorientation takes both time and effort which has a negative impact on 

overall programmer productivity and satisfaction. 
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 Modern IDEs provide various features designed to help the programmer remain 

oriented during exploration activities,  and to reduce the effort associated with the 

exploration of fragmented source code. Moreover a number of research tools have also 

been proposed and developed to address particular aspects of the phenomenon. The 

distinction between alleviating disorientation and remaining oriented isn't hugely 

important and is mostly a question of terminology. Tools designed to alleviate 

disorientation essentially help the programmer to remain oriented. And recovering from 

disorientation is a secondary point when a system is designed to help the programmer 

remain oriented. 

3.4.1 Core IDE technologies

The Eclipse IDE supports the concept of pop-ups which are essentially a form of display 

overlap (an approach to increase visual momentum (Watts-Perotti & Woods 1999) see 

Chapter 2, Section 3.2). From a given source code editor, the programmer can position 

the mouse cursor over a source code reference for a short period of time to invoke an 

overlay display containing a read only copy of the corresponding source code declaration. 

This pop-up technique allows the programmer to view remote source code declarations in 

the context of a source reference and thus avoid navigating away from the current 

location and suffering from the associated loss of context. However the approach is 

limited as pop-ups tend to occlude a considerable portion of the source context and 

generally cannot be moved by the programmer to prevent such a scenario. More 

importantly, the pop-up display does not support any further exploration and thus the 
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programmer is limited to a single level of surrounding context, if the programmer wants 

to consider a further level of context they have to leave the current source code location 

and deal with the resulting loss of navigational context. 

 A second technique used in Eclipse is the declaration view which is similar to a 

source code pop-up but is located in a fixed view outside of the editor display, thus 

avoiding the occlusion problem. The declaration view, typically docked below the central 

editor area, allows the programmer to examine the source code declaration associated 

with a selected program reference from the editor display. Again the programmer can 

view surrounding context without navigating away from the current source code location. 

However, the declaration view requires large visual saccades away from the source 

context and is also, like the pop-up, restricted to a single level of surrounding context. It 

is also the case that programmers tend to avoid additional views in the IDE (De Alwis & 

Murphy 2006). Additional views take up precious screen real estate in an already 

cramped visual space. 

 Eclipse also supports the use of multiple editor displays which may be used to 

circumvent the need to thrash during exploration activities. Editors may be tiled in the 

editor area so that a number of source code locations can be be made visible in a 

simultaneous fashion. To use this feature the programmer drags editor tabs into the editor 

area in such a way that they begin to tile in the desired manner. While this mechanism 

may allow the programmer to view multiple source code displays, it also reduces the 

space available for each individual display. The programmer may need to carry out a 

considerable amount of interface adjustment (scrolling and resizing) to provide enough 
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visible context within an individual display to make the code readable and the approach 

worthwhile.

 The navigation history stack See (Chapter 3, Section 3.2.7) may be considered as 

a tool which allows a programmer to recover from a state of disorientation. When a 

programmer gets lost in the code, they may use the history stack to back track to previous 

locations in order to recover their context. However the history stack is still operating 

over the keyhole display and as such often facilities disorientation on its own behalf. 

 Finally the index based navigation facilities in modern IDEs (Chapter 3, Section 

3.2.4) allows programmers to navigate directly to types and resources in a code space that 

are known to exist without exhaustive exploration, searching or browsing via exploratory 

views. This mechanism is valuable when the programmer knows the various types in the 

system but is less useful during open exploration activities. 

3.4.2 JQuery

Janzen & De Volder (2003) maintain that when exploring source code in the IDE  

programmers suffer from disorientation when switching between exploratory IDE views. 

As discussed in the previous section,  IDEs support a variety of exploratory views. 

However, exploratory views are typically tailored specifically to support exploration of a 

particular type of program relationship. For example a type hierarchy view will allow the 

programmer to explore along inheritance relationships while a package explorer view 

will support the exploration of project structure. These views usually provide a tree like 

interface where nodes represent program elements and sub nodes are related to parents by 
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a specific relationship type. The advantage of the hierarchical structure is that a visible 

representation of structure and exploration context is available which helps the 

programmer to remain oriented and focused on their task. 

 However, because each view is limited to a particular type of program 

relationship, when a programmer wants to explore using an unsupported relationship type 

they need to switch to a different view. Janzen & De Volder (2003) claim that the process 

of switching between exploratory views is disorienting in itself,  but moreover the 

programmer’s exploration path becomes fragmented across multiple separate views. As a 

result the programmer can lose track of their exploration context and become disoriented.

 In response to this problem, the JQuery tool (Janzen & De Volder 2003) was 

developed (See Figure 3.4). JQuery is a source code exploration tool that combines 

aspects of a hierarchical browsing tool and a software query tool. The aim of JQuery is to 

reduce the mental burden associated with source code exploration by:

• Providing a coherent and unfragmented representation of the programmers 

exploration path which helps the programmer to remain oriented in the 

exploration task

• Allowing the programmer to explore a broad range of program relationships 

from a single IDE view thus reducing the disorientation associated with view 

switching
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Figure 3.4: The JQuery view (left).

The programmer uses the JQuery tool by entering a query manually via a query language 

or, more commonly, selecting from a set of predefined queries built into the tool. The 

results of the query are then displayed in the JQuery tree view. Associated with each node 

in the view is a specific context menu which lists the ways in which the tree can be 

expanded at that node. The tool provides a comprehensive suite of default program 

relationships and custom relationship types may be added to the menu structure by the 

user via a configuration file.

 JQuery allows a programmer to explore a software system via a comprehensive 

set of program relationships from within a single hierarchical view. The programmer 

avoids the requirement to switch between a variety of separate views and the explicit 

unbroken representation of the exploration path allows the programmer to see how a 
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particular source code location or element fits into the overall exploration context and 

supports backtracking and the perusal of multiple exploration paths in parallel.  The 

JQuery too was not evaluated via a user experiment to determine its effectiveness at 

alleviating programmer disorientation. 

3.4.3 NavTracks

Elves (2005) explains that programmers are prone to getting lost and suffering from 

disorientation when navigating large complex software systems.  When working on a 

given development or maintenance task, a programmer will often need to repeatedly 

examine and/or modify source code contained in a number of task relevant files spread 

across the code base. Over the course of the task, the programmer will need to remember 

the set of relevant files and how to navigate through the information space to locate them 

when necessary, but source code is often structurally complex and the constant navigation 

between files is a cognitively draining process. The programmer might occasionally get 

lost and lose track of their intent when navigating through the software space.  

 NavTracks (Singer et al. 2005) is a source code navigation tool designed to 

alleviate this problem by recommending related files to the user (See Figure 3.5). 

NavTracks interactively analyses a programmer’s navigation history and records 

associations between visited files. These associations are then used as the basis for 

recommending potentially related files as a developer navigates the system. The goal of 

NavTracks is to present a user with an accurate list of related files when working on a 
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particular file. Instead of having to recall the next file and then navigating to it, the 

programmer simply recognizes (a cognitively cheap process) and selects the related file 

in the NavTracks view and continues undisturbed with their task.  

 The main principle behind NavTracks is that exploration paths through an 

information space can reveal the user’s model of how information should be connected 

thus reflecting the user’s mental model of the system. 

 Figure 3.5: The Navtracks view displaying related source files associated with the 

current source file. Related files are inferred based on the programmers navigation 

history.

3.4.4 Mylar/Mylyn

Mylar (Kersten & Murphy 2005) is similar in concept to NavTracks but operates by 

filtering IDE view as opposed to recommending related files. Again if one considers a 
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programmer working on a large complex software system. Over a period of time the 

developer will work on a variety of tasks and during each task will visit and revisit 

multiple task relevant source code locations. IDE views are intended to help the 

programmer to locate, examine and navigate between these locations. However in large 

software systems, the utility of IDE views degrade due to information overload. The 

proportion of task relevant information in a view decreases and the programmer spends 

more time searching IDE views and navigating for task relevant code. The Mylar tool 

(See Figure 3.6) is designed to mitigate this problem by filtering views for task relevant 

information. 

 Mylar monitors a programmer’s interaction patterns within the IDE and builds a 

degree of interest (DOI) model (Card & Nation 2002) for program artefacts. When a 

programmer visits or edits a program artefact its DOI value is increased. The DOI will 

then degrade over time if the artefact is not revisited by the programmer. The DOI values 

are applied to a filtering function which operates over the IDE views so that only task 

relevant artefacts are displayed to the programmer. More interesting or relevant artefacts 

(those with higher DOI values) are also highlighted while less relevant artefacts are 

displayed in a less prominent manner or filtered out altogether. 
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Figure 3.6: Mylar: before and after, view filtering based on DOI.

A more mature version of Mylar entitled Mylyn (Eclipse 2009e), which is available as an 

extension of the Eclipse IDE, includes task context as a first class entity. The programmer 

can create and switch between tasks each with their own particular DOI which is applied 

to the set of IDE views. 

3.5 Summary

Source code manifests a particularly disorientating information space due to a variety of 

inherent structural and organizational properties such a high level of fragmentation, a 

dense and irregular topology of references and semantic relationships and a homogenous 

appearance. Based on current language technology, it is generally unfeasible to modify 

the structure and layout of source code in order to bring about a more regular and less 

disorientating information space. This is a common approach to reducing disorientation 

in the hypertext domain (Brown 1989; Van Dyke Parunak 1989). Instead it is the role of 
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the IDE, the medium in which source code exploration is generally carried out, to help 

programmers deal with the complex and fragmented structure of code while remaining 

focused and oriented during their exploration and development tasks.

 Modern IDEs, while providing a wide gamut of navigation and exploration 

facilities to support the exploration of source code, exhibit certain interface design 

characteristics which, combined with the disorientating nature of the underlying 

information space, significantly contribute to the incidence of programmer disorientation: 

• Modern IDEs generally exhibit a keyhole style interface which effectively 

restricts the programmer to viewing a single fragment of source code at any 

particular moment during exploration activities. 

• Moreover there is little to no visual momentum between successive source code 

displays, no visible navigation or task context and no explicit representation of the 

programmers evolving conceptual model. 

• In addition, the support for examining multiple fragments of code in a 

simultaneous fashion tends to rudimentary, limited and generally problematic 

leading to thrashing problems and difficulties comprehending code. 

The result of these interface design issues is a considerable lack of cognitive support for 

the programmer as they carry out source code exploration activities. Essentially, the 

programmer is forced to maintain a large amount of context in their working and short 

term memory which is prone to distraction and overloading, particularly when faced with 
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interface problems such as getting lost in the code space, thrashing between displays and 

engaging in interface adjustment activities. 

 A number of approaches have been designed to tackle programmer disorientation 

in the IDE. Standard IDE technologies such as pop-up displays and the Eclipse 

‘declaration view’ allow programmers to explore secondary relationships in source code 

without context loss associated with explicit navigation. However this support is very 

limited and as such often goes unused (De Alwis & Murphy 2006). Researchers have also 

developed a number of approaches. Janzen and De Volder (2003) developed the JQuery 

tool which allows programmers explore source along a variety of relationship types in a 

single exploratory display. This means that the programmer avoids switching between 

exploratory views and has a coherent overview of their exploration task in the single 

JQuery view. Elves (2005) developed Navtracks a tool which monitors the programmers 

navigation patterns and recommends related files, however the programmer is . Finally 

Kersten & Murphy (2005) developed the Mylar approach which introduces task based 

filtering into IDE views and promotes the task as a first class IDE entity. 
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Chapter 4

Inline Source Code Exploration

A potentially significant approach to alleviating programmer disorientation during source 

code exploration activities in the IDE is the use of inline exploration. Inline exploration is 

a mechanism for exploring an inter-linked non linear information space, such as that 

presented by source code, in a cognitively supportive and contextual manner. The 

primary tenet of the approach is that instead of explicitly navigating from one isolated 

display of information to the next, which results in a continual loss of context over a 

series of navigational transitions, the user progressively introduces related fragments of 

information into the context of a focal, or primary, information display. 

 There are a number of attractive properties of inline exploration which are 

relevant to the various interface problems underpinning programmer disorientation in 

modern IDEs. The process of inline exploration results in a visible and manipulatable 

representation of navigation history and context as the user progressively ‘expands’ into 

the information space related to a particular information display. Context loss is also 
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avoided and with it the need to reorient to each display as it appears on the screen. Inline 

exploration also supports the simultaneous examination of multiple fragments of related 

information which may supersede the need to thrash between individual displays,  and 

supports the comprehension of highly fragmented information in a coherent and unified 

manner. The approach also supports the pursuit of multiple exploratory digressions while 

maintaining the originating context which can potentially ease problems associated with 

embedded digressions. 

 The primary thrust of this research is to evaluate the effectiveness of inline 

exploration as a means of exploring source code in a more cognitively supportive and  

less disorientating manner. This work has the potential to significantly improve 

programmer productivity and satisfaction and also inform development of IDE tools and 

technologies aimed at alleviating programmer disorientation. 

4.1 Origins and related work

Inline exploration has yet to be coherently identified and presented as a mechanism for 

exploring source code in context with the broader aim of alleviating disorientation 

problems. Instead the concept has been synthesized from a number of projects and 

research efforts which exhibit various aspects of inline and contextual exploration. This 

section describes the relevant background work associated with the concept of inline 

exploration.
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4.1.1 The guide hypertext system

Guide (Brown 1989) was an early hypertext system pioneered by Peter Brown at the 

University of Kent at Canterbury in 1982. The system was actively developed in various 

incarnations throughout the remainder of the decade, both as a platform for ongoing 

hypertext research, and a commercially available product. 

4.1.1.1 Motivating factors

At the time when Guide was under development hypertext systems generally supported 

the traditional ‘out of line’ exploration mechanism still predominant in todays world wide 

web - and also the basis for source code exploration in modern IDEs. The user would 

explicitly navigate from one frame or page of information to the next via links embedded 

in the information display, with each new display or frame of information replacing its 

predecessor on the screen or appearing in a newly spawned window. Simultaneously, the 

concept of becoming ‘lost in hyperspace’ was also emerging as a significant concern 

during this period of hypertext research (Brown 1989; Conklin 1987). Hyperspaces were 

increasing in both size and topological complexity and consequently pushing the usability  

limits of the rudimentary exploration mechanisms in use. 

 The prevailing wisdom was that a visual overview map of the hyperspace 

structure was necessary to prevent users becoming lost during reading and browsing 

activities, some authors even describing it as a pre-requirement to hypertext browsing 

tools (Halasz 1988). However the Guide system pursued a very different approach, 
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tackling the issue in terms of the core exploration mechanism as opposed to providing an 

extraneous overview map. The Guide interface was designed to ‘distance’ or abstract the 

user from the underlying directed graph structure representing the hyperspace. This 

particular aim was achieved via an ‘in-situ’ exploration technique. 

4.1.1.2 In-situ exploration in Guide

The Guide interface presents the user with a single ‘scroll’ of information embedded 

within which are interactive hyperlink-like elements referred to as ‘replace buttons’ (See 

Figure 4.1).  A replace button appears as a standard fragment of text but is distinguished 

from surrounding information via a bold font. When the user selects a particular replace 

button it is replaced, in situ, with a portion of information associated with the button (See 

Figure 4.2). This new information may contain nested replace buttons thus facilitating 

nested replacement, and essentially, in-situ exploration.
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Figure 4.1: The Guide hypertext system, replace buttons ‘Example’ and ‘More’ are 

distinguished with a bold font.

Figure 4.2: The result of selecting the ‘Example’ replace button, the button has been 

replaced with additional information and a further nested replace button entitled ‘Second 

example’.
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Replace buttons are local constructs contained within a discrete hyperdocument which 

support introduction of locally defined information. However the ‘usage button’ extends 

the basic concept of the replace button to allow for the introduction of cross-referenced 

information, i.e. information located within a remote hyper document. 

 The ‘usage button’, which is indistinguishable from a replace buttons at the user 

level, acquires its information by following a cross-reference link to a remote hyper 

document. The hyperspace author defines a particular range within a hyper document and 

the usage button uses this definition in order to extract the necessary chunk of 

information. When the user selects a usage button, the remote definition is copied and 

used to replaced the source usage button.

4.1.1.3 Multiple copies

The existence of information from remote hyperdocuments out of their native context 

necessitates the management of multiple copies. The Guide system treats multiple copies 

of a particular definition as independent of its native counterpart. If the original definition 

is edited (Guide supports both the editing and exploration of hyper documents), the 

changes are not propagated to any copies, they essentially become stale. Furthermore, 

edits to in-situ copies are transient and lost during structural saves of the overall 

hyperspace. 
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4.1.1.4 Discussion

Guide introduced the basic concept of interactively replacing portions of a digital 

document (usage and replace buttons) with information copied from a remote document -  

as a viable alternative to explicit navigation between discrete displays. The idea was that 

the user would be abstracted from the fragmented and topologically complex nature of 

the information space and thus would avoid getting lost. 

 The in-situ exploration mechanism pioneered by Guide was not evaluated via a 

user experiment or study, thus the merit of the approach has never been fully verified 

beyond its natural resonance.

4.1.2 The Fluid Document Project

Another significant piece of work related to inline exploration is the fluid document 

project. The fluid document project (Zellweger et al. 1998) was carried at Xerox PARC 

over a number of years and explored user interface techniques for dynamically 

incorporating related information into the context of digital documents. The broad aim of 

the research was to minimize the distraction and context loss suffered during a readers 

shift in focus from a primary information context to a secondary or related information 

context - a common theme during digital reading activities.

 The term ‘fluid‘ was applied to highlight a lightweight, contextual, and animated 

approach to information access, allowing the reader to fluidly shift attention from 
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primary to related material and back again with minimal disruption and cognitive 

overhead. 

4.1.2.1 The Fluid UI

The Fluid UI (Zellweger et al. 1998), which constitutes the core tenets of the fluid 

document approach, consists of three basic interface design principles for secondary 

information access - visual cues, animated transition and accommodation. 

The Fluid document interface design principles (Fluid UI):

• Visual cues

• Animated transition

• Accommodation

A visual cue is an annotation embedded within a primary information representation - for 

instance a digital document - which indicates the existence of linked secondary or related 

information. A cue can be textual or graphic depending on application and user 

experience preferences. Examples include hyperlink style underlines or small interactive 

shapes and images embedded directly in the body of a digital document.

 The reader interacts with the visual cue in order to trigger the exposure or 

introduction of secondary information, referred to as ‘glosses’. Interaction style can be 

light weight such as simply hovering over a cue with the mouse or a more conventional 

such as clicking. The transition from a cue to the exposure of secondary information is 
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generally animated in order to help the reader track changes and minimize disruption 

during reading activities (Zellweger et al. 2000).

 The topology/layout of the primary information space or document is dynamically 

altered in order to ‘accommodate’ the introduction of secondary material. This allows 

secondary material to be presented in a readable format while still retaining the context of 

the primary material. 

4.1.2.2 Introduction techniques

Subject to the fluid UI principles a number of techniques were designed to facilitate the 

introduction of glosses (units of related information) into the context of digital 

documents. 

 The most basic technique for introduction is ‘interline expansion’. The interline 

expansion technique causes the primary material to ‘split’ horizontally at the annotated 

line and the gloss is then introduced into the newly acquired space. In the example 

depicted in Figure 4.3, visual cues are represented as underlines, expanded glosses are 

presented in red.  The interline expansion technique results in related information 

remaining close to the surrounding primary context. In scrolling displays, the interline 

expansion technique allocates the required additional space at the expense of pushing the 

necessary amount of primary material out of the visible viewport and thus increasing the 

overall scroll distance. For fixed size and page based displays, extra space is acquired by 

either reducing the interline space between all lines on the page or “squashing” the text 

above and below the gloss by reducing its font size.
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Figure 4.3: The interline expansion technique. The primary document is split horizontally 

and related information introduced inline into the newly available space.

