
Inline source code exploration

A Thesis Submitted for the Degree of

Doctor of Philosophy

by

Michael Desmond

Department of Computer Science and Information Systems,

University of Limerick

Supervisor: Dr Chris Exton

Co-Supervisor: Dr. Margaret-Anne Storey

Submitted to the University of Limerick, June 2010.

2

Abstract

When exploring source code in modern integrated development environments (IDEs),

programmers are prone to disorientation, a state of ‘mental lostness’ which disrupts

concentration and task focus. Disorientation can result in important information being

forgotten or overlooked and recovery requires additional time and effort which reduces

programmer productivity and satisfaction.

 A primary factor in the occurrence of programmer disorientation is the exploration

interface design prevalent in modern IDEs. Programmers are effectively restricted to

examining a single fragment of source code at any moment during exploration activities,

and more significantly, there exists little or no representation or continuity of exploration

history or context from one source code display to the next. Essentially, source code

exploration is carried out as a series of perceptually independent glances at the code. This

manner of exploration, particularly considering the complex and highly fragmented

nature of source code, places a significant ongoing mental burden on the programmer

and leads to a variety of problems associated with maintaining and regaining focus,

finding particular locations and elements in the code and developing an accurate

conceptual model of the underlying interconnected implementation.

 Inline source code exploration is a mechanism for exploring source code in-

context. Contrary to the traditional mechanism of explicitly navigating between isolated

source code displays, the programmer progressively introduces related source code

elements into the context of a focal, or primary, source code display in a controlled and

3
interactive manner. The inline style of exploration results in an explicit representation of

the programmers exploration history/context which serves as a reminder of ongoing focus

and intent as well as an orientation aid in the code space. The approach also facilitates the

pursuit of exploratory digressions without the problematic need to leave the originating

context and supports the examination and comprehension of fragmented source code in a

single coherent display.

 This thesis explores the concept of inline source code exploration and specifically

its application as a means of reducing the occurrence and severity of disorientation

suffered by programmers during source code exploration activities.

4

5

Declaration

I hereby declare that this thesis is entirely my own work, and that it has not been

submitted as an exercise for a degree at any other university.

6

Table of Contents

...Acknowledgments 11
...Chapter 1 Introduction 12

...1.1 Preamble 12
...1.2 Background 13

..1.3 Disorientation in the computer medium 13
...1.4 Programmer disorientation 16

..1.4.1 A lack of navigation history and context 18
..1.4.2 Pursuit of digressions 19

..1.4.3 Synthesizing information 19
..1.5 Inline source code exploration 20

..1.6 Research 23
................................Chapter 2 Disorientation in the Computer Medium 24

..2.1 Fundamentals 25
..2.2 Lost in hyperspace 28

...2.2.1 Navigational disorientation 30
..2.2.2 Task disorientation 32

...2.2.3 Informational disorientation 33
...2.3 Factors inducive to disorientation 34

......................2.3.1 Structure of the information space and its role in disorientation 34
.................2.3.2 Structure of the exploration interface and its role in disorientation 36

..2.3.2.1 Long-shots 37
..2.3.2.2 Functional-overlays 38

..2.3.2.3 Landmarks 38
...2.3.2.4 Bookmarks 39

...2.3.2.5 Spatial dedication 39
...2.4 Tools and techniques to alleviate disorientation 40

...2.4.1 Overview maps 40
...2.4.2 Search/Query mechanisms 41
..2.4.3 Guided Tours/Beaten tracks 42

..2.4.4 Visual/Interactive browsing summary/history 43
..2.4.4.1 Graphical history list 43
...2.4.4.2 Graphical history tree 44

..2.4.4.3 Summary boxes 46
...2.4.4.4 Summary tree 47

...2.4.5 Preservation of context 48
...2.5 Summary 49

..Chapter 3 Lost in Code Space 50
..3.1 Source code exploration 51

7
...3.2 Disorientation in code space 52

...3.2.1 Fragmentation 54
...3.2.1.1 Source code fragmentation 54

..3.2.1.2 Control flow scatter 55
...3.2.1.3 Cross cutting concerns 56

...3.2.2 Topology 57
..3.2.3 Visual homogeneity 60

...3.2.4 Discussion 60
................................3.3 Exploration in Integrated Development Environments 61

...3.3.1 Interface basics 63
...3.3.2 Source code exploration 64

...3.3.2.1 Hierarchal project browsing 64
...3.3.2.2 Search 65

......................3.3.2.3 Hypertext style exploration via program cross-references 66
...3.3.2.4 Index based navigation 67

..3.3.2.5 Exploratory views 67
..3.3.2.6 Tab navigation 68

...3.3.2.7 Navigation history 68
...3.3.2.8 Bookmarks and tasks 69

..3.3.3 Programmer disorientation in the IDE 70
...3.3.3.1 A lack of navigation history 73
...3.3.3.2 Thrashing to obtain context 74

3.3.3.3 A lack of support for pursuit of digressions and insufficient task context
.. 75

...3.3.3.4 Code familiarity 76
..3.4 Mitigating programmer disorientation 76

..3.4.1 Core IDE technologies 77
..3.4.2 JQuery 79

...3.4.3 NavTracks 82
...3.4.4 Mylar/Mylyn 83

...3.5 Summary 85
...Chapter 4 Inline Source Code Exploration 88

...4.1 Origins and related work 89
..4.1.1 The guide hypertext system 90

..4.1.1.1 Motivating factors 90
...4.1.1.2 In-situ exploration in Guide 91

...4.1.1.3 Multiple copies 93
..4.1.1.4 Discussion 94

...4.1.2 The Fluid Document Project 94
...4.1.2.1 The Fluid UI 95

..4.1.2.2 Introduction techniques 96
..4.1.2.3 Nested introduction 99

8
...4.1.2.4 Applications of fluid document technology 100

..4.1.2.5 Evaluation 102
.....................................4.2 Inline exploration and programmer disorientation 102

..4.2.1 Preservation of navigation history and context 103
4.2.2 Elimination of cognitive disruption associated with explicit navigational

...transitions 104
.......................4.2.3 Support for simultaneous presentation of related information 105

...4.2.4 Support for the pursuit of exploratory digressions 106
...4.3 Inline exploration and program comprehension 107

..4.3.1 Bottom-up comprehension 108
...4.3.2 Top-down comprehension 109

..4.3.3 A note about the mixed model 109
..4.4 Envisioning Inline source code exploration 110

..Chapter 5 The Fluid Source Code Editor 111
...5.1 Preliminaries 111

...5.2 System overview 112
..5.2.1 Fluid annotations 114
..5.2.2 Inline introduction 117

..5.2.2.1 Margin callout 120
..5.2.2.2 Fluid overlay 120

...5.2.3 Inline source code declarations 121
...5.2.4 Nested introduction 124

..5.2.5 Search results 126
...5.2.6 Inheritance relationships 130
...5.2.7 Editing and reconciliation 132

..5.2.7.1 Reconciliation of fluid annotations 132
...5.2.7.2 Reconciliation of Inline declarations 133

..5.3 Additional features 134
...5.3.1 URLs 134

..5.3.2 Image resources 136
...5.4 Implementation 137

..............................5.4.1 Fluid annotations - generation, interaction and rendering 138
..5.4.2 The dynamic document model 141

..5.4.3 Implementing an editing and reconciliation model 143
...5.5 Discussion 145

..Chapter 6 Experiment 149
..............................6.1 Soliciting feedback from the development community 150

..6.2 Measuring disorientation 152
..6.2.1 Measuring degradation of user performance 153

........................6.2.2 Gathering subjective feedback via questionnaires/interviews 153
..6.2.3 Examining the accuracy of the conceptual model 154

.............6.2.4 Observing the user to identify behavior indicative of disorientation 155

9
...........................6.2.5 Measuring the degree of visual momentum in the interface 158

...6.2.6 Discussion 159
..6.3 Experiment design 160

...6.3.1 Participants 161
...6.3.2 Tasks 163

..6.3.2.1 Local neighbourhood task 164
..6.3.2.2 Control flow task 165
..6.3.2.3 Polymorphic task 166

..6.3.2.4 Inheritance task 166
...6.3.3 Data 167

...6.3.4 Environment 169
...6.3.4.1 Software 170
...6.3.4.2 JHotDraw 171

..6.4 Procedure 171
...Chapter 7 Results, Findings & Validity 174

..7.1 Task completion times 174
...7.2 Display switches 177

...7.3 Backtracking 181
..7.4 Scrolling 182

..7.5 Satisfaction 182
...7.6 Exit questionnaire 185

..7.7 Findings 191
.....................................7.7.1 Disorientation observed using the standard interface 191

...7.7.1.1 Navigation context 192
..7.7.1.2 Revisiting known locations 194

...7.7.1.3 Task context 196
..7.7.1.4 Display thrashing 197

...7.7.2 Disorientation observed using the inline interface 198
.............................7.7.2.1 Visible representation of navigation history/context 199

...7.7.2.2 Exploratory digressions 201
..7.7.2.3 Comprehending fragmented code 202

...7.7.2.4 Miscellaneous user experience concerns 203
..7.8 Validity 205

...7.8.1 Participants 206
...7.8.2 Tasks 207

..Chapter 8 Conclusion & Future work 209
...8.1 Trends 210

..8.2 Findings 211
...8.2.1 Disorientation in the standard IDE 211

..8.2.2 Inline source code exploration 214
..8.2.3 Disorientation in expansion space 217

...8.3 Future work 218

10
...8.3.1 Inline editing 218

...8.3.2 Further evaluation 219
..8.3.3 Improvements to existing work 219

..8.3.3.1 Design and placement of fluid annotations 220
..8.3.3.2 Introduction techniques 220

..8.4 Vision 221
..Chapter 8 Bibliography 225

..Appendix A User Experiment questionnaires 237
..Appendix B User Experiment participant profile 244

..Appendix C User Experiment exit interview 246
..Appendix D User Experiment task descriptions 248

..Appendix E AOSD 2006 Poster 259

11

Acknowledgments

I would like to extend my sincerest gratitude to the following individuals, groups and

organizations, without whose support this work would not have been possible. Dr. Chris

Exton, Dr. Margaret-Anne Storey, IRCSET, all of my study participants, Harold Ossher,

Jackie DeVries and IBM Research, Hawthorne NY.

 - Thank you.

12

Chapter 1

Introduction

Chapter 1 provides a brief introduction to the thesis. This includes a discussion of core

background concepts, an explanation of the problem, the proposed solution in a

preliminary form and a description of the guiding research statement. The methodology, a

summary of the main findings and a selection of future work is contained in the

conclusion, Chapter 8.

1.1 Preamble

The study of human-centered phenomena such as disorientation, navigation and

comprehension difficulties in modern integrated development environments (IDEs) is an

increasingly important area of research in computer science and engineering. As software

systems become ever larger and more complex programmers increasingly rely on the

usability and cognitive support provided by their IDE to help them deal with the scale

13
and complexity of modern software systems while remaining productive and free of

unnecessary stress and mental burden.

1.2 Background

Source code exploration is a fundamental and pervasive software engineering activity.

Prior to, and during, software development and maintenance activities programmers will

generally spend a considerable amount of their productive time exploring existing source

code in order to determine and comprehend those areas or features of a system relevant to

their tasks (Singer et al. 1997; Ko et al. 2005). However when exploring source code in

modern integrated development environments (IDEs) programmers are prone to

disorientation, a condition in which they lose the context or relevancy of their recent

actions resulting in an invasive disruption to ongoing concentration and task focus (De

Alwis & Murphy 2006).

 Disorientation can result in relevant information being forgotten or overlooked

and recovery requires additional time and effort which reduces overall programmer

productivity and satisfaction.

1.3 Disorientation in the computer medium

At the root of disorientation in the computer medium is the ‘keyhole property’ introduced

by Woods & Watts (1997). The keyhole property describes a common and somewhat

14
fundamental scenario in which a spatially large information space is examined via a small

window or display capable of presenting only a very limited portion of information to the

user at any given moment. In essence, the keyhole property is concerned with the spatial

mismatch between a computerized information space, which is potentially vast, and the

physical display space available to the user (the computer screen) which is of a limited

and fixed size. The keyhole property is illustrated in Figure 1.1.

Figure 1.1: A visual representation of the keyhole property. A spatially vast information

space or network is examined via a display capable of presenting only a limited amount

of information to the user at any given moment. To explore the information space the user

needs to ‘navigate’ from one location in the information space to the next examining each

in isolation.

15
Using a keyhole interface it is generally not possible for the user to view all of the

information necessary for a given task on a single display. Instead they need to call up

sequences of discrete displays containing task relevant information located at various

points throughout the information space. The decisions and actions which drive this

process form the essence of navigation in the computer medium.

 However in the absence of sufficient orientation, navigation and information

synthesization support from the exploration interface the process of exploring complex

information by navigating between sequences of discrete displays can result in a set of

‘typical navigation problems’ (Watts & Woods 1999). These problems include ‘getting

lost’ or ‘disoriented’, where the user is unable to locate information, determine where

they are in the information space and understand the relevance of the display they are

currently examining, display thrashing (Henderson & Card 1986), where the user needs

to switch repeatedly between displays in order to synthesize information from disjoint

locations in the information space, and as excessive interface management, where the

user needs to concentrate on extraneous interface adjustment and manipulation activities

which drain attention and concentration away from primary tasks and goals (Watts &

Woods 1999).

 It is important to note that disorientation is a symptom of poor structure in the

underlying information space in addition to the display system in use. Large, highly

fragmented and irregularly inter-linked information spaces tend to be more disorientating

than those which are smaller, less dense and support a more uniform and predictable

structure (Maneti 1982; Van Dyke Parunak 1989). Disorientation is very much a product

16
of both information size and structure as well as the design of the exploration interface in

use.

1.4 Programmer disorientation

A system of source code, when considered in terms of an information space, is generally

quite large and exhibits a dense, complex and highly fragmented non linear structure. The

widespread application of advanced decomposition technologies available in modern

programming languages in addition to structural phenomena such as control flow scatter

(Chu-Carroll et al. 2003) and the ‘tyranny of the dominant decomposition’ (Tarr et al.

1999) result in a trend whereby the implementation of conceptually coherent program

operations and features is broken into a set of discrete source code fragments and

elements. These units of code are then scattered over numerous disjoint source code

documents and locations in the code space. Furthermore the linguistic references and

semantic relationships connecting disjoint source code elements into a coherent

implementation are generally dense and arbitrarily organized resulting in a complex

irregular topology of information. Source code is also visually homogenous.

 Reflecting the unique structure, complexity and fragmentation exhibited by source

code, the act of source code exploration is characterized by repeated switching between

source code documents and elements, finding and re-finding relevant information, perusal

of complex branching navigation paths, and synthesization of implementation from

portions of code located as disjoint points throughout code space (Singer et al. 1997; Ko

17
et al. 2005). However, modern IDEs do not provide an exploration interface with

adequate support for keeping programmers oriented and focused during such activities

(De Alwis & Murphy 2006).

 Modern IDEs support a wide variety of exploratory navigation features and

mechanisms which allow programmers to rapidly navigate through source code as they

attempt to identify and piece together a mental model of system implementation.

However, at any given moment the programmer is effectively restricted to examining a

single fragment of source code - contained in the visible portion of the source code editor

display (De Alwis & Murphy 2006). More significantly, there is little or no representation

or continuity of navigation history and context or program structure from one source code

display to the next. Essentially source code is explored as a sequence of perceptually

independent displays, each visibly replacing its predecessor and the programmer

internalizes the burden of maintaining an ongoing sense of orientation and exploration

context throughout their task. This situation results in a significant cognitive overhead

which is prone to breaking down due to the inherent fuzziness and limited capacity of the

programmers short and medium term memory. In the event of an external interruption or

when the programmer becomes momentarily preoccupied or distracted by a conceptual,

navigational or interface manipulation concern, orientation and context may be forgotten

or ‘pushed out’ of memory resulting in a loss of focus, and potentially a state of

disorientation. To recover from disorientation a programmer may need to retrace their

recent navigation actions in an attempt to rebuild context and intent or simply restart their

exploration from a familiar location within the source code.

18
 Programmer disorientation is a complex and multi-faceted problem; however, there

are a number of basic factors pertaining to IDE interface design which contribute to the

phenomenon (De Alwis & Murphy 2006). These factors are:

• A lack of navigation history and context

• A lack of support for pursuit of digressions

• Issues comprehending fragmented source code

1.4.1 A lack of navigation history and context

When exploring source code a programmer will generally visit and examine numerous

source code locations and elements in order to identify and comprehend a particular

feature or aspect of the software system. However as the programmer navigates from one

discrete source code display to next there is no visible indication of how they arrived at

the current source code location and its relationship to previously visited locations. This

navigational context is important in terms of orientation and way-finding within the

information space (Kim & Hirtle 1995) and also serves as a reminder of ongoing intent

and a frame of reference in which the programmer develops their conceptual model

(Storey et al. 1999; De Alwis & Murphy 2006).

 In the absence of an explicit representation of navigation context, the programmer

maintains a working sense of context in short term memory. Not only does this result in a

significant ongoing mental burden, but in the event of an external, interface or conceptual

distraction the programmer may forget their context and consequently their intent. Loss

19
of context is a common situation in modern IDEs and is often used interchangeably to

describe programmer disorientation (De Alwis & Murphy 2006). Programmers will often

forget how or why they arrived at a particular source code element or location and its

relevance to their overall task or current exploration goals.

1.4.2 Pursuit of digressions

When exploring source code programmers are continually faced with the possibility of

exploratory digressions. An exploratory digression occurs when a programmer

temporarily suspends their current exploration path and intent in order to pursue (or is

distracted by) a side path. Exploratory digression may in turn spawn further digressions

(Embedded digressions - Foss 1989a), and eventually the primary intent may be forgotten

due to an overloading of short term memory. Because digressions are not explicitly

recorded by the IDE, and the original context of the digression is not maintained, it is

easy for the programmer to forget their original intent or simply fail to return from a

pursued digression.

1.4.3 Synthesizing information

The fragmented nature of source code means that it is often necessary to consider

information from a number of related source code locations and synthesize an overall

picture or mental model of a given program feature or operation (Chu-Carrol et al. 2003).

Because only a very limited portion of source code may be displayed at any given

20
moment, the programmer may need to repeatedly switch or flip between related source

code displays in order gain the necessary overview or interpretative context. This

behavior is known as thrashing (Henderson & Card 1986) and requires the programmer

to concentrate on interface manipulation activities and maintain additional information in

working memory. The distraction and interface adjustment associated with thrashing

behavior may cause the programmer to lose track of their intent and become disoriented.

1.5 Inline source code exploration

To reduce the incidence of programmer disorientation and generally alleviate the mental

burden on programmers during source code exploration activities, modern IDEs need to

provide support for maintaining navigation history and context, managing digressions

and simultaneously examining related portions of source code with minimal interface

adjustment. This should then allow the programmer to focus additional mental effort on

the primary task of examining and comprehending the source code and subsequently

increase productivity.

 A promising approach to this problem is inline source code exploration (Desmond

et al. 2006). Inline source code exploration is a technique for exploring source code in

context, meaning that fragments of source code may be examined in parallel with

surrounding or adjacent source code during exploration tasks and activities. The essential

premise is that instead of explicitly navigating between isolated displays of source code

(See Figure 1.2), which results in a continuous loss of navigation context, the

21
programmer progressively introduces related portions of source code, inline, into the

context of a focal source code editor display (See Figure 1.3).

Figure 1.2: Explicit navigation between discrete source code displays. Each new display

replaces the previous during the exploration process. This style of exploration results in a

loss of navigation context, problems associated with exploratory digressions and

difficulty comprehending fragmented source code.

 Figure 1.3: Inline exploration. Each new source code element is introduced into the

22
context of the focal source code display. A representation of the programmers navigation

history is maintained in terms of the visited source code elements themselves.

Inline exploration of source code facilitates a visible navigation history and context

which is built up as the programmer progressively “expands” into the software space

related to the primary source code document. Fundamentally a visible context should

reduce the burden on the programmer to maintain necessary navigational context in

memory and also serve as an orientation and navigation cue and a visible reminder of

exploratory intent.

 Inline exploration also implicitly provides support for managing digressions. The

programmer can explore an exploratory digression or side path without losing track of the

original context and the digression itself is also recorded in terms of visible navigation

context. This may be sufficient for the programmer to evaluate the digression without the

risk of forgetting the original goal or neglecting to return from the pursued digression.

 Inline exploration also supports the simultaneous examination of multiple related

source code elements in a single display. This may reduce the incidence of thrashing and

support the programmer’s task of understanding how program elements are related and

how they interact with one another thus support the development of an accurate

conceptual model.

23

1.6 Research

The goal of this research is to explore the use of inline source code exploration as a

technique to alleviate programmer disorientation, and reduce the general mental burden

on programmers during source code exploration activities. The work aims to determine

the feasibly of an inline source code exploration model, identify the advantages and

disadvantages of the approach, and explore design concerns and usability. The guiding

research questions is thus:

What are the advantages and disadvantages of inline source code exploration, and what

effect does it have on programmer disorientation?

24

Chapter 2

Disorientation in the Computer
Medium

“-the user does not have a clear conception of relationships within the system, does not

know his present location in the system relative to the display structure, and finds it

difficult to decide where to look next within the system.”

- Elm & Woods (1985).

Disorientation has been identified and studied in a variety of domains such as hypertext

systems (Conklin 1987; Foss 1989a; Foss 1989b; Kim & Hirtle 1995; Edwards &

Hardman 1999), spread sheets (Watts-Perotti & Woods 1999), menu systems (Maneti

1982), software development environments (De Volder 2003; De Alwis & Murphy 2006;

Kersten & Murphy 2005), computerized nuclear power plant operating instructions

(Woods & Roth 1988) and medical monitoring systems (Cook and Woods 1996).

Disorientation refers to a temporary state of mental lostness which disrupt a users

25
concentration and focus during complex tasks in the computer domain. The phenomenon

can result in important or relevant information being forgotten or overlooked, and

recovery requires additional time and effort which negatively affects a users productivity

and satisfaction.

 This chapter describes what disorientation is, and why it occurs in the computer

medium. A particular focus is on the type(s) of disorientation which occur during

hypertext exploration activities. The justification for this focus is that many of the

disorientation problems experienced by programmers during source code exploration are

very similar to those experienced by users of hypertext systems (De Alwis & Murphy

2006; Storey et al. 1999). This reflects the very similar structure shared by both

information mediums. However the investigation and understanding of disorientation in

the hypertext domain is significantly more mature and thus presents a convenient

platform on which to understand the phenomenon at a level of depth which is currently

unavailable in the source code exploration literature.

2.1 Fundamentals

At the root of disorientation in the computer medium is what Watts-Perotti & Woods

(1999) describe as the ‘navigation phenomenon’. The information space or virtual data

field maintained in a computer system is typically far larger, in a spatial sense, than the

available physical display space available to the user - represented by the physical

26
computer screen. This mismatch is referred to as the “keyhole property” (Watts & Woods

1997) and illustrated in Figure 2.1.

Figure 2.1: The keyhole property. A spatially large information space is examined via a

limited display.

Examining a large information space via a keyhole display means that it is generally not

feasible for the user to examine all of the information required for a given task

simultaneously in a single display. Instead the user needs to decide which portions of the

information space to call up and examine in a sequential manner. The decisions and

actions which drive this process form the essence of navigation in the computer medium.

 However the keyhole display makes it difficult for the user to locate and

remember information and to synthesize a coherent overall picture from pieces of

information located at disjoint locations throughout the information space. Typical

27
problems that users experience are ‘getting lost’ or ‘disoriented’ in the information space,

where the user is unable to determine where they are and the relevance of what they are

examining, as display thrashing (Henderson & Card 1986) where the user has to

repeatedly switch between related displays in order to correlate information and as

interface management where the user needs to expend additional concentration on

interface adjustment and manipulation activities (Watts & Woods 1997).

 An example of the problems associated with a keyhole display is reported by Elm

& Woods (1985). Designers attempted to convert the existing paper based instructions for

nuclear power plant emergencies procedures into a computerized format similar to html

pages.

people became disoriented or “lost,” unable to keep procedure steps in pace with plant

behavior, unable to determine where they were…(in the display space), unable to decide

where to go next, or unable even to find places where they knew they should be

(i.e., they diagnosed the situation,knew the appropriate responses as trained operators

yet could not find the relevant procedural steps in the network).