Another technique, entitled margin callout (See Figure 4.4), avoids topological alteration 

of the primary material by placing the gloss in available white space on the page margin. 

When a cue is activated, an animated line extends in real time from the cue out to the 

nearby margin where the gloss is expanded. An attraction of the margin callout technique 

is that the original document remains unaltered in the presence of glosses. Although 

margin callout sacrifices close proximity between the cue and the expanded gloss, 

animation is applied to gradually draw the reader’s eye to the gloss and back to the source 

context when the gloss is dismissed.
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Figure 4.4: The margin call-out technique, information is introduced into the margin 

associated with the primary document. Introduction is animated to draw and retract the 

users attention. 

Figure 4.5: The fluid overlay technique. A sufficient amount of primary material is faded 

to allow secondary material to be overlaid in context.

The final introduction technique is entitled fluid overlay (See Figure 4.5). The fluid 

overlay technique is similar to the interline approach, however the gloss is not introduced 
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into space made available by altering the topology of the primary document, instead the 

portion of the primary document under the cue is faded and the gloss is placed directly 

over it. The occluded portion of the primary document remains visible enough to allow a 

certain degree of readability simultaneously with the introduced information.

4.1.2.3 Nested introduction

Fluid documents support the concept of nested visual cues and thus nesting of glosses. 

Nesting facilitates the expansion of glosses within the context of already expanded 

glosses allowing a form of inline or fluid exploration. In the example illustrated in Figure 

4.6, a number of glosses are nested in a single display. To achieve this degree of 

exploration using a standard display the user would need to perform multiple display 

switches.  

Figure 4.6: Nested visual cues and glosses. This figure depicts the introduction of glosses 

into existing glosses. 
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4.1.2.4 Applications of fluid document technology

The initial implementations of the fluid document techniques were based on simple text 

documents and hypertext. The fluid links hypertext browser (Zellweger et al. 1998) used 

fluid document techniques in order to fluidly reveal a summary of the destination of 

hypertext links in order to help the reader decide whether or not to follow the link without 

leaving the source context and suffering the corresponding cognitive overhead. 

 With both the text based implementation and the fluid links browser glosses were 

expanded in a lightweight fashion by the user moving the mouse over a visual cue. When 

the mouse left the area occupied by the visual cue the gloss retracted. The concept of 

“frozen” glosses was also introduced. This feature allowed the user to freeze a number of 

glosses in an expanded state at any one moment for a given document. 
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Figure 4.7: The fluid reader displaying ‘Harry the ape’ - a fluid hypertext narrative. The 

red icons represent visual cues which may be selected to introduce narrative digressions 

(depicted in blue).

 Further applications of fluid document technology included spreadsheets (Igarashi 

et al. 1998) and a museum piece (Gold et al. 2000) in an exhibition entitled “eXperiments 

in the Future of Reading”. The research also extended into the area of authoring and 

rendering fluid hypertext narratives such as ‘Harry the Ape’ (Zellweger et al. 2002) (See 

Figure 4.7).
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4.1.2.5 Evaluation

Fluid document technology was evaluated via an observational study focusing on the 

impact of the fluid techniques on reading and hypertext browsing behavior and 

effectiveness (Zellweger et al. 2000). The aim of the study was to determine whether the 

topological changes required to support fluid documents disrupted reading activity and 

how users interacted with and reacted to glosses and the techniques used to display them. 

 The results of the study indicated that gloss placement was important; placing 

glosses close to their source anchor improved reading efficiency while placing glosses 

outside of the primary text reduced negative reactions to typographic adjustments. In 

terms of interaction, the results indicated that lightweight interaction techniques were 

prone to inadvertent invocation of glosses and some readers reacted negatively to the use 

of animation. A number of interesting reading styles also emerged. Frozen glosses were 

used by subjects as reminders, to compare glosses and to search the hypertext in a 

breadth-first order. 

4.2 Inline exploration and programmer disorientation

The approach to information exploration pioneered by the Guide hypertext system and 

the fluid document project is based on a fundamental principle of progressively 

incorporating related or secondary information directly into the context of a focal 

document or information display. This general concept is referred to as inline exploration, 

which is contrary to the more traditional mechanism of explicitly navigating between 
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discrete displays of information - the basic exploration mechanism prevalent in modern 

IDEs. 

 There exists a number of fundamental properties of inline exploration which are 

significant in terms of addressing programmer disorientation, particularly when exploring 

source code in an IDE setting. These properties are:

• Preservation of navigation history and context

• Elimination of cognitive disruption associated with explicit navigational transitions

• Support for simultaneous presentation of related information

• Support for exploratory digressions 

4.2.1 Preservation of navigation history and context

A significant factor associated with the incidence of programmer disorientation in 

modern IDEs is a lack of navigation history and context during source code exploration 

activities (De Alwis & Murphy 2006; Janzen & De Volder 2003). As a programmer 

navigates from one program element to another in a system of source code, there is no 

explicit representation of navigation history in the interface, i.e. the path or sequence of 

previous source code elements or locations leading to the current program element. This 

context is important for reminding the programmer of their intent (Storey et al. 1999), 

supporting the development of a conceptual model and remaining oriented in the 

information space (Kim & Hirtle 1995;Thüring et al. 1995).
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 The process of inline exploration results in an explicit and interactive 

manifestation of navigation history in terms of the explored information itself. As a user 

progressively introduces related information into a focal display both the original display 

context as well as any introduced information fragments are visibly maintained in a 

sequential order. This representation of navigation context supports reflection, analysis 

and orientation in an information space. 

 A representation of navigation context may be sufficient to alleviate disorientation 

during intricate navigation activities in code space where a programmer will often lose 

track of their intent due to distraction associated with context loss, interface adjustment or 

external factors, particularly considering the dense, fragmented and complex topology of 

source code. 

4.2.2 Elimination of cognitive disruption associated with explicit 

navigational transitions

Due to the keyhole display and lack of visual momentum in modern IDEs, source code is 

generally explored as a sequence of perceptually independent displays. The cognitive 

experience of traversing from one information context to another can be disruptive, 

particularly if the programmer follows a navigable link only to realize that the destination 

is not relevant to their current exploration goals. The programmer must leave the source 

context, enter the destination context, determine its relevance which may require 

secondary navigation steps, and then potentially re-enter the original source context and 

reorient to their original location. This process, which is continually repeated over the 
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course of a source code exploration task is cognitively draining and a significant factor 

related to disorientation problems (Conklin 1987; Foss 1989a; Foss 1989b; Zellweger et 

al. 1998). Using inline exploration a user can examine related information without the 

need to navigate out of the existing context. Related information may be introduced inline 

with existing information in a fluid and non distracting manner. This means that the 

cognitive disruption associated with explicit navigation is avoided thus potentially 

reducing the general tendency towards disorientation during exploration tasks. 

4.2.3 Support for simultaneous presentation of related information

As discussed in chapter 3, a distinct property of source code is a high level of  

fragmentation. The implementation of coherent portions of system implementation is 

generally decomposed into a set of discrete source code elements which are spread across 

a number of source code documents in a physically disjoint and potentially complex 

manner. The typical manifestation of this phenomenon is ‘control flow scatter’ where the 

control flow associated with a program operation is fragmented across a number of 

disjoint source code elements (Chu-Carrol et al. 2003). The programmer comprehends 

this fragmented information via a keyhole display, essentially examining each piece of 

the implementation puzzle in isolation and then synthesizing an overall conceptual model 

from the various ‘glances’ at the code space. 

 The exploration of fragmented source code as a sequence of isolated displays is 

both cognitively draining and results in problems developing an accurate conceptual 

model (Thüring et al. 1995). This situation often results in the programmer thrashing 
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between individual displays in order to gain a sufficient overview, an activity which is 

indicative of disorientation and requires the programmer to concentrate on extraneous 

interface manipulation activities which may result in distraction and disorientation 

problems. 

 Inline exploration provides a framework for examining fragmented information in 

a single consistent display. Nested inline introduction means that a user can interactively 

introduce related portions of information into a single display in a controlled and 

selective manner thus providing the ability to achieve a semantically consistent and 

coherent overview. It is the proposition of this thesis that this ability would be 

particularly advantageous in a source code setting and would supersede the need to thrash 

between related displays in various situations.

4.2.4 Support for the pursuit of exploratory digressions

A factor in the incidence of disorientation in modern IDEs is a lack of support for the 

pursuit of exploratory digressions (De Alwis & Murphy 06). When exploring source 

code, a programmer is continually faced with the need to pursue and evaluate 

navigational branches in the code space. In the absence of a visible representation of 

navigation history, pursuit of exploratory digressions can result in the embedded 

digression problem (Foss 1988a) whereby a programmer loses track of their intent and 

fails to return from a particular digression or fails to pursue a planned digression. 

 Inline exploration provides support for the pursuit of small scale digressions in 

context. A user can explore into the information space associated with the focal document 
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or information display without leaving the original context. If the digression proves to be 

unrelated to the current exploration goals, the navigation path can be easily dismissed 

leaving the user in the original context and requiring no further backtracking and 

reorientation. Furthermore, fragments of information can potentially be introduced into a 

focal display and left open as a reminder of a planned digression. This behaviour has 

been observed during the evaluation of the fluid document technology (Zellweger et al. 

2000). 

4.3 Inline exploration and program comprehension

Programmers explore source code in order to comprehend a particular part or feature of a 

software system, generally in the context of a given development or maintenance task 

(Singer et al. 1997).  The programmer’s mental model refers to their current knowledge 

of the system, such as how particular operations are carried out and how components 

interact to facilitate observable system behaviour. A cognitive model describes the 

cognitive processes and information structures used by the programmer to develop and 

refine their mental model. This process is based on existing knowledge, the code itself 

and available documentation (Von Maryhauser & Vans 1995).  A number of cognitive 

models have been proposed to describe how programmers comprehend code. In this 

section we discuss the core comprehension models and how they may be facilitated or 

affected by the inline exploration technique.



108
4.3.1 Bottom-up comprehension

Bottom-up theories of program comprehension maintain that programmers develop a 

mental model by reading source code and chunking individual statements, fragments of 

code and program elements into higher level abstractions based on their structure and 

relationships. These abstractions are eventually synthesized into an overall 

comprehension of the system, or part thereof (Schneiderman & Mayer 1979, 

Schneiderman 1980). 

 Bottom up is the most relevant comprehension theory in the context of the inline 

exploration discussion. Inline exploration facilitates the examination of multiple related 

source code elements in a single display, and also visually renders the relationships 

between such elements allowing the programmer to gain an overview. This feature has 

the potential to improve a programmers ability to draw high level abstractions from 

fragments of code scattered within or across a number of source files. Furthermore, 

Pennington (1987) observed that programmers initially develop a control flow abstraction 

of the program, capturing the sequence of operations. This is referred to as the program 

model. Again the development of the program model may be supported by the ability to 

examine related source code elements from non contiguous locations in the code space. 

The program model is subsequently combined with the situation model, based on domain 

knowledge, data flow and function abstractions to develop a mental model of a system.
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4.3.2 Top-down comprehension

Brooks (1983) describes that programmers understand systems in a top down manner by 

mapping knowledge about the application domain to patterns in the code. The process is 

based on a hierarchal system of hypotheses which are gradually refined or rejected based 

heavily on the existence of beacons within the code. A beacon is a pattern or set of 

features within the code which indicate the existence of hypothesized structure or 

operations. Beacons are significant in terms of inline exploration. The ability to overview 

code structure larger than that of a single source code display may make it easier for 

programmers to identify beacons which span across a number of source code locations 

and documents. 

 Soloway & Ehrlich (1984) observed that programmers build a top down model 

based on the existence of programming plans and rules of programming discourse within 

the code. Programming plans are fragments of code which indicate typical programming 

scenarios and rules of programming discourse reflect convention such as standards and 

common implementations. Again inline exploration should help programmers to identify 

such constructs in the event that they span multiple source code locations. 

4.3.3 A note about the mixed model

Letovsky (1986) considers programmers as ‘opportunistic processors’ capable of 

switching between a top down and bottom up comprehension model as needed. Von 

Maryhauser & Vans (1995) observed programmers frequently switching between 

comprehension models.
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4.4 Envisioning Inline source code exploration

Inline source code exploration is fundamentally limited to being a ‘within source-code’ 

exploration technique. This means that the approach is applicable only in a situation 

where the programmer is navigating from within the source code editor presentation 

itself. Essentially the editor display represents the context into which related source code 

fragments may be introduced by the programmer. The currently predominant technology 

in this exploration space is hypertext style exploration via program cross-references - 

where the programmer clicks on simulated links related to program references in the 

source code display to navigate to associated program declarations. The execution of 

searches based on references and declarations selected in the editor display, the use of 

pop-up source code displays and the ‘declaration view’ are also relevant technologies. 

 The high level model of inline source code exploration in the IDE is that the 

programmer interacts with program references presented in the visible source code editor 

display to achieve the inline introduction of corresponding source code declarations. 

Furthermore, from within introduced declarations, its should be possible for the 

programmer to introduce further nested declarations where applicable, thus achieving the 

full potential of the inline exploration experience.
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Chapter 5

The Fluid Source Code Editor

To realize, and conceptually explore, the notion of inline source code exploration an 

inline exploration interface for source code entitled the ‘fluid source code 

editor’ (Sourceforge 2009) was developed.  The fluid editor is an open source extension 

of the Eclipse IDE which facilitates the inline exploration of Java source code. This 

chapter describes the design and implementation of the fluid editor.

5.1 Preliminaries

The fluid editor is implemented as a series of plug-ins for the Eclipse IDE. A plug-in is 

the fundamental unit of extension in the Eclipse platform. Each plug-in, which is 

essentially a jar file, contains a plugin.xml file which targets particular platform extension 

points with custom implementation. The primary plug-in making up the the fluid editor 

extension, org.eclipse.fluid.ui, contributes a new editor type to the Eclipse platform 



112
associated with Java source code documents (*.java). The fluid editor plug-in targets the 

org.eclipse.ui.editors extension point with a custom editor class which extends the 

standard Java source code editor provided by the JDT. 

 After installation of the fluid editor plug-in set into Eclipse, Java source code 

documents are opened, by default, in a fluid editor instance as opposed to the standard 

Java editor provided by the Eclipse JDT. 

5.2 System overview

The fluid editor facilities the inline exploration of source code by means of fluid 

annotations embedded in the source code editor presentation, and the inline introduction 

of source code declarations and other information types. 

 When a Java source code document is opened in a fluid editor instance, a fluid 

annotation is embedded alongside each source code reference in the editor presentation. 

A fluid annotation is essentially a lightweight marker or visual cue embedded in the 

source code which indicates the existence of a related source code declaration to the 

programmer. The document into which fluid annotations are embedded is referred to as 

the focal, or primary, source code document, as it is the document into which inline 

introduction occurs and is the focus of the programmer during inline exploration 

activities. 

 When a fluid annotation is activated by the programmer, the corresponding source 

code declaration is dynamically introduced, inline, into the primary source code 
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document. Introduced source code declarations may also contain fluid annotations which 

can be activated to achieve nested introduction. Essentially, a source code declaration 

may be introduced into the context of an existing inline declaration, thus facilitating 

progressive nested inline exploration.  

 The fluid editor supports the annotation and introduction of a comprehensive set 

of Java language declarations. The supported set of reference/declaration tuples are listed 

in Table 5.1.

Reference to declaration mapping in the fluid source code editorReference to declaration mapping in the fluid source code editor

Reference type Introduced declaration

Method invocation Method declaration

Constructor invocation Constructor declaration

Super constructor invocation Supper constructor declaration

Super method invocation Super method declaration

Class instance creation Class constructor declaration

Type reference Type declaration (without imports)

Field reference Field declaration

Local variable reference Variable declaration

Table 5.1: Reference type to inline declaration mapping used in the fluid source code 

editor. 
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5.2.1 Fluid annotations

A fluid annotation is an unobtrusive visual cue embedded in the source code presentation 

which indicates the existence of a corresponding source code declaration. The default 

appearance of a fluid annotation is a single character underline (See Figure 5.1). The 

minimal profile is designed to avoid eroding the readability and editability of the 

underlying source code document. Fluid annotations may also be ‘maximized’ to a more 

visible state - in which case they appear as transparent boxes (See Figure 5.2). 

Figure 5.1: Fluid annotations embedded in the focal source code editor presentation. 

Colour indicates the type of reference. In this instance black refers to method references, 

green to field reference, orange to local variable declarations and blue to abstract 

method references.  
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Figure 5.2: Fluid annotations in their ‘maximized‘ state.

Fluid annotations are designed with source code editing in mind. Using the editor caret, 

the programmer can easily edit around and directly upon fluid annotations during 

programming activities. The fluid editor takes care of repositioning annotations in 

response to edits, removal of annotations that are no longer valid and insertion of new 

annotations as the programmer adds additional source code to the document. The 

updating of annotations occurs in real time as the programmer edits the source code.

 Fluid annotations are colour coded to indicate reference type. This allows the 

programmer to distinguish individual annotations when a cluster of heterogeneously 

typed annotations are located in close proximity - which is often the case with densely 
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written source code. The fluid editor provides a preferences page allowing the 

programmer to change the mapping between reference type and annotation colour. 

 When the programmer moves the mouse within a fixed proximity (a one character 

bounding box) of a fluid annotation it dynamically transforms into an interactive widget. 

Each fluid annotation has two states, a visually minimal state in which the annotation acts 

as a visual cue, and a widget state in which the annotation may be interacted with by the 

programmer to initiate introduction of the corresponding source code declaration. State 

transition is achieved by rolling the mouse pointer over the annotation (See Figure 5.3). 

Clicking the widget associated with a fluid annotation causes the corresponding source 

code declaration to be introduced into the source code presentation. The widget 

associated with a fluid annotation also has two states, an ‘expandable’ state and a 

‘collapsible’ state. The widget is in an expandable state when the associated source code 

declaration has yet to introduced and a collapsible state when the associated declaration is 

introduced and may subsequently be collapsed.

 Fluid annotations are located, by default, on the last character of the associated 

source code word for variable references, and on the last enclosing parameter bracket for 

method references. The fluid editor also provides a preference setting to facilitate the 

placement of fluid annotations on the last character of a method name if the user finds 

this technique more agreeable. The placement of fluid annotations is designed to allow 

the user to easily match a given annotation to its associated source code element. 
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 Figure 5.3: When the mouse cursor is positioned within the bounding box of a fluid 

annotation is transforms into an expandable widget - in this instance a green plus icon 

affording addition or expansion. After a number of seconds a information box will also 

appear describing the potential introduction. 

5.2.2 Inline introduction

Inline introduction refers to the introduction of a source code declaration (or other units 

of information) into the context of the focal source code document. The fluid editor uses 

an inter-line introduction technique inspired by Zellweger et al. (2000). See Chapter 4, 

Section 1.2.2. The source code document is split horizontally at the line succeeding the 

fluid annotation and the source code declaration is then inserted as an indented code 
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block (See Figures 5.4 & 5.5).  Early iterations of the fluid editor used a line splitting 

introduction technique in which the code was split at the character succeeding the visual 

cue. However, by splitting lines of code in this manner the source code became difficult 

to read particularly with multiple introductions originating from a single line of code. The 

current ‘after line’ technique was developed to conserve the structural integrity of the line 

of code associated with the fluid annotation(s) and thus increase the overall readability 

and coherence of the source code display.  

 Figure 5.4: An introduced method declaration. The background colour is distinct and the 

inline declaration has a border to allow the user to easily identify between introduced 

and native code.
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Figure 5.5: Introduction of a second source code declaration.

When designing the fluid source code editor a variety of introduction techniques were 

considered, such as interline expansion, margin callout and fluid overlay. These design 

alternatives were primarily inspired by the fluid UI techniques developed as part of the 

fluid document project (Zellweger et al. 1998) and partially the Guide ‘in-situ’ 

mechanism (Brown 1989). See Chapter 4, Section 1.2.2 and Chapter 4, Section 1.1.2. 

After a significant amount of technical and usability oriented experimentation, an 

interline introduction technique was chosen. The following sub-sections expand on this 

pivotal design decision. 
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5.2.2.1 Margin callout

The margin callout technique is concerned with the introduction of related information 

into the margins either side of a digital document. See Chapter 4, Section 1.2.2. Source 

code editors generally do not support margins (however a ‘gutter’ mechanism is 

supported in many IDEs). As such initial experimentation was carried out based on the 

addition of margins into which source code declarations could be introduced. However, a 

number of usability issues quickly became clear. The first issue was margin width and its 

effect of on the primary document context. The margin width necessary to introduce a 

source code declaration, without the need to scroll or artificially reduce the size of the 

introduction, infringed upon the readability of the original document context. 

Furthermore, the margin callout technique could not support the level of rich nested 

exploration that envisioned for the fluid source code editor. For these reasons the margin 

callout technique was not pursued beyond a number of basic experiments. 

5.2.2.2 Fluid overlay

The fluid overlay technique (See Chapter 4, Section 1.2.2) was problematic from a 

technical standpoint due to a fundamental lack of support for changing the transparency 

of user interface controls in the Standard Widget Toolkit (SWT) (Eclipse 2009g) - the 

user interface framework used in the Eclipse IDE. Essentially the SWT provides a 

standard Java based user interface API which is mapped, via the Java native interface 

(JNI), to the underlying native user interface API on platforms such as Microsoft 
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Windows, Apple Mac and Linux. Because the SWT needs to cater for a wide variety of 

native interface frameworks, each with varying degrees of functionally, the interface 

tends to revert to a lowest common denominator in terms of available functionality. A 

casualty of this situation is the ability to change the transparency of interface controls. 

Without the ability to create transparent interface controls the application of the fluid 

overlay introduction technique was unfeasible. 

5.2.3 Inline source code declarations

Inline source code declarations are read only copies of native source code declarations. 

The fluid editor supports the introduction of methods, type and variable declarations 

(both local variables and fields) (See Table 5.1 for a full listing of supported introduction 

types). 

 The user can copy the code contained within an inline declaration but it cannot be 

edited. While editing of the source code contained in an inline declaration is technically 

feasible with the current implementation, the approach was not pursued as the primary 

focus was on contextual exploration as opposed to out of context editing, which in itself 

is a significant research question. Other than being read-only, inline source code is fully 

consistent with native code.  It is syntactically and semantically highlighted and supports 

standard caret and line highlighting behaviour. The user can also navigate the source code 

contained in an inline declaration using the standard out of line hypertext exploration 

model, run searches via the context menu and initiate tool tips. 
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 Inline source code declarations are differentiated from native source code by a 

border and a coloured background. For instance, the default background colour for a 

method declaration is a soft yellow with a grey border. In order to keep the user oriented 

during inline source code browsing, inline declarations are labelled with the name of their 

native source code document. A toolbar is also provided which allows the user to collapse 

a given declaration or navigate to the associated source code declaration in its native 

context. Explicit navigation is also supported using a ‘shift select’ combination. If the 

shift key is held and the mouse moved within the bounds of an inline declaration, it 

becomes a navigable link to its native source code declaration. To indicate this feature the 

cursor transforms into a hand pointer and the background of the inline declaration turns to 

a deep yellow indicating its highlighted status (See Figure 5.6). When clicked the target 

declaration is opened in a new source code editor and presented to the user. 



123

 Figure 5.6: Explicit navigation using an inline declaration. The user has held the shift 

key and moved the mouse pointer over this field declaration causing it to become a 

navigable link. Clicking on an inline declaration when it is in a navigable state will open 

the corresponding native source code declaration in a new editor display. 

An introduced inline declaration may be ‘collapsed’ or removed from the source code 

display by re-clicking on its associated fluid annotation (which is in a ‘collapsible’ state) 

or clicking on the close button contained in the inline toolbar. When the mouse pointer is 

positioned within the bounds of an inline declaration, the associated fluid annotation is 

displayed in the more distinct widget state. This allows the user to easily identify both the 

source code reference and the fluid annotation associated with the inline declaration.
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5.2.4 Nested introduction

It is common for source code contained in an inline declaration to contain references to 

other source code declarations. To handle this scenario and fully realize the inline 

exploration concept the fluid editor supports the nested introduction of source code 

declarations (See Chapter 4, Section 1.1.2 and Chapter 4, Section 1.2.3 for discussion 

related to nesting in an inline context). This means that an inline declaration may be 

introduced into the context of an existing inline declaration (See Figures 5.7 & 5.8). 

 To differentiate between nested inline declarations indentation and colour coding 

is used. A child inline declaration is indented by one unit greater than its parent 

declaration. Shading is used to visually differentiate between inline declarations on 

different levels within an inline exploration tree. The metaphor is that the user is 

exploring ‘deeper’ into the software space related to the primary document. The 

background colour of a child inline declaration is computed by taking the parent colour 

and ‘darkening’ it by a predefined factor using an RGB function. When the shaded child 

colour is deemed too “dark” the procedure wraps around, the next child starts at the base 

default colour and the process repeats. The technique assures that inline declarations 

which share the same background colour are always distinguishable from one another and 

that no declaration gets shaded so dark that it would become unreadable. The shade 

fraction used in the shading model is alterable using the fluid editor preferences pages. 

The fluid editor also supports an ‘alternating’ colour model in which nested inline 

declarations are coloured from light to dark in an alternating sequence. 
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 An entire inline exploration tree can be collapsed by clicking the fluid annotation 

widget associated with the root inline declaration. Sub trees are also collapsible by 

closing the associated root inline declaration.

 Figure 5.7: Nested inline introduction. In this instance one method declaration has been 

introduced into the context of an existing inline declaration. Nested declarations are 

differentiated via a colour model, in this case shading based on introduction depth.
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Figure 5.8: Tree levels of inline nesting and the corresponding depth shading.

5.2.5 Search results

In addition to the introduction of basic source code declarations, the fluid editor also 

supports the introduction of search results as a core feature. The programmer can execute 

a ‘pre-canned’ search from within the source code presentation by activating particular 

fluid annotations. The results of the search are then presented inline and the programmer 

can explore the set of matches using the inline exploration mechanism (See Figures 5.9 & 

5.10). 
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 The execution and introduction of search results in an inline manner offers a 

significantly more contextual and less disorienting search experience than the existing 

approach prevalent in modern IDEs. In the traditional IDE environment search results are 

displayed in an external results view, and when the programmer navigates to a particular 

result the original context of the search is replaced and lost (De Alwis & Murphy 2006). 

Loss of the original search context is significant as it represents an important reminder of 

the intent underpinning the search. When it is no longer visible the programmer is more 

prone to disorientation.  Furthermore, due to the keyhole property it can be cognitively 

demanding to compare and contrast a set of search results. The programmer may need to 

thrash back and forth between particular source code locations which places a strain on 

working memory and requires greater concentration on interface adjustment activities. 

On the other hand, using the inline search mechanism the original context of the search is 

maintained and the programmer can selectively compare and contrast individual results in 

a single contextual coherent display. 

 The fluid editor supports the introduction of search results in a number of 

scenarios most of which are related to polymorphism - in which there may be many 

declarations associated with a particular source code reference (See Table 5.2 for a list of 

supported references). The inline search support provided by the fluid editor is not 

intended to be complete by any means but rather sufficient enough to evaluate the 

feasibility and usability of the concept. It is envisioned that inline search results would be 

a far broader feature, encompassing a much richer set of search functionality. 



128

Inline introduction of search resultsInline introduction of search results

Source code element Results

Method invocation on an interface type All implementing declarations in the workspace

Method invocation on an abstract type All implementing declarations in the workspace

Interface type declaration All implementing declarations in the workspace

Interface method declaration All implementing declarations in the workspace

Abstract type declaration All implementing declarations in the workspace

Abstract method declaration All implementing declarations in the workspace

Table 5.2: A summary of inline search support in the fluid source code editor. 

In order to keep the discussion of inline search results succinct, the introduction of a 

method invocation on particular interface type will be discussed. General behaviour may 

be extrapolated from this description. 

 Upon activation of the fluid annotation associated with the method, the fluid 

editor first runs a workspace wide search for all matching declarations using the Eclipse 

search APIs. Once the search is complete, an inline display is introduced containing the 

list of matching declarations. Each entry in the list contains an associated fluid annotation 

(See Figure 5.9). When an annotation in the results list is expanded, the associated source 

code declaration is introduced (See Figure 5.10). Each matching declaration can also be 

treated as a hyperlink facilitating explicit navigation to the native declaration. The 

introduction of a search result takes slightly longer than a standard declaration, due to the 

additional processing required, but remains interactive. Multiple entries in the list of 
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declarations can be simultaneously expanded for comparison and the resulting inline 

declarations support further nested exploration.

 Figure 5.9: Inline introduction of search results - the declarations matching a particular 

abstract method invocation. The user can explore the results inline via the fluid 

annotation associated with each result. 
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Figure 5.10: Exploring search results in an inline manner. 

5.2.6 Inheritance relationships

In a Java programming environment, where inheritance is pervasive, a given method 

declaration will often ‘implement’ an abstract method declaration or alternatively 

override a super class method declaration. The fluid editor facilitates inline exploration in 

both circumstances even though there is no explicit reference on which to associate a 

fluid annotation. 

 When a method is deemed to implement or override a super class method, a fluid 

annotation is embedded at the first character in the method signature. The widget 
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associated with the fluid annotation is indicative of the inheritance relationship present, 

‘implements’ relationships are represented as a white upturned arrow and overrides 

relationships are represented as a green upturned arrow as per JDT style standards.

  When the fluid annotation is activated the appropriate method declaration is 

introduced above the existing method declaration (See Figure 5.11). Using this feature the 

user can examine the structure of a type hierarchy from the point of view of a particular 

method all the way up to the abstract declaration within a single source code display.

Figure 5.11: Introduction of overridden super-class method. The fluid annotation is 

located as the first character in the method signature.
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5.2.7 Editing and reconciliation

The fluid editor is, by definition, an editor and thus supports source code editing in 

parallel with inline exploration activities. As a result the reconciliation of fluid 

annotations and inline source code declarations in response to editing activities is a 

significant design concern. 

5.2.7.1 Reconciliation of fluid annotations

As the programmer edits source code using the fluid editor, fluid annotations are 

automatically inserted, removed and repositioned as required to maintain the integrity of 

the exploration environment. The repositioning of annotations occurs in real time while 

addition and removal of annotations occurs when the source code document is saved by 

the user. Addition and removal is delayed until saving as the procedure is processor 

intensive and would result in slight delays to editing actions if carried out in real time.

 The addition of fluid annotations is typically carried out in response to the 

programmer inserting new code into the focal source code document. For instance,  when 

adding a new method or variable reference. Removal of visual cues occurs in response to 

the deletion of code or the manual alteration of declaration signatures thus invalidating 

the link between a reference and an associated declaration. An example would be the 

alteration of a method signature which would invalidate any existing references to the old 

signature. 
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5.2.7.2 Reconciliation of Inline declarations

As mentioned previously, the source code contained within an inline declaration is a read 

only copy of a corresponding native source code declaration. This raises the question of 

the protocol used when a native declaration is edited or deleted and there exists inline 

copies in open fluid editor instances. If native declaration edits were simply ignored, the 

situation would invariably arise where an inline declaration would become ‘stale’ or 

inconsistent in relation to its target native declaration due to routine source code editing 

activities. 

 The fluid editor uses a simple but effective update notification mechanism to 

handle the editing of program declarations. When a native program element declaration is 

edited and subsequently saved, any inline copies of the edited declaration are checked for 

consistency. If the native declaration and the copy are deemed to be inconsistent, the 

inline declaration is flagged as such. Inconsistent inline declarations are indicated with a 

red outline border. When the mouse is hovered inside the inconsistent declaration a pop-

up window also appears to indicate the problem. To synchronize the contents of the inline 

declaration with the newly edited native declaration the programmer simply removes and 

reintroduces the declaration using the associated fluid annotation, this action 

automatically refreshes the contents of the declaration. 

 Automatic updating of stale inline declarations was considered but proved 

problematic due to complications arising from nested declarations. An inline declaration 

may be ‘split’ arbitrarily by any number of inline child declarations. To implement an 
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automatic reconciliation strategy would involve significant complexity in terms of 

maintaining and managing the reintroduction of nested declarations.

 In the case of deletion or the alteration of the signature of a native declaration, the 

fluid editor will automatically collapse all corresponding inline copies. The associated 

fluid annotation may then be deleted itself or updated if part of a re-factoring operation.

5.3 Additional features

The primary functionality of the fluid editor is the inline introduction of source code 

declarations and search results. However the fluid editor also supports the introduction of 

additional information such as web pages and images resources. The introduction of 

additional information artifacts such as dynamically computed program slices, life-cycle 

artifacts such as design diagrams and requirements was also experimented with using the 

framework. This section describes various experimental inline exploration facilities 

supported by the fluid editor. 

5.3.1 URLs

Web accessible uniform resource locators (URLs) are often located in source code 

documents linking to licensing information and other documentation associated with the 

source code. The fluid editor supports the introduction of URLs via a lightweight inline 

web browser. 
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 Any URL string encountered in the source code is annotated as standard with a 

fluid annotation (See Figure 5.12). When the user clicks on the annotation, a web browser 

instance is introduced into the editor display and the target URL is opened (See Figure 

5.13). The web browser instance adopts a fixed height, specified in the fluid editor 

property pages, and scroll bars appear if the web content exceeds the available vertical 

space. 

Figure 5.12: A url contained in a comment block is annotated with a fluid annotation. 
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Figure 5.13: Activating the fluid annotation causes the associated web page to be 

introduced inline in a web browser instance. 

5.3.2 Image resources

The fluid editor also supports the introduction of images directly into the source code 

context. When a source code document is opened, it is scanned for image references, 

namely literal strings which resolve to image files contained in the surrounding project or  

workspace. A fluid annotation is embedded at each image reference. When the annotation 

is selected, the corresponding image is introduced inline in a custom image viewer (See 
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Figure 5.14). The image viewer supports the .gif and .jpg image formats and supports 

image zooming.

Figure 5.14: Inline introduction of an image resource. Images are introduced in a custom 

image viewer control which supports zooming. 

5.4 Implementation

Under the covers, the fluid source code editor is essentially an extensible framework for 

annotating source code, and introducing external information into existing source code 
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documents. This section describes the implementation of the major components and 

interactions which make up the fluid source code editor. 

5.4.1 Fluid annotations - generation, interaction and rendering

Upon opening a Java source code document the fluid editor initially creates an abstract 

syntax tree (AST) based on the document content via the AST libraries provided by the 

JDT. The AST is generated ‘with bindings’, meaning that the various references 

appearing in the AST may be resolved to their corresponding source code declarations. 

 Once generated the AST tree is visited or walked using a set of custom AST 

visitor classes designed to pick out references (nodes) representing potential inline 

exploration points. The selected references are checked to ascertain if the source code of 

the target declaration is available. References that do not have available source code are 

ignored as they are unsuitable for inline introduction. For instance, a reference to a 

method located in an external library without attached source code cannot be introduced 

as there is no physical source code declaration available.

  A specific fluid annotation instance is created for each suitable AST reference. 

The annotation computes its position using the offset and length of the segment of source 

code corresponding to the reference, this information is subsequently mapped to the 

relevant pixel location in the fluid editor display during the rendering step. The fluid 

annotation is added to a fluid annotation model associated with the fluid editor instance. 

The fluid annotation model is responsible for maintaining the set of fluid annotations 

associated with a fluid editor instance and takes care of repositioning and deletion of 

annotations in response to edit events . 
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 Rendering of fluid annotations onto the source code editor display is carried out 

by a fluid annotation rendering engine that is attached to the editor text widget. In 

response to paint events from the text widget the rendering engine iterates over all fluid 

annotations contained in the fluid annotation model and paints each annotation into the 

source code display. For efficiency the rendering engine culls annotations which lie 

outside of the current editor viewport. Each fluid annotation is responsible for painting 

itself onto the text widget. The abstract base class provides default painting behaviour 

which subclasses are free to extend or override as deemed necessary. Figure 5.15 presents 

a depiction of the fluid annotation life-cycle, from generation to rendering.

Figure 5.15: Fluid editor annotation generation, culling and rendering architecture. 

The fluid editor manages interaction with fluid annotations by monitoring user interaction 

with the text widget onto which the annotations are painted. To simulate realistic 

interaction behaviour the fluid editor processes interaction events before they are passed 

to the text widget for default processing. In certain circumstances the fluid editor may 

prevent events from reaching the text widget - a behaviour referred to as ‘event 

hijacking’. 
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 Interaction events are first relayed to the fluid editor which checks if the event 

affects any fluid annotations in the visible view port. If the event is deemed to affect a 

given fluid annotation, it is passed on to the fluid annotation itself for processing. The 

fluid annotation acts on the event and returns a boolean flag to the fluid editor indicating 

whether the event should be passed on to the text widget or discarded. An example of a 

potentially hijack-able event is the mouse down event. If the programmer clicks on a 

fluid annotation, the click event is not passed onto the text widget as this would make the 

interaction with the fluid annotation unrealistic. The event hijacking technique is vital to 

maintain a crisp and believable interactive document interface, making the fluid 

annotations seem like interactive elements rather than images painted on the canvas. 

Figure 5.16 illustrates the user interaction mechanism underpinning fluid annotations.

Figure 5.16: User interaction events may be hijacked via the fluid annotation model. A 

successful hijacking means that the event will not reach the editor text widget. This 

provides the user with a crisp interactive interface.
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5.4.2 The dynamic document model 

The fluid editor features the dynamic insertion and removal of source code declarations 

and other informational types to and from a given source code document. To implement 

this functionality an advanced dynamic document architecture was designed and 

implemented. 

 Each fluid editor maintains two documents in memory, a fluid document and a 

master document. The fluid document is presented to the programmer for editing and 

supports the dynamic inline introduction ‘fluid regions’. The master document is 

represents the structurally correct source code document that is used for compilation and 

is also written to disk when the editor buffer is saved. 

 The fluid and master documents are connected via a document information 

mapping (DIM). The DIM maps offsets, lines numbers and text regions from the fluid 

document to the master document and vice versa. Mapping from the fluid document to 

the master document essentially involves subtraction of any inline text regions above the 

mapping offset while mapping from the master document to the fluid document involves 

addition of any inline regions above the mapping offset. 

 Editing carried out on the fluid document is relayed back to the master document 

in real time. The fluid document edits are first mapped using the DIM and then applied to 

the master document. 

 Arbitrary regions of text may be added and removed from the fluid document 

programmatically using a custom insert/delete API. A fluid region contains an insertion 

offset and a formatted block of text which is to be inserted at the specified offset. The 
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insertion and deletion of a fluid region is essentially an edit of the fluid document (like a 

paste operation). However fluid region edits are explicitly prevented from synchronizing 

back to the master document (See Figure 5.17).

Figure 5.17: The fluid document architecture. The master document is maintained in a 

syntactically coherent state in memory for saving to disk and compilation. The visible or fluid 

document (presented to the user) may contain inline declarations (fluid regions) which are not 

propagated to the master. The Document information mapping (DIM) handles translation of 

offsets from the master to the visible document and vice versa. User edits and refactoring 



143
operations carried out on the visible document are mapped in real time to the master document 

via the DIM. 