 - Woods & Roth (1988) p. 10

It is telling to note that the operators became so disorientated by the computerized

instruction system that they had to abandon their task completely. This is the essence of

disorientation in the computer medium.

28
 Two other factors are also of fundamental importance when considering

disorientation in the computer domain, the structure of the underlying information space

and the structure of display interface in use. Large, irregular information spaces tend to

be more disorientating than those which are small and more uniform. The introduction of

some semblance of uniformity within an information network can dramatically improve

navigability and aid in preventing disorientation (Van Dyke Parunak 1989). However

regardless of the size or uniformity of the underlying information space, It is the role of

the display interface to expose the underlying structure and help the user navigate in the

space without becoming disorientated.

2.2 Lost in hyperspace

A classic example of a keyhole scenario is represented by hypertext systems. A hypertext

system is composed of a database containing textual nodes of information linked together

into an information network (a hyperspace) and a display system capable of presenting

the contents of a node in an on screen display. A node display may contain any number

of links, presented as selectable portions of text or other visual artifacts, which represent

pointers to other nodes in the information network. When a link is selected by the user

the referenced node is located and opened in the on-screen display. A prototypical

hypertext system is illustrated in Figure 2.2.

29

Figure 2.2: A hypertext system which is composed of an underlying network of

information nodes and directed links (the hyperspace), and a display system capable of

displaying the contents of a node on screen and facilitating navigation between

individual nodes via links.

Browsing or exploring a hypertext system refers to the process of visiting sequences of

nodes (displays) and links to locate and assimilate information related to user tasks and

goals.

30
 During hypertext browsing activities three distinct categories of disorientation

have been identified in the literature (Foss 1989a; Foss 1989b). These categories are:

• Navigational disorientation

• Task disorientation

• Informational disorientation

2.2.1 Navigational disorientation

Navigational disorientation also known simply as ‘disorientation’, ‘getting lost’ (Conklin

1987) or ‘being lost in hyperspace’ (Edwards & Hardman 1989) occurs when a user

becomes spatially lost when exploring a hypertext system. Conklin (1987) describes the

problem as ‘the tendency to lose ones sense of location or direction in a non linear

document’.

 A hypertext system facilitates the fragmentation of a coherent body of information

into a collection of textual nodes connected via a network of directed links. When

exploring a hypertext system the user needs to maintain a sense of where they are in the

network, how they arrived at the current location and how to navigate to nodes which are

known or expected to exist (Thüring et al. 1995). This information is important for way-

finding and navigation activities (Kim & Hirtle 1995) and understanding the semantic

content of the system and developing an accurate conceptual model (Thüring et al. 1995).

31
 In the absence of external orientation aids provided by the display interface the

user maintains a sense of orientation in working memory which tends to be both limited

and erroneous. As a result, in large topologically complex information networks users are

prone to losing track of their location and having difficulty remembering and finding

information of interest. Foss (1989a) explains that navigational disorientation is an

inherent aspect of hypertext systems as a hyperspace may contain hundreds of nodes of

information linked together in a complex topology yet only a very small number may be

examined on screen at any particular moment.

 Symptoms of navigational disorientation include failure to locate information in

the network (retrieval failures), navigational problems such as looping and inefficient

paths, lack of closure (uncertainty whether the extent of the network is known or whether

information may have been forgotten or passed by) and not knowing if a link will bring

up relevant or sought after information (Foss 1989b). Edwards and Hardman (1999)

characterize navigational disorientation as:

• Not knowing where to go next

• Knowing where to go, but not knowing how to get there

• Not knowing the current position relative to the overall structure

To recover from navigational disorientation users have been observed to return to a

familiar location within the information network to restart exploration or backtrack to

previously visited nodes in an attempt to regain context (Foss 1989b).

32
2.2.2 Task disorientation

Task disorientation also known as ‘task overload’ (Foss 1989a) or ‘cognitive

overhead’ (Conklin 1987) refers to problems managing and keeping track of goals and

digressions during exploration activities. These problems originate from the cognitive

demands placed on the user when exploring a complex information system. Conklin

(1987) describes cognitive overhead as “the additional effort and concentration necessary

to maintain several tasks or trails at any one time”. The phenomenon is succinctly

described by Foss (1989a) in terms of the “embedded digression problem”.

 The embedded digression problem describes the process by which a user suffers

from disorientation when pursuing multiple paths or digressions through an information

network. When following a path through the network, which is generally driven by a

particular task or goal, the user may encounter an interesting aside thus branching from

the main exploration path into a digression. The current task is mentally put ‘on hold’ by

the user as the digression is processed. However the digression may take an unexpected

amount of time, or may in turn spawn further digressions (embedded digressions) which

can lead to the original task(s) being forgotten due to the limited attention and working

memory of the user. McAleese (1999) elegantly summarizes the phenomenon as when

“the user keeps following chains of thought until the original goal is lost”.

 It is interesting to note that exploratory goals may also be forgotten when users

are required to concentrate on navigational or interface management issues such as

locating nodes in the network, recovering from problems such as getting lost and

arranging the interface (Foss 1989a).

33
 Symptoms of task disorientation include users forgetting why they moved to a

particular location (What was I doing?), confusion as to what they had intended once

arriving at a location (What was I going to do?), forgetting to return from digressions and

neglecting to pursue planned digressions (Foss 1989b).

2.2.3 Informational disorientation

The final category of disorientation experienced during hypertext exploration activities is

informational or conceptual disorientation. Informational disorientation pertains to

difficulties comprehending, synthesizing and summarizing the semantic content of the

information examined during a period of exploration. Foss (1989a) describes this

problem in terms of the “Art museum phenomenon”. The ‘Art museum phenomenon’

describes a situation where subsequent to viewing a large number of nodes of information

the task of forming a coherent abstraction or comprehension of the overall content can be

difficult for the user. The art museum metaphor is derived from a hypothetical visit to an

art museum in which a person might look at hundreds of paintings yet be unable to

describe a particular painting in detail or describe how particular styles of art have

influenced one other.

 Symptoms of the art museum phenomenon include a lack of detailed memory for

any particular node that was examined and an inability to summarize or abstract what was

learned during a exploration or browsing session (Foss 1989a).

34

2.3 Factors inducive to disorientation

Disorientation experienced during information exploration activities is a factor of both

the structure of the underlying information network as well as the display system or

exploration interface in use.

2.3.1 Structure of the information space and its role in disorientation

Van Dyke Parunak (1989) explains that the complexity of the topology connecting an

information network affects a user’s ability to navigate within that space. Simple, regular

topologies, such as linear, ring or hierarchy allow the user to employ a variety of

navigation strategies and the scope for users getting lost and disoriented is low. There is

a definite spatial organization within the network which the user can exploit as an

orientation and navigational aid. For instance Conklin (1987) notes that in a linear

network the user has two choices when attempting to find information, either before the

current location or after. In an arbitrarily complex network the choice is not so straight-

forward. Van Dyke Parunak (1989) explains that as the size and topological complexity

of the network increases, the number of available navigation strategies decreases and

there exists more ways for the user to move between different nodes of information. This

richness and variety of navigational options leads to problems such as getting lost and

disoriented. Van Dyke Parunak (1989) concludes that arbitrary topologies offer the least

number of navigation strategies and thus the greatest scope for user disorientation.

35
 Kim & Hirtle (1995) note that path complexity is a factor which negatively affects

navigation performance and the acquisition of mental maps in a hypertext system. Path

complexity refers to the number of decision or branch points along paths through the

network. Foss (1988) notes that when a lot of interesting links are located in close

proximity the user may be distracted from their main task and suffer from embedded

digression problems leading to task disorientation.

 Thüring et al. (1995) describe that ‘the fragmentation characteristic’ inherent in

hypertext systems hinders a user’s ability to construct a mental representation of

information distributed across a number of nodes in a hyperspace. Essentially the greater

the level of fragmentation in a hyperspace (the finer the granularity of related information

nodes) the more effort required by the user to synthesize an overall mental model due to

the keyhole effect (only a limited number of nodes may be displayed on the screen at any

given moment).

 Differentiation and homogeneity are also significant factors in terms of potential

for disorientation in an information space. Differentiation refers to the ability to

distinguish between fragments of information (Kim & Hirtle 1995) and homogeneity

(Nielsen 1990) refers to a situation where the appearance or presentation or information

in a information space makes it difficult for users to differentiate. When the information

contained in an information space is visually homogenous users are unable to recognize

previously visited locations, thus making them confused about the path they have taken

(Nielsen 1990).

36
 In summary large, irregular, highly fragmented and visually homogenous

information networks are much likelier to induce disorientation on behalf of users.

2.3.2 Structure of the exploration interface and its role in disorientation

While poor structure of the underlying information network is a factor inducive to

disorientation, it is the role of the display interface to help the user maintain orientation,

synthesize information across displays and avoid navigation problems.

 Watts-Perotti & Woods (1999) maintain that the degree of visual momentum

exhibited by a display interface dictates the level of disorientation and navigational

problems experienced by the user.

 Visual momentum is ‘a measure of a computer user’s ability to extract relevant

information across views and displays’ (Woods 1984). The idea is inspired from concepts

used in cinematography to measure the impact from one view to another on the

observer’s cognitive process, in particular the extraction of task relevant information

(Hochberg 1986). When visual momentum in an information display system is low or

absent, information is presented as a series of discrete isolated displays. Woods (1984)

explains ‘Each transition to a new display becomes an act of total replacement; both

display content and structures are independent of previous ‘glances’ into the database’.

Without visual momentum between displays the user carries the mental burden of

maintaining exploration context and reorienting to the new display with each navigational

transition.

37
 In contrast, an interface exhibiting a high degree of visual momentum supports

the continuity of structure and content from one display to another. Woods (1984)

describes ‘when visual momentum is high, there is an impetus or continuity across

successive views that supports the rapid comprehension of data following the transition to

a new display’. A high level of visual momentum between displays leads to a situation in

which interface mechanisms become transparent and the user is allowed to focus fully on

user level goals and tasks.

 Essentially high visual momentum implies that a user expends little mental effort

to place new displays in the context of the larger system. Conversely, low visual

momentum requires users to spend more mental effort in putting new displays into the

existing context. Design techniques to increase visual momentum include display

overlap, long-shots, landmarks, bookmarks and spatial dedication (Watts-Perotti &

Woods 1999).

2.3.2.1 Long-shots

A long shot is a high-level overview of the information space which the user can exploit

as an orientation, navigation and comprehension aid. The long shot allows the user to

relate the current display to previous displays and to establish a frame of reference to aid

in comprehending upcoming displays, thus helping to alleviate both navigational and task

disorientation.

38
 An example of a long shot is a graphical overview of the underlying information

network which highlights the users current location along with previously visited and

upcoming locations.

2.3.2.2 Functional-overlays

A functional overlay displays the context surrounding the display currently being

examined. Generally this allows the user to avoid navigation and consider multiple

related pieces of information in a single display, thus helping to relieve navigational, task

and informational disorientation.

 An example of a functional overlay is a pop-up window containing the contents of

a link in a hypertext system. The user can examine the contents of the pop-up window

while simultaneously examining the original link location and its surrounding context.

2.3.2.3 Landmarks

A landmark is a prominent and easily identifiable feature or element in the information

space which, at a glance, provides information about orientation and location to the user.

Landmarks are used to aid users in reorienting to the structure of the information space as

well as providing a mechanism to return to known locations. The classic example of a

landmark is the ‘home’ button in a hypertext system.

39
2.3.2.4 Bookmarks

Bookmarks record positions of interest in an information space. The use of bookmarks

allows the user to store a set of pertinent locations in a central and easy to access area of

the display space. This means that the user can access relevant information without the

need to exhaustively search through the network. Removing the need to exhaustively

search alleviates navigational and task disorientation. Furthermore bookmarks may be

used as a record of the interesting elements discovered during a complex task thus

helping to alleviate informational disorientation.

2.3.2.5 Spatial dedication

Spatial dedication is concerned with the organization of the information space so that

information is spatially arranged. This means that information is consistently kept in a

certain place within the system. Spatial dedication provides users who are familiar with

the spatial structure a memory aid facilitating navigation to desirable information without

the need to exhaustively search through the information network. This alleviates both

navigational and task disorientation.

 Watts-Perotti & Woods (1999) describe spatial dedication as a mechanism used to

remain oriented in spread sheet environments. Users were observed returning to known

locations in a given sheet based on natural spatial encoding. This mechanism allows the

user to remain focused on their task. De Alwis & Murphy (2006) also observed

programmers using specific spatial locations within source code documents to quickly

40
locate frequently visited method bodies and the location of variable definitions (generally

at the top of a given source file) without exhaustive scrolling.

2.4 Tools and techniques to alleviate disorientation

In response to the various categories of disorientation encountered when exploring

hypertext systems a variety of technologies have been developed to alleviate the various

aspects of the phenomenon and support the user to remain focused and oriented in the

information space. Many of these techniques are based on or match the the design

techniques to increase visual momentum as outline in Chapter 2 Section 3.

2.4.1 Overview maps

Conklin (1987) proposes that one of the major technological solutions to the problem of

navigational disorientation is the use of graphical browsers or overview maps. A

graphical browser is a tool capable of rendering the structure of the underlying

information network in a 2d or 3d display thus creating a virtual spatial environment

which can be exploited by the human visiospatial system. Typical examples of graphical

browsers appear in hypertext systems such as NoteCards (Halasz et al. 1986) and

Intermedia (Garrett et al. 1986). Watts-Perotti & Woods (1999), in a study of spreadsheet

users, found that the provision of a printed map of a spread sheet structure reduced

perceived disorientation on behalf of users.

41
 Thüring et al. (1995) also propose that to decrease the cognitive overhead on

users, and thus increase the comprehensibility of a hypertext system, a graphical map or

presentation of the information space should be provided which enables the user:

• To identify their current position with respect to the overall structure

• To reconstruct the way that led to the current position

• To distinguish between different options for moving on from this position

However there are a number of challenges with respect to overview maps which limit

their usefulness at alleviating disorientation. Due to screen space limitations only a small

portion of a very large network overview may be visible to the user at any particular

moment. Furthermore as the complexity and density of the network increases the

overview becomes more difficult to use and interpret and thus its usefulness quickly

dissipates. Foss (1989a) explains that “browser graphs containing more than 10-15 nodes

approached the user’s saturation point”. In such a scenario a form of distorted view or

fisheye is generally required - or alternatively the overview may be filtered to display

only pertinent nodes based on some defined criteria.

2.4.2 Search/Query mechanisms

A second technological solution to navigational disorientation proposed by Conklin

(1987) is the application of database style search/query mechanisms. Instead of browsing

for nodes/links in the network, the user executes a search based on criteria such as

42
keywords, arbitrary strings or node/link attributes such as author, type etc. The user can

then navigate directly to the required information and bypass the need for searching

through the information network.

 Fast arbitrary navigation systems are also important in terms of task

disorientation. For instance a user might be exploring at one point in the network and

suddenly want to check some information located at a distant node. By the time the user

has navigated across the network, dealing with the associated navigational overhead, they

may have forgotten their original intent or become lost.

2.4.3 Guided Tours/Beaten tracks

A guided tour or beaten path (Van Dyke Parunak 1989) is a predefined or recommended

path through an information network which is laid out by the author or a power user. The

user relinquishes the flexibility of open exploration by following a series of clearly

marked links and nodes. The task and navigational disorientation associated with

browsing is avoided and the user is free to concentrate on reading and comprehending the

information content. However guided tours are still prone to conceptual disorientation

associated with information fragmentation. Guided tours are considered useful for

introducing a hyperspace to new or novice users.

43
2.4.4 Visual/Interactive browsing summary/history

Foss 89a proposes an innovative suite of hypertext browsing tools designed to alleviate

the disorientation associated with embedded digressions and the art museum phenomena.

The primary facet of the tool suite is to provide the user with a visible and interactive

history of their browsing activities.

2.4.4.1 Graphical history list

A graphical history list (Foss 1989a) is designed to support the management of

exploratory digressions and promote user orientation by providing a list of the nodes and

local neighbourhoods visited by the user during a browsing session (See Figure 2.3). The

list is displayed on screen and contains an entry for each node visited during a session.

When an entry is selected a ‘mini browser’ is opened showing the local neighbourhood

associated with the visited node. The mini browser distinguishes between visited and non

visited neighbouring nodes and may be computed to a given depth.

 The graphical history list supports digressions as users have a record of the nodes

that have been visited and can easily return to unexplored neighbouring nodes via the

mini browsers. The mini browser also allows the user to regain context at previously

visited nodes and distinguish unexplored neighbouring nodes.

44

Figure 2.3: A graphical history list (top right) containing an ordered list of the nodes

previously visited by the user. ‘Mini-browsers’ depicting the local neighbourhood

surrounding the selected nodes are displayed in centre.

2.4.4.2 Graphical history tree

A history tree (Foss 1989a) is similar to a graphical history list in that it records the nodes

visited by a user during a browsing session. However the history tree displays the user’s

navigation path hierarchically and includes a precise temporal ordering (See Figure 2.4).

45

Figure 2.4: A graphical history tree displaying the users navigation path through the

hyperspace. Branches indicate digressions inferred from cycles in the users navigation

history.

When a cycle is detected in the navigation path it is treated as a completed digression and

added to the tree as a branch with the revisited node as root. The history tree allows the

user to visualize their navigation path through a hypertext system in terms of paths and

digressions. Selecting an entry in the history tree opens the corresponding hypertext node

in an onscreen display.

46
2.4.4.3 Summary boxes

Summary boxes (Foss 1989a) are designed to facilitate note taking during a hypertext

browsing session, thus aiding informational tasks. If a summary box is open on screen all

nodes visited by the user are opened with a blank ‘twin’ node. The user can enter notes in

the twin or copy interesting information from the original node into the twin. The original

node and the twin are dynamically entered into a history list contained in the summary

box (See Figure 2.5).

Figure 2.5: A summary box containing the visited nodes and associated ‘twin’ or

summary cards. Pertinent notes and information may be copied from the original nodes

into the summary cards during browsing activities.

47
The summary box is designed to mitigate the art museum phenomenon as the user may

examine the summary box after a browsing session and view a list of the frames visited

annotated with notes and other information deemed pertinent during the session.

2.4.4.4 Summary tree

Summary trees (Foss 1989a) are much like history trees in that they record the user’s

movements through the hypertext network as a temporally ordered hierarchy of nodes.

However in a summary tree the user is free to add annotations to the tree in the form of

notes and arbitrary links between nodes. An example summary tree is illustrated in Figure

2.6. The summary tree is designed to allow the user to build a custom conceptual map or

diagram which may or may not be isomorphic to the actual structure of the hypertext

network itself. The conceptual diagram helps the user to summarize and comprehend the

information encountered during a browsing session.

48

Figure 2.6: An annotated summary tree. The summary tree allows the user to arbitrarily

annotate a representation of their browsing history.

2.4.5 Preservation of context

Preservation of context is a technique which allows the user to examine information in

the context of previously examined information. The SEPIA browsing interface (Thüring

et al. 1995) displays the contents of the current or active information node and the

contents of its immediate predecessor in a dual display as the user explores the system.

Thüring et al. (1995) explain that preserving the context of the previously explored node

supports the “given-new-strategy” (Clark and Haviland 1974). When new information is

displayed in context with previous information it becomes easier for the user to make

meaningful connections and relationships between the information units. The impression

of fragmentation in the information network is also reduced.

49

2.5 Summary

This chapter discussed the core tenets of disorientation in the computer medium, with a

particular focus on the hypertext exploration domain. A particular focus on hypertext was

made as it shares a very similar structure to source code.

 Disorientation refers to a state of mental lostness which users encounter when

exploring or browsing large information spaces. During hypertext browsing activities

three types of disorientation have been identified, navigational disorientation where the

user loses their sense of location and orientation in the information network, task

disorientation where the user has difficulties managing tasks or digressions and

informational disorientation where the user has difficulties comprehending and

summarizing information.

 Disorientation is induced by the structure of the underlying information network

as well as the structure of the display system in use. Large, fragmented and visually

homogenous information spaces exhibiting an irregular topology have the greatest scope

for user disorientation. A high level of visual momentum in the display interface reduces

the incidence of disorientation and helps users focus on tasks and goals.

 A variety of technologies have been developed to alleviate the various aspects of

disorientation during hypertext exploration activities. The technologies include overview

maps, search/Query mechanisms, the provision of interactive browsing history and

preservation of context.

50

Chapter 3

Lost in Code Space

“During informal conversations, developers have mentioned to us that they occasionally

become lost or disoriented when they explore a system. The disorientation involves losing

the context or relevancy of their recent actions to their overall goal.”

- De Alwis & Murphy (2006).

Programmers have reported, and have been observed to suffer from disorientation during

source code exploration activities, even when working in advanced modern integrated

development environments (De Alwis & Murphy 2006). This chapter discusses

programmer disorientation, specifically in the context of source code exploration

activities in an IDE setting.

 Initially a number of structural properties of source code which are inducive to

disorientation are discussed. This perspective provides an important foundation for

ongoing discussion and links into the discussion of information structure and its role in

51
disorientation discussed in Chapter 2 Section 3.1. Then an analysis of the interface design

of a state of the art modern IDE is presented. The focus of this analysis is to identify

interface characteristics and limitations which contribute to the disorientation, such as

lack of visual momentum (Chapter 2 Section 3.2). Finally a number of existing

technologies and research tools designed to alleviate disorientation in the IDE are

described and their scope and effectiveness considered.

 The aim of this chapter is to explore the conceptual landscape associated with

programmer disorientation in modern IDEs and highlight issues in the space.

3.1 Source code exploration

Before discussing the issue of programmer disorientation during source code exploration

activities, it is useful as a preamble to first consider the nature of source code exploration

itself. Contrary to the myth of a new programmer joining a development team and

attempting to ‘learn the system’ in a single exploratory session, source code exploration is

generally carried out on an ‘as needed’ basis and in the context of specific software

development and maintenance tasks (Singer et al. 1997).

 Due to the sheer size and complexity of modern software systems it is generally not

feasible for an individual programmer to maintain a detailed knowledge or

comprehension of a software system on an ongoing basis. Instead programmers will

explore and comprehend portions of the system as needed, driven by their immediate task

requirements. This generally involves exploring just enough of the system to identify

52
those constructs and interactions implementing a particular aspect or feature prior to

making necessary changes or enhancements.

 Once a change task has been satisfactorily completed, the in depth-knowledge of

the source code gained during the exploration and discovery phase rapidly fades into an

abstract overview. The programmer will simply re-explore portions of the system in detail

when encountered during subsequent tasks.

 This high level approach to exploration and discovery in software systems has been

described as ‘just in time comprehension’ (JITC) (Singer et al. 1997) and highlights the

core and pervasive nature of source code exploration as a programmer activity.

3.2 Disorientation in code space

Programming languages provide linguistic tools and constructs which facilitate the

decomposition of complex systems and operations into discrete program elements (for

instance interface, type, method and fields declarations in an object oriented system).

These elements are organized into a set of physical storage units - generally source code

documents - and linked using a variety of expressive referencing mechanisms to achieve

desired system structure and behavior. In essence, source code may be considered as a

non-linear information space composed of inter-referenced program elements, similar in

structure to a complex hyperspace (Storey et al. 1999; Schümmer 2001). See Chapter 2,

Section 2 for a discussion of hypertext systems and the structure of a hyperspace for

reference.

53
 Programmers repeatedly explore within ‘code space’ in order to assimilate a

comprehension or ‘mental model’ of system implementation prior to and during software

development and maintenance activities (Singer et al. 1997;Ko et al. 2005). This

conceptual model allows programmers to reason about the system and make informed

decisions related to the performance of their tasks.

 Chapter 2, Section 3.1 described that certain properties of an information space

such as size, fragmentation, visual homogeneity and complexity of topology can increase

the likelihood of users becoming lost and disorientated during exploration activities. A

realistic system of source code is generally quite large, highly fragmented and exhibits a

dense arbitrary arrangement of semantic relationships and cross-references with no

inherent or uniform spatial structure to guide the user. Source code is also visually

homogenous.

 These properties, individually, and particularly when combined in a single

information space, represent a significant potential for disorientation. In fact one could

justifiably argue that source code manifests a worst case scenario in terms of scope for

disorientation in an information space. A number of properties of source code are

particularly inducive to disorientation. These properties, developed from existing research

literature, are:

• A high level of fragmentation

• A dense and irregular topology of references and semantic relationships

• Visual homogeneity

54
3.2.1 Fragmentation

Fragmentation refers to the degree to which a coherent or conceptually related body of

information is broken up and stored at non adjacent points in an information space. A

high level of fragmentation results in a larger and more topologically dense information

network meaning that users need to navigate greater distances and synthesize greater

amounts of information during specific exploration tasks. Moreover, the greater

separation and displacement of related information makes it more difficult for users to

construct an accurate conceptual model and comprehend the information content

(Thüring et al. 1995). In Chapter 2, Section 2 the discussion of disorientation in hypertext

systems highlighted that fragmentation is a significant underlying factor in navigation,

task and informational disorientation.

3.2.1.1 Source code fragmentation

Fragmentation is an inherent characteristic of source code resulting from the application

of decomposition and abstraction principles in software design and implementation. The

practice of separating concerns and decomposing complex systems and operations into

cohesive units of implementation generally results in greater flexibility and reusability in

a software system (Parnas 1972; Kiczales et al. 1997). However decomposition also

negatively impacts explorability and comprehensibility by increasing the level of

fragmentation in the associated source code (Chu-Carrol et al. 2003).

55
 In modern software systems it is common for the source code representing a

conceptually coherent portion of system implementation to be broken into numerous

discrete program elements which are then spread over a series of source code documents.

As a result, exploration and comprehension activities often require a significant amount

of navigation between the relevant source code elements and assimilation of a conceptual

model from non-adjacent locations in the code space. An activity which is prone to

disorientation (Thüring et al. 1995). See Chapter 2, Section 3.1 for a discussion of

fragmentation and its role in disorientation.

3.2.1.2 Control flow scatter

Chu-Carrol et al. 2003 describe fragmentation of source code in terms of ‘control flow

scatter’ because a prominent manifestation of the phenomenon is that the control flow

related to coherent portions of system behaviour is heavily in-directed over a series of

source code documents and therefore difficult to visualize, examine and reason about as a

coherent whole.

 Control flow scatter is a pervasive phenomenon which may be considered

alongside the evolution of program language design and corresponding decomposition

paradigms. As early monolithic systems became difficult to manage due to increasing size

and complexity, the concept of procedural decomposition was developed to enable

programmers to break up complex program operations into manageable units. Procedural

decomposition resulted in significant gains in terms of expressiveness, reusability and

manageability in software systems. However, because control flow could be in-directed

56
arbitrarily in and out of procedure definitions located across various program modules,

the process of exploring code became more effortful and cognitively demanding.

 The advent of the object oriented paradigm introduced further scope for scatter. In

addition to the arbitrary indirection of control flow between method definitions, control

flow could be indirected into complex type hierarchies involving inheritance and

polymorphism. For instance, in an object oriented environment an abstract method

declaration may be ‘implemented’ by any number of type related methods. Therefore to

understand control flow the programmer may also need to explore and comprehend the

type structure of the system.

3.2.1.3 Cross cutting concerns

The existence of cross cutting concerns in a system also contributes to source code

fragmentation. A cross cutting concern is an aspect or feature of a software system the

implementation of which cannot be sufficiently localized within the code space (Harrison

& Ossher 93; Kiczales et al. 1997). Programming paradigms in general support

modularization along a single dimension, a fundamental limitation of modern language

technologies referred to as ‘the tyranny of the dominant decomposition’ (Tarr et al. 1999).

In a realistic software system, not all concerns can be cleanly modularized using the

dominant decomposition. Instead they end up scattered haphazardly across the code space

and tangled into the implementation of existing modularized concerns and in some

instances other cross cutting concerns (See Figure 3.1).

57
 Cross cutting concerns contribute an additional layer of fragmentation to source

and significantly impinge on explorability, essentially forcing conceptually related

portions of code to reside arbitrarily at non-adjacent locations in a code space while

providing no interconnecting network of references to guide the programmer.

Figure 3.1: A visual representation of a crosscutting concern before modularization

(above) and after modularization using AspectJ (below). The code associated with the

concern is localized into a single aspect construct which uses point cut definitions to

affect base code in a non invasive manner.

3.2.2 Topology

Topology refers to the density and spatial layout of the links connecting units of

information to form the structure of an information space. As described in Chapter 2,

Section 3.1, a uniform or regular topology helps users to navigate and remain oriented by

58
reducing route complexity and providing a degree of structural predictability within an

information space (Van Dyke Parunak 1989). Furthermore in Chapter 2, Section 2.1 and

2.2 the issue of an regular structure is highlighted as a factor in both navigational and task

disorientation.

 Certain types of information space support an inherent topological spatialization

which can help the user remain oriented while others may be authored to manifest a

uniform or predictable structure. A spread sheet, for instance, has an inherent two

dimensional structure which may be exploited by user’s natural spatial encoding

capabilities. For instance if the user knows that a particular collection of data is always

located at the top left hand corner of a given sheet they can use this spatial encoding to

find said information with minimal effort and thus remain focused on the task at hand. On

the other hand the author of a hypertext system (which does not have a natural

spatialization) may decide to apply a hierarchal or linear topology to the information

network in order to help the user remain oriented during reading and browsing activities.

If a hyperspace is too conceptually complex to apply a regular structure, the author may

decide to ‘cut’ or add links in order to simplify the overall topology and prevent the user

from becoming lost (Brown 1989).

 Source code does not manifest a natural spatialization and programmers rarely

have the opportunity to devise or improve topological uniformity within a code space.

Due to the sheer size and semantic complexity of software systems, source code generally

exhibits an extremely dense and irregular topology of cross-references and semantic

59
relationships between individual program elements. Figure 3.2 illustrates the potential for

topological complexity and density in source code.

Figure 3.2: A visual representation of fragmentation and topological complexity in source

code. This graph (oriented from left to right) depicts the control flow associated with the

60
generation of a webpage containing a single image in a modern webserver (nodes

represent procedure definitions and arcs represent procedure calls).

3.2.3 Visual homogeneity

During exploration activities visual differentiation between information helps users to

encode and remember route details and identify familiar information and landmarks

within an information space (Kim & Hirtle 1995). Source code is visually homogenous

meaning that it can be difficult, at a glance, to distinguish one fragment of source code

from another. Furthermore there is little scope for natural landmarks, namely fragments

of code which visually stand out and provide orientation cues to the programmer. See

Chapter 2, Section 3.2.3 for a description of the concept of the landmark and its

importance in helping users remain oriented.

3.2.4 Discussion

The uniquely disorientating structure of source code is largely an unavoidable situation

particularly in realistic large scale software systems. The need to express and model

highly complex systems and operations in a flat textual space while maintaining

engineering metrics such as flexibility, reusability and extensibility invariably leads to a

fine grained decomposition and a dense, complex topology of references between

program elements. Additionally factors such as sloppy design and implementation,

unanticipated evolution and the ‘tyranny of the dominant decomposition’ add further

61
scope for fragmentation and topological complexity in code space. Source code is also

naturally visually homogenous.

 In other domains such as hypertext systems, the author of an information space

can modify the underlying structure in order to help readers remain oriented. The level of

fragmentation can be minimized where possible and a smaller and more uniform

topology of links deployed. However, this type of structural engineering is generally not

feasible with source code due to its semantic underpinnings. Programmers would need to

have the ability to change the structure of the underlying language technology itself

which is rarely possible (see Bryant (2002) for related work).

 Ultimately the burden of keeping a programmer oriented and focused during

software development and exploration activities is the responsibility of the exploration

interface in use, which is in most cases an integrated development environment (IDE).

3.3 Exploration in Integrated Development

Environments

Source code exploration is generally carried out in the context of an integrated

development environment, more commonly referred to as an IDE. An IDE combines a

comprehensive set of exploration, development, analysis and debugging tools and

facilities into a single integrated and consistent application. This means that

programmer’s can carry out most aspects of their development and maintenance tasks

without the need to repeatedly switch application context.

62
 This section looks at the source code exploration facilities provided by a state-of-

the-art modern IDE. The aim is to explore the core interface design and the various

mechanisms available for programmers to navigate and explore source code. Using this

base of knowledge, the issue of programmer disorientation is discussed, highlighting how

certain factors of the interface design contribute to the phenomenon.

 The discussion focuses primarily on the Eclipse IDE (Eclipse 2009a). Eclipse was

chosen as it represents the state of the art in modern IDE technology. Eclipse has also

benefited from a comprehensive effort to address suspected issues related to programmer

disorientation (referred to in the IDE community as ‘loss of context’) (Eclipse 2009b). It

was considered acceptable to focus on a single IDE as interface style is generally

consistent across modern IDEs. For instance during the research associated with this

thesis a variety of modern IDEs were encountered and studied including Eclipse (Eclipse

2009a), Netbeans (Netbeans 2009), IntelliJ IDEA (Intellij 2009) and Microsoft visual

studio (Microsoft 2009). All exhibit the same basic structure and provide similar features

from a source code exploration point of view. This reflects the relative maturity in IDE

interface design and technology.

 It should be noted that from this point on when the term ‘Eclipse‘ is used it

specifically refers to the Eclipse platform with the Java development toolkit (JDT)

(Eclipse 2009c) installed. Eclipse is an extensible IDE platform upon which the JDT

provides Java specific tools and features.

63
3.3.1 Interface basics

The Eclipse interface is based around two high level visual elements, namely editors and

views. Editors facilitate the presentation and editing of source code documents (and other

text based artifacts such as property and configuration files etc.) while views support

exploration, present information and provide an interface construct to IDE tools.

 Editors are located in a fixed central editor. Views are ‘docked’ around the edges

of the editor area and may be moved and stacked on top of one another in a tabbed

fashion. This allows a variety of views to be visible and accessible to the programmer

simultaneously in a single application window (See Figure 3.3).

Figure 3.3: The Basic Eclipse IDE interface. The layout is composed of editors stacked in

a central editor area surrounded by a collection of stacked views.

Eclipse is ‘editor oriented’ meaning that each source code document is opened in its own

individual editor display which is located in the central editor area (De Alwis & Murphy

2006). The editor area is tabbed so that multiple editor displays may be open at any given

o
u
tlin

eeditors

editor tabs

problems, tasks

p
a
ck

a
g
e

menu and toolbars

e
xp

lo
re

r

Figure 1: The Eclipse Java perspective as shipped with Eclipse 3.0 M7.

with classes in different packages, branches can be kept open showing more of the
surrounding context.

Eclipse supports many sophisticated program navigation traversals such as finding
all callers of a method, all references to a field, or the declaration of a class. Many
such functions are tied to hot-keys, meaning they can be invoked with little effort. The
environment also maintains a web browser-like stack-based traversal path, supporting
switches between editors as to the order in which they were traversed.

Eclipse features an incremental Java compiler that rebuilds only the necessary parts
of the program upon each file save. The compilation results are dynamically fed into
views such as the problems view, which shows syntax errors across the source code;
side-effects of changes thus become immediately apparent to the developer.

3.5.2 Developer Tool Use
The developers observed chose relatively small to medium tasks. Table 1 presents a
rough summary of their work tasks along with a self-assessed estimation of the task
complexity in comparison to their normal tasks; an asterisk (*) indicates that the task
proved to be more complex than expected due to difficulties that arose during the task.

The developers used four other standard tools in addition to Eclipse: Lotus Notes
for their e-mail; Lotus Sametime as an instant messenging service; Bugzilla, an issue-
tracking system, for managing problem reports (PRs) and feature enhancements for
Eclipse projects; and Google for searching documentation.

Developers also spent time on other related tasks during the study period, such as
responding to queries from users and other developers via e-mail, instant messaging,
visits by other developers, and triaging and responding to PRs. These other tasks were
often interleaved during down-time, such as occurred during builds, waiting for Eclipse
to start, or when fetching and committing files to or from the version control system.
Although not formally verified, many of the e-mails received seemed to pertain to
Bugzilla-generated e-mails in response to changes to PRs.

The Eclipse source code is managed by CVS [3] using facilities provided as part of
the Eclipse environment.

8

64
moment. The programmer can switch between the set of open editors using the visible

editor tabs running along the top of the editor area.

3.3.2 Source code exploration

Eclipse supports a wide variety of source code navigation and exploration facilities

allowing programmers to rapidly traverse and examine the code space during exploration

activities. The primary exploration facilities provided by Eclipse are categorized in the

following list:

• Hierarchal Project browsing

• Search

• Hypertext style exploration via cross-references

• Index based navigation

• Exploratory views

• Tab based navigation

• Navigation History

• Bookmarks and tasks

3.3.2.1 Hierarchal project browsing

The primary exploratory view in Eclipse is the ‘package explorer’ which is generally

located to the left hand side of the editor area. The package explorer presents a

65
hierarchical overview of the programmers workspace from projects to source folders to

packages down to individual source files and program elements. Essentially the package

explorer allows the programmer to browse the work space and project structure.

 Like all exploratory views in Eclipse the package explorer supports navigation to

program elements. If a program element contained in the package hierarchy is double

clicked by the programmer, the corresponding program resource or construct is opened

and displayed in the central editor area. In the case when an interface, type, method or

field is selected, the corresponding source file is opened in an editor, and the fragment of

code corresponding to the declaration is scrolled into the visible editor viewport and

highlighted to draw the users attention.

3.3.2.2 Search

Eclipse provides a variety of search facilities. The code space may be searched for

keywords, or more specifically for particular program elements such as types, methods,

fields or interfaces. The programmer can also search for all references to a particular

program element or all declarations of a particular element such as an abstract method

declaration or an interface type. Search may be initiated from the main Eclipse toolbar,

which brings up a dedicated search dialog, or directly on words appearing in the source

code editor presentation. This is achieved via context menu options such as ‘find all

references in project’ or ‘find all declarations in workspace’.

 When a search has been executed, the results appear in the ‘search results’ view,

located, by default, below the central editor area. The search results view displays the list

66
of matches resulting from the most recently executed search. Clicking on an individual

match will open the corresponding source code element in an editor display.

3.3.2.3 Hypertext style exploration via program cross-references

The most widely used form of source code navigation in Eclipse is hypertext or ‘web’

style navigation between related program elements via program cross-references

(Murphy et al. 2006). As discussed earlier in this chapter, the structure of source code

closely resembles that of a complex hyperspace with program declarations serving as

information nodes and program references as directed links. Thus hypertext style

navigation is a natural application considering the underlying information structure.

 Hypertext style navigation is initiated when the programmer holds the Ctrl key

and moves the mouse pointer over the visible source code editor display (the use of a

modifier key distinguishes between navigation activity and placement of the editor caret).

When a reference is encountered under the mouse, such as a method, type or field

identifier, the associated word of source code transforms into a hyperlink, adopting the

traditional underlined blue font to indicate that navigation is possible. When the

hyperlink is activated, the corresponding source code declaration is opened and

highlighted in a source code editor display.

67
3.3.2.4 Index based navigation

Eclipse supports indexing into code space based on type or resource name. From the

main application window the programmer can call up the ‘open type’ or ‘open resource’

dialogs using specific key combinations. The name of a type or resource is then entered

into the dialog and all matching artifacts in the system are displayed as an alphabetically

ordered list. The programmer can click on a particular match and the corresponding type

or resource is opened in an editor display.

 Index based navigation in Eclipse allows programmers to navigate directly to

types and resources in a code space that are known to exist, without exhaustive

exploration, searching or browsing via exploratory views. The system is particularly

usable due to support for wild cards and incremental evaluation of matches. The

programmer can search for a type or resource when only a portion of the name is known

and can evaluate numerous permutations of a given wild-card query without leaving or

reopening the dialog.

3.3.2.5 Exploratory views

Most other exploratory navigation in Eclipse is facilitated by the various exploratory

views which come bundled with the JDT. The type hierarchy view provides a hierarchical

overview of the type structure associated with a particular class in the system, this

includes super class, implemented interfaces and sub classes. A sub pane in the hierarchy

view presents a detailed summary of all fields and methods declared locally and inherited

68
from the type hierarchy. The call hierarchy view allows the programmer to view all

callers and callees of a particular method definition and to navigate control flow in either

direction. Finally, the outline view displays a compact outline of the currently visible

source code document (the contents of the focused source code editor). The outline view

displays imports, fields, methods along with status such as visibility and signature. When

the outline view is open it automatically updates itself to the currently focused source

code editor instance.

3.3.2.6 Tab navigation

During a particular development or maintenance task the programmer can flip between

the set of open source code documents using the editor tabs located across the top of the

editor area. Tabs are arranged in first opened order from left to right. When the number of

open source code documents exceeds the available tab space, the programmer can use a

drop down panel to view and filter all open documents as an alphabetically ordered list.

3.3.2.7 Navigation history

To facilitate back tracking and revisiting of previous locations, Eclipse maintains a record

of the programmer’s navigation history. Navigation history is stored as a list of source

code locations ordered chronologically with duplicated entries removed. The programmer

can move back and forward through navigation history using buttons located in the main

Eclipse toolbar. History can also be viewed and indexed as a drop down menu containing

69
a list of filenames. The maximum number of entries in the navigation history is 50. If this

window is exceeded, the oldest entries in the list are discarded. Because navigation

history is one dimensional, forward history is cleared when a location is visited which

deviates from existing forward history. For instance, if the programmer backtracks from a

given location and then pursues an alternative route the backtracked route is discarded in

favour of the newly pursued route. Eclipse does not provide support for multiple routes

or digressions in its navigation history.

3.3.2.8 Bookmarks and tasks

Eclipse supports the notion of bookmarks. A programmer can select a particular source

code location or fragment of code and ‘bookmark’ it using a context menu action. The

bookmarked location is then recorded, and appears in the bookmarks view for perusal at a

later date. The bookmarks view supports navigation to bookmarked locations allowing

the programmer to navigate to pertinent locations in the code space without the need to

browse or search.

 Eclipse also supports the concept of tasks which are very similar in nature to

bookmarks but have additional task related state such as priority and a completion flag.

Tasks may also be automatically recorded via specific comment patterns such as ‘TODO’

and ‘FIXME’. The programmer can simply create a comment containing a predefined (or

custom defined) keyword pattern and Eclipse will automatically enter a corresponding

task in the tasks view.

70
3.3.3 Programmer disorientation in the IDE

The study of programmer disorientation during source code exploration activities in the

IDE setting is still an emerging area of research, and literature pertaining to the topic is

rather space.

 Janzen & De Volder (2003) describe that programmers often become disoriented

when switching between exploratory IDE views (for instance the package explorer,

hierarchy view, search results view etc.) due to fragmentation of exploration history

across a set of views, which eventually leads to a loss of context and consequently

disorientation. Kersten & Murphy (2005) explain that programmers suffer from

information overload when switching task focus due to a lack of explicit task state in the

IDE. Elves (2005) describes that programmers often become ‘altogether lost’ when

navigating the complex web of references and relationships between source code

documents.

 The most significant recent work on disorientation in the IDE is provided by De

Alwis & Murphy (2006). Based on informal reports of programmers becoming ‘lost’ and

disoriented during software development and exploration activities, the authors carried

out an exploratory field study in an attempt to gain a greater understanding of the

phenomenon. A group of professional software developers were observed, on site, for a

number of hours as they carried out their daily development tasks using the Eclipse IDE.

The effort resulted in a characterization of programmer disorientation and more

significantly, identified a number of factors (many of which are concerned with interface

71
design) which contribute to disorientation during source code exploration and

development activities in the IDE.

 De Alwis & Murphy (2006) characterize programmer disorientation as a

combination of navigational disorientation and task disorientation, both of which are

deeply inter related.

 Navigation concerns the decisions and actions which facilitate a programmers

coherent movement and transfer of focus through a system of source code. Navigational

disorientation occurs when a programmer:

• has lost their sense of location and direction in the code space (What am I

looking at?)

• is unable to locate information of interest (Why cant I find?)

• has lost their recent history, is unable to remember how they came to their

current or past locations (What was I doing?)

Task disorientation is associated with the programmers goals and intent as they explore a

system. Task disorientation occurs when a programmer:

• cannot remember their intent having arrived at a location (What was i going to

do?).

• has pursued, or was distracted by, an alternate problem and has failed to return

to the original task

72
The characterization of programmer disorientation proposed by De Alwis & Murphy

(2006) is reminiscent to that of disorientation in the hypertext domain (see chapter 2).

Programmers suffer from the same fundamental spatial and navigational disorientation in

code space as well as issues managing multiple threads of concentration (embedded

digressions) and maintaining ongoing intent. Interestingly, informational disorientation is

explicitly excluded from the characterization. The authors highlight a distinction between

conceptual disorientation and spatial disorientation within an information space (Mayes

et al. 1990), concluding that a degree of conceptual disorientation is to be expected

during intense knowledge discovery and refinement activities such as source code

exploration. Therefore, while conceptual disorientation is acknowledged it was not

considered to be a significant part of the characterization.

 De Alwis & Murphy (2006) also identify a set factors which they believe contribute

to the incidence of programmer disorientation. These factors are based on an analysis of

the various incidents of disorientation observed during their study.

Factors inducive to programmer disorientation (De Alwis & Murphy 2006) include:

• A lack of navigation history

• Thrashing to obtain context

• A lack of support for the pursuit of digressions

• Problems associated with a lack of code familiarity

73
3.3.3.1 A lack of navigation history

As previously discussed in this Chapter (3), Section 3, modern IDEs support a wide

variety of exploratory navigation facilities enabling programmers to rapidly navigate

between source code documents and elements located throughout a system of source

code. A programmer can browse the project structure (See Chapter 3, Section 3.2.1),

navigate via program cross references (See Chapter 3, Section 3.2.3), search for particular

keywords of program elements (See Chapter 3, Section 3.2.2 and 3.2.4), traverse the

history stack (See Chapter 3, Section 3.2.7), leverage exploratory views (See Chapter 3,

Section 3.2.5) and make use of bookmarks and task definitions (See Chapter 3, Section

3.2.8). The ease of motility facilitated in modern IDEs is essential due to the inherent

fragmentation and topological complexity of code space (See Chapter 3 Section 2).

 However Eclipse, like all other IDEs that were studied during this research,

effectively restricts the programmer to a single editor display at any moment during

exploration activities. This is primarily due to screen space limitations. The situation

epitomizes the ‘keyhole property’ discussed in Chapter 2, Section 1, that being a spatially

sizeable information space (the set of source code documents/elements making up the

system) is examined via a limited aperture (the visible viewport of the focal editor

display).

 As a programmer navigates from location to location within a system of source

code, the visible editor display is continuously replaced to reflect the current or focal

source code location. There is no visible indication of how the programmer arrived at the

current location or how it relates to previously visited elements and the structure of the

74
surrounding system. Essentially, source code is explored as a series of isolated source

code editor displays, each replacing its predecessor and the programmer internalizes the

burden of maintaining exploration context and orienting to each new display as it appears

on the screen. This situation is indicative of a significant lack of visual momentum in the

exploration interface. See Chapter 2, Section 3.2 for a discussion of visual momentum.

 During their study, De Alwis & Murphy (2006) observed that programmers had

difficulties remembering the path leading them to their current source code location and

consequently the reason as to why they had come to arrive there. To regain context

programmers were observed to backtrack to previously visited locations, recovering the

relationships that brought them to the current location in an attempt to rebuild context and

refresh their memory of the intent being pursued. If this strategy failed programmers were

observed to close all open editor displays and restart their task from a familiar location in

the code space.

3.3.3.2 Thrashing to obtain context

Thrashing (Henderson & Card 1986) is a behaviour associated with disorientation which

is commonly associated with keyhole displays (Watts-Perotti & Woods 1999) such as that

presented by modern editor oriented IDEs. When a user needs to correlate, compare or

contrast information located at disjoint points in an information space, which cannot be

brought together in a single display due to interface constraints, they tend to repeatedly

navigate or flip between displays containing relevant information in order to gain the

necessary overview to accomplish their goal.

75
 During their study De Alwis & Murphy (2006) observed programmers repeatedly

scrolling and jumping within and between source code editor displays. Thrashing activity

requires the programmer to store additional information in working memory (the context

being shared across the different views) and focus attention on interface manipulation

activities as opposed to their underlying task. This kind of extraneous activity may be

distracting enough for the programmer to lose their focus and become disoriented.

3.3.3.3 A lack of support for pursuit of digressions and insufficient task context

A digression occurs when a programmer suspends their current task or intent to pursue or

is distracted by another, perhaps unrelated task or intent. A digression may in turn spawn

further digressions and eventually the original task or intent may be forgotten. For

instance a programmer might receive an email from a colleague while investigating a bug

they have noticed in the system. The disruption results in the programmer focusing on

replying to the email for a given period of time. Once finished the programmer may no

longer remember their original bug related task and neglect to resume their work on it.