Using the DIM as a synchronization bridge, the master document retains both its 

consistency with user edits and its structural integrity throughout fluid source code 

exploration activities. When the editor is saved the master document is written to disk, 

therefore the Java compiler sees the master document as opposed to the potentially non-

compilable fluid document. 

 The inline introduction of non-text based content such a web browser instance or 

the image viewer is accomplished by inserting blank lines of text into the fluid document 

and overlaying a graphical control on the newly acquired space. The control is then 

synchronized with the editor window so that it is resized and moved in a consistent and 

believable manner.

5.4.3 Implementing an editing and reconciliation model

As previously mentioned editing and reconciliation is concerned with synchronizing the 

inline source code exploration model with changes to native source code. 

 On initialization each fluid editor instance adds a element changed listener to a 

central JDT model plug-in (JavaCore). The listener interface specifies an element 

changed method which is called when any element in the Java model (composed of all 

Java elements in the existing workspace) is changed, added or removed. 
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 An element changed event received via the listener interface triggers a staggered 

refresh of the fluid source code model associated with each fluid editor instance. A 

refresh is a two step procedure consisting of first checking the validity and consistency of 

each inline declaration in the source code document, and then performing a refresh of the 

fluid annotation model. 

 The validity of an inline source code declaration is concerned with whether or not 

the declaration still exists in the workspace. Existence can be checked using the AST 

node associated with the declaration. If an inline declaration is deemed to be invalid, it is 

deleted from the source code document along with any contained inline declarations. The 

next step is to check consistency. The consistency of an inline declaration is determined 

by comparing the current contents of the declaration with a fresh copy of its native 

declaration. Inconsistent inline declarations are visually flagged to indicate the unreliable 

state to the user (See Figure 5.18).
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Figure 5.18: An inconsistent inline source code declaration, highlighted in red. Edits to 

the native declaration may cause inline copies to become inconsistent. 

The refreshing of fluid annotations in response to element change events from the Java 

core model essentially involves a re-annotation of the source code document and any 

associated inline declarations.

5.5 Discussion 

The fluid source code editor represents a fully functional inline source code exploration 

environment for Java source code. However the implementation of the system ended up 
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being a particularly arduous and time consuming task. To achieve the desired 

functionality, a significant amount of invasive extension and modification of the Eclipse 

IDE was required. 

 When the decision was made to develop an inline source code exploration interface, 

the choice of whether to build a simple throwaway prototype or attempt to extend an 

existing IDE offering with the desired functionality became a pivotal decision, affecting 

both the research and development effort. Although it involved a significant learning 

curve it was decided decided to build the system as an extension of the Eclipse IDE. This  

approach offered the best scope for realistic evaluation (performing a pilot study etc.) and 

offered the potential for a system usable and extensible by the wider development and 

research community. However as the fluid editor was under development, it became clear 

that both the Eclipse IDE and the JDT were not designed for such a significant extension 

efort, even when the rudimentary extension mechanisms provided by the platform were 

bypassed for greater control. To work around this limitation a number of core JDT and 

Eclipse plugins had to be invasively modified to add required features and make them 

more extensible. As a result, the fluid editor ships with a set of custom plugins which 

overwrite their core counterparts on installation (See Table 5.3). Unfortunately, this 

means that the fluid editor only runs on a specific version of the Eclipse IDE (3.2). The 

system is also confined to the Windows platform, a side effect of the platform dependent 

nature of the standard widget toolkit (SWT) (Eclipse 2009g).  
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Core Eclipse and JDT plugins patched for Fluid 

source code editor compatibility

org.eclipse.jdt.ui 

org.eclipse.jface.text

org.eclipse.swt

org.eclipse.swt.win32.win32.x86

org.eclipse.text

Table 5.3: The set of core Eclipse IDE and JDT plug-ins that required invasive 

modification and extension to support the fluid source code editor.

In addition to the extensibility problems, it was discovered that certain features of the 

Eclipse IDE are fundamentally incompatible with inline exploration. The most 

outstanding example is code folding (Eclipse 2009f). Code folding is standard feature in 

modern IDEs which allows the programmer to elide blocks of code in order to reduce 

clutter in the interface. For instance, the programmer can collapse comment blocks, 

methods bodies and even entire type declarations contained in a source code document in 

order to see more code of interest in a single display. Code folding essentially involves 

the removal of source code from the visible source code document, while fluid 

exploration involves the addition of source code to the visible document. Both 

technologies clash for control of the visible source code document and would need to 

know about one another to work in harmony. This integration work would have required 

a major redesign of the Java editor architecture which was deemed unfeasible within the 

context of the inline exploration project. As such, the fluid editor will ‘switch off’ code 
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folding when it is installed and will explicitly prevent the user from switching the feature 

back on. 
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Chapter 6

Experiment

The second major component of the research methodology, alongside the development of 

the fluid editor prototype, was the development and execution of a user experiment 

designed to determine if inline exploration was effective at reducing programmer 

disorientation during source code exploration activities. The goal was also to gather 

feedback related to the inline exploration approach, including the specific manifestation 

provided by the fluid editor. 

 The high level design of the experiment was that a number of participants, ideally 

with solid programming and IDE experience, would be recruited and asked to carry out a 

series of source code exploration tasks. Half of the tasks would be performed using the 

standard source code exploration interface provided by the Eclipse IDE (this would serve 

as a baseline level of disorientation), the other half would be completed using the inline 

interface provided by the fluid editor. During the tasks the level of disorientation 

experienced by the participants would be monitored and recorded using a variety of 
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qualitative and quantitate mechanisms. After the experiment, an analysis on the resulting 

data would be carried out, contrasting the level of disorientation experienced by 

participants on both of the interfaces.  

 The experiment was designed to be exploratory in nature. The aim was to observe 

the level of disorientation experienced on both interfaces and how users interacted with 

the inline source code exploration mechanism. However an informal preliminary 

hypothesis was derived. The expectation was that participants would experience 

considerably less disorientation using the inline interface (the Eclipse IDE with the fluid 

source code editor) versus the standard interface (the Eclipse IDE without the fluid 

source code editor). This chapter describes the design, rationale and execution of the 

experiment.

6.1 Soliciting feedback from the development 

community

Prior to the design and execution of the user experiment, an attempt was made to pre-

evaluate the fluid source code editor via feedback from the developer community. The 

fluid editor prototype was released as an open source extension to the eclipse IDE, and 

made available a dedicated website describing the concept, features and potential 

advantages of the tool (Sourceforge.net 2009) (See Figure 6.1 or visit http://

fluideditor.sourceforge.net). The project website also included a online survey allowing 

users to submit feedback and comments related to their experience using the tool.  

http://fluideditor.sourceforge.net
http://fluideditor.sourceforge.net
http://fluideditor.sourceforge.net
http://fluideditor.sourceforge.net
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 While the fluid editor prototype enjoyed a significant number of downloads, it 

was  found that little or no developers were interested in taking the time to fill in the 

online survey, or leave substantial comments concerning their experiences with the tool. 

Based on this lack of feedback it was decided that an exploratory user experiment was a 

more promising approach. 

Figure 6.1: The fluid source code editor open source project website.
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6.2 Measuring disorientation 

To achieve the primary experimental goal it was vital to develop a credible and defensible 

mechanism by which to measure programmer disorientation during source code 

exploration tasks. 

 According to Yatim (2002) there are three mechanisms which are generally used 

to measure disorientation: 

• Measuring degradation of user performance

• Gathering subjective feedback via questionnaires/interviews

• Examining the accuracy of the conceptual model assimilated by a user

Additional mechanisms deserving of consideration, but not described in Yatim 2002, are 

the observation of user behaviour for specific patterns or situations which are generally 

accepted to be indicative of disorientation (De Alwis & Murphy 2006) and measuring the 

level of visual momentum in the exploration interface (Watts-Perotti & Woods 1999).  

• Observing the user to identify behaviour indicative of disorientation

• Measuring the degree of visual momentum in the interface
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6.2.1 Measuring degradation of user performance

Edwards & Hardman (1999) point out that disorientation may be considered in terms of 

performance degradation, which is generally interpreted as the amount of time spent on 

the completion of a given task. The rationale is that a user who is experiencing 

disorientation will naturally attempt to reorient themselves, a process which requires 

additional time and effort. Therefore, it can be postulated that more time spent on a task 

the more disorientation experienced by the user.  

  Task completion time is a very attractive mechanism for measuring disorientation 

due to its simplicity, ease of collection and natural resonance in terms of user 

productivity. However, time should be interpreted carefully by the experimenter because 

the the link between time and disorientation is not very well understood. For instance, 

Maneti (1982) reported that disoriented users spent less time on tasks than those that were 

not disoriented. A severely disoriented user may simply quit their task out of frustration 

resulting in a significant reduction in completion time and an anomaly in the 

measurement technique. 

6.2.2 Gathering subjective feedback via questionnaires/interviews

Perhaps the most basic approach to measuring disorientation is to ask users, via an 

interview or questionnaire, if they have experienced the phenomenon, and if so, to what 

extent (Maneti 1982). A popular mechanism is to ask the user to select from a scale of 

values indicating how lost or disoriented they felt during their task(s). 
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I often felt disoriented (lost) in the source code...

Disagree      0 1 2 3 4 5 6 7 8 9       Agree

However, gathering a subjective estimation of disorientation via an interview or 

questionnaire raises the issue of interpretation. Users may have a significantly different 

interpretation and understanding of the term ‘lost’ or ‘disoriented’ than the researcher 

running the experiment. Even the research literature does not unanimously agree on a 

definition. In some cases disorientation refers to a loss of  spatial awareness (Conkin 

1987) and in other cases losing ones train of thought due to the pursuit of digressions 

(Foss 1989a) and in other cases not being able to complete a goal (Watts-Perotti & Woods 

1999).  

 The potential for misinterpretation raises questions about the relevancy and 

accuracy of information gathered from questionnaires and user interviews. However, the 

technique is still valid and useful to elicit general subjective feedback and thus should not 

be discounted.

6.2.3 Examining the accuracy of the conceptual model 

The ‘conceptual model’ is the users mental representation and understanding of the 

information gleaned or assimilated during an exploration task. 

 It’s generally accepted that there is a link between the accuracy of a conceptual 

model and the level of disorientation experienced during its conception. For instance Elm 

and Woods (1985) define disorientation as when ‘the user does not have a clear 
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conception of relationships within the system’. Foss (1989a) maintains that an inability to 

devise an accurate conceptual model during browsing activities is a symptom of 

informational disorientation (the art museum phenomenon). It can be expected that the 

more accurate a user’s conceptual model, the less disorientation experienced during its 

creation and refinement. The rationale is that disorientation interferes with the process of 

comprehension. 

 A simple mechanism for ascertaining accuracy of a conceptual model is to ask the 

user to sketch out the structure of the conceptual space associated with a particular task 

(Mahmoud 1993). The sketch can then be checked for errors or omissions against a 

known to be accurate depiction of the conceptual model. 

 However, accuracy of a conceptual model, in isolation, is not sufficient to 

measure disorientation. For instance, completion time is also a significant factor. A user 

spending a large amount of time exploring a body of information would be expected to 

produce an accurate conceptual model regardless of the disorientation experienced during 

the conception.

6.2.4 Observing the user to identify behavior indicative of disorientation

Perhaps the most promising overall approach to measuring disorientation is to observe 

how users carry out their tasks. In the research literature, there are numerous widely 

accepted interaction patterns and behaviours which are indicative of disorientation. For 

instance consider the following list of observable patterns:
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• Backtracking to previously visited locations (Foss 1989a) (De Alwis & Murphy  

2006)

• Pursuit of inefficient paths/loops (Foss 1989a)

• Restarting a task from a known location (Foss 1989a) (De Alwis & Murphy 

2006)

• Closing all open files to clear context (Foss 1989a) (De Alwis & Murphy 2006)

• Thrashing between displays (Watts-Perotti & Woods 1999)

• Excessive interface adjustment (Watts-Perotti & Woods 1999)

• Failure to return from a digression (Foss 1989a)

• Failure to pursue a planned digression (Foss 1989a)

In addition to interaction patterns such as those presented in the list above, there are also 

specific gestures and comments which can be interpreted to indicate that the user is 

suffering from disorientation. Gestures might include drumming of fingertips, furrowed 

brows and puzzled stares (De Alwis & Murphy 2006). 

 Comments may also be considered and tend to be more specific than gestures. For 

instance, if one considers the characterization of programmer disorientation presented by 

De Alwis & Murphy (2006). A collection of interesting comments that are representative 

of disorientation may be identified:

• What am I looking at?  - the programmer has lost their sense of location and 

direction in the code space.
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• Why cant I find?  - the programmer is unable to locate information of interest.

• What was I doing? - the programmer has lost their recent history.

• What was I going to do? - the programmer cannot remember their intent having 

arrived at a location.

Yatim (2002) provides a more comprehensive list of questions a disoriented user might be 

observed to ask themselves or allude to: 

• Where am I? 

• How did I get here?

• Where should I go next?

• I know where to go, but how to get there? 

• What was I reading previously?

• What was I looking for?

• Why do I keep arriving at this page ?

• Have I been here before ?

• Is the information I am looking for available?

• This is not what I had expected

• I don’t think I found what I was looking for

Given the existence of interaction patterns, gestures and specific comments that may be 

linked to disorientation, it may be concluded that a promising strategy for measuring the 
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phenomenon would be to closely observe the user as they carry out their tasks. Then note 

down any situations which match the ‘model’ of disorientation. Users may be encouraged 

to comment via the use of a talk aloud protocol or perhaps using a more informal pair 

exploration type situation where the facilitator acts as a partner and sounding board for 

the participant, like a programming colleague might in a realistic setting. 

 It should be noted, however, that a synergistic approach is favourable to observing 

disorientation. An interaction pattern, gesture or comment in isolation may not indicate 

disorientation. A more interesting approach is to look for combinations or patterns which 

indicate specific types of disorientation. For instance, a programmer backtracking to 

previous locations with a furrowed brow and muttering about being unable to tell where 

they came from is a concise indication of navigation disorientation. On the other hand, a 

programmer backtracking might simply indicate the general needs of comprehending a 

complex piece of fragmented information 

6.2.5 Measuring the degree of visual momentum in the interface

The degree of visual momentum in an interface may be used as a heuristic measure of 

disorientation (De Alwis & Murphy 2006; Watts-Perotti & Woods 1999). The greater the 

level of visual momentum in an interface, the less disorientation, it can be assumed, will 

be experienced by the user. 

 Woods (1984) describes an interface with low visual momentum -‘Each transition 

to a new display becomes an act of total replacement; both display content and structures 

are independent of previous ‘glances’ into the database’.  Based on this definition, it can 
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be concluded that a rudimentary mechanism to measure visual momentum is to record the 

number of display switches during an exploration task which involve a total replacement 

of visible content. 

6.2.6 Discussion

Disorientation is a subtle, human-oriented and subjective phenomenon which means that 

it is fundamentally difficult to quantify in a defensible manner. Considering the variety of 

mechanisms available to measure disorientation, and the limitations associated with each, 

it was decided that the most appropriate approach was to use a combination. Essentially, 

the aim was to build up a model of disorientation based on as many factors as could be 

gathered during the experiment. 

 Quantitative metrics such as task completion time, display switches per task, 

amount of backtracking and interface adjustment were recorded. It was also observed 

how the participants interacted with the interfaces, their comments and gestures. A 

satisfaction questionnaire was developed which included a number of questions related to 

disorientation. Finally interviews were carried out in which the participants were allowed 

to describe their experiences using the interfaces in their own words. 
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6.3 Experiment design

Eight participants were recruited and asked to perform a series of eight small to medium 

scale exploration tasks over the source code of a moderately complex Java based drawing 

application. 

 A within subject design was used in the experiment. Each participant performed 

four tasks using the standard exploration interface (standard Eclipse IDE) and another 

four tasks using the inline interface (Eclipse IDE with the fluid editor installed). A 

significant advantage of the within subjects design approach is that it provides control of 

individual differences between participants. Essentially each participant acts as their own 

control group. Furthermore the design results in an effective doubling of the available 

data set in relation to a design organized around independent control groups. This is a 

considerable advantage due to the difficulties in finding willing participants. 

 However, carryover effects are a problem when applying a within subjects design. 

There are two basic types of carryover effects, practice effects and fatigue effects. When 

one within-subjects task negatively effects performance on a later task, this is referred to 

as a fatigue effect. It may be caused by factors such as tiredness or boredom. On the other 

hand, if one task is similar to another task, practice gained in the first task may lead to 

better performance in the second task, thus practice effects. Practice effects are a 

significant concern in this experiment because all tasks are based on a single underlying 

code base. To combat practice effects the order in which the tasks were performed and the 

order in which the participants used the interfaces were systematically varied to counter-
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balance any potential skew. While this would not eliminate the effects it would distribute 

them evenly over the resulting data. 

 The tasks were recorded using a screen capture device and a video camera. A 

‘think aloud’ approach was used to elicit comments from participants as they carried out 

the source code exploration tasks. 

6.3.1 Participants

The participants involved in the study were recruited from the computer science 

department at the University of Limerick. Five of the participants were graduate students 

one of which was also a professional programmer, two participants were faculty and one 

participant was a recently graduated professional programmer (See Table 6.1). 

Participant Profession
P0 Faculty at the University of Limerick
P1 Part time M.Sc. Student/Professional programmer
P2 PhD graduate/Professional programmer
P3 Faculty at the University of Limerick
P4 PhD student
P5 PhD student
P6 PhD student
P7 PhD student

Table 6.1: Participants who took part in the exploratory user experiment and their 

corresponding profession. 
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All participants involved in the study were required to have strong programming 

experience, however, Java language experience and experience using the Eclipse IDE 

varied significantly over the participant set.  One participant reported eight years of Java 

programming experience and four years using the Eclipse IDE while another reported 

being a novice using both Java and Eclipse (See Table 6.2).  

Participant Programming experience Java Eclipse
P0 4 years, C/C++, Java, Perl Not a lot Not a lot
P1 C, Perl, Java Good Experienced
P2 8 Years, Java/C++ 8 Years 4 Years
P3 Java, C++, Mumps Rusty Very little
P4 C/C++, Java, Prolog One year 2 months
P5 10 years, C/C++, Python 1 semester Novice
P6 2 years C/Java, ASM 2 years Couple of months
P7 3 Years, Java/C/C++ 2 years Experienced

Table 6.2: Participants and their experience with Java and the Eclipse IDE. The data was 

transcribed from a profile questionnaire filled out by each participant at the beginning of 

their experiment session. 

Ideally, the study should have involved only those participants who were fully 

comfortable with both Java and the Eclipse IDE, however due to limited time and 

availability of willing participants a compromise had to be made. The primary issue with 

using in-experienced participants is an increased tendency towards disorientation, not 

based on the structure of the exploration interface itself but rather the process of adjusting 

to the new environment, source code and programming language.  
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6.3.2 Tasks

A significant design element associated with the experiment was the selection of tasks. 

Initially it was decided to pursue as realistic an approach as possible and have 

participants carry out live maintenance on a system. The participant would be presented 

with a description of a particular issue of enhancement and would need to identify and 

explore the relevant code and make the necessary changes. 

 However, during the initial pilot study, involving two participants, which was 

carried out before the main experiment, it became clear that asking participants to 

perform live maintenance was problematic. Due to inexperience, the participants took a 

significant amount of time to perform the relatively small maintenance tasks, and seemed 

to undergo a significant amount of stress and confusion in the process. Unfortunately the 

study did not have access to professional programmers and relied on graduate students 

who exhibited varying degrees of programming expertise and tolerance for complexity.  

 Based on the experience of the pilot study, it was decided to use basic source code 

exploration tasks, not involving live maintenance on a system. The potential for ruining 

the experiment was too great to use realistic maintenance tasks. 

 The revised source code exploration only tasks were designed to address both 

navigation of source code and development of a conceptual model, activities which are 

inextricably linked to the disorientation phenomenon. Each task was structured as a series 

of questions which related to particular area of the system. The participant was asked to 
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read each question then explore and comprehend the associated source code and verbally 

provide answers to the experiment facilitator. 

 Tasks were categorized into four different types, each of which was targeted 

towards a particular source code exploration scenario (See Table 6.3). During each 

experiment session the participant carried out one task of each type on both exploration 

interfaces. The use of task types was designed to coincide with the use of the within 

subject approach. Because the study would be comparing the results of a single 

participant using both interfaces it was felt that it would provide greater accuracy to 

compare similar task types. 

Task Type Inline Interface Standard Interface
Local Neighbourhood 1 1

Control flow 1 1
Polymorphic 1 1
Inheritance 1 1

Total 4 4

Table 6.3: Task types carried out on each interface.

6.3.2.1 Local neighbourhood task

The local neighbourhood tasks involved the exploration of the source code 

neighbourhood surrounding a particular source code location. The local neighbourhood 

was defined as any piece of code which could be reached from a given source code 
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location within three navigation steps. The neighbourhood essentially represented a 

radius of navigable code.

 The local neighbourhood tasks emphasized source code navigation and 

development of a conceptual model. The participant was required to explore into the code 

space to satisfy a particular question and then backtrack to the root of the neighbourhood 

or a subsequent location and follow an alternate digression. The participant was also 

required to compare related source code elements in the neighbourhood and comprehend 

the structure and logic of certain portions of the code. 

6.3.2.2 Control flow task

The control flow tasks focused on the navigation and comprehension of a complex chain 

of scattered control flow encompassing source code from a number of locations and 

documents across the code space. The average number of locations involved in a control 

flow task was eight. The participant was guided to a particular location in the code and 

asked to examine the structure and logic of a program operation driven by a number of 

informational goals.

 The control flow tasks emphasized the exploration comprehension of fragmented 

source code and navigation through a complex control flow chain with potential for 

digressions. The tasks were somewhat open ended and it was expected that the 

programmer would need to deal with digressions, backtracking and the perusal of 

alternate routes through the code space. The participant was asked to describe certain 
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aspects of the operation as well as to provide a high level description of the logic and 

overall functionality. 

6.3.2.3 Polymorphic task

The polymorphic tasks focused on the exploration and comprehension of a given abstract 

program operation. The participant was guided to an abstract method declaration or 

interface declaration and asked to answer a number of questions associated with the 

corresponding implementation. The tasks involved comparison of declarations and 

analysis of the type structure. The participant was also required to explore further into 

code space beyond the declarations.

 The primary aim of the polymorphic tasks were to determine how the interfaces 

performed when abstract operations were encountered and the participant would need to 

make use of search functionality. It was of particular interest to see how participants 

would react to the inline search feature and how it would compare to the comparative 

approach provided by the standard interface. 

6.3.2.4 Inheritance task

The inheritance tasks focused on the exploration and comprehension of the type hierarchy 

associated with a given class from the point of view of the class itself. The participants 

were required to trace the implementation of behaviour through a number of type related 
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method definitions, compare source code from various levels in the hierarchy, and 

generally examine of the structure of the hierarchy. 

 The inheritance tasks emphasized the navigation of inheritance relationships and 

comprehension of source code located at various levels of the type hierarchy. 

6.3.3 Data

To measure the level of disorientation experienced during the completion of the 

exploration tasks, and also gather feedback regarding the usage of the inline interface, the 

study involved the gathering of both quantitative and qualitative data during the 

experiment. 

The quantitative data gathered during the experiment included:

• Task completion time

• The number of display switches per task (exhibiting a total replacement of 

content)

• The amount of backtracking carried out per task

• Interface adjustment (Scrolling)

• Number of inline introductions per task

Quantitative data was gathered using a monitor installed on the version of Eclipse used 

during the study. The monitor was built as an Eclipse plug-in and included a simple task 
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view containing the list of tasks associated with the experiment session. Each task entry 

had a start and stop button. When ready to begin a particular task the participant selected 

the start button which initiated the monitor. 

 The monitor logged the duration of the task along with the number of display 

switches, use of the history stack, introductions and various events associated with 

interface adjustment. This information was stored in a file labelled with the selected task 

name. When the task was complete the participant was asked to press the stop button on 

the active task which stopped the monitor from logging further events and closed the log 

file associated with the task. 

The qualitative data gathered during each session included:

• Observed behaviour, comments and gestures

• Satisfaction questionnaires associated with each interface

• Exit interview

Each session was recorded via a screen capture tool and a video camera. The screen 

capture tool recorded the entire screen as the participant carried out the exploration task. 

The video camera was placed behind the programmer and slightly to the right. This angle 

captured any comments made by the participant and the facilitator as well as the 

participants body language and the screen. 
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 The participant was not asked to talk aloud, a process that could be considered as 

being overly artificial, but was instead encouraged to talk informally about the task using 

the facilitator as a sounding board for any thoughts or concerns. Essentially the 

participant was encouraged to discuss the task as they would with a quiet colleague. The 

facilitator sat beside the participant and to the right, careful not to block the view of the 

camera. The facilitator monitored the participant and noted down any interesting 

behaviour, comments or gestures which might indicate disorientation.

 After each set of exploration tasks, the participant was asked to complete a 

satisfaction questionnaire. The questionnaire contained a variety of questions based on 

their satisfaction with the interface they had just used. Questions were based on the work 

of Chin et al. (1988) and Jakobson & Hornbaek (2006). The questionnaire also included a 

number of questions specifically focused on ascertaining the level of disorientation 

experienced. At the end of the session the participant took part in an exit interview during 

which they were allowed to reflect on the experience in their own words. 

 The details of the questionnaires and the exit interviews are discussed in the 

results section so as to avoid needless repetition. 

6.3.4 Environment

The experiment was carried out in a laboratory setting using a laptop computer (Thinkpad 

X31) attached to a single 17 inch LCD monitor. Screen resolution was set to 1024 x 768. 

Participants used an external USB mouse and keyboard for interaction with the system. 
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6.3.4.1 Software

Eclipse version 3.3 was used as the overall experiment platform. The standard 

exploration interface was the basic Eclipse 3.3. The fluid source code editor version 1.1.0 

was used as the interface for the inline exploration tasks (See Table 6.4). 

Interface Software configuration
Standard Eclipse 3.3

Inline Fluid Editor 1.1.0 installed on 

 Eclipse 3..3

Table 6.4: The software configuration used during the experiment.

The main Eclipse window was presented in full screen mode occupying all of the 

available screen space. By default the package explorer, the console view and the outline 

view were open and visible. The hierarchy view was open but stacked behind the package 

explorer. Participants were free to customize the Eclipse window, close views and open 

further views as desired during the study. The fluid editor was presented with default 

settings (standard color model and shading to differentiate between levels in the inline 

exploration tree).
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6.3.4.2 JHotDraw

Exploration tasks were based on source code associated with the JHotDraw framework 

version 7.0. JHotDraw (JHotDraw 2009) is an open source, Java based, 2D drawing and 

graphics framework which includes a basic drawing editor as a sample application. The 

JHotDraw source code is relatively small but moderately complex which offered a good 

balance in terms of task complexity and expected completion time. 

6.4 Procedure

The following section gives an account of how the experiment was carried out from a  

procedural point of view. This particular procedure was repeated eight times over the 

course of the experiment, once for each participant.  The overall experiment was carried 

out over a four week period. 

 Upon entering the laboratory, the participant was first welcomed and thanked for 

taking part in the study. The facilitator then delivered a ten minute high level description 

concerning the organization of the experiment and what was expected of the participant. 

The intent of the experiment was purposefully omitted including any reference to 

disorientation. It was felt that such information might introduce preconceptions and alter 

the participants natural behaviour. After the initial introduction, the participant was asked 

to fill out a profile describing their Eclipse and overall programming experience. 

 Once the preliminaries were out of the way, the participant was introduced to the 

first interface that they would be using during the experiment. This was either the 
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standard interface or the inline interface depending on the configuration of the particular 

session (interface order was systematically varied over the course of the experiment to 

counter skew due to practice effects). The primary features of the interface were 

demonstrated, such as how to navigate within the source code, how to open files and how 

to use the primary IDE views. The participant was encouraged to spend at least ten 

minutes using the interface in order to get comfortable and clear up any potential 

usability problems. 

 Once the participant had confirmed that they were indeed comfortable with the 

interface and had no further questions, the first task sheet was produced. The task sheet 

included a description of the required task. The participant was asked to read the task 

description and indicate to the facilitator when they were ready to begin exploration. 

 On commencement of the exploration task, the facilitator asked the participant to 

select the task in the task view and click the start button. The video camera was also 

started as synchronously as possible using a remote control. The participant completed 

the exploration task using the facilitator as a sounding board.  The facilitator encouraged 

comment when necessary by asking the odd non-confrontational question and making 

innocuous comments concerning the exploration task. The facilitator sat to the right and a 

little behind the participant and monitored the exploration and recorded any interesting 

interaction patterns, comments or gestures throughout the course of the task. 

 Upon completion of the exploration task, the facilitator asked the participant to 

stop the active task using the task view. The video recording equipment was also paused. 
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The participant was allowed a short break and asked to indicate to the facilitator when 

they felt ready to begin the next task. All four tasks were carried out in this exact manner.

 When the four tasks on the initial interface were completed the participant was 

asked to fill out the satisfaction questionnaire associated with the interface. The facilitator 

left the lab for ten minutes allowing the participant to fill in the questionnaire in a private 

and pressure free setting. 

 Upon completion of the questionnaire, the participant was introduced to the 

second exploration interface and carried out the same sequence of steps associated with 

the first interface, including the completion of a corresponding questionnaire.

 Before the end of the session the participant took part in the exit interview. The 

exit interview allowed the participant to describe their experience in their own words. 

 After the interview the participant was thanked again and shown out of the 

laboratory. The overall experiment duration was expected to be 2 - 2.5 hours. 
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Chapter 7

Results, Findings & Validity

The user experiment resulted in a significant amount of data including monitor log files, 

video and screen capture recordings, questionnaire results, interview transcripts and 

observational notes. This body of raw data was analysed and the results and findings are 

presented in this chapter. This chapter also discusses the validity of the experiment. 

7.1 Task completion times

Task completion times were calculated from the monitor log files generated during the 

experiment. Overall participants completed the exploration tasks 14 % faster on the inline 

interface. The average task completion time on the inline interface was 588 seconds (9.8 
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minutes) while the average completion time on the standard interface was 679 seconds 

(11.9 minutes). This represents an average gain of 91 seconds (1.5 minutes) per task.

InlineInline StandardStandard
Task Mean STD Mean STD
Local neighbourhood A 563 283 376 62
Local neighbourhood B 513 52 614 79
Control flow A 513 184 571 240
Control flow B 446 84 576 176
Polymorphic A 481 85 554 131
Polymorphic B 553 85 621 86
Inheritance A 812 85 981 314
Inheritance B 820 216 1141 450
Average 588 134 679 192

Table 7.1: Task completion times in tabular format (STD = standard deviation). All 

values are in seconds.

Figure 7.1: Task completion times in bar chart format.
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Participants completed local neighbourhood task 8% faster using the standard interface 

versus the inline interface. This is the only task in which the standard interface yielded a 

faster completion time. The first local neighbourhood task (A) was performed 33% faster 

using the standard interface however the second neighbourhood task (B) was performed 

17% faster using the inline interface.  

 Participants performed the control flow task 11% faster using the inline interface. 

The average completion time on the inline interface was 479 seconds (7.9 minutes) and 

the average completion time on the standard interface was 537 seconds (8.9 minutes).

 With regard to the polymorphic tasks, participants performed 12% faster using the 

inline interface. The average completion time on the inline interface was 517 seconds (8.6 

minutes) and the average completion time on the standard interface was 587 seconds (9.7 

minutes). 

 On the inheritance task, participants completed 23% faster using the inline 

interface. The average completion time on the inline interface was 816 seconds (13.6 

minutes) while the average completion time on the standard interface was 1061 seconds 

(17.6 minutes).

 Overall participants spent an average of 78 minutes on the inline interface and 91 

minutes on the standard interface throughout the experiment session. Participants 

completed the exploration tasks 13 minutes and 14% faster using the inline interface. The 

results indicate a general trend of improved completion time on the inline interface. 
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7.2 Display switches

The number of display switches, in which a total replacement of visible content occurred, 

was used as a heuristic measure of visual momentum in the exploration interface. The 

greater the number of display switches during a task the lower the level of visual 

momentum and vice versa.

 Overall the average number of display switches per task was 95% lower with the 

inline interface versus the standard interface. 

InlineInline StandardStandard
Task Mean STD Mean STD
Local neighbourhood A 3.8 5.2 17.8 6.2
Local neighbourhood B 0 0 15.3 9.5
Control flow A 2 1.6 13.3 5.9
Control flow B 0.5 1 22.3 8.7
Polymorphic A 0 0 15 6.7
Polymorphic B 0 0 12.3 1.9
Inheritance A 2.3 2.6 37.8 22.2
Inheritance B 0.3 0.5 43.8 6.3
Average 1.1 1.4 22.2 8.4

Table 7.2: Display switches per task in tabular format (STD = standard deviation).
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Figure 7.2: Display switches per task in bar chart format.

Over the local neighbourhood task set participants experienced an 89% reduction in 

display switching using the inline interface. On the control flow tasks participants 

experienced a 93% reduction with the inline interface. On the polymorphic tasks 

participants did not, on average, experience any display switching when using the inline 

interface. Completing the polymorphic tasks on the standard interface an average of 14 

display switches occurred. Over the inheritance tasks participants experienced a 97% 

reduction in display switching. 

 In addition to the number of display switches per task, the number of inline 

introductions was also recorded for each task carried out on the inline interface. Using the 

number of introductions it is possible to get an idea of the number of navigational actions 

carried out by the programmer over the task sets.  The average number of inline 

introductions per task was 14.3 and the average number of display switches per task on 
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the inline interface was 1.1. Using the standard interface participants performed an 

average of 22.2 display switches per task. Based on this data it was discovered that 

participants perform 31% less navigation actions using the inline interface. 

InlineInline Standard
Task Introductions Display Switch Display Switch
Local neighbourhood A 13.75 3.8 17.75
Local neighbourhood B 10.25 0 15.25
Control flow A 12.75 2 13.25
Control flow B 10.5 0.5 22.25
Polymorphic A 11 0 15
Polymorphic B 15.75 0 12.25
Inheritance A 21.75 2.3 37.75
Inheritance B 18.5 0.3 43.75
Average 14.3 1.1 22.2
Navigation actions 15.415.4 22.2

Table 7.3: Navigation actions carried out per task in tabular format (STD = standard 

deviation).
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Figure 7.3: Navigation actions carried out per task per task in bar chart format.

Interestingly, on the inline interface the highest number of display switches occurred on 

the local neighbourhood task A. The average number of display switches was 3.8. This 

coincides with the fact that the participants performed local neighbourhood task A 33% 

faster using the standard interface and indicates the existence of an outlier. Looking at 

finer grain data participant p0 experienced 11 display switches when performing local 

neighbourhood task A and completed the task 57% slower than the average of the other 

three participants performing the task. 
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7.3 Backtracking

On the inline browsing interface the use of the back and forward navigation actions was 

negligible. Over the entire data set of 32 tasks the forward action was invoked three times 

and the back action was invoked 15 times. This represents a 0.6 backward actions per 

task and 0.3 forward actions carried out per task. On the standard interface the back 

action was invoked, on average, 6 times per task and the forward action was invoked 1.6 

times per task.

InlineInline StandardStandard
Task Back Forward Back Forward

Local neighbourhood A 1.75 0 4.3 0
Local neighbourhood B 0 0 4.3 0.8
Control flow A 2 0.75 4.8 3.5
Control flow B 0 0 6 3.3
Polymorphic A 0 0 2.8 0
Polymorphic B 0 0 1.8 0
Inheritance A 0.75 0.75 15 3.5
Inheritance B 0.5 0.5 8.8 1.8
Average 0.6 0.3 6 1.6

Table 7.4: Mean backtracking over the task set.

The results indicate a 90% reduction in backward navigation and an 81% reduction in 

forward navigation when using the inline interface.
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7.4 Scrolling

Horizontal scrolling was negligible during the experiment and is thus not presented for 

consideration. Participants scrolling activity increased 47% in the upward direction and 

34% in the downward direction using the inline interface versus the standard interface. 

InlineInline StandardStandard
Task up down up down
Local neighbourhood A 49 71 17.3 76.5
Local neighbourhood B 17.3 21.8 11 54
Control flow A 59.3 126 15.8 50.3
Control flow B 54.8 82.5 45 36
Polymorphic A 10 26.3 13.5 60
Polymorphic B 9 25.5 19 24
Inheritance A 38 136.5 43.5 136.5
Inheritance B 87.8 215 9 24
Average 40.7 88.1 21.8 57.7

Table 7.5: Vertical scrolling carried out per task. 

7.5 Satisfaction

All questions in the satisfaction questionnaire were answered on a scale of zero to nine 

forcing the participant to lean to one side of the scale. All questions in all of the 

satisfaction questionnaires were completed. The results of the satisfaction questionnaires 

are presented in Tables  7.6 & 7.7.
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InlineInline StandardStandard
Question? Mean STD Mean STD

1. How did you find the inline browsing interface in general?
Very poor - 0 1 2 3 4 5 6 7 8 9 - Very good 7.7 1 5.4 1.4

2.- 6. How was the interface to use?
Terrible - 0 1 2 3 4 5 6 7 8 9 - Wonderful 7.3 0.8 5.1 1.6

Hard - 0 1 2 3 4 5 6 7 8 9 - Easy 7.6 1 4.4 1.1
Frustrating - 0 1 2 3 4 5 6 7 8 9 - Pleasant 7 1 4.4 1.1

Boring - 0 1 2 3 4 5 6 7 8 9 - Fun 7.4 1.3 5.1 1.5
Confusing - 0 1 2 3 4 5 6 7 8 9 - Clear 7.3 0.5 4.4 1.5

7. It was clear, most of the time, where I was in the source code.
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 7 1.4 4.6 1.7

8. I often lost my orientation (got lost) in the source code.
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 4.7 2.7 5.7 1.7

9. I often felt confused when exploring the source code.
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 4.9 2 5.4 1.1

10. There was sometimes too much information on the screen at 
once.

I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 5.6 2.5 4.1 2.4

Table 7.6: Satisfaction questionnaire results, questions 1-10.
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InlineInline StandardStandard
Question? Mean STD Mean STD

11. It was easy to determine the relationships between expanded 
pieces of code.

I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 5.7 2.4   

12. The visual cues were distracting...
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 2.3 2.7   

13. The colouring coding of the visual cues was helpful..
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 5.1 2.3   

14. How did you perceive the tasks?
Very poor - 0 1 2 3 4 5 6 7 8 9 - Very good 5.9 1.3 6.1 1.1

15. How would you rate your answers to the tasks?
Very poor - 0 1 2 3 4 5 6 7 8 9 - Very good 4.7 2.4 4.9 1.6

16. - 18. Was the source code...
Hard to understand - 0 1 2 3 4 5 6 7 8 9 - Easy to understand 4.6 1.7 4.1 2.1

Hard to overview - 0 1 2 3 4 5 6 7 8 9 - Easy to overview 4.4 2.1 4 2.6
Hard to navigate - 0 1 2 3 4 5 6 7 8 9 - Easy to navigate 6 2.4 4.1 1.9

19. Was information in the source code...
Hard to locate - 0 1 2 3 4 5 6 7 8 9 - Easy to locate 6.3 2 4.4 2.3

Table 7.7: Satisfaction questionnaire results, questions 11-19. The grey cells indicate 

questions that were specific to the inline interface.