Alternatively the programmer may remember the original task but may have forgotten

most of the associated context which then needs to be rebuilt, requiring additional time

and effort.

 Because there is no explicit manifestation of task context in the IDE the burden

rests on the programmer to manage suspended tasks in memory and recreate the context

of suspended tasks once resumed. During the study, programmers were observed having

76
problems with digressions, often pursuing digressions without recording the original task

and thus failing to resume the suspended task at a later time.

 Digressions may also occur at a more fine grained level during source code

exploration activities (see Embedded digressions (Foss 1989a) in Chapter 2, Section 2).

The act of investigating source code results in a continuous stream of small scale

digressions, which could also be described as threads of thought (De Alwis & Murphy

2006). For instance when investigating a piece of code, the programmer may be obliged

to investigate an associated piece of code in another area of the system and so on.

Eventually, due to a lack of explicit navigation context, the programmer may eventually

forget their original intent which may cause important information to be overlooked.

3.3.3.4 Code familiarity

During the study participants reported that the exploration of unfamiliar source code was

a significant cause of disorientation. Participants described that developing a mental

model of unfamiliar code was difficult, and that they would often loose track of their

location and become lost in unfamiliar areas of the system.

3.4 Mitigating programmer disorientation

Programmer disorientation is a significant concern in modern IDE design. Recovering

from a state of disorientation takes both time and effort which has a negative impact on

overall programmer productivity and satisfaction.

77
 Modern IDEs provide various features designed to help the programmer remain

oriented during exploration activities, and to reduce the effort associated with the

exploration of fragmented source code. Moreover a number of research tools have also

been proposed and developed to address particular aspects of the phenomenon. The

distinction between alleviating disorientation and remaining oriented isn't hugely

important and is mostly a question of terminology. Tools designed to alleviate

disorientation essentially help the programmer to remain oriented. And recovering from

disorientation is a secondary point when a system is designed to help the programmer

remain oriented.

3.4.1 Core IDE technologies

The Eclipse IDE supports the concept of pop-ups which are essentially a form of display

overlap (an approach to increase visual momentum (Watts-Perotti & Woods 1999) see

Chapter 2, Section 3.2). From a given source code editor, the programmer can position

the mouse cursor over a source code reference for a short period of time to invoke an

overlay display containing a read only copy of the corresponding source code declaration.

This pop-up technique allows the programmer to view remote source code declarations in

the context of a source reference and thus avoid navigating away from the current

location and suffering from the associated loss of context. However the approach is

limited as pop-ups tend to occlude a considerable portion of the source context and

generally cannot be moved by the programmer to prevent such a scenario. More

importantly, the pop-up display does not support any further exploration and thus the

78
programmer is limited to a single level of surrounding context, if the programmer wants

to consider a further level of context they have to leave the current source code location

and deal with the resulting loss of navigational context.

 A second technique used in Eclipse is the declaration view which is similar to a

source code pop-up but is located in a fixed view outside of the editor display, thus

avoiding the occlusion problem. The declaration view, typically docked below the central

editor area, allows the programmer to examine the source code declaration associated

with a selected program reference from the editor display. Again the programmer can

view surrounding context without navigating away from the current source code location.

However, the declaration view requires large visual saccades away from the source

context and is also, like the pop-up, restricted to a single level of surrounding context. It

is also the case that programmers tend to avoid additional views in the IDE (De Alwis &

Murphy 2006). Additional views take up precious screen real estate in an already

cramped visual space.

 Eclipse also supports the use of multiple editor displays which may be used to

circumvent the need to thrash during exploration activities. Editors may be tiled in the

editor area so that a number of source code locations can be be made visible in a

simultaneous fashion. To use this feature the programmer drags editor tabs into the editor

area in such a way that they begin to tile in the desired manner. While this mechanism

may allow the programmer to view multiple source code displays, it also reduces the

space available for each individual display. The programmer may need to carry out a

considerable amount of interface adjustment (scrolling and resizing) to provide enough

79
visible context within an individual display to make the code readable and the approach

worthwhile.

 The navigation history stack See (Chapter 3, Section 3.2.7) may be considered as

a tool which allows a programmer to recover from a state of disorientation. When a

programmer gets lost in the code, they may use the history stack to back track to previous

locations in order to recover their context. However the history stack is still operating

over the keyhole display and as such often facilities disorientation on its own behalf.

 Finally the index based navigation facilities in modern IDEs (Chapter 3, Section

3.2.4) allows programmers to navigate directly to types and resources in a code space that

are known to exist without exhaustive exploration, searching or browsing via exploratory

views. This mechanism is valuable when the programmer knows the various types in the

system but is less useful during open exploration activities.

3.4.2 JQuery

Janzen & De Volder (2003) maintain that when exploring source code in the IDE

programmers suffer from disorientation when switching between exploratory IDE views.

As discussed in the previous section, IDEs support a variety of exploratory views.

However, exploratory views are typically tailored specifically to support exploration of a

particular type of program relationship. For example a type hierarchy view will allow the

programmer to explore along inheritance relationships while a package explorer view

will support the exploration of project structure. These views usually provide a tree like

interface where nodes represent program elements and sub nodes are related to parents by

80
a specific relationship type. The advantage of the hierarchical structure is that a visible

representation of structure and exploration context is available which helps the

programmer to remain oriented and focused on their task.

 However, because each view is limited to a particular type of program

relationship, when a programmer wants to explore using an unsupported relationship type

they need to switch to a different view. Janzen & De Volder (2003) claim that the process

of switching between exploratory views is disorienting in itself, but moreover the

programmer’s exploration path becomes fragmented across multiple separate views. As a

result the programmer can lose track of their exploration context and become disoriented.

 In response to this problem, the JQuery tool (Janzen & De Volder 2003) was

developed (See Figure 3.4). JQuery is a source code exploration tool that combines

aspects of a hierarchical browsing tool and a software query tool. The aim of JQuery is to

reduce the mental burden associated with source code exploration by:

• Providing a coherent and unfragmented representation of the programmers

exploration path which helps the programmer to remain oriented in the

exploration task

• Allowing the programmer to explore a broad range of program relationships

from a single IDE view thus reducing the disorientation associated with view

switching

81

Figure 3.4: The JQuery view (left).

The programmer uses the JQuery tool by entering a query manually via a query language

or, more commonly, selecting from a set of predefined queries built into the tool. The

results of the query are then displayed in the JQuery tree view. Associated with each node

in the view is a specific context menu which lists the ways in which the tree can be

expanded at that node. The tool provides a comprehensive suite of default program

relationships and custom relationship types may be added to the menu structure by the

user via a configuration file.

 JQuery allows a programmer to explore a software system via a comprehensive

set of program relationships from within a single hierarchical view. The programmer

avoids the requirement to switch between a variety of separate views and the explicit

unbroken representation of the exploration path allows the programmer to see how a

82
particular source code location or element fits into the overall exploration context and

supports backtracking and the perusal of multiple exploration paths in parallel. The

JQuery too was not evaluated via a user experiment to determine its effectiveness at

alleviating programmer disorientation.

3.4.3 NavTracks

Elves (2005) explains that programmers are prone to getting lost and suffering from

disorientation when navigating large complex software systems. When working on a

given development or maintenance task, a programmer will often need to repeatedly

examine and/or modify source code contained in a number of task relevant files spread

across the code base. Over the course of the task, the programmer will need to remember

the set of relevant files and how to navigate through the information space to locate them

when necessary, but source code is often structurally complex and the constant navigation

between files is a cognitively draining process. The programmer might occasionally get

lost and lose track of their intent when navigating through the software space.

 NavTracks (Singer et al. 2005) is a source code navigation tool designed to

alleviate this problem by recommending related files to the user (See Figure 3.5).

NavTracks interactively analyses a programmer’s navigation history and records

associations between visited files. These associations are then used as the basis for

recommending potentially related files as a developer navigates the system. The goal of

NavTracks is to present a user with an accurate list of related files when working on a

83
particular file. Instead of having to recall the next file and then navigating to it, the

programmer simply recognizes (a cognitively cheap process) and selects the related file

in the NavTracks view and continues undisturbed with their task.

 The main principle behind NavTracks is that exploration paths through an

information space can reveal the user’s model of how information should be connected

thus reflecting the user’s mental model of the system.

 Figure 3.5: The Navtracks view displaying related source files associated with the

current source file. Related files are inferred based on the programmers navigation

history.

3.4.4 Mylar/Mylyn

Mylar (Kersten & Murphy 2005) is similar in concept to NavTracks but operates by

filtering IDE view as opposed to recommending related files. Again if one considers a

84
programmer working on a large complex software system. Over a period of time the

developer will work on a variety of tasks and during each task will visit and revisit

multiple task relevant source code locations. IDE views are intended to help the

programmer to locate, examine and navigate between these locations. However in large

software systems, the utility of IDE views degrade due to information overload. The

proportion of task relevant information in a view decreases and the programmer spends

more time searching IDE views and navigating for task relevant code. The Mylar tool

(See Figure 3.6) is designed to mitigate this problem by filtering views for task relevant

information.

 Mylar monitors a programmer’s interaction patterns within the IDE and builds a

degree of interest (DOI) model (Card & Nation 2002) for program artefacts. When a

programmer visits or edits a program artefact its DOI value is increased. The DOI will

then degrade over time if the artefact is not revisited by the programmer. The DOI values

are applied to a filtering function which operates over the IDE views so that only task

relevant artefacts are displayed to the programmer. More interesting or relevant artefacts

(those with higher DOI values) are also highlighted while less relevant artefacts are

displayed in a less prominent manner or filtered out altogether.

85

Figure 3.6: Mylar: before and after, view filtering based on DOI.

A more mature version of Mylar entitled Mylyn (Eclipse 2009e), which is available as an

extension of the Eclipse IDE, includes task context as a first class entity. The programmer

can create and switch between tasks each with their own particular DOI which is applied

to the set of IDE views.

3.5 Summary

Source code manifests a particularly disorientating information space due to a variety of

inherent structural and organizational properties such a high level of fragmentation, a

dense and irregular topology of references and semantic relationships and a homogenous

appearance. Based on current language technology, it is generally unfeasible to modify

the structure and layout of source code in order to bring about a more regular and less

disorientating information space. This is a common approach to reducing disorientation

in the hypertext domain (Brown 1989; Van Dyke Parunak 1989). Instead it is the role of

86
the IDE, the medium in which source code exploration is generally carried out, to help

programmers deal with the complex and fragmented structure of code while remaining

focused and oriented during their exploration and development tasks.

 Modern IDEs, while providing a wide gamut of navigation and exploration

facilities to support the exploration of source code, exhibit certain interface design

characteristics which, combined with the disorientating nature of the underlying

information space, significantly contribute to the incidence of programmer disorientation:

• Modern IDEs generally exhibit a keyhole style interface which effectively

restricts the programmer to viewing a single fragment of source code at any

particular moment during exploration activities.

• Moreover there is little to no visual momentum between successive source code

displays, no visible navigation or task context and no explicit representation of the

programmers evolving conceptual model.

• In addition, the support for examining multiple fragments of code in a

simultaneous fashion tends to rudimentary, limited and generally problematic

leading to thrashing problems and difficulties comprehending code.

The result of these interface design issues is a considerable lack of cognitive support for

the programmer as they carry out source code exploration activities. Essentially, the

programmer is forced to maintain a large amount of context in their working and short

term memory which is prone to distraction and overloading, particularly when faced with

87
interface problems such as getting lost in the code space, thrashing between displays and

engaging in interface adjustment activities.

 A number of approaches have been designed to tackle programmer disorientation

in the IDE. Standard IDE technologies such as pop-up displays and the Eclipse

‘declaration view’ allow programmers to explore secondary relationships in source code

without context loss associated with explicit navigation. However this support is very

limited and as such often goes unused (De Alwis & Murphy 2006). Researchers have also

developed a number of approaches. Janzen and De Volder (2003) developed the JQuery

tool which allows programmers explore source along a variety of relationship types in a

single exploratory display. This means that the programmer avoids switching between

exploratory views and has a coherent overview of their exploration task in the single

JQuery view. Elves (2005) developed Navtracks a tool which monitors the programmers

navigation patterns and recommends related files, however the programmer is . Finally

Kersten & Murphy (2005) developed the Mylar approach which introduces task based

filtering into IDE views and promotes the task as a first class IDE entity.

88

Chapter 4

Inline Source Code Exploration

A potentially significant approach to alleviating programmer disorientation during source

code exploration activities in the IDE is the use of inline exploration. Inline exploration is

a mechanism for exploring an inter-linked non linear information space, such as that

presented by source code, in a cognitively supportive and contextual manner. The

primary tenet of the approach is that instead of explicitly navigating from one isolated

display of information to the next, which results in a continual loss of context over a

series of navigational transitions, the user progressively introduces related fragments of

information into the context of a focal, or primary, information display.

 There are a number of attractive properties of inline exploration which are

relevant to the various interface problems underpinning programmer disorientation in

modern IDEs. The process of inline exploration results in a visible and manipulatable

representation of navigation history and context as the user progressively ‘expands’ into

the information space related to a particular information display. Context loss is also

89
avoided and with it the need to reorient to each display as it appears on the screen. Inline

exploration also supports the simultaneous examination of multiple fragments of related

information which may supersede the need to thrash between individual displays, and

supports the comprehension of highly fragmented information in a coherent and unified

manner. The approach also supports the pursuit of multiple exploratory digressions while

maintaining the originating context which can potentially ease problems associated with

embedded digressions.

 The primary thrust of this research is to evaluate the effectiveness of inline

exploration as a means of exploring source code in a more cognitively supportive and

less disorientating manner. This work has the potential to significantly improve

programmer productivity and satisfaction and also inform development of IDE tools and

technologies aimed at alleviating programmer disorientation.

4.1 Origins and related work

Inline exploration has yet to be coherently identified and presented as a mechanism for

exploring source code in context with the broader aim of alleviating disorientation

problems. Instead the concept has been synthesized from a number of projects and

research efforts which exhibit various aspects of inline and contextual exploration. This

section describes the relevant background work associated with the concept of inline

exploration.

90
4.1.1 The guide hypertext system

Guide (Brown 1989) was an early hypertext system pioneered by Peter Brown at the

University of Kent at Canterbury in 1982. The system was actively developed in various

incarnations throughout the remainder of the decade, both as a platform for ongoing

hypertext research, and a commercially available product.

4.1.1.1 Motivating factors

At the time when Guide was under development hypertext systems generally supported

the traditional ‘out of line’ exploration mechanism still predominant in todays world wide

web - and also the basis for source code exploration in modern IDEs. The user would

explicitly navigate from one frame or page of information to the next via links embedded

in the information display, with each new display or frame of information replacing its

predecessor on the screen or appearing in a newly spawned window. Simultaneously, the

concept of becoming ‘lost in hyperspace’ was also emerging as a significant concern

during this period of hypertext research (Brown 1989; Conklin 1987). Hyperspaces were

increasing in both size and topological complexity and consequently pushing the usability

limits of the rudimentary exploration mechanisms in use.

 The prevailing wisdom was that a visual overview map of the hyperspace

structure was necessary to prevent users becoming lost during reading and browsing

activities, some authors even describing it as a pre-requirement to hypertext browsing

tools (Halasz 1988). However the Guide system pursued a very different approach,

91
tackling the issue in terms of the core exploration mechanism as opposed to providing an

extraneous overview map. The Guide interface was designed to ‘distance’ or abstract the

user from the underlying directed graph structure representing the hyperspace. This

particular aim was achieved via an ‘in-situ’ exploration technique.

4.1.1.2 In-situ exploration in Guide

The Guide interface presents the user with a single ‘scroll’ of information embedded

within which are interactive hyperlink-like elements referred to as ‘replace buttons’ (See

Figure 4.1). A replace button appears as a standard fragment of text but is distinguished

from surrounding information via a bold font. When the user selects a particular replace

button it is replaced, in situ, with a portion of information associated with the button (See

Figure 4.2). This new information may contain nested replace buttons thus facilitating

nested replacement, and essentially, in-situ exploration.

92

Figure 4.1: The Guide hypertext system, replace buttons ‘Example’ and ‘More’ are

distinguished with a bold font.

Figure 4.2: The result of selecting the ‘Example’ replace button, the button has been

replaced with additional information and a further nested replace button entitled ‘Second

example’.

93
Replace buttons are local constructs contained within a discrete hyperdocument which

support introduction of locally defined information. However the ‘usage button’ extends

the basic concept of the replace button to allow for the introduction of cross-referenced

information, i.e. information located within a remote hyper document.

 The ‘usage button’, which is indistinguishable from a replace buttons at the user

level, acquires its information by following a cross-reference link to a remote hyper

document. The hyperspace author defines a particular range within a hyper document and

the usage button uses this definition in order to extract the necessary chunk of

information. When the user selects a usage button, the remote definition is copied and

used to replaced the source usage button.

4.1.1.3 Multiple copies

The existence of information from remote hyperdocuments out of their native context

necessitates the management of multiple copies. The Guide system treats multiple copies

of a particular definition as independent of its native counterpart. If the original definition

is edited (Guide supports both the editing and exploration of hyper documents), the

changes are not propagated to any copies, they essentially become stale. Furthermore,

edits to in-situ copies are transient and lost during structural saves of the overall

hyperspace.

94
4.1.1.4 Discussion

Guide introduced the basic concept of interactively replacing portions of a digital

document (usage and replace buttons) with information copied from a remote document -

as a viable alternative to explicit navigation between discrete displays. The idea was that

the user would be abstracted from the fragmented and topologically complex nature of

the information space and thus would avoid getting lost.

 The in-situ exploration mechanism pioneered by Guide was not evaluated via a

user experiment or study, thus the merit of the approach has never been fully verified

beyond its natural resonance.

4.1.2 The Fluid Document Project

Another significant piece of work related to inline exploration is the fluid document

project. The fluid document project (Zellweger et al. 1998) was carried at Xerox PARC

over a number of years and explored user interface techniques for dynamically

incorporating related information into the context of digital documents. The broad aim of

the research was to minimize the distraction and context loss suffered during a readers

shift in focus from a primary information context to a secondary or related information

context - a common theme during digital reading activities.

 The term ‘fluid‘ was applied to highlight a lightweight, contextual, and animated

approach to information access, allowing the reader to fluidly shift attention from

95
primary to related material and back again with minimal disruption and cognitive

overhead.

4.1.2.1 The Fluid UI

The Fluid UI (Zellweger et al. 1998), which constitutes the core tenets of the fluid

document approach, consists of three basic interface design principles for secondary

information access - visual cues, animated transition and accommodation.

The Fluid document interface design principles (Fluid UI):

• Visual cues

• Animated transition

• Accommodation

A visual cue is an annotation embedded within a primary information representation - for

instance a digital document - which indicates the existence of linked secondary or related

information. A cue can be textual or graphic depending on application and user

experience preferences. Examples include hyperlink style underlines or small interactive

shapes and images embedded directly in the body of a digital document.

 The reader interacts with the visual cue in order to trigger the exposure or

introduction of secondary information, referred to as ‘glosses’. Interaction style can be

light weight such as simply hovering over a cue with the mouse or a more conventional

such as clicking. The transition from a cue to the exposure of secondary information is

96
generally animated in order to help the reader track changes and minimize disruption

during reading activities (Zellweger et al. 2000).

 The topology/layout of the primary information space or document is dynamically

altered in order to ‘accommodate’ the introduction of secondary material. This allows

secondary material to be presented in a readable format while still retaining the context of

the primary material.

4.1.2.2 Introduction techniques

Subject to the fluid UI principles a number of techniques were designed to facilitate the

introduction of glosses (units of related information) into the context of digital

documents.

 The most basic technique for introduction is ‘interline expansion’. The interline

expansion technique causes the primary material to ‘split’ horizontally at the annotated

line and the gloss is then introduced into the newly acquired space. In the example

depicted in Figure 4.3, visual cues are represented as underlines, expanded glosses are

presented in red. The interline expansion technique results in related information

remaining close to the surrounding primary context. In scrolling displays, the interline

expansion technique allocates the required additional space at the expense of pushing the

necessary amount of primary material out of the visible viewport and thus increasing the

overall scroll distance. For fixed size and page based displays, extra space is acquired by

either reducing the interline space between all lines on the page or “squashing” the text

above and below the gloss by reducing its font size.

97

Figure 4.3: The interline expansion technique. The primary document is split horizontally

and related information introduced inline into the newly available space.

Another technique, entitled margin callout (See Figure 4.4), avoids topological alteration

of the primary material by placing the gloss in available white space on the page margin.

When a cue is activated, an animated line extends in real time from the cue out to the

nearby margin where the gloss is expanded. An attraction of the margin callout technique

is that the original document remains unaltered in the presence of glosses. Although

margin callout sacrifices close proximity between the cue and the expanded gloss,

animation is applied to gradually draw the reader’s eye to the gloss and back to the source

context when the gloss is dismissed.

98

Figure 4.4: The margin call-out technique, information is introduced into the margin

associated with the primary document. Introduction is animated to draw and retract the

users attention.

Figure 4.5: The fluid overlay technique. A sufficient amount of primary material is faded

to allow secondary material to be overlaid in context.

The final introduction technique is entitled fluid overlay (See Figure 4.5). The fluid

overlay technique is similar to the interline approach, however the gloss is not introduced

99
into space made available by altering the topology of the primary document, instead the

portion of the primary document under the cue is faded and the gloss is placed directly

over it. The occluded portion of the primary document remains visible enough to allow a

certain degree of readability simultaneously with the introduced information.

4.1.2.3 Nested introduction

Fluid documents support the concept of nested visual cues and thus nesting of glosses.

Nesting facilitates the expansion of glosses within the context of already expanded

glosses allowing a form of inline or fluid exploration. In the example illustrated in Figure

4.6, a number of glosses are nested in a single display. To achieve this degree of

exploration using a standard display the user would need to perform multiple display

switches.

Figure 4.6: Nested visual cues and glosses. This figure depicts the introduction of glosses

into existing glosses.

100
4.1.2.4 Applications of fluid document technology

The initial implementations of the fluid document techniques were based on simple text

documents and hypertext. The fluid links hypertext browser (Zellweger et al. 1998) used

fluid document techniques in order to fluidly reveal a summary of the destination of

hypertext links in order to help the reader decide whether or not to follow the link without

leaving the source context and suffering the corresponding cognitive overhead.

 With both the text based implementation and the fluid links browser glosses were

expanded in a lightweight fashion by the user moving the mouse over a visual cue. When

the mouse left the area occupied by the visual cue the gloss retracted. The concept of

“frozen” glosses was also introduced. This feature allowed the user to freeze a number of

glosses in an expanded state at any one moment for a given document.

101

Figure 4.7: The fluid reader displaying ‘Harry the ape’ - a fluid hypertext narrative. The

red icons represent visual cues which may be selected to introduce narrative digressions

(depicted in blue).

 Further applications of fluid document technology included spreadsheets (Igarashi

et al. 1998) and a museum piece (Gold et al. 2000) in an exhibition entitled “eXperiments

in the Future of Reading”. The research also extended into the area of authoring and

rendering fluid hypertext narratives such as ‘Harry the Ape’ (Zellweger et al. 2002) (See

Figure 4.7).

102
4.1.2.5 Evaluation

Fluid document technology was evaluated via an observational study focusing on the

impact of the fluid techniques on reading and hypertext browsing behavior and

effectiveness (Zellweger et al. 2000). The aim of the study was to determine whether the

topological changes required to support fluid documents disrupted reading activity and

how users interacted with and reacted to glosses and the techniques used to display them.

 The results of the study indicated that gloss placement was important; placing

glosses close to their source anchor improved reading efficiency while placing glosses

outside of the primary text reduced negative reactions to typographic adjustments. In

terms of interaction, the results indicated that lightweight interaction techniques were

prone to inadvertent invocation of glosses and some readers reacted negatively to the use

of animation. A number of interesting reading styles also emerged. Frozen glosses were

used by subjects as reminders, to compare glosses and to search the hypertext in a

breadth-first order.

4.2 Inline exploration and programmer disorientation

The approach to information exploration pioneered by the Guide hypertext system and

the fluid document project is based on a fundamental principle of progressively

incorporating related or secondary information directly into the context of a focal

document or information display. This general concept is referred to as inline exploration,

which is contrary to the more traditional mechanism of explicitly navigating between

103
discrete displays of information - the basic exploration mechanism prevalent in modern

IDEs.