The results of the satisfaction questionnaire were analysed for trends in the data, the 

results are presented here. Overall participants preferred the inline browsing interface 

over the standard interface. The inline interface scored better on the scale of terrible to 

wonderful. Participants also found the inline interface easier to use, more pleasant, more 

fun and less confusing. 
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 Participants agreed that they had a better idea of where they were in the code 

using the inline interface. The data also suggested that participants felt less disoriented 

using the inline interface. Participants felt less confused using the inline interface. 

Interestingly the data suggested that participants found that there was too much 

information presented using the inline interface. 

 In terms of the questions specific to the inline interface, participants agreed that it 

was easy to determine the relationship between inline source code and that visual cues 

were not distracting during browsing tasks. Participants also agreed that the color coding 

of the fluid annotations was helpful.

 The data suggested that participants found the it slightly easier to comprehend 

code, overview code and navigate code using the inline interface. Participants also agreed 

that it was easier to locate information in the source code using the inline interface.

7.6 Exit questionnaire 

The exit questionnaire contained a series of five open ended questions encouraging the 

participant to reflect on their experiences during the study. The facilitator transcribed 

participant responses. A summary of each question coupled with interesting and relevant 

responses is presented in this section. 

Did you prefer the inline interface or the standard interface? Please elaborate.

 All participants indicated that they preferred the inline browsing interface over the 

standard browsing interface. Participants were also asked to elaborate on their decision. 
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 Participant P0 indicated that, initially, the concept of inline exploration was 

difficult to grasp but once comfortable the technique was described as ‘intuitive’. P0 also 

mentioned that he suffered from colour blindness and thus some of the annotation and 

background colours looked alike. 

 P1 described the fact that ‘the control flow path was easy to overview’ and that 

the inline interface was ‘simple and convenient for following control flow’. Adding to 

this P1 said that when using the standard interface he tended to ‘miss things and forget 

information’. P1 also mentioned that the inline search results view was ‘good’ and that 

the inline browsing interface was ‘excellent for exploring other people’s code’. Finally P1 

mentioned that the inline interface required ‘no adjustment’ and was something he would 

‘use all the time’. 

 P2 indicated that the inline interface ‘immediately made sense’ was ‘more fun’ 

and that it ‘fixed many of the problems with the IDE’. P2 also communicated the desire 

for the ability to collapse certain levels in the inline browsing tree while keeping the sub 

tree open.  

 P3 stated that the inline interface made it ‘easier to keep track of locations’ and 

that he liked how the programmer ‘stayed in the single view’. 

 P4 mentioned that it was ‘easier to find the code that you are looking for’ and that 

the code displayed using the inline interface was ‘clearer than standard mode’. P4 also 

said that the inline interface involved ‘less jumping around code’ and was ‘more 

intuitive’.
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 P5 described that the ‘consistent’ interface of the inline interface was useful. He 

indicated that ‘with standard Eclipse there are many ways of finding and navigation’ but 

with the inline interface there was a ‘consistent approach’. P5 also mentioned that one 

could ‘look at other code without loosing your position’ and that the code was ‘easier to 

navigate’ using the inline interface.  P5 went on to say that the inline interface supported 

‘comparison of different places’ and that it was “easy to follow multiple steps through 

code”.

 P6 mentioned that it was easier to ‘back out of wrong turns’ using the inline 

interface and that he could ‘see the exploration path’. P6 added that it was ‘hard to follow 

sequences of code using standard Eclipse’. 

P7 did not take part in the exit interview due to the experiment session overrunning the 

allocated time.  

What advantages or disadvantages did you perceive when using the inline interface 

vs. the standard exploration interface?

The second question asked participants to describe the advantages and disadvantages of 

the inline interface versus the standard interface. In hindsight the question was poorly 

worded as some participants, in their answer, described advantages and disadvantages of 

the inline interface as opposed to comparing both interfaces. 

 When asked to describe the advantages and disadvantages of the inline interface 

versus the standard interface P0 mentioned that one does not need to ‘leave the context’ 
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and that the inline interface provides a ‘nice summary of explored elements’. When asked 

about disadvantages P0 said that the ‘UI was jumpy’. 

 In terms of advantages P1 indicated that the visual cues ‘don’t get in your way’ 

and that the colour coding of inline source code was ‘useful’. Describing disadvantages 

P1 indicated that the relationships between inline declarations were sometimes ‘difficult 

to discover’ and that it was not possible to close inline declarations using the keyboard.

 P2 provided a detailed list of advantages but was unable to provide any 

disadvantages. The advantages were:

• ‘The inline interface made sense of abstract classes/interfaces’

• ‘Inline exploration shows you the code you are interested in without any 

hassle’

• ‘Good for taking a quick look at code without leaving’

 P2 also mentioned that the use of ‘multiple editors’ in Eclipse ‘is a cheap fluid 

editor’. According to P3 the advantage of the inline interface is that it ‘facilitates 

comparison of sequential and hierarchical code’. In terms of disadvantages P3 mentioned 

that the inline editor was not good for ‘comparing code that was not linked’ and that the 

colours were ‘arbitrary’. 

 P4 declined answering this particular question stating that he needed ‘more 

experience with Eclipse’ before he could provide a proper answer. P5 said that the visual 
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cue colouring should be ‘ignored’ but that the shading colour model was ‘good to convey 

depth’. 

 Finally P6 described the advantage of the inline interface as simply ‘seeing 

everything at once versus paging through’. ‘Visual cues interfering with each other’ was 

described as a disadvantage as was the visual cue colour model and the fact that visual 

cues would ‘sometimes blink when reading the code’ serving as an annoyance to the 

programmer.  

Can you identify any aspects of the inline interface that stood out as particularly 

confusing or frustrating?

When asked to identify aspects of the inline interface which stood out as particularly 

confusing or frustrating P0 mentioned that ‘visual cues are sometimes hard to click on’ 

but otherwise everything was ‘straight forward’. 

 P2 described that it was difficult to ‘differentiate between adjacent visual cues’ 

and that he ‘didn’t pay attention to the colors’. P2 also indicated that deep inline 

exploration trees were not ‘too difficult’ to deal with.

 P3 again mentioned that it was ‘hard to find the right cue and that when a lot of 

information was introduced inline reading the code was ‘difficult’. All other participants 

indicated that they could not think of anything which stood out as particularly confusing 

or frustrating. 

 In hindsight the content of question three overlapped with the previous question 

and thus it was not surprising that some participants were unable to describe any 
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confusing or frustrating aspects of the inline interface. These aspects had already been 

described in question two and thus, on some levels, question three was superfluous. 

Are there any features that you would like to see in future versions of the fluid 

editor?

When asked to identify desired features of the fluid editor or an inline interface in general 

P0 said that he would like to be able to edit the code contained in inline declarations. 

When asked why, P0 replied that it was an ‘obvious feature but maybe not needed?’.

 P1 requested the ‘ability to introduce the call hierarchy and view search results 

inline’. P1 also mentioned the ability to ‘hide levels of the hierarchy’.   P2 wanted to see 

inline introductions surrounded in a border and indented out from the horizontal axis of 

the editor. He also requested a differentiation between ‘normal’ code and ‘interfaces’. P3 

described the need for a visual map of the  path associated with the exploration task. P5 

said he would like to ‘see the editing of inline introductions just out of curiosity’. Finally 

P6 wondered if there would be any advantage to support for saving inline browsing paths. 

Would you see yourself using the fluid editor or a similar system when 

programming?

All participants indicated that they could see themselves using an inline browsing 

interface if it was provided as part their IDE. P0, who does not use an IDE, indicated that 

he would use an inline interface if he was using an IDE. 
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7.7 Findings

In addition to the results presented in the previous sections, numerous pages of 

observations were captured concerning participant behaviour, interactions, comments and 

gestures over the course of the experiment. Furthermore, after the experiment was 

complete in a procedural sense, the various notes, screen captures and video recordings 

were synchronized and analysed in detail to clarify findings and carry out a more focused 

observation beyond that possible during the live sessions.  

 Rather than providing an exhaustive listing of observations and incidents as part 

of the results section, this information is instead presented in a condensed form as part of 

the findings.  Findings are organized into two broad sections. First a discussion of the 

findings related to disorientation from observing participants working on the standard 

interface. This insight proved to be extremely useful both in terms of gaining a greater 

understanding of programmer disorientation in the IDE and also adequately evaluating 

the inline approach. Secondly a discussion of the effectiveness of the inline interface at 

alleviating the observed disorientation. For this discussion the results presented in the 

previous sections in addition to the various observations gathered over the course of the 

experiment sessions are drawn upon.  

7.7.1 Disorientation observed using the standard interface

During the experiment a deep insight into disorientation as it occurs during source code 

exploration activities using the standard Eclipse IDE was gained. Based on the various 
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observations, a set of core factors and scenarios which typified the phenomenon were 

formulated. It should be noted that this set of factors is not considered comprehensive as 

it is based on observations from the study itself, which was limited in both size and 

scope.

7.7.1.1 Navigation context

Over the course of the experiment it was observed on a number of occasions, that 

participants would suffer from disorientation due to a lack of navigational context. This 

coincides with the findings of Murphy et al. (2006) and a general consensus in the overall 

research literature. At a basic level, a lack of navigational context means that there is no 

visible representation of the navigation path which the programmer pursued to arrive at 

the currently visible source code location, an item of context which is important in terms 

of reminding the programmer of their ongoing intent and task focus (Storey et al. 1999; 

De Alwis & Murphy 2006). 

 Participants were observed, often during complex navigation activities, having 

just traversed across a number of displays, to suddenly lose track of their intent or goal. 

P5, for instance, when carrying out the control flow task stopped mid exploration and 

asked rhetorically “What was I doing here?”. P6 having switched concentration 

momentarily from the IDE to the task description, was unable to remember what he was 

doing having returned his focus to the IDE. A pattern was observed. The participant 

became distracted, in some cases due to cognitive drain related to navigating between 

displays and in other cases when reconsidering the task description or talking to the 
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facilitator, resulting in a loss of task focus (perhaps the participants short term goal being 

pushed out of working or short term memory). P1 said that when using the standard 

interface he tended to ‘miss things and forget information’.

 In response to this occurrence, what is referred to here as task disorientation, a 

general pattern of re-orientation was observed in which the participant would navigate 

back over their previous locations using the back button or editor tabs in an effort to 

regain context. Essentially reviewing their previously visited locations in an attempt to 

remind themselves of their intent. If context could not be regained in this manner, the 

participant would restart exploration from a known location, generally the initial location 

specified in the task description, and begin to recreate their intent from that point. 

 The data also highlights this general trend. Participants carried out a greater deal 

of backtracking on the standard interface, 10x greater (See Chapter 7, Section 3) and also 

took longer to perform their tasks, 14% longer (See Chapter 7, Section 1). Participants 

also carried out a significantly greater amount of navigational actions, 31% more than the 

inline interface. These units of data, along with the observations, suggest that participants 

had difficulties maintaing navigation context when using the standard interface, and 

consequently performed a significant amount of backtracking/navigational actions in 

order to reorient, a process which is time consuming. The satisfaction questionnaires also 

reflect this conclusion with participants reporting that the code was harder to navigate 

using the standard interface and that they more often got lost and confused when 

exploring the code. 
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7.7.1.2 Revisiting known locations

Participants were observed to suffer from disorientation when unable to find locations 

and elements which had previously been encountered during the exploration tasks. Many 

of the tasks in the experiment naturally required the participant to explore from a given 

source code location, and then return to follow an alternate exploration route, or simply 

refer back to previously visited code as part of the comprehension process. 

 It was observed that participants had issues finding and returning to particular 

locations or elements in the system, which often resulted in frustration and in some cases 

progressed to disorientation. A number of aspects to this phenomenon were identified:

• Problems with the history stack

• The homogenous nature of source code

• A lack of code familiarity

The history stack in modern IDEs such as Eclipse is essentially a one dimensional list 

which allows the programmer to navigate back and forward over a sequential record of 

previously visited locations (See Chapter 3, Section 3.2.7 ). However, when a 

programmer is exploring source code they will often backtrack to a previous location and 

pursue an alternate route through the code resulting in a branch or digression in 

navigation history. The linear history stack cannot represent a digression in addition to 

the original path, and will consequently discard forward history. This results to a situation 

where a programmer may return from a particular location, then navigate to a new 
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location, and will ultimately be unable to return to the original location via the history 

stack. This situation was observed a number of times over the course of the experiment. 

The participant backtracked,  intending to return to an element of interest but ended up in 

an unexpected area of the code resulting in distraction and over concentration on 

interface manipulation.

 Another reason for participants being unable to locate known information was the 

homogenous nature of the source code. Participants sometimes simply didn't recognize 

the code they were looking for and bypassed it when backtracking on the history stack or 

flipping between the editor tabs. This issue seemed to be exacerbated during the control 

flow and inheritance tasks where participants were navigating through a series of large 

method bodies where the method name and inter-construct spacing and formatting were 

sometimes not fully visible in the editor viewport. 

 The final aspect of the phenomenon was a lack of familiarity with the source code 

structure. Essentially, participants were unable to find particular locations and elements 

because they did not have a clear idea of the structural organization of the system. 

For instance, while an experienced programmer might be expected to know the file or 

type within which a particular program element of interest is located, and thus easily find 

it in the package explorer, the participants, in general, had not built up this level of 

familiarity and instead searched for elements in the display space which was exhaustive 

and problematic.

 The outcome of being unable to locate a location or program element in the 

system was generally a case of distraction which in some cases exacerbated into a loss of 
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task focus and disorientation. For instance, during the control flow task P6 followed a 

number of digressions and upon returning to the original branch point, after some 

frustration caused by flipping between the editor tabs, was unable to recall what he had 

intended to examine next. He ended up restarting exploration from the initial location 

specified in the task description. 

7.7.1.3 Task context

Over the course of the experiment, it was observed that a number of participants used the 

visible set of editor tabs as a form of rudimentary task context. This representation was 

leveraged as a navigational and orientation aid, and in some cases even as a conceptual 

map during subsequent exploration activities. 

 Four participants  p0, p1, p2 and p3 were all, at one point observed to consistently 

use the set of visible editor tabs for reasoning and navigation between program elements 

related to an exploration task. This was not a systematic behavior but seemed to occur 

due to the participant becoming disorientated as a result of a consistent inability to find 

particular pieces of code in the display space or comprehend casual relationships between 

fragmented source code elements. These participants were essentially avoiding 

disorientation, a commonly observed trend during information exploration activities 

(Henderson & Card 1986; Watts-Perotti & Woods 1999; De Alwis & Murphy 2006). 

Without an explicit representation of the elements associated with their task in which to 

reason about and orient, they adapted a rudimentary system using the editor tabs. This 

theory was given strength by the fact that many of the participants would close all open 
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editor instances at the end of a particular exploration task, in effect clearing their context 

in anticipation of the upcoming task.

  It was also noticed that editor tabs were used as a conceptual aid. P2 arranged his 

editor tabs to mirror the control flow over a series of source code documents. This served 

as a sequential navigation aid in addition to a high level overview of the control flow 

structure. 

7.7.1.4 Display thrashing

Thrashing was a common theme throughout the experiment, more so than was expected 

considering related work on the topic (De Alwis & Murphy 2006).  All of the participants 

were observed, at one point or another, to thrash between source code displays. The 

thrashing was generally related to synthesizing an overview of fragmented source code in 

order to aid the comprehension process. P1 mentioned that it was ‘difficult to trace 

control flow through a complex hierarchy’ when observed to thrash back and forth 

between a number of sequential displays on the polymorphic task. 

 P2 was the only participant who was observed to use multiple editors in a 

simultaneous manner and thus avoid thrashing between related displays. This occurred on 

two occasions . However, the approach resulted in some frustration, P2 had some issues 

managing horizontal space and was unable to adjust the editor so as to fit all of the two 

source code locations in the single editor area. There was a considerable amount of 

interface adjustment carried out to this end. Furthermore, P2 seemed to forget which 

editor he was to focus on after conversing briefly with the facilitator, sometimes staring at 
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the screen for a moment. P2 also became annoyed when a declaration opened from the 

first visible editor replaced the code contained in the second editor thus breaking his 

carefully arranged interface layout. 

 Although the declaration view was open by default and its functionality described 

in the introduction to the experiment session, no participants were observed using it or 

taking further interest in its utility. 

 Thrashing is also suggested in the data. Forward and backward navigation was 

much more pronounced on the standard interface, as was the overall amount of 

navigational actions or display switches carried out (See Chapter 7 Sections 1 and 2). 

7.7.2 Disorientation observed using the inline interface

Having gained an insight into the incidence of disorientation experienced on the standard 

interface, focus shifted to understanding the effectiveness of the inline interface at 

alleviating disorientation. Fundamentally, the aim was to ascertain if disorientation was 

reduced over the task sets, and if so, how and in what particular circumstances. It was 

also desirable to determine if the inline interface resulted in additional disorientation 

(unique to the inline mechanism itself) or problematic usability issues - in terms of both 

the core concept and the specific implementation provided by the fluid source code editor 

prototype. 
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7.7.2.1 Visible representation of navigation history/context

The study observations suggested that the visible representation of navigation history 

supported by the inline interface was reasonably effective at reducing disorientation 

associated with the lack of navigation context in the IDE. Two aspects were observed:

• A reduction in cognitive drain related to loss of context/display switching

• Ease of re-contextualization

On the inline interface, participants were able to carry out the majority of their 

exploration using  inline introduction as opposed to explicitly navigating between 

discrete source code locations necessary on the standard interface. The inline interface 

resulted in a substantial reduction - 89% on average - in display switching (involving a 

total replacement of content) over the task sets. Consequently, it was observed that 

participants were significantly less prone to becoming distracted by the exploration 

process itself. This improvement in focus may have been due to the visible navigation 

context easing the cognitive requirement on the programmer to maintain context and 

orientation in the code space, in addition to elimination of the distraction associated with 

continual transition between discrete source code displays and information contexts. 

 When participants did get distracted, primarily due to clarifying some aspect of 

the task description or conversing with the facilitator, they were, in most cases, able to re-

contextualize based on the visibly introduced source code declarations. P0 having  

returned from re-reading the task description commented that the inline interface 
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provides a ‘nice summary of explored elements’ before continuing his task. P1 mentioned 

that ‘the control flow path was easy to overview’ and  P3 stated that the inline interface 

made it ‘easier to keep track of locations’ and that he liked how the programmer ‘stayed 

in the single view’. There was no observed incidents on the inline interface where a 

participant felt the need to backtrack through visited code in order to regain a sense of 

their current intent and focus. This thesis proposes that these observations account for a 

significant fraction of the reduction in task completion times and reduced use of the 

history stack recorded during the inline interface tasks. 

 However, beyond these positive findings, a problematic tendency associated with 

the inline interface with respect to the visible representation of navigation context was 

identified. Once a certain saturation of introduced information had been achieved 

(generally 6 or more levels in an inline expansion tree or when a particularly sizable 

declaration was introduced which required scrolling of the introduced content) 

participants began to show signs of losing orientation in the ‘expansion space’. On a 

number of occasions, participants became confused when considering code deeply 

embedded in a large expansion tree. P3 indicated that he became ‘lost’ when a large 

amount of source code was introduced inline into a single view. When asked to elaborate, 

P3 said that there was ‘too much going on’ on the screen. A number of reorientation 

strategies were also observed. Either the participant would give up the effort of tracing 

the various levels and close the expansion tree to restart exploration, or the participant 

would navigate explicitly to the most recently expanded source code declaration, 
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continuing exploration from that location, in essence moving to a fresh expansion 

context.  