 There exists a number of fundamental properties of inline exploration which are

significant in terms of addressing programmer disorientation, particularly when exploring

source code in an IDE setting. These properties are:

• Preservation of navigation history and context

• Elimination of cognitive disruption associated with explicit navigational transitions

• Support for simultaneous presentation of related information

• Support for exploratory digressions

4.2.1 Preservation of navigation history and context

A significant factor associated with the incidence of programmer disorientation in

modern IDEs is a lack of navigation history and context during source code exploration

activities (De Alwis & Murphy 2006; Janzen & De Volder 2003). As a programmer

navigates from one program element to another in a system of source code, there is no

explicit representation of navigation history in the interface, i.e. the path or sequence of

previous source code elements or locations leading to the current program element. This

context is important for reminding the programmer of their intent (Storey et al. 1999),

supporting the development of a conceptual model and remaining oriented in the

information space (Kim & Hirtle 1995;Thüring et al. 1995).

104
 The process of inline exploration results in an explicit and interactive

manifestation of navigation history in terms of the explored information itself. As a user

progressively introduces related information into a focal display both the original display

context as well as any introduced information fragments are visibly maintained in a

sequential order. This representation of navigation context supports reflection, analysis

and orientation in an information space.

 A representation of navigation context may be sufficient to alleviate disorientation

during intricate navigation activities in code space where a programmer will often lose

track of their intent due to distraction associated with context loss, interface adjustment or

external factors, particularly considering the dense, fragmented and complex topology of

source code.

4.2.2 Elimination of cognitive disruption associated with explicit

navigational transitions

Due to the keyhole display and lack of visual momentum in modern IDEs, source code is

generally explored as a sequence of perceptually independent displays. The cognitive

experience of traversing from one information context to another can be disruptive,

particularly if the programmer follows a navigable link only to realize that the destination

is not relevant to their current exploration goals. The programmer must leave the source

context, enter the destination context, determine its relevance which may require

secondary navigation steps, and then potentially re-enter the original source context and

reorient to their original location. This process, which is continually repeated over the

105
course of a source code exploration task is cognitively draining and a significant factor

related to disorientation problems (Conklin 1987; Foss 1989a; Foss 1989b; Zellweger et

al. 1998). Using inline exploration a user can examine related information without the

need to navigate out of the existing context. Related information may be introduced inline

with existing information in a fluid and non distracting manner. This means that the

cognitive disruption associated with explicit navigation is avoided thus potentially

reducing the general tendency towards disorientation during exploration tasks.

4.2.3 Support for simultaneous presentation of related information

As discussed in chapter 3, a distinct property of source code is a high level of

fragmentation. The implementation of coherent portions of system implementation is

generally decomposed into a set of discrete source code elements which are spread across

a number of source code documents in a physically disjoint and potentially complex

manner. The typical manifestation of this phenomenon is ‘control flow scatter’ where the

control flow associated with a program operation is fragmented across a number of

disjoint source code elements (Chu-Carrol et al. 2003). The programmer comprehends

this fragmented information via a keyhole display, essentially examining each piece of

the implementation puzzle in isolation and then synthesizing an overall conceptual model

from the various ‘glances’ at the code space.

 The exploration of fragmented source code as a sequence of isolated displays is

both cognitively draining and results in problems developing an accurate conceptual

model (Thüring et al. 1995). This situation often results in the programmer thrashing

106
between individual displays in order to gain a sufficient overview, an activity which is

indicative of disorientation and requires the programmer to concentrate on extraneous

interface manipulation activities which may result in distraction and disorientation

problems.

 Inline exploration provides a framework for examining fragmented information in

a single consistent display. Nested inline introduction means that a user can interactively

introduce related portions of information into a single display in a controlled and

selective manner thus providing the ability to achieve a semantically consistent and

coherent overview. It is the proposition of this thesis that this ability would be

particularly advantageous in a source code setting and would supersede the need to thrash

between related displays in various situations.

4.2.4 Support for the pursuit of exploratory digressions

A factor in the incidence of disorientation in modern IDEs is a lack of support for the

pursuit of exploratory digressions (De Alwis & Murphy 06). When exploring source

code, a programmer is continually faced with the need to pursue and evaluate

navigational branches in the code space. In the absence of a visible representation of

navigation history, pursuit of exploratory digressions can result in the embedded

digression problem (Foss 1988a) whereby a programmer loses track of their intent and

fails to return from a particular digression or fails to pursue a planned digression.

 Inline exploration provides support for the pursuit of small scale digressions in

context. A user can explore into the information space associated with the focal document

107
or information display without leaving the original context. If the digression proves to be

unrelated to the current exploration goals, the navigation path can be easily dismissed

leaving the user in the original context and requiring no further backtracking and

reorientation. Furthermore, fragments of information can potentially be introduced into a

focal display and left open as a reminder of a planned digression. This behaviour has

been observed during the evaluation of the fluid document technology (Zellweger et al.

2000).

4.3 Inline exploration and program comprehension

Programmers explore source code in order to comprehend a particular part or feature of a

software system, generally in the context of a given development or maintenance task

(Singer et al. 1997). The programmer’s mental model refers to their current knowledge

of the system, such as how particular operations are carried out and how components

interact to facilitate observable system behaviour. A cognitive model describes the

cognitive processes and information structures used by the programmer to develop and

refine their mental model. This process is based on existing knowledge, the code itself

and available documentation (Von Maryhauser & Vans 1995). A number of cognitive

models have been proposed to describe how programmers comprehend code. In this

section we discuss the core comprehension models and how they may be facilitated or

affected by the inline exploration technique.

108
4.3.1 Bottom-up comprehension

Bottom-up theories of program comprehension maintain that programmers develop a

mental model by reading source code and chunking individual statements, fragments of

code and program elements into higher level abstractions based on their structure and

relationships. These abstractions are eventually synthesized into an overall

comprehension of the system, or part thereof (Schneiderman & Mayer 1979,

Schneiderman 1980).

 Bottom up is the most relevant comprehension theory in the context of the inline

exploration discussion. Inline exploration facilitates the examination of multiple related

source code elements in a single display, and also visually renders the relationships

between such elements allowing the programmer to gain an overview. This feature has

the potential to improve a programmers ability to draw high level abstractions from

fragments of code scattered within or across a number of source files. Furthermore,

Pennington (1987) observed that programmers initially develop a control flow abstraction

of the program, capturing the sequence of operations. This is referred to as the program

model. Again the development of the program model may be supported by the ability to

examine related source code elements from non contiguous locations in the code space.

The program model is subsequently combined with the situation model, based on domain

knowledge, data flow and function abstractions to develop a mental model of a system.

109
4.3.2 Top-down comprehension

Brooks (1983) describes that programmers understand systems in a top down manner by

mapping knowledge about the application domain to patterns in the code. The process is

based on a hierarchal system of hypotheses which are gradually refined or rejected based

heavily on the existence of beacons within the code. A beacon is a pattern or set of

features within the code which indicate the existence of hypothesized structure or

operations. Beacons are significant in terms of inline exploration. The ability to overview

code structure larger than that of a single source code display may make it easier for

programmers to identify beacons which span across a number of source code locations

and documents.

 Soloway & Ehrlich (1984) observed that programmers build a top down model

based on the existence of programming plans and rules of programming discourse within

the code. Programming plans are fragments of code which indicate typical programming

scenarios and rules of programming discourse reflect convention such as standards and

common implementations. Again inline exploration should help programmers to identify

such constructs in the event that they span multiple source code locations.

4.3.3 A note about the mixed model

Letovsky (1986) considers programmers as ‘opportunistic processors’ capable of

switching between a top down and bottom up comprehension model as needed. Von

Maryhauser & Vans (1995) observed programmers frequently switching between

comprehension models.

110

4.4 Envisioning Inline source code exploration

Inline source code exploration is fundamentally limited to being a ‘within source-code’

exploration technique. This means that the approach is applicable only in a situation

where the programmer is navigating from within the source code editor presentation

itself. Essentially the editor display represents the context into which related source code

fragments may be introduced by the programmer. The currently predominant technology

in this exploration space is hypertext style exploration via program cross-references -

where the programmer clicks on simulated links related to program references in the

source code display to navigate to associated program declarations. The execution of

searches based on references and declarations selected in the editor display, the use of

pop-up source code displays and the ‘declaration view’ are also relevant technologies.

 The high level model of inline source code exploration in the IDE is that the

programmer interacts with program references presented in the visible source code editor

display to achieve the inline introduction of corresponding source code declarations.

Furthermore, from within introduced declarations, its should be possible for the

programmer to introduce further nested declarations where applicable, thus achieving the

full potential of the inline exploration experience.

111

Chapter 5

The Fluid Source Code Editor

To realize, and conceptually explore, the notion of inline source code exploration an

inline exploration interface for source code entitled the ‘fluid source code

editor’ (Sourceforge 2009) was developed. The fluid editor is an open source extension

of the Eclipse IDE which facilitates the inline exploration of Java source code. This

chapter describes the design and implementation of the fluid editor.

5.1 Preliminaries

The fluid editor is implemented as a series of plug-ins for the Eclipse IDE. A plug-in is

the fundamental unit of extension in the Eclipse platform. Each plug-in, which is

essentially a jar file, contains a plugin.xml file which targets particular platform extension

points with custom implementation. The primary plug-in making up the the fluid editor

extension, org.eclipse.fluid.ui, contributes a new editor type to the Eclipse platform

112
associated with Java source code documents (*.java). The fluid editor plug-in targets the

org.eclipse.ui.editors extension point with a custom editor class which extends the

standard Java source code editor provided by the JDT.

 After installation of the fluid editor plug-in set into Eclipse, Java source code

documents are opened, by default, in a fluid editor instance as opposed to the standard

Java editor provided by the Eclipse JDT.

5.2 System overview

The fluid editor facilities the inline exploration of source code by means of fluid

annotations embedded in the source code editor presentation, and the inline introduction

of source code declarations and other information types.

 When a Java source code document is opened in a fluid editor instance, a fluid

annotation is embedded alongside each source code reference in the editor presentation.

A fluid annotation is essentially a lightweight marker or visual cue embedded in the

source code which indicates the existence of a related source code declaration to the

programmer. The document into which fluid annotations are embedded is referred to as

the focal, or primary, source code document, as it is the document into which inline

introduction occurs and is the focus of the programmer during inline exploration

activities.

 When a fluid annotation is activated by the programmer, the corresponding source

code declaration is dynamically introduced, inline, into the primary source code

113
document. Introduced source code declarations may also contain fluid annotations which

can be activated to achieve nested introduction. Essentially, a source code declaration

may be introduced into the context of an existing inline declaration, thus facilitating

progressive nested inline exploration.

 The fluid editor supports the annotation and introduction of a comprehensive set

of Java language declarations. The supported set of reference/declaration tuples are listed

in Table 5.1.

Reference to declaration mapping in the fluid source code editorReference to declaration mapping in the fluid source code editor

Reference type Introduced declaration

Method invocation Method declaration

Constructor invocation Constructor declaration

Super constructor invocation Supper constructor declaration

Super method invocation Super method declaration

Class instance creation Class constructor declaration

Type reference Type declaration (without imports)

Field reference Field declaration

Local variable reference Variable declaration

Table 5.1: Reference type to inline declaration mapping used in the fluid source code

editor.

114
5.2.1 Fluid annotations

A fluid annotation is an unobtrusive visual cue embedded in the source code presentation

which indicates the existence of a corresponding source code declaration. The default

appearance of a fluid annotation is a single character underline (See Figure 5.1). The

minimal profile is designed to avoid eroding the readability and editability of the

underlying source code document. Fluid annotations may also be ‘maximized’ to a more

visible state - in which case they appear as transparent boxes (See Figure 5.2).

Figure 5.1: Fluid annotations embedded in the focal source code editor presentation.

Colour indicates the type of reference. In this instance black refers to method references,

green to field reference, orange to local variable declarations and blue to abstract

method references.

115

Figure 5.2: Fluid annotations in their ‘maximized‘ state.

Fluid annotations are designed with source code editing in mind. Using the editor caret,

the programmer can easily edit around and directly upon fluid annotations during

programming activities. The fluid editor takes care of repositioning annotations in

response to edits, removal of annotations that are no longer valid and insertion of new

annotations as the programmer adds additional source code to the document. The

updating of annotations occurs in real time as the programmer edits the source code.

 Fluid annotations are colour coded to indicate reference type. This allows the

programmer to distinguish individual annotations when a cluster of heterogeneously

typed annotations are located in close proximity - which is often the case with densely

116
written source code. The fluid editor provides a preferences page allowing the

programmer to change the mapping between reference type and annotation colour.

 When the programmer moves the mouse within a fixed proximity (a one character

bounding box) of a fluid annotation it dynamically transforms into an interactive widget.

Each fluid annotation has two states, a visually minimal state in which the annotation acts

as a visual cue, and a widget state in which the annotation may be interacted with by the

programmer to initiate introduction of the corresponding source code declaration. State

transition is achieved by rolling the mouse pointer over the annotation (See Figure 5.3).

Clicking the widget associated with a fluid annotation causes the corresponding source

code declaration to be introduced into the source code presentation. The widget

associated with a fluid annotation also has two states, an ‘expandable’ state and a

‘collapsible’ state. The widget is in an expandable state when the associated source code

declaration has yet to introduced and a collapsible state when the associated declaration is

introduced and may subsequently be collapsed.

 Fluid annotations are located, by default, on the last character of the associated

source code word for variable references, and on the last enclosing parameter bracket for

method references. The fluid editor also provides a preference setting to facilitate the

placement of fluid annotations on the last character of a method name if the user finds

this technique more agreeable. The placement of fluid annotations is designed to allow

the user to easily match a given annotation to its associated source code element.

117

 Figure 5.3: When the mouse cursor is positioned within the bounding box of a fluid

annotation is transforms into an expandable widget - in this instance a green plus icon

affording addition or expansion. After a number of seconds a information box will also

appear describing the potential introduction.

5.2.2 Inline introduction

Inline introduction refers to the introduction of a source code declaration (or other units

of information) into the context of the focal source code document. The fluid editor uses

an inter-line introduction technique inspired by Zellweger et al. (2000). See Chapter 4,

Section 1.2.2. The source code document is split horizontally at the line succeeding the

fluid annotation and the source code declaration is then inserted as an indented code

118
block (See Figures 5.4 & 5.5). Early iterations of the fluid editor used a line splitting

introduction technique in which the code was split at the character succeeding the visual

cue. However, by splitting lines of code in this manner the source code became difficult

to read particularly with multiple introductions originating from a single line of code. The

current ‘after line’ technique was developed to conserve the structural integrity of the line

of code associated with the fluid annotation(s) and thus increase the overall readability

and coherence of the source code display.

 Figure 5.4: An introduced method declaration. The background colour is distinct and the

inline declaration has a border to allow the user to easily identify between introduced

and native code.

119

Figure 5.5: Introduction of a second source code declaration.

When designing the fluid source code editor a variety of introduction techniques were

considered, such as interline expansion, margin callout and fluid overlay. These design

alternatives were primarily inspired by the fluid UI techniques developed as part of the

fluid document project (Zellweger et al. 1998) and partially the Guide ‘in-situ’

mechanism (Brown 1989). See Chapter 4, Section 1.2.2 and Chapter 4, Section 1.1.2.

After a significant amount of technical and usability oriented experimentation, an

interline introduction technique was chosen. The following sub-sections expand on this

pivotal design decision.

120
5.2.2.1 Margin callout

The margin callout technique is concerned with the introduction of related information

into the margins either side of a digital document. See Chapter 4, Section 1.2.2. Source

code editors generally do not support margins (however a ‘gutter’ mechanism is

supported in many IDEs). As such initial experimentation was carried out based on the

addition of margins into which source code declarations could be introduced. However, a

number of usability issues quickly became clear. The first issue was margin width and its

effect of on the primary document context. The margin width necessary to introduce a

source code declaration, without the need to scroll or artificially reduce the size of the

introduction, infringed upon the readability of the original document context.

Furthermore, the margin callout technique could not support the level of rich nested

exploration that envisioned for the fluid source code editor. For these reasons the margin

callout technique was not pursued beyond a number of basic experiments.

5.2.2.2 Fluid overlay

The fluid overlay technique (See Chapter 4, Section 1.2.2) was problematic from a

technical standpoint due to a fundamental lack of support for changing the transparency

of user interface controls in the Standard Widget Toolkit (SWT) (Eclipse 2009g) - the

user interface framework used in the Eclipse IDE. Essentially the SWT provides a

standard Java based user interface API which is mapped, via the Java native interface

(JNI), to the underlying native user interface API on platforms such as Microsoft

121
Windows, Apple Mac and Linux. Because the SWT needs to cater for a wide variety of

native interface frameworks, each with varying degrees of functionally, the interface

tends to revert to a lowest common denominator in terms of available functionality. A

casualty of this situation is the ability to change the transparency of interface controls.

Without the ability to create transparent interface controls the application of the fluid

overlay introduction technique was unfeasible.

5.2.3 Inline source code declarations

Inline source code declarations are read only copies of native source code declarations.

The fluid editor supports the introduction of methods, type and variable declarations

(both local variables and fields) (See Table 5.1 for a full listing of supported introduction

types).

 The user can copy the code contained within an inline declaration but it cannot be

edited. While editing of the source code contained in an inline declaration is technically

feasible with the current implementation, the approach was not pursued as the primary

focus was on contextual exploration as opposed to out of context editing, which in itself

is a significant research question. Other than being read-only, inline source code is fully

consistent with native code. It is syntactically and semantically highlighted and supports

standard caret and line highlighting behaviour. The user can also navigate the source code

contained in an inline declaration using the standard out of line hypertext exploration

model, run searches via the context menu and initiate tool tips.

122
 Inline source code declarations are differentiated from native source code by a

border and a coloured background. For instance, the default background colour for a

method declaration is a soft yellow with a grey border. In order to keep the user oriented

during inline source code browsing, inline declarations are labelled with the name of their

native source code document. A toolbar is also provided which allows the user to collapse

a given declaration or navigate to the associated source code declaration in its native

context. Explicit navigation is also supported using a ‘shift select’ combination. If the

shift key is held and the mouse moved within the bounds of an inline declaration, it

becomes a navigable link to its native source code declaration. To indicate this feature the

cursor transforms into a hand pointer and the background of the inline declaration turns to

a deep yellow indicating its highlighted status (See Figure 5.6). When clicked the target

declaration is opened in a new source code editor and presented to the user.

123

 Figure 5.6: Explicit navigation using an inline declaration. The user has held the shift

key and moved the mouse pointer over this field declaration causing it to become a

navigable link. Clicking on an inline declaration when it is in a navigable state will open

the corresponding native source code declaration in a new editor display.

An introduced inline declaration may be ‘collapsed’ or removed from the source code

display by re-clicking on its associated fluid annotation (which is in a ‘collapsible’ state)

or clicking on the close button contained in the inline toolbar. When the mouse pointer is

positioned within the bounds of an inline declaration, the associated fluid annotation is

displayed in the more distinct widget state. This allows the user to easily identify both the

source code reference and the fluid annotation associated with the inline declaration.

124
5.2.4 Nested introduction

It is common for source code contained in an inline declaration to contain references to

other source code declarations. To handle this scenario and fully realize the inline

exploration concept the fluid editor supports the nested introduction of source code

declarations (See Chapter 4, Section 1.1.2 and Chapter 4, Section 1.2.3 for discussion

related to nesting in an inline context). This means that an inline declaration may be

introduced into the context of an existing inline declaration (See Figures 5.7 & 5.8).

 To differentiate between nested inline declarations indentation and colour coding

is used. A child inline declaration is indented by one unit greater than its parent

declaration. Shading is used to visually differentiate between inline declarations on

different levels within an inline exploration tree. The metaphor is that the user is

exploring ‘deeper’ into the software space related to the primary document. The

background colour of a child inline declaration is computed by taking the parent colour

and ‘darkening’ it by a predefined factor using an RGB function. When the shaded child

colour is deemed too “dark” the procedure wraps around, the next child starts at the base

default colour and the process repeats. The technique assures that inline declarations

which share the same background colour are always distinguishable from one another and

that no declaration gets shaded so dark that it would become unreadable. The shade

fraction used in the shading model is alterable using the fluid editor preferences pages.

The fluid editor also supports an ‘alternating’ colour model in which nested inline

declarations are coloured from light to dark in an alternating sequence.

125
 An entire inline exploration tree can be collapsed by clicking the fluid annotation

widget associated with the root inline declaration. Sub trees are also collapsible by

closing the associated root inline declaration.

 Figure 5.7: Nested inline introduction. In this instance one method declaration has been

introduced into the context of an existing inline declaration. Nested declarations are

differentiated via a colour model, in this case shading based on introduction depth.

126

Figure 5.8: Tree levels of inline nesting and the corresponding depth shading.

5.2.5 Search results

In addition to the introduction of basic source code declarations, the fluid editor also

supports the introduction of search results as a core feature. The programmer can execute

a ‘pre-canned’ search from within the source code presentation by activating particular

fluid annotations. The results of the search are then presented inline and the programmer

can explore the set of matches using the inline exploration mechanism (See Figures 5.9 &

5.10).

127
 The execution and introduction of search results in an inline manner offers a

significantly more contextual and less disorienting search experience than the existing

approach prevalent in modern IDEs. In the traditional IDE environment search results are

displayed in an external results view, and when the programmer navigates to a particular

result the original context of the search is replaced and lost (De Alwis & Murphy 2006).

Loss of the original search context is significant as it represents an important reminder of

the intent underpinning the search. When it is no longer visible the programmer is more

prone to disorientation. Furthermore, due to the keyhole property it can be cognitively

demanding to compare and contrast a set of search results. The programmer may need to

thrash back and forth between particular source code locations which places a strain on

working memory and requires greater concentration on interface adjustment activities.

On the other hand, using the inline search mechanism the original context of the search is

maintained and the programmer can selectively compare and contrast individual results in

a single contextual coherent display.

 The fluid editor supports the introduction of search results in a number of

scenarios most of which are related to polymorphism - in which there may be many

declarations associated with a particular source code reference (See Table 5.2 for a list of

supported references). The inline search support provided by the fluid editor is not

intended to be complete by any means but rather sufficient enough to evaluate the

feasibility and usability of the concept. It is envisioned that inline search results would be

a far broader feature, encompassing a much richer set of search functionality.

128

Inline introduction of search resultsInline introduction of search results

Source code element Results

Method invocation on an interface type All implementing declarations in the workspace

Method invocation on an abstract type All implementing declarations in the workspace

Interface type declaration All implementing declarations in the workspace

Interface method declaration All implementing declarations in the workspace

Abstract type declaration All implementing declarations in the workspace

Abstract method declaration All implementing declarations in the workspace

Table 5.2: A summary of inline search support in the fluid source code editor.

In order to keep the discussion of inline search results succinct, the introduction of a

method invocation on particular interface type will be discussed. General behaviour may

be extrapolated from this description.

 Upon activation of the fluid annotation associated with the method, the fluid

editor first runs a workspace wide search for all matching declarations using the Eclipse

search APIs. Once the search is complete, an inline display is introduced containing the

list of matching declarations. Each entry in the list contains an associated fluid annotation

(See Figure 5.9). When an annotation in the results list is expanded, the associated source

code declaration is introduced (See Figure 5.10). Each matching declaration can also be

treated as a hyperlink facilitating explicit navigation to the native declaration. The

introduction of a search result takes slightly longer than a standard declaration, due to the

additional processing required, but remains interactive. Multiple entries in the list of

129
declarations can be simultaneously expanded for comparison and the resulting inline

declarations support further nested exploration.

 Figure 5.9: Inline introduction of search results - the declarations matching a particular

abstract method invocation. The user can explore the results inline via the fluid

annotation associated with each result.

130

Figure 5.10: Exploring search results in an inline manner.

5.2.6 Inheritance relationships

In a Java programming environment, where inheritance is pervasive, a given method

declaration will often ‘implement’ an abstract method declaration or alternatively

override a super class method declaration. The fluid editor facilitates inline exploration in

both circumstances even though there is no explicit reference on which to associate a

fluid annotation.

 When a method is deemed to implement or override a super class method, a fluid

annotation is embedded at the first character in the method signature. The widget

131
associated with the fluid annotation is indicative of the inheritance relationship present,

‘implements’ relationships are represented as a white upturned arrow and overrides

relationships are represented as a green upturned arrow as per JDT style standards.

 When the fluid annotation is activated the appropriate method declaration is

introduced above the existing method declaration (See Figure 5.11). Using this feature the

user can examine the structure of a type hierarchy from the point of view of a particular

method all the way up to the abstract declaration within a single source code display.

Figure 5.11: Introduction of overridden super-class method. The fluid annotation is

located as the first character in the method signature.

132
5.2.7 Editing and reconciliation

The fluid editor is, by definition, an editor and thus supports source code editing in

parallel with inline exploration activities. As a result the reconciliation of fluid

annotations and inline source code declarations in response to editing activities is a

significant design concern.

5.2.7.1 Reconciliation of fluid annotations

As the programmer edits source code using the fluid editor, fluid annotations are

automatically inserted, removed and repositioned as required to maintain the integrity of

the exploration environment. The repositioning of annotations occurs in real time while

addition and removal of annotations occurs when the source code document is saved by

the user. Addition and removal is delayed until saving as the procedure is processor

intensive and would result in slight delays to editing actions if carried out in real time.

 The addition of fluid annotations is typically carried out in response to the

programmer inserting new code into the focal source code document. For instance, when

adding a new method or variable reference. Removal of visual cues occurs in response to

the deletion of code or the manual alteration of declaration signatures thus invalidating

the link between a reference and an associated declaration. An example would be the

alteration of a method signature which would invalidate any existing references to the old

signature.

133
5.2.7.2 Reconciliation of Inline declarations

As mentioned previously, the source code contained within an inline declaration is a read

only copy of a corresponding native source code declaration. This raises the question of

the protocol used when a native declaration is edited or deleted and there exists inline

copies in open fluid editor instances. If native declaration edits were simply ignored, the

situation would invariably arise where an inline declaration would become ‘stale’ or

inconsistent in relation to its target native declaration due to routine source code editing

activities.

 The fluid editor uses a simple but effective update notification mechanism to

handle the editing of program declarations. When a native program element declaration is

edited and subsequently saved, any inline copies of the edited declaration are checked for

consistency. If the native declaration and the copy are deemed to be inconsistent, the

inline declaration is flagged as such. Inconsistent inline declarations are indicated with a

red outline border. When the mouse is hovered inside the inconsistent declaration a pop-

up window also appears to indicate the problem. To synchronize the contents of the inline

declaration with the newly edited native declaration the programmer simply removes and

reintroduces the declaration using the associated fluid annotation, this action

automatically refreshes the contents of the declaration.

 Automatic updating of stale inline declarations was considered but proved

problematic due to complications arising from nested declarations. An inline declaration

may be ‘split’ arbitrarily by any number of inline child declarations. To implement an

134
automatic reconciliation strategy would involve significant complexity in terms of

maintaining and managing the reintroduction of nested declarations.

 In the case of deletion or the alteration of the signature of a native declaration, the

fluid editor will automatically collapse all corresponding inline copies. The associated

fluid annotation may then be deleted itself or updated if part of a re-factoring operation.

5.3 Additional features

The primary functionality of the fluid editor is the inline introduction of source code

declarations and search results. However the fluid editor also supports the introduction of

additional information such as web pages and images resources. The introduction of

additional information artifacts such as dynamically computed program slices, life-cycle

artifacts such as design diagrams and requirements was also experimented with using the

framework. This section describes various experimental inline exploration facilities

supported by the fluid editor.

5.3.1 URLs

Web accessible uniform resource locators (URLs) are often located in source code

documents linking to licensing information and other documentation associated with the

source code. The fluid editor supports the introduction of URLs via a lightweight inline

web browser.

135
 Any URL string encountered in the source code is annotated as standard with a

fluid annotation (See Figure 5.12). When the user clicks on the annotation, a web browser

instance is introduced into the editor display and the target URL is opened (See Figure

5.13). The web browser instance adopts a fixed height, specified in the fluid editor

property pages, and scroll bars appear if the web content exceeds the available vertical

space.

Figure 5.12: A url contained in a comment block is annotated with a fluid annotation.

136

Figure 5.13: Activating the fluid annotation causes the associated web page to be

introduced inline in a web browser instance.

5.3.2 Image resources

The fluid editor also supports the introduction of images directly into the source code

context. When a source code document is opened, it is scanned for image references,

namely literal strings which resolve to image files contained in the surrounding project or

workspace. A fluid annotation is embedded at each image reference. When the annotation

is selected, the corresponding image is introduced inline in a custom image viewer (See

137
Figure 5.14). The image viewer supports the .gif and .jpg image formats and supports

image zooming.

Figure 5.14: Inline introduction of an image resource. Images are introduced in a custom

image viewer control which supports zooming.

5.4 Implementation

Under the covers, the fluid source code editor is essentially an extensible framework for

annotating source code, and introducing external information into existing source code

138
documents. This section describes the implementation of the major components and

interactions which make up the fluid source code editor.

5.4.1 Fluid annotations - generation, interaction and rendering

Upon opening a Java source code document the fluid editor initially creates an abstract

syntax tree (AST) based on the document content via the AST libraries provided by the

JDT. The AST is generated ‘with bindings’, meaning that the various references

appearing in the AST may be resolved to their corresponding source code declarations.

 Once generated the AST tree is visited or walked using a set of custom AST

visitor classes designed to pick out references (nodes) representing potential inline

exploration points. The selected references are checked to ascertain if the source code of

the target declaration is available. References that do not have available source code are

ignored as they are unsuitable for inline introduction. For instance, a reference to a

method located in an external library without attached source code cannot be introduced

as there is no physical source code declaration available.

 A specific fluid annotation instance is created for each suitable AST reference.

The annotation computes its position using the offset and length of the segment of source

code corresponding to the reference, this information is subsequently mapped to the

relevant pixel location in the fluid editor display during the rendering step. The fluid

annotation is added to a fluid annotation model associated with the fluid editor instance.

The fluid annotation model is responsible for maintaining the set of fluid annotations

associated with a fluid editor instance and takes care of repositioning and deletion of

annotations in response to edit events .

139
 Rendering of fluid annotations onto the source code editor display is carried out

by a fluid annotation rendering engine that is attached to the editor text widget. In

response to paint events from the text widget the rendering engine iterates over all fluid

annotations contained in the fluid annotation model and paints each annotation into the

source code display. For efficiency the rendering engine culls annotations which lie

outside of the current editor viewport. Each fluid annotation is responsible for painting

itself onto the text widget. The abstract base class provides default painting behaviour

which subclasses are free to extend or override as deemed necessary. Figure 5.15 presents

a depiction of the fluid annotation life-cycle, from generation to rendering.

Figure 5.15: Fluid editor annotation generation, culling and rendering architecture.

The fluid editor manages interaction with fluid annotations by monitoring user interaction

with the text widget onto which the annotations are painted. To simulate realistic

interaction behaviour the fluid editor processes interaction events before they are passed

to the text widget for default processing. In certain circumstances the fluid editor may

prevent events from reaching the text widget - a behaviour referred to as ‘event

hijacking’.

140
 Interaction events are first relayed to the fluid editor which checks if the event

affects any fluid annotations in the visible view port. If the event is deemed to affect a

given fluid annotation, it is passed on to the fluid annotation itself for processing. The

fluid annotation acts on the event and returns a boolean flag to the fluid editor indicating

whether the event should be passed on to the text widget or discarded. An example of a

potentially hijack-able event is the mouse down event. If the programmer clicks on a

fluid annotation, the click event is not passed onto the text widget as this would make the

interaction with the fluid annotation unrealistic. The event hijacking technique is vital to

maintain a crisp and believable interactive document interface, making the fluid

annotations seem like interactive elements rather than images painted on the canvas.

Figure 5.16 illustrates the user interaction mechanism underpinning fluid annotations.

Figure 5.16: User interaction events may be hijacked via the fluid annotation model. A

successful hijacking means that the event will not reach the editor text widget. This

provides the user with a crisp interactive interface.

141
5.4.2 The dynamic document model

The fluid editor features the dynamic insertion and removal of source code declarations

and other informational types to and from a given source code document. To implement

this functionality an advanced dynamic document architecture was designed and

implemented.

 Each fluid editor maintains two documents in memory, a fluid document and a

master document. The fluid document is presented to the programmer for editing and

supports the dynamic inline introduction ‘fluid regions’. The master document is

represents the structurally correct source code document that is used for compilation and

is also written to disk when the editor buffer is saved.

 The fluid and master documents are connected via a document information

mapping (DIM). The DIM maps offsets, lines numbers and text regions from the fluid

document to the master document and vice versa. Mapping from the fluid document to

the master document essentially involves subtraction of any inline text regions above the

mapping offset while mapping from the master document to the fluid document involves

addition of any inline regions above the mapping offset.

 Editing carried out on the fluid document is relayed back to the master document

in real time. The fluid document edits are first mapped using the DIM and then applied to

the master document.

 Arbitrary regions of text may be added and removed from the fluid document

programmatically using a custom insert/delete API. A fluid region contains an insertion

offset and a formatted block of text which is to be inserted at the specified offset. The

142
insertion and deletion of a fluid region is essentially an edit of the fluid document (like a

paste operation). However fluid region edits are explicitly prevented from synchronizing

back to the master document (See Figure 5.17).

Figure 5.17: The fluid document architecture. The master document is maintained in a

syntactically coherent state in memory for saving to disk and compilation. The visible or fluid

document (presented to the user) may contain inline declarations (fluid regions) which are not

propagated to the master. The Document information mapping (DIM) handles translation of

offsets from the master to the visible document and vice versa. User edits and refactoring

143
operations carried out on the visible document are mapped in real time to the master document

via the DIM.

Using the DIM as a synchronization bridge, the master document retains both its

consistency with user edits and its structural integrity throughout fluid source code

exploration activities. When the editor is saved the master document is written to disk,

therefore the Java compiler sees the master document as opposed to the potentially non-

compilable fluid document.

 The inline introduction of non-text based content such a web browser instance or

the image viewer is accomplished by inserting blank lines of text into the fluid document

and overlaying a graphical control on the newly acquired space. The control is then

synchronized with the editor window so that it is resized and moved in a consistent and

believable manner.

5.4.3 Implementing an editing and reconciliation model

As previously mentioned editing and reconciliation is concerned with synchronizing the

inline source code exploration model with changes to native source code.

 On initialization each fluid editor instance adds a element changed listener to a

central JDT model plug-in (JavaCore). The listener interface specifies an element

changed method which is called when any element in the Java model (composed of all

Java elements in the existing workspace) is changed, added or removed.

144
 An element changed event received via the listener interface triggers a staggered

refresh of the fluid source code model associated with each fluid editor instance. A

refresh is a two step procedure consisting of first checking the validity and consistency of

each inline declaration in the source code document, and then performing a refresh of the

fluid annotation model.

 The validity of an inline source code declaration is concerned with whether or not

the declaration still exists in the workspace. Existence can be checked using the AST

node associated with the declaration. If an inline declaration is deemed to be invalid, it is

deleted from the source code document along with any contained inline declarations. The

next step is to check consistency. The consistency of an inline declaration is determined

by comparing the current contents of the declaration with a fresh copy of its native

declaration. Inconsistent inline declarations are visually flagged to indicate the unreliable

state to the user (See Figure 5.18).

145

Figure 5.18: An inconsistent inline source code declaration, highlighted in red. Edits to

the native declaration may cause inline copies to become inconsistent.

The refreshing of fluid annotations in response to element change events from the Java

core model essentially involves a re-annotation of the source code document and any

associated inline declarations.

5.5 Discussion

The fluid source code editor represents a fully functional inline source code exploration

environment for Java source code. However the implementation of the system ended up

146
being a particularly arduous and time consuming task. To achieve the desired

functionality, a significant amount of invasive extension and modification of the Eclipse

IDE was required.

 When the decision was made to develop an inline source code exploration interface,

the choice of whether to build a simple throwaway prototype or attempt to extend an

existing IDE offering with the desired functionality became a pivotal decision, affecting

both the research and development effort. Although it involved a significant learning

curve it was decided decided to build the system as an extension of the Eclipse IDE. This

approach offered the best scope for realistic evaluation (performing a pilot study etc.) and

offered the potential for a system usable and extensible by the wider development and

research community. However as the fluid editor was under development, it became clear

that both the Eclipse IDE and the JDT were not designed for such a significant extension

efort, even when the rudimentary extension mechanisms provided by the platform were

bypassed for greater control. To work around this limitation a number of core JDT and

Eclipse plugins had to be invasively modified to add required features and make them

more extensible. As a result, the fluid editor ships with a set of custom plugins which

overwrite their core counterparts on installation (See Table 5.3). Unfortunately, this

means that the fluid editor only runs on a specific version of the Eclipse IDE (3.2). The

system is also confined to the Windows platform, a side effect of the platform dependent

nature of the standard widget toolkit (SWT) (Eclipse 2009g).

147

Core Eclipse and JDT plugins patched for Fluid

source code editor compatibility

org.eclipse.jdt.ui

org.eclipse.jface.text

org.eclipse.swt

org.eclipse.swt.win32.win32.x86

org.eclipse.text

Table 5.3: The set of core Eclipse IDE and JDT plug-ins that required invasive

modification and extension to support the fluid source code editor.

In addition to the extensibility problems, it was discovered that certain features of the

Eclipse IDE are fundamentally incompatible with inline exploration. The most

outstanding example is code folding (Eclipse 2009f). Code folding is standard feature in

modern IDEs which allows the programmer to elide blocks of code in order to reduce

clutter in the interface. For instance, the programmer can collapse comment blocks,

methods bodies and even entire type declarations contained in a source code document in

order to see more code of interest in a single display. Code folding essentially involves

the removal of source code from the visible source code document, while fluid

exploration involves the addition of source code to the visible document. Both

technologies clash for control of the visible source code document and would need to

know about one another to work in harmony. This integration work would have required

a major redesign of the Java editor architecture which was deemed unfeasible within the

context of the inline exploration project. As such, the fluid editor will ‘switch off’ code

148
folding when it is installed and will explicitly prevent the user from switching the feature

back on.

149

Chapter 6

Experiment

The second major component of the research methodology, alongside the development of

the fluid editor prototype, was the development and execution of a user experiment

designed to determine if inline exploration was effective at reducing programmer

disorientation during source code exploration activities. The goal was also to gather

feedback related to the inline exploration approach, including the specific manifestation

provided by the fluid editor.

 The high level design of the experiment was that a number of participants, ideally

with solid programming and IDE experience, would be recruited and asked to carry out a

series of source code exploration tasks. Half of the tasks would be performed using the

standard source code exploration interface provided by the Eclipse IDE (this would serve

as a baseline level of disorientation), the other half would be completed using the inline

interface provided by the fluid editor. During the tasks the level of disorientation

experienced by the participants would be monitored and recorded using a variety of

150
qualitative and quantitate mechanisms. After the experiment, an analysis on the resulting

data would be carried out, contrasting the level of disorientation experienced by

participants on both of the interfaces.

 The experiment was designed to be exploratory in nature. The aim was to observe

the level of disorientation experienced on both interfaces and how users interacted with

the inline source code exploration mechanism. However an informal preliminary

hypothesis was derived. The expectation was that participants would experience

considerably less disorientation using the inline interface (the Eclipse IDE with the fluid

source code editor) versus the standard interface (the Eclipse IDE without the fluid

source code editor). This chapter describes the design, rationale and execution of the

experiment.

6.1 Soliciting feedback from the development

community

Prior to the design and execution of the user experiment, an attempt was made to pre-

evaluate the fluid source code editor via feedback from the developer community. The

fluid editor prototype was released as an open source extension to the eclipse IDE, and

made available a dedicated website describing the concept, features and potential

advantages of the tool (Sourceforge.net 2009) (See Figure 6.1 or visit http://

fluideditor.sourceforge.net). The project website also included a online survey allowing

users to submit feedback and comments related to their experience using the tool.

http://fluideditor.sourceforge.net
http://fluideditor.sourceforge.net
http://fluideditor.sourceforge.net
http://fluideditor.sourceforge.net

151
 While the fluid editor prototype enjoyed a significant number of downloads, it

was found that little or no developers were interested in taking the time to fill in the

online survey, or leave substantial comments concerning their experiences with the tool.

Based on this lack of feedback it was decided that an exploratory user experiment was a

more promising approach.

Figure 6.1: The fluid source code editor open source project website.

152

6.2 Measuring disorientation

To achieve the primary experimental goal it was vital to develop a credible and defensible

mechanism by which to measure programmer disorientation during source code

exploration tasks.

 According to Yatim (2002) there are three mechanisms which are generally used

to measure disorientation:

• Measuring degradation of user performance

• Gathering subjective feedback via questionnaires/interviews

• Examining the accuracy of the conceptual model assimilated by a user

Additional mechanisms deserving of consideration, but not described in Yatim 2002, are

the observation of user behaviour for specific patterns or situations which are generally

accepted to be indicative of disorientation (De Alwis & Murphy 2006) and measuring the

level of visual momentum in the exploration interface (Watts-Perotti & Woods 1999).

• Observing the user to identify behaviour indicative of disorientation

• Measuring the degree of visual momentum in the interface

153
6.2.1 Measuring degradation of user performance

Edwards & Hardman (1999) point out that disorientation may be considered in terms of

performance degradation, which is generally interpreted as the amount of time spent on

the completion of a given task. The rationale is that a user who is experiencing

disorientation will naturally attempt to reorient themselves, a process which requires

additional time and effort. Therefore, it can be postulated that more time spent on a task

the more disorientation experienced by the user.

 Task completion time is a very attractive mechanism for measuring disorientation

due to its simplicity, ease of collection and natural resonance in terms of user

productivity. However, time should be interpreted carefully by the experimenter because

the the link between time and disorientation is not very well understood. For instance,

Maneti (1982) reported that disoriented users spent less time on tasks than those that were

not disoriented. A severely disoriented user may simply quit their task out of frustration

resulting in a significant reduction in completion time and an anomaly in the

measurement technique.

6.2.2 Gathering subjective feedback via questionnaires/interviews

Perhaps the most basic approach to measuring disorientation is to ask users, via an

interview or questionnaire, if they have experienced the phenomenon, and if so, to what

extent (Maneti 1982). A popular mechanism is to ask the user to select from a scale of

values indicating how lost or disoriented they felt during their task(s).

154

I often felt disoriented (lost) in the source code...

Disagree 0 1 2 3 4 5 6 7 8 9 Agree

However, gathering a subjective estimation of disorientation via an interview or

questionnaire raises the issue of interpretation. Users may have a significantly different

interpretation and understanding of the term ‘lost’ or ‘disoriented’ than the researcher

running the experiment. Even the research literature does not unanimously agree on a

definition. In some cases disorientation refers to a loss of spatial awareness (Conkin

1987) and in other cases losing ones train of thought due to the pursuit of digressions

(Foss 1989a) and in other cases not being able to complete a goal (Watts-Perotti & Woods

1999).

 The potential for misinterpretation raises questions about the relevancy and

accuracy of information gathered from questionnaires and user interviews. However, the

technique is still valid and useful to elicit general subjective feedback and thus should not

be discounted.

6.2.3 Examining the accuracy of the conceptual model

The ‘conceptual model’ is the users mental representation and understanding of the

information gleaned or assimilated during an exploration task.

 It’s generally accepted that there is a link between the accuracy of a conceptual

model and the level of disorientation experienced during its conception. For instance Elm

and Woods (1985) define disorientation as when ‘the user does not have a clear

155
conception of relationships within the system’. Foss (1989a) maintains that an inability to

devise an accurate conceptual model during browsing activities is a symptom of

informational disorientation (the art museum phenomenon). It can be expected that the

more accurate a user’s conceptual model, the less disorientation experienced during its

creation and refinement. The rationale is that disorientation interferes with the process of

comprehension.

 A simple mechanism for ascertaining accuracy of a conceptual model is to ask the

user to sketch out the structure of the conceptual space associated with a particular task

(Mahmoud 1993). The sketch can then be checked for errors or omissions against a

known to be accurate depiction of the conceptual model.

 However, accuracy of a conceptual model, in isolation, is not sufficient to

measure disorientation. For instance, completion time is also a significant factor. A user

spending a large amount of time exploring a body of information would be expected to

produce an accurate conceptual model regardless of the disorientation experienced during

the conception.

6.2.4 Observing the user to identify behavior indicative of disorientation

Perhaps the most promising overall approach to measuring disorientation is to observe

how users carry out their tasks. In the research literature, there are numerous widely

accepted interaction patterns and behaviours which are indicative of disorientation. For

instance consider the following list of observable patterns:

156
• Backtracking to previously visited locations (Foss 1989a) (De Alwis & Murphy

2006)

• Pursuit of inefficient paths/loops (Foss 1989a)

• Restarting a task from a known location (Foss 1989a) (De Alwis & Murphy

2006)

• Closing all open files to clear context (Foss 1989a) (De Alwis & Murphy 2006)

• Thrashing between displays (Watts-Perotti & Woods 1999)

• Excessive interface adjustment (Watts-Perotti & Woods 1999)

• Failure to return from a digression (Foss 1989a)

• Failure to pursue a planned digression (Foss 1989a)

In addition to interaction patterns such as those presented in the list above, there are also

specific gestures and comments which can be interpreted to indicate that the user is

suffering from disorientation. Gestures might include drumming of fingertips, furrowed

brows and puzzled stares (De Alwis & Murphy 2006).

 Comments may also be considered and tend to be more specific than gestures. For

instance, if one considers the characterization of programmer disorientation presented by

De Alwis & Murphy (2006). A collection of interesting comments that are representative

of disorientation may be identified:

• What am I looking at? - the programmer has lost their sense of location and

direction in the code space.

157
• Why cant I find? - the programmer is unable to locate information of interest.

• What was I doing? - the programmer has lost their recent history.

• What was I going to do? - the programmer cannot remember their intent having

arrived at a location.

Yatim (2002) provides a more comprehensive list of questions a disoriented user might be

observed to ask themselves or allude to:

• Where am I?

• How did I get here?

• Where should I go next?

• I know where to go, but how to get there?

• What was I reading previously?

• What was I looking for?

• Why do I keep arriving at this page ?

• Have I been here before ?

• Is the information I am looking for available?

• This is not what I had expected

• I don’t think I found what I was looking for

Given the existence of interaction patterns, gestures and specific comments that may be

linked to disorientation, it may be concluded that a promising strategy for measuring the

158
phenomenon would be to closely observe the user as they carry out their tasks. Then note

down any situations which match the ‘model’ of disorientation. Users may be encouraged

to comment via the use of a talk aloud protocol or perhaps using a more informal pair

exploration type situation where the facilitator acts as a partner and sounding board for

the participant, like a programming colleague might in a realistic setting.

 It should be noted, however, that a synergistic approach is favourable to observing

disorientation. An interaction pattern, gesture or comment in isolation may not indicate

disorientation. A more interesting approach is to look for combinations or patterns which

indicate specific types of disorientation. For instance, a programmer backtracking to

previous locations with a furrowed brow and muttering about being unable to tell where

they came from is a concise indication of navigation disorientation. On the other hand, a

programmer backtracking might simply indicate the general needs of comprehending a

complex piece of fragmented information

6.2.5 Measuring the degree of visual momentum in the interface

The degree of visual momentum in an interface may be used as a heuristic measure of

disorientation (De Alwis & Murphy 2006; Watts-Perotti & Woods 1999). The greater the

level of visual momentum in an interface, the less disorientation, it can be assumed, will

be experienced by the user.

 Woods (1984) describes an interface with low visual momentum -‘Each transition

to a new display becomes an act of total replacement; both display content and structures

are independent of previous ‘glances’ into the database’. Based on this definition, it can

159
be concluded that a rudimentary mechanism to measure visual momentum is to record the

number of display switches during an exploration task which involve a total replacement

of visible content.

6.2.6 Discussion

Disorientation is a subtle, human-oriented and subjective phenomenon which means that

it is fundamentally difficult to quantify in a defensible manner. Considering the variety of

mechanisms available to measure disorientation, and the limitations associated with each,

it was decided that the most appropriate approach was to use a combination. Essentially,

the aim was to build up a model of disorientation based on as many factors as could be

gathered during the experiment.

 Quantitative metrics such as task completion time, display switches per task,

amount of backtracking and interface adjustment were recorded. It was also observed

how the participants interacted with the interfaces, their comments and gestures. A

satisfaction questionnaire was developed which included a number of questions related to

disorientation. Finally interviews were carried out in which the participants were allowed

to describe their experiences using the interfaces in their own words.