7.7.2.2 Exploratory digressions

On the standard interface, it was observed that participants experiencing issues when 

attempting to return to previously visited locations in the code space having pursued an 

exploratory digression. 

 Using the inline interface, it was noticed that participants rarely utilized the 

standard history stack provided by the IDE, preferring instead to leverage the visible 

representation of navigation history provided by the fluid editor. Because the fluid editor 

supports digressions in context - the programmer can evaluate a digression without 

explicitly leaving the original context- it was observed that the act of retuning from a 

digression was, in general cognitively effortless, simply a matter of collapsing the 

appropriate level in the expansion tree. P6 mentioned during exploration on the control 

flow task that it was easy to ‘back out of wrong turns’ because he could ‘see the 

exploration path’. 

 A portion of the improved task completion times (See Chapter 7, Section 1) was 

attributable to the ability to pursue exploratory digressions without the requirement to 

invest in cognitively expensive navigation away from the core context and potentially 

exhaustive display searching in order to return to the original location. These 

observations account for the results indicating that participants performed a lesser amount 
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of navigation actions on the inline interface (average of 31% reduction over the task sets) 

(See Chapter 7, Section 2).

7.7.2.3 Comprehending fragmented code

In terms of comprehending fragmented source code, the inline interface presented mixed 

results. Up to a certain level of introduction the inline interface seemed to help 

participants comprehend fragmented code, particularly when there was a need to examine 

multiple fragments of source code from the same expansion level in a simultaneous 

manner or when comprehending scattered control flow involving small to medium scale 

method declarations. P6 during the control flow task described an advantage of the inline 

interface as simply ‘seeing everything at once versus paging through’. It was observed 

that the ability to introduce search results in an inline manner was also useful, particularly  

the ability to examine multiple results in a simultaneous manner,. Numerous participants 

commented on the usefulness of this feature .   

 However, the issue of saturation and overly large declarations was again 

problematic. Once a certain saturation point  was reached (expansion tree complexity or 

size), participants would lose orientation in the expansion space. Some participants were 

observed attempting to trace the various levels of the expansion tree with limited success.  

At one point during the experiment P6 seemed to become disoriented when considering 

the expansion tree associated with the control flow task. A large amount of nested inline 

information was visible on the screen and P6 exhibited a degree of confusion when 

tracing execution flow through levels. In response, P6 closed the main sub tree and 
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restarted inline exploration. It seemed that the act of creating the tree was an important 

part of the comprehension process. When asked to expand on the problem, P6 said that 

‘there was too much code on the screen’ and that ‘it was difficult to see how the pieces fit 

together’. The introduction of large method and type declarations was also a considerable 

problem - causing surrounding context to be pushed out of the visible viewport and 

requiring the participant to scroll the display to view the introduced code. 

 A significant aspect of the comprehension and orientation problem in the 

expansion space was the the interline expansion technique - whereby the source code is 

spilt at the annotation anchor. The splitting of source code declarations seemed to be an 

issue in terms of participants tracing and comprehending introduced code. Perhaps a 

more promising approach was the original inline interface design where the declaration 

was introduced inline after the the anchor declaration, thus avoiding the need to split 

individual declarations. 

 It was observed that horizontal screen real-estate also became an issue in terms of 

large expansion trees. Once an expansion tree reaches a certain size, the accumulation of 

indentation (part of the differentiation mechanism) lead to the need for horizontal 

scrolling which required interface adjustment and exacerbated traceability issues between 

the various levels of nested introduction. 

7.7.2.4 Miscellaneous user experience concerns

It was observed that fluid annotations did not interfere with the reading and exploration 

of source code which was positive. None of the participants complained about fluid 
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annotations obstructing comprehension of code and during the exit interview P1 

mentioned that annotations ‘don’t get in your way’. When asked to agree or disagree with 

the statement ‘The fluid annotations were distracting...’ only one participant agreed, 7/9, 

and the average score associated with the statement was 2.3/9 (0 referring to total 

disagreement). 

However, a number of issues regarding fluid annotation placement were observed 

during the experiment. The first issue related to the placement of fluid annotations was 

associated with method references. The existing design places the annotation on the 

closing parameter bracket as opposed to directly after the reference word such as in the 

case of types, fields and variables. In the presence of nested method references (one 

method reference acting as a parameter to another), it was observed that participants had 

difficulty identifying the particular annotation associated with the ‘inner’ and ‘outer’ 

reference. Furthermore in the presence of long or multi line parameter specifications, in 

which case the fluid annotation may be located at a significant distance from the actual 

method reference, participants were observed to have problems finding the annotation 

associated with the reference. Perhaps a more promising approach would have been to 

associate the annotation with the word of source code itself or use a hyperlink style 

interaction mechanism (which is problematic due to the existing and ubiquitous use of 

hyper-links for explicit hypertext style navigation). 

  A second issue concerns the proximity of fluid annotations in a general sense. 

When a number of annotations are located in close proximity, as defined by the density of 

the code, bounding regions tend to overlap and thus participants were observed to have 
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difficulty selecting an annotation of interest. Again this issue could be largely rectified by 

providing a more proximate activation mechanism.

 In terms of fluid annotation colour coding, the reaction from participants was 

mixed. P0 and P2 complained of colour blindness and thus indicated that the annotation 

colour model had limited usefulness. P6 described annotation colour coding as a 

disadvantage and P5 indicated that annotation colour code was not required. When asked 

to agree or disagree with the statement ‘The colour coding of the fluid annotations was 

helpful..’, the average score worked out as 5.1/9 (0 referring to total disagreement and 9, 

total agreement). Overall, participants seemed ambivalent to the colouring of fluid 

annotations. 

 The colour model associated with inline expansions gained greater favour. 

Participants related positively to the ability to visually distinguish between adjacent 

levels in the introduction hierarchy. P1 mentioned that it was ‘easy to differentiate 

between coloured code’. P1 also mentioned in the exit interview that he would like to see 

a visual differentiation between ‘normal’ code and ‘interfaces’ - a general extension of the 

idea.

7.8 Validity

Throughout the design, execution and interpretation of the experiment, maintaining 

validity was a primary and overarching concern. The aim was to produce an accurate, 

defensible and interesting set of results and findings. This section discusses the validity of 
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the experiment and describes the various attempts to balance and mitigate potential 

threats and bias.

7.8.1 Participants

It would have been ideal to carry out the experiment using only professional 

programmers with experience in both the Java programming language and the Eclipse 

IDE. However, due to practical considerations such as timing and availability of willing 

and appropriate people, the experiment was carried out using a set of participants whose 

experience with Eclipse and Java varied significantly. As such, the threat of ‘novice 

effects’ was presents. As was the need to distinguish between disorientation caused by a 

lack of familiarity with the IDE interface and the language, disorientation associated with 

interface design and navigation and comprehension of the source code. 

 To deal with novice effects each observed incidence of disorientation was 

interpreted using a predefined ‘disorientation model’ developed specifically for the 

project. The disorientation model (See Chapter 6) is essentially a set of heuristics (based 

on existing research in the field) which may be applied to a incident of disorientation to 

determine its probable nature and underlying cause. During the experiment sessions the 

facilitator noted all observed incidents of disorientation. Afterwards the video and screen 

captures were synchronized and each recorded incident of disorientation was scrutinized 

in terms of the disorientation model. Using this process those incidents of disorientation 

which were overly influenced by novice effects were discarded. 
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 The study results results (completion time, navigation actions etc.) were probably 

somewhat skewed by novice effects. However, as broad patterns in the data are primarily 

of interest this was considered an acceptable situation. 

7.8.2 Tasks

The initial plan for the experiment was to have participants carry out live maintenance 

on a system. Essentially, each participant was to be given a set of small scale 

maintenance tasks, and would then be required to explore the system, identify and 

comprehend the appropriate code, and make the necessary alterations. This design 

represented the most valid approximation of real life programmer behavior, beyond an 

observation oriented field study. 

 However, during the study pilot it was observed that the participants, having 

varying degrees of experience and ability, found it very difficult to complete their 

maintenance tasks in a realistic period of time. Initially, the idea of reducing task size and 

complexity to boost completion times was considered. However, as tasks were simplified 

the realized dawned that participants would not carry out adequate source code 

exploration (both amount and type) for the study to gather sufficient data and identify 

patterns. Eventually, it was decided to have participants carry out pure exploration tasks 

and abandoned the idea of live maintenance. 

 There are two treats to validity associated with the task selection. The first threat 

is concerned with realism, and the second scope. Programmers generally carry out source 

code exploration in relation to specific development and maintenance tasks (Singer et al. 
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97). As such the tasks, in which a programmer explores source code in order to answer a 

number of predefined questions, lacks realism. Secondly, the task selection was designed 

to exercise the available functionality of the fluid source code editor. As such it could be 

argued that the task definitions were biased towards the inline interface. 
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Chapter 8

Conclusion & Future work

“What are the advantages and disadvantages of inline source code exploration, and what 

effect does it have on programmer disorientation?”

- Research question.

This thesis has explored the concept of inline source code exploration as a means of  

reducing the incidence of programmer disorientation during source code exploration 

activities in an IDE setting. 

 The methodology involved the development of a prototype implementation of 

inline source code exploration for the Eclipse IDE, entitled the ‘fluid source code 

editor’(Desmond et al. 2006). The fluid editor supports the inline exploration of Java 

source code. This allows the programmer to explore code by introducing related 

declarations and search results into the context of a focal source code display, in an 

interactive, progressive and nested manner. The approach contrasts with the traditional 
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mechanism of explicitly navigating between discrete isolated displays. The prototype also 

supports to the introduction of non source code artifacts such as images and web 

resources. 

 The fluid editor was used as the basis of a user experiment designed to compare 

the level of disorientation experienced over a series of predefined source code exploration 

tasks. Participants completed half the tasks using an inline exploration interface (the fluid 

editor), and the other half using a standard exploration interface without inline 

capabilities (the standard Eclipse IDE). Disorientation was measured using a combination 

of metrics such as task completion time, visual momentum in the interface and navigation 

activity, in addition to an in depth analysis of participant behaviour, comments and 

gestures observed over the course of the experiment. Observations of disorientation were 

subsequently interpreted using recognized and accepted patterns of disorientation mined 

from existing research literature, both in the field of general and programmer specific 

disorientation.

 The findings of the experiment suggest that participants using the inline interface 

experienced a reduced incidence of disorientation and consequently enjoyed increased 

productivity when performing the exploration tasks. 

8.1 Trends

The experiment was exploratory in nature, focusing on trends rather than a fixed 

hypothesis. Participants experienced a 14% reduction in task completion times using the 
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inline interface, a 31% reduction in overall navigation carried out and an 89% reduction 

in cognitively expensive switching between discrete source code displays. 

 Participants expressed greater satisfaction with the inline interface in a number of 

categories including ease of use, perceived confusion and spatial awareness in the code 

space (based on satisfaction questionnaires filled out by participants after each task set). 

Participants also commented favourably on the inline source code exploration approach 

during feedback interviews and all agreed that they could readily envisage themselves 

making use of the technology if made available as a mainstream IDE based offering.

8.2 Findings

The findings of the research fall into three categories. Findings associated with 

programmer disorientation in the standard IDE. Findings related to the effectiveness of 

the inline interface at alleviating identified programmer disorientation, and related to the 

usability of the approach. And finally, findings regarding the usability of the fluid source 

code editor prototype. 

8.2.1 Disorientation in the standard IDE

Based on observations gathered during the experiment, specifically on the standard 

interface (without inline capabilities), a set of factors and situations which typified the 

incidence of programmer disorientation occurring during source code exploration 
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activities in the IDE environment was synthesized. These findings are summarized for 

quick reference in Table 8.1.   

The cognitive drain associated with explicit navigation between sequences of isolated 

source code displays can result in distraction and loss of task focus.

A lack of navigation history/context in the IDE can lead to difficulties re-contextualizing 

after a loss of task focus and also increases cognitive overhead during exploration tasks. 

Programmers have issues finding known locations in the IDE display space due to:

• The limited history support in the IDE (inability to record digressions)

• The visually homogeneous nature of source code (Makes it difficult to identify 

code in the IDE display space)

• A lack of familiarity with the source code structure forces the programmer to 

search within the display space

Thrashing is common when attempting to understand and conceptually model 

fragmented source code. The IDE support for viewing multiple source code displays is 

limited and/or too cognitively expensive.

Table 8.1: A summary of findings related to the incidence of programmer disorientation 

during source code exploration activities in the Eclipse IDE. 

It was noticed that, in accordance with existing research (Zelwegger et al. 2000), the 

process of explicitly navigating between discrete source code displays, a fundamental 

aspect of modern IDEs exhibiting a keyhole display architecture with low visual 

momentum, is a cognitively draining process which results in problems maintaining focus 

during exploration activities. Furthermore, because there is no explicit representation of 

navigation context (the path or sequence of source code elements/locations leading to the 
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currently visible source code display), programmers experience difficulties regaining 

orientation and focus having become distracted in the interface. This finding coincides 

with the general idea that navigation context is an important element in reminding a 

programmer of their ongoing intent and maintaining orientation in code space (Thüring et 

al. 95; Storey et al. 1999; De Alwis & Murphy 2006). 

 It was noticed that finding and revisiting previously visited source code elements 

and locations was problematic and occasionally resulted in disorientation due to 

excessive concentration on display searching and interface manipulation activities. A 

number of discrete factors underpinning with this phenomenon were identified. The 

history stack in modern IDEs such as Eclipse is limited to a single linear path of visited 

locations and consequently cannot record exploratory digressions. This limitation leads to 

difficulties returning from digressed code. The visually homogenous nature of source 

code results in problems identifying relevant code in the IDE display space. Finally, a 

lack of familiarity with the organization structure of the code forces programmers to rely 

on exhaustive searching in the display space, as opposed to cognitively cheaper facilities 

such as direct navigation via the package explorer or indexing based on type or resource 

name. Exhaustive searching in the display space is cognitively demanding and can lead to 

disorientation. 

 Programmers suffer from a lack of task context  in the IDE (a summary of the 

source code artifacts related to a particular exploration task) and will sometimes adapt an 

ad-hoc representation using editor tabs. This rudimentary representation is used as an 

orientation and navigation aid, and in some cases as a conceptual map of the exploration 
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space. It was observed that the creation and use of ad-hoc task context was not systematic 

but occurred as a response to perceived disorientation in the interface, generally related to 

finding information in the display space and comprehending complex interactions 

between source code elements. 

 Finally the study indicated that thrashing is a common activity during the 

exploration and comprehension of fragmented source code, far more that was expected. 

Moreover the facilities available in modern IDEs to support the simultaneous 

consideration of related source code, which could mitigate the problem (such as multiple 

editor displays, pop-ups and the declaration view in Eclipse) are generally too limited or 

cognitively expensive to use. For instance comparing two source code displays in a single 

editor requires considerable interface adjustment to the point where the programmer may 

lose focus on their task.  

8.2.2 Inline source code exploration

The study indicated that the inline interface (the fluid source code editor) was successful 

at alleviating certain aspects of the disorientation problems identified on the standard 

interface. The effectiveness of the inline source code exploration approach is summarized 

for quick reference in Table 8.2.
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Inline source code exploration eliminates the cognitive drain associated with explicit 

navigation between source code displays. As a result, programmers are less prone to 

losing task focus.

Inline source code exploration provides a visible representation of navigation history/

context. This representation eases re-contextualization after distraction, supports 

orientation in the code space and reduces the programmers cognitive overhead.

Support for exploratory digressions in context eases the programmers return from an 

exploratory digression and in many cases eliminates the need to search for previously 

visited code.

Inline source code exploration supports the exploration and comprehension of 

fragmented source code by providing a visible representation of navigation history and  

allowing the programmer to view multiple code fragments with minimal interface 

manipulation

Table 8.2: A summary of findings related to inline source code exploration, specifically its 

effectiveness at alleviating programmer disorientation. 

In general the study indicated that the ability to explore source code by progressively 

introducing related source code declarations into a single source code display (the core 

tenet of the inline approach) reduces the cognitive drain on the programmer during 

exploration activities. It was observed that participants were far less prone to becoming 

distracted and losing task focus when introducing source code as opposed to explicitly 

navigating between discrete source code displays. This phenomenon is a result of the 

visible navigation context/history relieving the programmer of the cognitive burden 

required to maintaining orientation in the code space, as well as providing an explicit  

visual reminder of ongoing intent. 
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 When a programmer does become distracted, a visual representation of navigation 

history supports re-contextualization. It was observed during the study that when 

participants become distracted on the inline interface, generally when considering the 

descriptive prompts associated with the exploration tasks or conversing with the 

experiment facilitator, re-contextualizing to the ongoing exploration focus was facilitated 

by the visible navigation summary provided by the inline interface. On the standard 

interface, without a visible representation of navigation history, participants would 

occasionally need to backtrack to previously visited locations in order to regain 

navigation context. 

 The ability to pursue and evaluate exploratory digressions without leaving the 

original exploration context reduced the requirement to search through the display space 

in order to return to previously locations in the exploration path, an activity which is 

prone to disorientation. It was observed that when using the inline interface participants 

were able to return from a pursued digression in a cognitively cheap fashion, simply by 

closing the appropriate level in an expansion tree. 

 The exploration and comprehension of fragmented source code was somewhat 

aided by the inline interface. Participants were able to get an overview of fragmented 

source code via the navigation history provided by the inline interface. This facility was 

particularly useful when there was a need to examine multiple fragments of source code 

from the same expansion level in a simultaneous manner, or when comprehending 

scattered control flow involving small to medium scale method declarations.
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8.2.3 Disorientation in expansion space

In addition to observing the effectiveness of inline source code exploration at alleviating 

disorientation, a type of disorientation specific to inline exploration was also identified. 

This phenomenon is referred to as ‘disorientation in expansion space’. Essentially once a 

certain saturation of introduced information is achieved (generally 6 or more levels of 

nested inline introduction, or when a particularly sizable declaration is introduced which 

requires scrolling of the introduced content) programmers begin to show signs of losing 

orientation in the introduced source code. 

 On a number of occasions throughout the experiment, participants suddenly lost 

track of their location in the introduced source code, and consequently suffered from a 

loss of intent or focus. The same issue affected the comprehensibly of introduced source 

code, participants has issues comprehending complex expansion trees as a result of being 

unable to track relationships between introduced source code declarations. A significant 

factor contributing to the incidence of disorientation in expansion space is the 

introduction mechanism used by the fluid source code editor. The fluid editor will split 

source code declarations in order to introduce nested declarations in an inline manner. 

However when a number of declarations are split in a nested manner it becomes difficult 

to identify and trace the sequence of introductions leading to the currently focal 

introduction. Essentially, the traceability of the code is compromised. 

 A potential solution to the issue of disorientation in expansion space is the use of 

an after declaration introduction technique whereby the introduced declaration is located 

after the source declaration. This would eliminate the need to split declarations and thus 
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maintain the traceability of the code. However, the approach complicates the existence of 

multiple declarations originating from a single declaration. Multiple declarations would 

need to be stacked in the order of their introduction. The exploration of introduction and 

interface design techniques to combat disorientation in expansion space is a significant 

item of future work.

8.3 Future work

This research effort, focusing on inline source code exploration and programmer 

disorientation, has opened up a number of valuable research and development avenues 

which are deserving of additional consideration. 

8.3.1 Inline editing

Inline editing is a compelling concept which has been raised at various points, by various 

people, throughout the research effort associated with this thesis. Having demonstrated or 

spoken about the fluid editor prototype, an invariable request is for the ability to edit 

introduced source code declarations. Because the primary focus if this research was 

source code exploration, this particular avenue of investigation has never been pursued 

beyond discussion and some playful prototyping. 
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 An interesting element of future work would be to look into the concept of editing 

inline declarations and determine if and how this functionality might be useful for 

programmers working with source code. 