160

6.3 Experiment design

Eight participants were recruited and asked to perform a series of eight small to medium

scale exploration tasks over the source code of a moderately complex Java based drawing

application.

 A within subject design was used in the experiment. Each participant performed

four tasks using the standard exploration interface (standard Eclipse IDE) and another

four tasks using the inline interface (Eclipse IDE with the fluid editor installed). A

significant advantage of the within subjects design approach is that it provides control of

individual differences between participants. Essentially each participant acts as their own

control group. Furthermore the design results in an effective doubling of the available

data set in relation to a design organized around independent control groups. This is a

considerable advantage due to the difficulties in finding willing participants.

 However, carryover effects are a problem when applying a within subjects design.

There are two basic types of carryover effects, practice effects and fatigue effects. When

one within-subjects task negatively effects performance on a later task, this is referred to

as a fatigue effect. It may be caused by factors such as tiredness or boredom. On the other

hand, if one task is similar to another task, practice gained in the first task may lead to

better performance in the second task, thus practice effects. Practice effects are a

significant concern in this experiment because all tasks are based on a single underlying

code base. To combat practice effects the order in which the tasks were performed and the

order in which the participants used the interfaces were systematically varied to counter-

161
balance any potential skew. While this would not eliminate the effects it would distribute

them evenly over the resulting data.

 The tasks were recorded using a screen capture device and a video camera. A

‘think aloud’ approach was used to elicit comments from participants as they carried out

the source code exploration tasks.

6.3.1 Participants

The participants involved in the study were recruited from the computer science

department at the University of Limerick. Five of the participants were graduate students

one of which was also a professional programmer, two participants were faculty and one

participant was a recently graduated professional programmer (See Table 6.1).

Participant Profession
P0 Faculty at the University of Limerick
P1 Part time M.Sc. Student/Professional programmer
P2 PhD graduate/Professional programmer
P3 Faculty at the University of Limerick
P4 PhD student
P5 PhD student
P6 PhD student
P7 PhD student

Table 6.1: Participants who took part in the exploratory user experiment and their

corresponding profession.

162
All participants involved in the study were required to have strong programming

experience, however, Java language experience and experience using the Eclipse IDE

varied significantly over the participant set. One participant reported eight years of Java

programming experience and four years using the Eclipse IDE while another reported

being a novice using both Java and Eclipse (See Table 6.2).

Participant Programming experience Java Eclipse
P0 4 years, C/C++, Java, Perl Not a lot Not a lot
P1 C, Perl, Java Good Experienced
P2 8 Years, Java/C++ 8 Years 4 Years
P3 Java, C++, Mumps Rusty Very little
P4 C/C++, Java, Prolog One year 2 months
P5 10 years, C/C++, Python 1 semester Novice
P6 2 years C/Java, ASM 2 years Couple of months
P7 3 Years, Java/C/C++ 2 years Experienced

Table 6.2: Participants and their experience with Java and the Eclipse IDE. The data was

transcribed from a profile questionnaire filled out by each participant at the beginning of

their experiment session.

Ideally, the study should have involved only those participants who were fully

comfortable with both Java and the Eclipse IDE, however due to limited time and

availability of willing participants a compromise had to be made. The primary issue with

using in-experienced participants is an increased tendency towards disorientation, not

based on the structure of the exploration interface itself but rather the process of adjusting

to the new environment, source code and programming language.

163

6.3.2 Tasks

A significant design element associated with the experiment was the selection of tasks.

Initially it was decided to pursue as realistic an approach as possible and have

participants carry out live maintenance on a system. The participant would be presented

with a description of a particular issue of enhancement and would need to identify and

explore the relevant code and make the necessary changes.

 However, during the initial pilot study, involving two participants, which was

carried out before the main experiment, it became clear that asking participants to

perform live maintenance was problematic. Due to inexperience, the participants took a

significant amount of time to perform the relatively small maintenance tasks, and seemed

to undergo a significant amount of stress and confusion in the process. Unfortunately the

study did not have access to professional programmers and relied on graduate students

who exhibited varying degrees of programming expertise and tolerance for complexity.

 Based on the experience of the pilot study, it was decided to use basic source code

exploration tasks, not involving live maintenance on a system. The potential for ruining

the experiment was too great to use realistic maintenance tasks.

 The revised source code exploration only tasks were designed to address both

navigation of source code and development of a conceptual model, activities which are

inextricably linked to the disorientation phenomenon. Each task was structured as a series

of questions which related to particular area of the system. The participant was asked to

164
read each question then explore and comprehend the associated source code and verbally

provide answers to the experiment facilitator.

 Tasks were categorized into four different types, each of which was targeted

towards a particular source code exploration scenario (See Table 6.3). During each

experiment session the participant carried out one task of each type on both exploration

interfaces. The use of task types was designed to coincide with the use of the within

subject approach. Because the study would be comparing the results of a single

participant using both interfaces it was felt that it would provide greater accuracy to

compare similar task types.

Task Type Inline Interface Standard Interface
Local Neighbourhood 1 1

Control flow 1 1
Polymorphic 1 1
Inheritance 1 1

Total 4 4

Table 6.3: Task types carried out on each interface.

6.3.2.1 Local neighbourhood task

The local neighbourhood tasks involved the exploration of the source code

neighbourhood surrounding a particular source code location. The local neighbourhood

was defined as any piece of code which could be reached from a given source code

165
location within three navigation steps. The neighbourhood essentially represented a

radius of navigable code.

 The local neighbourhood tasks emphasized source code navigation and

development of a conceptual model. The participant was required to explore into the code

space to satisfy a particular question and then backtrack to the root of the neighbourhood

or a subsequent location and follow an alternate digression. The participant was also

required to compare related source code elements in the neighbourhood and comprehend

the structure and logic of certain portions of the code.

6.3.2.2 Control flow task

The control flow tasks focused on the navigation and comprehension of a complex chain

of scattered control flow encompassing source code from a number of locations and

documents across the code space. The average number of locations involved in a control

flow task was eight. The participant was guided to a particular location in the code and

asked to examine the structure and logic of a program operation driven by a number of

informational goals.

 The control flow tasks emphasized the exploration comprehension of fragmented

source code and navigation through a complex control flow chain with potential for

digressions. The tasks were somewhat open ended and it was expected that the

programmer would need to deal with digressions, backtracking and the perusal of

alternate routes through the code space. The participant was asked to describe certain

166
aspects of the operation as well as to provide a high level description of the logic and

overall functionality.

6.3.2.3 Polymorphic task

The polymorphic tasks focused on the exploration and comprehension of a given abstract

program operation. The participant was guided to an abstract method declaration or

interface declaration and asked to answer a number of questions associated with the

corresponding implementation. The tasks involved comparison of declarations and

analysis of the type structure. The participant was also required to explore further into

code space beyond the declarations.

 The primary aim of the polymorphic tasks were to determine how the interfaces

performed when abstract operations were encountered and the participant would need to

make use of search functionality. It was of particular interest to see how participants

would react to the inline search feature and how it would compare to the comparative

approach provided by the standard interface.

6.3.2.4 Inheritance task

The inheritance tasks focused on the exploration and comprehension of the type hierarchy

associated with a given class from the point of view of the class itself. The participants

were required to trace the implementation of behaviour through a number of type related

167
method definitions, compare source code from various levels in the hierarchy, and

generally examine of the structure of the hierarchy.

 The inheritance tasks emphasized the navigation of inheritance relationships and

comprehension of source code located at various levels of the type hierarchy.

6.3.3 Data

To measure the level of disorientation experienced during the completion of the

exploration tasks, and also gather feedback regarding the usage of the inline interface, the

study involved the gathering of both quantitative and qualitative data during the

experiment.

The quantitative data gathered during the experiment included:

• Task completion time

• The number of display switches per task (exhibiting a total replacement of

content)

• The amount of backtracking carried out per task

• Interface adjustment (Scrolling)

• Number of inline introductions per task

Quantitative data was gathered using a monitor installed on the version of Eclipse used

during the study. The monitor was built as an Eclipse plug-in and included a simple task

168
view containing the list of tasks associated with the experiment session. Each task entry

had a start and stop button. When ready to begin a particular task the participant selected

the start button which initiated the monitor.

 The monitor logged the duration of the task along with the number of display

switches, use of the history stack, introductions and various events associated with

interface adjustment. This information was stored in a file labelled with the selected task

name. When the task was complete the participant was asked to press the stop button on

the active task which stopped the monitor from logging further events and closed the log

file associated with the task.

The qualitative data gathered during each session included:

• Observed behaviour, comments and gestures

• Satisfaction questionnaires associated with each interface

• Exit interview

Each session was recorded via a screen capture tool and a video camera. The screen

capture tool recorded the entire screen as the participant carried out the exploration task.

The video camera was placed behind the programmer and slightly to the right. This angle

captured any comments made by the participant and the facilitator as well as the

participants body language and the screen.

169
 The participant was not asked to talk aloud, a process that could be considered as

being overly artificial, but was instead encouraged to talk informally about the task using

the facilitator as a sounding board for any thoughts or concerns. Essentially the

participant was encouraged to discuss the task as they would with a quiet colleague. The

facilitator sat beside the participant and to the right, careful not to block the view of the

camera. The facilitator monitored the participant and noted down any interesting

behaviour, comments or gestures which might indicate disorientation.

 After each set of exploration tasks, the participant was asked to complete a

satisfaction questionnaire. The questionnaire contained a variety of questions based on

their satisfaction with the interface they had just used. Questions were based on the work

of Chin et al. (1988) and Jakobson & Hornbaek (2006). The questionnaire also included a

number of questions specifically focused on ascertaining the level of disorientation

experienced. At the end of the session the participant took part in an exit interview during

which they were allowed to reflect on the experience in their own words.

 The details of the questionnaires and the exit interviews are discussed in the

results section so as to avoid needless repetition.

6.3.4 Environment

The experiment was carried out in a laboratory setting using a laptop computer (Thinkpad

X31) attached to a single 17 inch LCD monitor. Screen resolution was set to 1024 x 768.

Participants used an external USB mouse and keyboard for interaction with the system.

170
6.3.4.1 Software

Eclipse version 3.3 was used as the overall experiment platform. The standard

exploration interface was the basic Eclipse 3.3. The fluid source code editor version 1.1.0

was used as the interface for the inline exploration tasks (See Table 6.4).

Interface Software configuration
Standard Eclipse 3.3

Inline Fluid Editor 1.1.0 installed on

 Eclipse 3..3

Table 6.4: The software configuration used during the experiment.

The main Eclipse window was presented in full screen mode occupying all of the

available screen space. By default the package explorer, the console view and the outline

view were open and visible. The hierarchy view was open but stacked behind the package

explorer. Participants were free to customize the Eclipse window, close views and open

further views as desired during the study. The fluid editor was presented with default

settings (standard color model and shading to differentiate between levels in the inline

exploration tree).

171
6.3.4.2 JHotDraw

Exploration tasks were based on source code associated with the JHotDraw framework

version 7.0. JHotDraw (JHotDraw 2009) is an open source, Java based, 2D drawing and

graphics framework which includes a basic drawing editor as a sample application. The

JHotDraw source code is relatively small but moderately complex which offered a good

balance in terms of task complexity and expected completion time.

6.4 Procedure

The following section gives an account of how the experiment was carried out from a

procedural point of view. This particular procedure was repeated eight times over the

course of the experiment, once for each participant. The overall experiment was carried

out over a four week period.

 Upon entering the laboratory, the participant was first welcomed and thanked for

taking part in the study. The facilitator then delivered a ten minute high level description

concerning the organization of the experiment and what was expected of the participant.

The intent of the experiment was purposefully omitted including any reference to

disorientation. It was felt that such information might introduce preconceptions and alter

the participants natural behaviour. After the initial introduction, the participant was asked

to fill out a profile describing their Eclipse and overall programming experience.

 Once the preliminaries were out of the way, the participant was introduced to the

first interface that they would be using during the experiment. This was either the

172
standard interface or the inline interface depending on the configuration of the particular

session (interface order was systematically varied over the course of the experiment to

counter skew due to practice effects). The primary features of the interface were

demonstrated, such as how to navigate within the source code, how to open files and how

to use the primary IDE views. The participant was encouraged to spend at least ten

minutes using the interface in order to get comfortable and clear up any potential

usability problems.

 Once the participant had confirmed that they were indeed comfortable with the

interface and had no further questions, the first task sheet was produced. The task sheet

included a description of the required task. The participant was asked to read the task

description and indicate to the facilitator when they were ready to begin exploration.

 On commencement of the exploration task, the facilitator asked the participant to

select the task in the task view and click the start button. The video camera was also

started as synchronously as possible using a remote control. The participant completed

the exploration task using the facilitator as a sounding board. The facilitator encouraged

comment when necessary by asking the odd non-confrontational question and making

innocuous comments concerning the exploration task. The facilitator sat to the right and a

little behind the participant and monitored the exploration and recorded any interesting

interaction patterns, comments or gestures throughout the course of the task.

 Upon completion of the exploration task, the facilitator asked the participant to

stop the active task using the task view. The video recording equipment was also paused.

173
The participant was allowed a short break and asked to indicate to the facilitator when

they felt ready to begin the next task. All four tasks were carried out in this exact manner.

 When the four tasks on the initial interface were completed the participant was

asked to fill out the satisfaction questionnaire associated with the interface. The facilitator

left the lab for ten minutes allowing the participant to fill in the questionnaire in a private

and pressure free setting.

 Upon completion of the questionnaire, the participant was introduced to the

second exploration interface and carried out the same sequence of steps associated with

the first interface, including the completion of a corresponding questionnaire.

 Before the end of the session the participant took part in the exit interview. The

exit interview allowed the participant to describe their experience in their own words.

 After the interview the participant was thanked again and shown out of the

laboratory. The overall experiment duration was expected to be 2 - 2.5 hours.

174

Chapter 7

Results, Findings & Validity

The user experiment resulted in a significant amount of data including monitor log files,

video and screen capture recordings, questionnaire results, interview transcripts and

observational notes. This body of raw data was analysed and the results and findings are

presented in this chapter. This chapter also discusses the validity of the experiment.

7.1 Task completion times

Task completion times were calculated from the monitor log files generated during the

experiment. Overall participants completed the exploration tasks 14 % faster on the inline

interface. The average task completion time on the inline interface was 588 seconds (9.8

175
minutes) while the average completion time on the standard interface was 679 seconds

(11.9 minutes). This represents an average gain of 91 seconds (1.5 minutes) per task.

InlineInline StandardStandard
Task Mean STD Mean STD
Local neighbourhood A 563 283 376 62
Local neighbourhood B 513 52 614 79
Control flow A 513 184 571 240
Control flow B 446 84 576 176
Polymorphic A 481 85 554 131
Polymorphic B 553 85 621 86
Inheritance A 812 85 981 314
Inheritance B 820 216 1141 450
Average 588 134 679 192

Table 7.1: Task completion times in tabular format (STD = standard deviation). All

values are in seconds.

Figure 7.1: Task completion times in bar chart format.

176
Participants completed local neighbourhood task 8% faster using the standard interface

versus the inline interface. This is the only task in which the standard interface yielded a

faster completion time. The first local neighbourhood task (A) was performed 33% faster

using the standard interface however the second neighbourhood task (B) was performed

17% faster using the inline interface.

 Participants performed the control flow task 11% faster using the inline interface.

The average completion time on the inline interface was 479 seconds (7.9 minutes) and

the average completion time on the standard interface was 537 seconds (8.9 minutes).

 With regard to the polymorphic tasks, participants performed 12% faster using the

inline interface. The average completion time on the inline interface was 517 seconds (8.6

minutes) and the average completion time on the standard interface was 587 seconds (9.7

minutes).

 On the inheritance task, participants completed 23% faster using the inline

interface. The average completion time on the inline interface was 816 seconds (13.6

minutes) while the average completion time on the standard interface was 1061 seconds

(17.6 minutes).

 Overall participants spent an average of 78 minutes on the inline interface and 91

minutes on the standard interface throughout the experiment session. Participants

completed the exploration tasks 13 minutes and 14% faster using the inline interface. The

results indicate a general trend of improved completion time on the inline interface.

177

7.2 Display switches

The number of display switches, in which a total replacement of visible content occurred,

was used as a heuristic measure of visual momentum in the exploration interface. The

greater the number of display switches during a task the lower the level of visual

momentum and vice versa.

 Overall the average number of display switches per task was 95% lower with the

inline interface versus the standard interface.

InlineInline StandardStandard
Task Mean STD Mean STD
Local neighbourhood A 3.8 5.2 17.8 6.2
Local neighbourhood B 0 0 15.3 9.5
Control flow A 2 1.6 13.3 5.9
Control flow B 0.5 1 22.3 8.7
Polymorphic A 0 0 15 6.7
Polymorphic B 0 0 12.3 1.9
Inheritance A 2.3 2.6 37.8 22.2
Inheritance B 0.3 0.5 43.8 6.3
Average 1.1 1.4 22.2 8.4

Table 7.2: Display switches per task in tabular format (STD = standard deviation).

178

Figure 7.2: Display switches per task in bar chart format.

Over the local neighbourhood task set participants experienced an 89% reduction in

display switching using the inline interface. On the control flow tasks participants

experienced a 93% reduction with the inline interface. On the polymorphic tasks

participants did not, on average, experience any display switching when using the inline

interface. Completing the polymorphic tasks on the standard interface an average of 14

display switches occurred. Over the inheritance tasks participants experienced a 97%

reduction in display switching.

 In addition to the number of display switches per task, the number of inline

introductions was also recorded for each task carried out on the inline interface. Using the

number of introductions it is possible to get an idea of the number of navigational actions

carried out by the programmer over the task sets. The average number of inline

introductions per task was 14.3 and the average number of display switches per task on

179
the inline interface was 1.1. Using the standard interface participants performed an

average of 22.2 display switches per task. Based on this data it was discovered that

participants perform 31% less navigation actions using the inline interface.

InlineInline Standard
Task Introductions Display Switch Display Switch
Local neighbourhood A 13.75 3.8 17.75
Local neighbourhood B 10.25 0 15.25
Control flow A 12.75 2 13.25
Control flow B 10.5 0.5 22.25
Polymorphic A 11 0 15
Polymorphic B 15.75 0 12.25
Inheritance A 21.75 2.3 37.75
Inheritance B 18.5 0.3 43.75
Average 14.3 1.1 22.2
Navigation actions 15.415.4 22.2

Table 7.3: Navigation actions carried out per task in tabular format (STD = standard

deviation).

180

Figure 7.3: Navigation actions carried out per task per task in bar chart format.

Interestingly, on the inline interface the highest number of display switches occurred on

the local neighbourhood task A. The average number of display switches was 3.8. This

coincides with the fact that the participants performed local neighbourhood task A 33%

faster using the standard interface and indicates the existence of an outlier. Looking at

finer grain data participant p0 experienced 11 display switches when performing local

neighbourhood task A and completed the task 57% slower than the average of the other

three participants performing the task.

181

7.3 Backtracking

On the inline browsing interface the use of the back and forward navigation actions was

negligible. Over the entire data set of 32 tasks the forward action was invoked three times

and the back action was invoked 15 times. This represents a 0.6 backward actions per

task and 0.3 forward actions carried out per task. On the standard interface the back

action was invoked, on average, 6 times per task and the forward action was invoked 1.6

times per task.

InlineInline StandardStandard
Task Back Forward Back Forward

Local neighbourhood A 1.75 0 4.3 0
Local neighbourhood B 0 0 4.3 0.8
Control flow A 2 0.75 4.8 3.5
Control flow B 0 0 6 3.3
Polymorphic A 0 0 2.8 0
Polymorphic B 0 0 1.8 0
Inheritance A 0.75 0.75 15 3.5
Inheritance B 0.5 0.5 8.8 1.8
Average 0.6 0.3 6 1.6

Table 7.4: Mean backtracking over the task set.

The results indicate a 90% reduction in backward navigation and an 81% reduction in

forward navigation when using the inline interface.

182

7.4 Scrolling

Horizontal scrolling was negligible during the experiment and is thus not presented for

consideration. Participants scrolling activity increased 47% in the upward direction and

34% in the downward direction using the inline interface versus the standard interface.

InlineInline StandardStandard
Task up down up down
Local neighbourhood A 49 71 17.3 76.5
Local neighbourhood B 17.3 21.8 11 54
Control flow A 59.3 126 15.8 50.3
Control flow B 54.8 82.5 45 36
Polymorphic A 10 26.3 13.5 60
Polymorphic B 9 25.5 19 24
Inheritance A 38 136.5 43.5 136.5
Inheritance B 87.8 215 9 24
Average 40.7 88.1 21.8 57.7

Table 7.5: Vertical scrolling carried out per task.

7.5 Satisfaction

All questions in the satisfaction questionnaire were answered on a scale of zero to nine

forcing the participant to lean to one side of the scale. All questions in all of the

satisfaction questionnaires were completed. The results of the satisfaction questionnaires

are presented in Tables 7.6 & 7.7.

183

InlineInline StandardStandard
Question? Mean STD Mean STD

1. How did you find the inline browsing interface in general?
Very poor - 0 1 2 3 4 5 6 7 8 9 - Very good 7.7 1 5.4 1.4

2.- 6. How was the interface to use?
Terrible - 0 1 2 3 4 5 6 7 8 9 - Wonderful 7.3 0.8 5.1 1.6

Hard - 0 1 2 3 4 5 6 7 8 9 - Easy 7.6 1 4.4 1.1
Frustrating - 0 1 2 3 4 5 6 7 8 9 - Pleasant 7 1 4.4 1.1

Boring - 0 1 2 3 4 5 6 7 8 9 - Fun 7.4 1.3 5.1 1.5
Confusing - 0 1 2 3 4 5 6 7 8 9 - Clear 7.3 0.5 4.4 1.5

7. It was clear, most of the time, where I was in the source code.
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 7 1.4 4.6 1.7

8. I often lost my orientation (got lost) in the source code.
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 4.7 2.7 5.7 1.7

9. I often felt confused when exploring the source code.
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 4.9 2 5.4 1.1

10. There was sometimes too much information on the screen at
once.

I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 5.6 2.5 4.1 2.4

Table 7.6: Satisfaction questionnaire results, questions 1-10.

184

InlineInline StandardStandard
Question? Mean STD Mean STD

11. It was easy to determine the relationships between expanded
pieces of code.

I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 5.7 2.4

12. The visual cues were distracting...
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 2.3 2.7

13. The colouring coding of the visual cues was helpful..
I disagree - 0 1 2 3 4 5 6 7 8 9 - I agree 5.1 2.3

14. How did you perceive the tasks?
Very poor - 0 1 2 3 4 5 6 7 8 9 - Very good 5.9 1.3 6.1 1.1

15. How would you rate your answers to the tasks?
Very poor - 0 1 2 3 4 5 6 7 8 9 - Very good 4.7 2.4 4.9 1.6

16. - 18. Was the source code...
Hard to understand - 0 1 2 3 4 5 6 7 8 9 - Easy to understand 4.6 1.7 4.1 2.1

Hard to overview - 0 1 2 3 4 5 6 7 8 9 - Easy to overview 4.4 2.1 4 2.6
Hard to navigate - 0 1 2 3 4 5 6 7 8 9 - Easy to navigate 6 2.4 4.1 1.9

19. Was information in the source code...
Hard to locate - 0 1 2 3 4 5 6 7 8 9 - Easy to locate 6.3 2 4.4 2.3

Table 7.7: Satisfaction questionnaire results, questions 11-19. The grey cells indicate

questions that were specific to the inline interface.

The results of the satisfaction questionnaire were analysed for trends in the data, the

results are presented here. Overall participants preferred the inline browsing interface

over the standard interface. The inline interface scored better on the scale of terrible to

wonderful. Participants also found the inline interface easier to use, more pleasant, more

fun and less confusing.

185
 Participants agreed that they had a better idea of where they were in the code

using the inline interface. The data also suggested that participants felt less disoriented

using the inline interface. Participants felt less confused using the inline interface.

Interestingly the data suggested that participants found that there was too much

information presented using the inline interface.

 In terms of the questions specific to the inline interface, participants agreed that it

was easy to determine the relationship between inline source code and that visual cues

were not distracting during browsing tasks. Participants also agreed that the color coding

of the fluid annotations was helpful.

 The data suggested that participants found the it slightly easier to comprehend

code, overview code and navigate code using the inline interface. Participants also agreed

that it was easier to locate information in the source code using the inline interface.