8.3.2 Further evaluation

The user study associated with this research was limited both in terms of its size and its 

scope. Only eight participants were involved, and more significantly, the experiment 

involved relatively small and limited exploration tasks. To really get a sense for the 

usability of inline source code exploration it would be necessary to perform an expanded 

user experiment, including a larger participant base and a more realistic task set. 

 The ideal situation would be a field study in which professional programmers 

could be observed performing their normal development and maintain tasks in an IDE 

with the fluid editor installed. 

8.3.3 Improvements to existing work

The fluid source code editor is a rudimentary but stable implementation of inline source 

code exploration for the Eclipse IDE. However based on the user experiment some areas 

of the system, and the overall approach, need additional prototyping and development: 

• Design and placement of fluid annotations

• Introduction technique and format
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8.3.3.1 Design and placement of fluid annotations

It was observed during the study that participants experienced issues identifying the 

appropriate fluid annotation for a given source code reference. This was particularly the 

case for method references where the annotation is placed at the closing parameter 

bracket. It was sometimes difficult for users to identify the correct annotation in a 

complex block of nested source code. Furthermore, when a large number of annotations 

are placed in close proximity it proved difficult to select one individual annotation due to 

overlapping bounding regions. The design and placement of fluid annotation needs some 

additional design and evaluation. 

8.3.3.2 Introduction techniques

The introduction technique implemented by the fluid editor needs to be reconsidered in 

light of newly developed knowledge related to ‘disorientation in the expansion space’, 

See Chapter 7, Section 7.2. The splitting of source code declarations as part of inline 

exploration is problematic as it often leads to highly complex expansion trees. As a result 

the programmer has difficulty tracing the relationships between nested inline 

declarations. 

 The size of introduced declarations is also a significant problem. Some source 

code declarations, generally methods and types, can be larger than the available editor 

viewport. When they are introduced, the programmer may need to scroll out of the 

existing context to view all of the introduced code. This introduces scope for 
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disorientation associated with inline source code exploration. Some additional work 

should focus on preventing the introduction of large declarations, or more ambitiously, 

displaying large declarations in such a way that they are readable and explorable, but do 

not take up all of the available display space.  

8.4 Vision

Having spent a number of years immersed in the field of programmer disorientation, I 

have developed a deep sense of the fundamental underlying problems which contribute to 

the phenomenon. I have also identified a significant void in the design of modern 

integrated development environments and how they support programmers during their 

work. 

 When carrying out a development or maintenance task on a particular software 

system, a programmer has three elements of knowledge which are of fundamental 

importance to maintaining focus and orientation (Storey et al. 1999):

• Navigational context

• Task context

• The emerging conceptual model

Navigational context refers to the programmers sense of spatial awareness in the code 

space, essentially where they are now, how they got to the current location and how to 
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find locations and elements of interest. Task context refers to knowledge of task being 

carried out, including specific artifacts in the code space which are of particular 

relevance. Finally, the emerging conceptual model is the programmers current 

understanding of the implementation, which is generally filtered on a particular aspect or 

feature of the system related to the current task. 

 At the moment, navigational context, task context and the emerging conceptual 

model are maintained at various levels of the programmers memory (working, short 

terms and long term). There is no explicit representation in the IDE that can be referred to 

or shared. This situation exhibits a number of drawbacks. Firstly, context represents a 

significant ongoing mental burden on the programmer. Secondly, when the programmer 

becomes distracted, either by external factors or interface problems, aspects of their 

mental representation of context may be forgotten. This process of losing context forms 

the essence of programmer disorientation, and the ongoing struggle to refresh context 

from the IDE display forms the essence of programmer re-orientation. 

 An extremely promising area of research in the field of programmer disorientation 

is the provision of a visible and interactive representation of the programmers navigation 

context, task context and emerging conceptual model in the IDE. This concept is referred 

to as providing a ‘prosthetic context’. A prosthetic context would significantly reduce the 

mental burden on a programmer, reduce the incidence of programmer disorientation and 

ease the process of re-contextualization in the event of external and internal distractions. 

Overall this would significantly improve programmer productivity and satisfaction. 
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 I have carried out some Initial prototyping in the area of prosthetic context in the 

form of an Eclipse plug-in which allows the programmer to call up an overlay view 

containing a temporarily ordered graph of the current navigation context. The graph, 

which is implicitly computed from the programmers most recent navigation actions, 

presents a digression oriented view of the programmers navigation history with recently 

visited locations highlighted for orientation purposes. The programmer can leverage this 

display as an ongoing navigation and orientation aid during development and exploration 

tasks. 

 However, navigation history can also be leveraged to infer task context, and also 

form the basis of an explicit representation of the programmers conceptual model. For 

instance, one might extend the tool to apply a degree of interest model to the 

programmers navigation history (Kersten & Murphy 2005). This aim is to identify those 

elements in the system which the programmer repeatedly visits, and also determine 

visiting patterns such as how often the programmer visits one location after another etc. 

This information paints a picture of the programmers task context and indicates the 

‘implicit architecture’ of the concern they are currently working. If stored and visualized 

in an appropriate manner this information can form the basis of an implicitly generated 

‘context model’ associated with the programmers task.

 Furthermore, if managed and packaged correctly a developer could even load a 

previous developer’s ‘context model’ and use it to guide a related task. For instance a 

developer working on a bug associated with a particular feature could load and view the 

context model recorded by the original developer as they navigated between the various 
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program artefacts during the initial development effort. This idea adds an entirely new 

dimension to program documentation and modelling and programmer collaboration. 
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Appendix A

User Experiment questionnaires

Satisfaction Questionnaire

Standard Exploration Interface

Questions are presented on a scale from 0 to 9. Read each question carefully and then 

circle the number on the scale that most accurately represents your answer.

1. How did you find the code exploration interface in general?

Very poor    0 1 2 3 4 5 6 7 8 9   Very good

2.- 6. How was the interface to use?

Terrible   0 1 2 3 4 5 6 7 8 9   Wonderful

Hard   0 1 2 3 4 5 6 7 8 9   Easy
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Frustrating   0 1 2 3 4 5 6 7 8 9   Pleasant

Boring   0 1 2 3 4 5 6 7 8 9   Fun

Confusing   0 1 2 3 4 5 6 7 8 9   Clear

7. It was clear, most of the time, where i was in the source code...

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

8. I often lost my orientation (got lost) in the source code...

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

9. I often felt confused when exploring the source code...

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

10. There was sometimes too much information on the screen at once...

I disagree   0 1 2 3 4 5 6 7 8 9   I agree
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11. How did you perceive the tasks?

Very poor   0 1 2 3 4 5 6 7 8 9   Very good

12. How would you rate your answers to the tasks?

Very poor   0 1 2 3 4 5 6 7 8 9   Very good

13. - 15. Was the source code...

Hard to understand   0 1 2 3 4 5 6 7 8 9   Easy to understand

Hard to overview   0 1 2 3 4 5 6 7 8 9   Easy to overview

Hard to navigate   0 1 2 3 4 5 6 7 8 9   Easy to navigate

16. Was information in the source code...

Hard to locate   0 1 2 3 4 5 6 7 8 9   Easy to locate
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Satisfaction Questionnaire

Fluid Exploration Interface

Questions are presented on a scale from 0 to 9. Read each question carefully and then 

circle the number on the scale that most accurately represents your answer.

1. How did you find the fluid exploration interface in general?

Very poor   0 1 2 3 4 5 6 7 8 9   Very good

2.- 6. How was the fluid interface to use?

Terrible   0 1 2 3 4 5 6 7 8 9   Wonderful

Hard   0 1 2 3 4 5 6 7 8 9   Easy

Frustrating   0 1 2 3 4 5 6 7 8 9   Pleasant

Boring   0 1 2 3 4 5 6 7 8 9   Fun

  Confusing   0 1 2 3 4 5 6 7 8 9   Clear
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7. It was clear, most of the time, where i was in the source code.

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

8. I often lost my orientation (got lost) in the source code.

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

9. I often felt confused when exploring the source code.

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

10. Most of the time i had a good idea of the structure of the code.

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

11. There was sometimes too much information on the screen at once.

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

12. It was easy to determine the relationships between expanded pieces of code.
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I disagree   0 1 2 3 4 5 6 7 8 9   I agree

12. The fluid annotations were distracting...

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

13. The coloring coding of the fluid annotations was helpful..

 

I disagree   0 1 2 3 4 5 6 7 8 9   I agree

14. How did you perceive the tasks?

Very poor   0 1 2 3 4 5 6 7 8 9   Very good

15. How would you rate your answers to the tasks?

Very poor   0 1 2 3 4 5 6 7 8 9   Very good

16. - 18. Was the source code...

Hard to understand   0 1 2 3 4 5 6 7 8 9   Easy to understand
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Hard to overview   0 1 2 3 4 5 6 7 8 9   Easy to overview

Hard to navigate   0 1 2 3 4 5 6 7 8 9   Easy to navigate

19. Was information in the source code...

Hard to locate   0 1 2 3 4 5 6 7 8 9   Easy to locate
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Appendix B

User Experiment participant profile

Participant profile

Please read each question carefully and provide an answer in the space provided. Please 
write as clearly as possible keeping answers succinct.

Name: ________________________________

Sex: (M/F) _____________________________ 

Occupation: 
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________

Programming experience: 
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
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Eclipse experience: 
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
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Appendix C

User Experiment exit interview 

Exit Interview

1. Did you prefer the fluid exploration interface or the standard exploration interface? 
Please elaborate.
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________

2. What advantages or disadvantages did you perceive when using the fluid exploration 
interface vs. the standard exploration interface?
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________

3. Can you identify any aspects of the fluid editor that stood out as particularly confusing 
or frustrating?

________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
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________________________________________________________________________
________________________________________________________________________
________________________________________________________________________

4. Are there any features that you would like to see in future versions of the fluid editor?
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________

Would you see yourself using the fluid editor or a similar system when programming?

________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
________________________________________________________________________
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Appendix D

User Experiment task descriptions 

Task 1A

In the JHotDraw framework a DefaultSDIApplication instance handles the life cycle of a 

single document window presented in a JFrame. The JFrame provides all of the 

functionality needed to work with the document, such as a menu bar, tool bars and palette 

windows etc. A DefaultSDIApplication instance is used to host the JhotDraw sample 

application we looked at earlier.

 Your task is to explore the init() method declared on the DefaultSDIApplication 

class and answer a set of simple questions. First you will need to locate the init() method 

in DefaultSDIApplication.java. DefaultSDIApplication.java is located in the 

org,jhotdraw.app package, you can find it with the package explorer view. When you 

have found the init() method and are ready to being the task please select Tasks->Begin 

new task, enter the task name above and begin. 



249
Q1. On what interface is the init() method abstractly declared? Describe how the init() 

method is implemented in the type hierarchy from the abstract declaration down to the 

DefaultSDIApplication implementation. 

Q2. The init() method declared on DefaultSDIApplication calls its superclass init() 

method, briefly describe the implementation of this superclass method. What is the type 

of the recentFiles field used in this method? What type is the applictionModel field used 

in this method?

Q3. The init() method declared on DefaultSDIApplication invokes the initLabels() 

method and the initApplicationActions() method in that order. In what class are each of 

these methods defined? Both the initLabels() and the initApplicationActions() methods 

use a common portion of code, can you identify this code?

Task 1B

In the JHotDraw framework a Drawing represents a container for figures. A Drawing 

organizes its Figures into a list and figures can be added and removed from a Drawing as 

needed. The DefaultDrawing class provides a basic implementation of the Drawing 

interface. 
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Your task is to explore the draw(Graphics2D) method contained in the DefaultDrawing 

class and answer a set of simple questions. First you will need to locate the 

draw(Graphics2D) method in DefaultDrawing.java. DefaultDrawing.java is located in the 

org,jhotdraw.draw package. When you have found the draw(Graphics2D) method and are 

ready to being the task please select Tasks->Begin new task, enter the task name above 

and begin. 

Q1. The execution of the draw(Graphics2D) method is controlled by a lock object. Find 

the piece of code which instantiates the lock object. According to the Java doc associated 

with the declaration of the getLock() method, the lock object is designed to prevent what 

situation? 

Q2. Briefly describe the implementation of the ensureSorted() method? After sorting the 

figures the draw(Graphics2D) method performs a clipping operation, culling those 

figures outside the clipping bounds based on the value of their drawing area. Compare the 

implementation of the getDrawingArea() method for the RectangleFigure and the 

EllipseFigure types and briefly describe the difference(s) and similarities. 

Q3. The draw(Graphics2D) method on the DefaultDrawing class now calls the 

draw(Graphics2D,Collection<Figure>) method to draw the clipped figure collection. Can 

you identify any redundant execution in the draw(Graphics2D, Collection<Figure>) 

method considering the execution of the draw(Graphics2D) method?
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Task 2A

The drawDrawing() method declared on the DefaultDrawingView class is responsible for 

drawing the figures contained in its associated Drawing object. But ultimately each figure 

is responsible for drawing itself.

Your task is to trace the control flow of the drawDrawing() method until execution 

reaches the drawFill() method on the EllipseFigure class. First you need to locate the 

drawDrawing() method in DefaultDrawingView class. DefaultDrawingView.java is 

located in the org,jhotdraw.draw package. 

When you have found the drawDrawing() method and are ready to being the task please 

select Tasks->Begin new task, enter the task name above and begin.

 The line of code “drawing.draw(g)” is the root of the control flow hierarchy. Follow the 

execution of the this method until you encounter the drawFill() method on the 

EllipseFigure class.

Q1. Describe the execution hierarchy including details such as interfaces and looping 

constructs. Assume that the field drawing is of concrete type DefaultDrawing and any 

Figure objects encountered are instances of AbstractAttributedFigure.
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Q2. Describe, at a high level, the steps involved in the draw operation? (use the the 

assumptions of variable type outlined above) 

Task 2B

The DeleteAction class initiates the removal of a figure in the JhotDraw system The 

method actionPerformed(ActionEvent) is executed to initiate the removal of a selected 

figure or figures from the active Drawing. 

Your task is to trace the control flow of the actionPerformed(ActionEvent) method of the 

DeleteAction class until execution reaches the removal of a figure from the active 

drawing object (a call to basicRemove(Figure)). First you need to locate the 

actionPerformed(ActionEvent) method in the DeleteAction class. DeleteAction.java is 

located in the org,jhotdraw.app.actions package. When you have found the 

actionPerformed(ActionEvent) method and are ready to being the task please select 

Tasks->Begin new task, enter the task name above and begin. 

Follow the execution of the actionPerformed(ActionEvent) method until you find the 

piece of code which removes figures from the active drawing object (the first call to 

basicRemove(Figure)). 
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Q1. Describe the execution hierarchy including details such as interfaces and looping 

constructs. 

Q2. Describe, at a high level, the steps involved in the draw operation? 

Q3. Did you notice any potential issues with the code?

Task 3A

The findFigure(Point2D.Double) method declared on the Drawing interface is used to 

find the top level figure which contains a given point. 

Your task is to find and explore the implementation(s) of the findFigure() method and 

answer a set of simple questions. First you need to locate the findFigure() method on the 

Drawing interface. Drawing.java is located in the org,jhotdraw.draw package. When you 

have found the findFigure() method and are ready to being the task please select Tasks-

>Begin new task, enter the task name above and begin. 

Q1. List all types (concrete and abstract) which implement the findFigure() method of the 

Drawing interface.
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Q2. Examine the various implementations of the findFigure() method and describe at a 

high level how they differ in terms of finding the figure for a the given point. What data 

structure(s) is used for the storage of figures in each implementation type?

Q3. The implementation of the findFigure() method in the QuadTreeDrawing and 

DefaultDrawing types both call a common method. Can you identify this method? Is this 

method duplicated in both types?

Task 3B

The addNotify() method declared on the Figure interface is called to inform a figure that 

it has been added to a specified drawing. The figure must then inform all registered 

FigureListeners that it has been added. 

Your task is to find and explore the implementation(s) of the addNotify() method and 

answer a set of simple questions. First you need to locate the addNotify() method on the 

Figure interface. Figure.java is located in the org,jhotdraw.draw package. When you have 

found the addNotify() method and are ready to being the task please select Tasks->Begin 

new task, enter the task name above and begin. 

Q1. List all types which implement the addNotify() method of the Figure interface (both 

abstract and concrete).
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Q2. The implementation of the addNotify() method in the AbstractFigure class calls the 

fireFigureAdded() method. Examine this method and describe its execution flow. What 

concrete type is the listenerList field? 

Q3. Compare the implementation of the addNotify() method in the AbstractFigure and 

the AbstractCompositeFigure classes. Briefly describe the differences at a high level. 

Q4. What relationship does the AbstractCompositeFigure class have with the 

AbstractFigure class? 

Q5. Now examine the implementation of the addNotify() method in the 

GraphicalCompositeFigure class. What processing is carried out? What relationship does 

the GraphicalCompositeFigure class have with the AbstractFigure class?

Task 4A

The TriangleFigure class represents a triangle in the JhotDraw drawing framework. Your 

task is to explore the implementation of the TriangleFigure class and answer a set of 

simple questions. First you need to locate the TriangleFigure class contained in 

TriangleFigure.java. TriangleFigure.java is located in the org,jhotdraw.draw package.
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When you have found the TriangleFigure class and are ready to being the task please 

select Tasks->Begin new task, enter the task name above and begin. 

Q1. At a high level describe how the findConnector(...) and 

findCompatableConnectior(...) methods differ from their superclass implementations. 

Describe how the findConnector(...) method is implemented in the type hierarchy from 

the abstract declaration down to the TriangleFigure implementation. 

Q2. The createHandles(int) method on the TriangleFigure class is called to create a 

collection of handles (small adjustable widgets) used to manipulate aspects of the figure. 

 On a call to the createHandles(int) method on a TriangleFigure instance a collection of 

handles is returned. List the various handle objects added to the returned handle 

collection in order of their addition to the return handle list. According to the Java doc on 

the createHandles(int) interface method, what is the significance of the detail parameter?

Q3. At a high level describe the difference between the setBounds(...) method on the 

TriangleFigure class and its superclass implementation? Can you recognize any potential 

issues with the superclass implementation?

Task 4B
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The TextFigure class represents a visible piece of text in the JhotDraw drawing 

framework. Your task is to explore the implementation of the TextFigure class and answer 

a set of simple questions. First you need to locate the TextFigure class contained in 

TextFigure.java. TextFigure.java is located in the org,jhotdraw.draw package. When you 

have found the TextFigure class and are ready to being the task please select Tasks-

>Begin new task, enter the task name above and begin. 

Q1. Consider the declaration of the getPreferedSize() method on the TextFigure class. 

Can you recognize any potential issues or anomalies with this method when compared 

with its superclass implementation? According to the Java doc on the interface 

declaration of the getPreferedSize() method what component uses getPreferedSize() to 

determine the preferred size of a figure. 

Q2. The method read(DOMInput) is used to read the serialized state of a stored 

TextFigure object from an input stream. Compare the implementation of the 

read(DOMInput) method with its overridden superclass implementation. Describe in 

detail the essential difference(s) between the two implementations in terms of what gets 

read from the stream, the order of reading, and the use of the read data. Could you 

recommend a better implementation of the read(DOMInput) method for the TextFigure 

class?
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Q3. The clone method declared on the TextFigure class is called to create a clone of the 

current TextFigure instance. Describe or sketch the execution flow of the clone() method 

up through the class hierarchy. What fields are assigned on the cloned object and what 

order are they assigned?



259

Appendix E

AOSD 2006 Poster
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