7.6 Exit questionnaire

The exit questionnaire contained a series of five open ended questions encouraging the

participant to reflect on their experiences during the study. The facilitator transcribed

participant responses. A summary of each question coupled with interesting and relevant

responses is presented in this section.

Did you prefer the inline interface or the standard interface? Please elaborate.

 All participants indicated that they preferred the inline browsing interface over the

standard browsing interface. Participants were also asked to elaborate on their decision.

186
 Participant P0 indicated that, initially, the concept of inline exploration was

difficult to grasp but once comfortable the technique was described as ‘intuitive’. P0 also

mentioned that he suffered from colour blindness and thus some of the annotation and

background colours looked alike.

 P1 described the fact that ‘the control flow path was easy to overview’ and that

the inline interface was ‘simple and convenient for following control flow’. Adding to

this P1 said that when using the standard interface he tended to ‘miss things and forget

information’. P1 also mentioned that the inline search results view was ‘good’ and that

the inline browsing interface was ‘excellent for exploring other people’s code’. Finally P1

mentioned that the inline interface required ‘no adjustment’ and was something he would

‘use all the time’.

 P2 indicated that the inline interface ‘immediately made sense’ was ‘more fun’

and that it ‘fixed many of the problems with the IDE’. P2 also communicated the desire

for the ability to collapse certain levels in the inline browsing tree while keeping the sub

tree open.

 P3 stated that the inline interface made it ‘easier to keep track of locations’ and

that he liked how the programmer ‘stayed in the single view’.

 P4 mentioned that it was ‘easier to find the code that you are looking for’ and that

the code displayed using the inline interface was ‘clearer than standard mode’. P4 also

said that the inline interface involved ‘less jumping around code’ and was ‘more

intuitive’.

187
 P5 described that the ‘consistent’ interface of the inline interface was useful. He

indicated that ‘with standard Eclipse there are many ways of finding and navigation’ but

with the inline interface there was a ‘consistent approach’. P5 also mentioned that one

could ‘look at other code without loosing your position’ and that the code was ‘easier to

navigate’ using the inline interface. P5 went on to say that the inline interface supported

‘comparison of different places’ and that it was “easy to follow multiple steps through

code”.

 P6 mentioned that it was easier to ‘back out of wrong turns’ using the inline

interface and that he could ‘see the exploration path’. P6 added that it was ‘hard to follow

sequences of code using standard Eclipse’.

P7 did not take part in the exit interview due to the experiment session overrunning the

allocated time.

What advantages or disadvantages did you perceive when using the inline interface

vs. the standard exploration interface?

The second question asked participants to describe the advantages and disadvantages of

the inline interface versus the standard interface. In hindsight the question was poorly

worded as some participants, in their answer, described advantages and disadvantages of

the inline interface as opposed to comparing both interfaces.

 When asked to describe the advantages and disadvantages of the inline interface

versus the standard interface P0 mentioned that one does not need to ‘leave the context’

188
and that the inline interface provides a ‘nice summary of explored elements’. When asked

about disadvantages P0 said that the ‘UI was jumpy’.

 In terms of advantages P1 indicated that the visual cues ‘don’t get in your way’

and that the colour coding of inline source code was ‘useful’. Describing disadvantages

P1 indicated that the relationships between inline declarations were sometimes ‘difficult

to discover’ and that it was not possible to close inline declarations using the keyboard.

 P2 provided a detailed list of advantages but was unable to provide any

disadvantages. The advantages were:

• ‘The inline interface made sense of abstract classes/interfaces’

• ‘Inline exploration shows you the code you are interested in without any

hassle’

• ‘Good for taking a quick look at code without leaving’

 P2 also mentioned that the use of ‘multiple editors’ in Eclipse ‘is a cheap fluid

editor’. According to P3 the advantage of the inline interface is that it ‘facilitates

comparison of sequential and hierarchical code’. In terms of disadvantages P3 mentioned

that the inline editor was not good for ‘comparing code that was not linked’ and that the

colours were ‘arbitrary’.

 P4 declined answering this particular question stating that he needed ‘more

experience with Eclipse’ before he could provide a proper answer. P5 said that the visual

189
cue colouring should be ‘ignored’ but that the shading colour model was ‘good to convey

depth’.

 Finally P6 described the advantage of the inline interface as simply ‘seeing

everything at once versus paging through’. ‘Visual cues interfering with each other’ was

described as a disadvantage as was the visual cue colour model and the fact that visual

cues would ‘sometimes blink when reading the code’ serving as an annoyance to the

programmer.

Can you identify any aspects of the inline interface that stood out as particularly

confusing or frustrating?

When asked to identify aspects of the inline interface which stood out as particularly

confusing or frustrating P0 mentioned that ‘visual cues are sometimes hard to click on’

but otherwise everything was ‘straight forward’.

 P2 described that it was difficult to ‘differentiate between adjacent visual cues’

and that he ‘didn’t pay attention to the colors’. P2 also indicated that deep inline

exploration trees were not ‘too difficult’ to deal with.

 P3 again mentioned that it was ‘hard to find the right cue and that when a lot of

information was introduced inline reading the code was ‘difficult’. All other participants

indicated that they could not think of anything which stood out as particularly confusing

or frustrating.

 In hindsight the content of question three overlapped with the previous question

and thus it was not surprising that some participants were unable to describe any

190
confusing or frustrating aspects of the inline interface. These aspects had already been

described in question two and thus, on some levels, question three was superfluous.

Are there any features that you would like to see in future versions of the fluid

editor?

When asked to identify desired features of the fluid editor or an inline interface in general

P0 said that he would like to be able to edit the code contained in inline declarations.

When asked why, P0 replied that it was an ‘obvious feature but maybe not needed?’.

 P1 requested the ‘ability to introduce the call hierarchy and view search results

inline’. P1 also mentioned the ability to ‘hide levels of the hierarchy’. P2 wanted to see

inline introductions surrounded in a border and indented out from the horizontal axis of

the editor. He also requested a differentiation between ‘normal’ code and ‘interfaces’. P3

described the need for a visual map of the path associated with the exploration task. P5

said he would like to ‘see the editing of inline introductions just out of curiosity’. Finally

P6 wondered if there would be any advantage to support for saving inline browsing paths.

Would you see yourself using the fluid editor or a similar system when

programming?

All participants indicated that they could see themselves using an inline browsing

interface if it was provided as part their IDE. P0, who does not use an IDE, indicated that

he would use an inline interface if he was using an IDE.

191

7.7 Findings

In addition to the results presented in the previous sections, numerous pages of

observations were captured concerning participant behaviour, interactions, comments and

gestures over the course of the experiment. Furthermore, after the experiment was

complete in a procedural sense, the various notes, screen captures and video recordings

were synchronized and analysed in detail to clarify findings and carry out a more focused

observation beyond that possible during the live sessions.

 Rather than providing an exhaustive listing of observations and incidents as part

of the results section, this information is instead presented in a condensed form as part of

the findings. Findings are organized into two broad sections. First a discussion of the

findings related to disorientation from observing participants working on the standard

interface. This insight proved to be extremely useful both in terms of gaining a greater

understanding of programmer disorientation in the IDE and also adequately evaluating

the inline approach. Secondly a discussion of the effectiveness of the inline interface at

alleviating the observed disorientation. For this discussion the results presented in the

previous sections in addition to the various observations gathered over the course of the

experiment sessions are drawn upon.

7.7.1 Disorientation observed using the standard interface

During the experiment a deep insight into disorientation as it occurs during source code

exploration activities using the standard Eclipse IDE was gained. Based on the various

192
observations, a set of core factors and scenarios which typified the phenomenon were

formulated. It should be noted that this set of factors is not considered comprehensive as

it is based on observations from the study itself, which was limited in both size and

scope.

7.7.1.1 Navigation context

Over the course of the experiment it was observed on a number of occasions, that

participants would suffer from disorientation due to a lack of navigational context. This

coincides with the findings of Murphy et al. (2006) and a general consensus in the overall

research literature. At a basic level, a lack of navigational context means that there is no

visible representation of the navigation path which the programmer pursued to arrive at

the currently visible source code location, an item of context which is important in terms

of reminding the programmer of their ongoing intent and task focus (Storey et al. 1999;

De Alwis & Murphy 2006).

 Participants were observed, often during complex navigation activities, having

just traversed across a number of displays, to suddenly lose track of their intent or goal.

P5, for instance, when carrying out the control flow task stopped mid exploration and

asked rhetorically “What was I doing here?”. P6 having switched concentration

momentarily from the IDE to the task description, was unable to remember what he was

doing having returned his focus to the IDE. A pattern was observed. The participant

became distracted, in some cases due to cognitive drain related to navigating between

displays and in other cases when reconsidering the task description or talking to the

193
facilitator, resulting in a loss of task focus (perhaps the participants short term goal being

pushed out of working or short term memory). P1 said that when using the standard

interface he tended to ‘miss things and forget information’.

 In response to this occurrence, what is referred to here as task disorientation, a

general pattern of re-orientation was observed in which the participant would navigate

back over their previous locations using the back button or editor tabs in an effort to

regain context. Essentially reviewing their previously visited locations in an attempt to

remind themselves of their intent. If context could not be regained in this manner, the

participant would restart exploration from a known location, generally the initial location

specified in the task description, and begin to recreate their intent from that point.

 The data also highlights this general trend. Participants carried out a greater deal

of backtracking on the standard interface, 10x greater (See Chapter 7, Section 3) and also

took longer to perform their tasks, 14% longer (See Chapter 7, Section 1). Participants

also carried out a significantly greater amount of navigational actions, 31% more than the

inline interface. These units of data, along with the observations, suggest that participants

had difficulties maintaing navigation context when using the standard interface, and

consequently performed a significant amount of backtracking/navigational actions in

order to reorient, a process which is time consuming. The satisfaction questionnaires also

reflect this conclusion with participants reporting that the code was harder to navigate

using the standard interface and that they more often got lost and confused when

exploring the code.

194
7.7.1.2 Revisiting known locations

Participants were observed to suffer from disorientation when unable to find locations

and elements which had previously been encountered during the exploration tasks. Many

of the tasks in the experiment naturally required the participant to explore from a given

source code location, and then return to follow an alternate exploration route, or simply

refer back to previously visited code as part of the comprehension process.

 It was observed that participants had issues finding and returning to particular

locations or elements in the system, which often resulted in frustration and in some cases

progressed to disorientation. A number of aspects to this phenomenon were identified:

• Problems with the history stack

• The homogenous nature of source code

• A lack of code familiarity

The history stack in modern IDEs such as Eclipse is essentially a one dimensional list

which allows the programmer to navigate back and forward over a sequential record of

previously visited locations (See Chapter 3, Section 3.2.7). However, when a

programmer is exploring source code they will often backtrack to a previous location and

pursue an alternate route through the code resulting in a branch or digression in

navigation history. The linear history stack cannot represent a digression in addition to

the original path, and will consequently discard forward history. This results to a situation

where a programmer may return from a particular location, then navigate to a new

195
location, and will ultimately be unable to return to the original location via the history

stack. This situation was observed a number of times over the course of the experiment.

The participant backtracked, intending to return to an element of interest but ended up in

an unexpected area of the code resulting in distraction and over concentration on

interface manipulation.

 Another reason for participants being unable to locate known information was the

homogenous nature of the source code. Participants sometimes simply didn't recognize

the code they were looking for and bypassed it when backtracking on the history stack or

flipping between the editor tabs. This issue seemed to be exacerbated during the control

flow and inheritance tasks where participants were navigating through a series of large

method bodies where the method name and inter-construct spacing and formatting were

sometimes not fully visible in the editor viewport.

 The final aspect of the phenomenon was a lack of familiarity with the source code

structure. Essentially, participants were unable to find particular locations and elements

because they did not have a clear idea of the structural organization of the system.

For instance, while an experienced programmer might be expected to know the file or

type within which a particular program element of interest is located, and thus easily find

it in the package explorer, the participants, in general, had not built up this level of

familiarity and instead searched for elements in the display space which was exhaustive

and problematic.

 The outcome of being unable to locate a location or program element in the

system was generally a case of distraction which in some cases exacerbated into a loss of

196
task focus and disorientation. For instance, during the control flow task P6 followed a

number of digressions and upon returning to the original branch point, after some

frustration caused by flipping between the editor tabs, was unable to recall what he had

intended to examine next. He ended up restarting exploration from the initial location

specified in the task description.

7.7.1.3 Task context

Over the course of the experiment, it was observed that a number of participants used the

visible set of editor tabs as a form of rudimentary task context. This representation was

leveraged as a navigational and orientation aid, and in some cases even as a conceptual

map during subsequent exploration activities.

 Four participants p0, p1, p2 and p3 were all, at one point observed to consistently

use the set of visible editor tabs for reasoning and navigation between program elements

related to an exploration task. This was not a systematic behavior but seemed to occur

due to the participant becoming disorientated as a result of a consistent inability to find

particular pieces of code in the display space or comprehend casual relationships between

fragmented source code elements. These participants were essentially avoiding

disorientation, a commonly observed trend during information exploration activities

(Henderson & Card 1986; Watts-Perotti & Woods 1999; De Alwis & Murphy 2006).

Without an explicit representation of the elements associated with their task in which to

reason about and orient, they adapted a rudimentary system using the editor tabs. This

theory was given strength by the fact that many of the participants would close all open

197
editor instances at the end of a particular exploration task, in effect clearing their context

in anticipation of the upcoming task.

 It was also noticed that editor tabs were used as a conceptual aid. P2 arranged his

editor tabs to mirror the control flow over a series of source code documents. This served

as a sequential navigation aid in addition to a high level overview of the control flow

structure.

7.7.1.4 Display thrashing

Thrashing was a common theme throughout the experiment, more so than was expected

considering related work on the topic (De Alwis & Murphy 2006). All of the participants

were observed, at one point or another, to thrash between source code displays. The

thrashing was generally related to synthesizing an overview of fragmented source code in

order to aid the comprehension process. P1 mentioned that it was ‘difficult to trace

control flow through a complex hierarchy’ when observed to thrash back and forth

between a number of sequential displays on the polymorphic task.

 P2 was the only participant who was observed to use multiple editors in a

simultaneous manner and thus avoid thrashing between related displays. This occurred on

two occasions . However, the approach resulted in some frustration, P2 had some issues

managing horizontal space and was unable to adjust the editor so as to fit all of the two

source code locations in the single editor area. There was a considerable amount of

interface adjustment carried out to this end. Furthermore, P2 seemed to forget which

editor he was to focus on after conversing briefly with the facilitator, sometimes staring at

198
the screen for a moment. P2 also became annoyed when a declaration opened from the

first visible editor replaced the code contained in the second editor thus breaking his

carefully arranged interface layout.

 Although the declaration view was open by default and its functionality described

in the introduction to the experiment session, no participants were observed using it or

taking further interest in its utility.

 Thrashing is also suggested in the data. Forward and backward navigation was

much more pronounced on the standard interface, as was the overall amount of

navigational actions or display switches carried out (See Chapter 7 Sections 1 and 2).

7.7.2 Disorientation observed using the inline interface

Having gained an insight into the incidence of disorientation experienced on the standard

interface, focus shifted to understanding the effectiveness of the inline interface at

alleviating disorientation. Fundamentally, the aim was to ascertain if disorientation was

reduced over the task sets, and if so, how and in what particular circumstances. It was

also desirable to determine if the inline interface resulted in additional disorientation

(unique to the inline mechanism itself) or problematic usability issues - in terms of both

the core concept and the specific implementation provided by the fluid source code editor

prototype.

199
7.7.2.1 Visible representation of navigation history/context

The study observations suggested that the visible representation of navigation history

supported by the inline interface was reasonably effective at reducing disorientation

associated with the lack of navigation context in the IDE. Two aspects were observed:

• A reduction in cognitive drain related to loss of context/display switching

• Ease of re-contextualization

On the inline interface, participants were able to carry out the majority of their

exploration using inline introduction as opposed to explicitly navigating between

discrete source code locations necessary on the standard interface. The inline interface

resulted in a substantial reduction - 89% on average - in display switching (involving a

total replacement of content) over the task sets. Consequently, it was observed that

participants were significantly less prone to becoming distracted by the exploration

process itself. This improvement in focus may have been due to the visible navigation

context easing the cognitive requirement on the programmer to maintain context and

orientation in the code space, in addition to elimination of the distraction associated with

continual transition between discrete source code displays and information contexts.

 When participants did get distracted, primarily due to clarifying some aspect of

the task description or conversing with the facilitator, they were, in most cases, able to re-

contextualize based on the visibly introduced source code declarations. P0 having

returned from re-reading the task description commented that the inline interface

200
provides a ‘nice summary of explored elements’ before continuing his task. P1 mentioned

that ‘the control flow path was easy to overview’ and P3 stated that the inline interface

made it ‘easier to keep track of locations’ and that he liked how the programmer ‘stayed

in the single view’. There was no observed incidents on the inline interface where a

participant felt the need to backtrack through visited code in order to regain a sense of

their current intent and focus. This thesis proposes that these observations account for a

significant fraction of the reduction in task completion times and reduced use of the

history stack recorded during the inline interface tasks.

 However, beyond these positive findings, a problematic tendency associated with

the inline interface with respect to the visible representation of navigation context was

identified. Once a certain saturation of introduced information had been achieved

(generally 6 or more levels in an inline expansion tree or when a particularly sizable

declaration was introduced which required scrolling of the introduced content)

participants began to show signs of losing orientation in the ‘expansion space’. On a

number of occasions, participants became confused when considering code deeply

embedded in a large expansion tree. P3 indicated that he became ‘lost’ when a large

amount of source code was introduced inline into a single view. When asked to elaborate,

P3 said that there was ‘too much going on’ on the screen. A number of reorientation

strategies were also observed. Either the participant would give up the effort of tracing

the various levels and close the expansion tree to restart exploration, or the participant

would navigate explicitly to the most recently expanded source code declaration,

201
continuing exploration from that location, in essence moving to a fresh expansion

context.

7.7.2.2 Exploratory digressions

On the standard interface, it was observed that participants experiencing issues when

attempting to return to previously visited locations in the code space having pursued an

exploratory digression.

 Using the inline interface, it was noticed that participants rarely utilized the

standard history stack provided by the IDE, preferring instead to leverage the visible

representation of navigation history provided by the fluid editor. Because the fluid editor

supports digressions in context - the programmer can evaluate a digression without

explicitly leaving the original context- it was observed that the act of retuning from a

digression was, in general cognitively effortless, simply a matter of collapsing the

appropriate level in the expansion tree. P6 mentioned during exploration on the control

flow task that it was easy to ‘back out of wrong turns’ because he could ‘see the

exploration path’.

 A portion of the improved task completion times (See Chapter 7, Section 1) was

attributable to the ability to pursue exploratory digressions without the requirement to

invest in cognitively expensive navigation away from the core context and potentially

exhaustive display searching in order to return to the original location. These

observations account for the results indicating that participants performed a lesser amount

202
of navigation actions on the inline interface (average of 31% reduction over the task sets)

(See Chapter 7, Section 2).

7.7.2.3 Comprehending fragmented code

In terms of comprehending fragmented source code, the inline interface presented mixed

results. Up to a certain level of introduction the inline interface seemed to help

participants comprehend fragmented code, particularly when there was a need to examine

multiple fragments of source code from the same expansion level in a simultaneous

manner or when comprehending scattered control flow involving small to medium scale

method declarations. P6 during the control flow task described an advantage of the inline

interface as simply ‘seeing everything at once versus paging through’. It was observed

that the ability to introduce search results in an inline manner was also useful, particularly

the ability to examine multiple results in a simultaneous manner,. Numerous participants

commented on the usefulness of this feature .

 However, the issue of saturation and overly large declarations was again

problematic. Once a certain saturation point was reached (expansion tree complexity or

size), participants would lose orientation in the expansion space. Some participants were

observed attempting to trace the various levels of the expansion tree with limited success.

At one point during the experiment P6 seemed to become disoriented when considering

the expansion tree associated with the control flow task. A large amount of nested inline

information was visible on the screen and P6 exhibited a degree of confusion when

tracing execution flow through levels. In response, P6 closed the main sub tree and

203
restarted inline exploration. It seemed that the act of creating the tree was an important

part of the comprehension process. When asked to expand on the problem, P6 said that

‘there was too much code on the screen’ and that ‘it was difficult to see how the pieces fit

together’. The introduction of large method and type declarations was also a considerable

problem - causing surrounding context to be pushed out of the visible viewport and

requiring the participant to scroll the display to view the introduced code.

 A significant aspect of the comprehension and orientation problem in the

expansion space was the the interline expansion technique - whereby the source code is

spilt at the annotation anchor. The splitting of source code declarations seemed to be an

issue in terms of participants tracing and comprehending introduced code. Perhaps a

more promising approach was the original inline interface design where the declaration

was introduced inline after the the anchor declaration, thus avoiding the need to split

individual declarations.

 It was observed that horizontal screen real-estate also became an issue in terms of

large expansion trees. Once an expansion tree reaches a certain size, the accumulation of

indentation (part of the differentiation mechanism) lead to the need for horizontal

scrolling which required interface adjustment and exacerbated traceability issues between

the various levels of nested introduction.

7.7.2.4 Miscellaneous user experience concerns

It was observed that fluid annotations did not interfere with the reading and exploration

of source code which was positive. None of the participants complained about fluid

204
annotations obstructing comprehension of code and during the exit interview P1

mentioned that annotations ‘don’t get in your way’. When asked to agree or disagree with

the statement ‘The fluid annotations were distracting...’ only one participant agreed, 7/9,

and the average score associated with the statement was 2.3/9 (0 referring to total

disagreement).

However, a number of issues regarding fluid annotation placement were observed

during the experiment. The first issue related to the placement of fluid annotations was

associated with method references. The existing design places the annotation on the

closing parameter bracket as opposed to directly after the reference word such as in the

case of types, fields and variables. In the presence of nested method references (one

method reference acting as a parameter to another), it was observed that participants had

difficulty identifying the particular annotation associated with the ‘inner’ and ‘outer’

reference. Furthermore in the presence of long or multi line parameter specifications, in

which case the fluid annotation may be located at a significant distance from the actual

method reference, participants were observed to have problems finding the annotation

associated with the reference. Perhaps a more promising approach would have been to

associate the annotation with the word of source code itself or use a hyperlink style

interaction mechanism (which is problematic due to the existing and ubiquitous use of

hyper-links for explicit hypertext style navigation).

 A second issue concerns the proximity of fluid annotations in a general sense.

When a number of annotations are located in close proximity, as defined by the density of

the code, bounding regions tend to overlap and thus participants were observed to have

205
difficulty selecting an annotation of interest. Again this issue could be largely rectified by

providing a more proximate activation mechanism.

 In terms of fluid annotation colour coding, the reaction from participants was

mixed. P0 and P2 complained of colour blindness and thus indicated that the annotation

colour model had limited usefulness. P6 described annotation colour coding as a

disadvantage and P5 indicated that annotation colour code was not required. When asked

to agree or disagree with the statement ‘The colour coding of the fluid annotations was

helpful..’, the average score worked out as 5.1/9 (0 referring to total disagreement and 9,

total agreement). Overall, participants seemed ambivalent to the colouring of fluid

annotations.

 The colour model associated with inline expansions gained greater favour.

Participants related positively to the ability to visually distinguish between adjacent

levels in the introduction hierarchy. P1 mentioned that it was ‘easy to differentiate

between coloured code’. P1 also mentioned in the exit interview that he would like to see

a visual differentiation between ‘normal’ code and ‘interfaces’ - a general extension of the

idea.

7.8 Validity

Throughout the design, execution and interpretation of the experiment, maintaining

validity was a primary and overarching concern. The aim was to produce an accurate,

defensible and interesting set of results and findings. This section discusses the validity of

206
the experiment and describes the various attempts to balance and mitigate potential

threats and bias.

7.8.1 Participants

It would have been ideal to carry out the experiment using only professional

programmers with experience in both the Java programming language and the Eclipse

IDE. However, due to practical considerations such as timing and availability of willing

and appropriate people, the experiment was carried out using a set of participants whose

experience with Eclipse and Java varied significantly. As such, the threat of ‘novice

effects’ was presents. As was the need to distinguish between disorientation caused by a

lack of familiarity with the IDE interface and the language, disorientation associated with

interface design and navigation and comprehension of the source code.

 To deal with novice effects each observed incidence of disorientation was

interpreted using a predefined ‘disorientation model’ developed specifically for the

project. The disorientation model (See Chapter 6) is essentially a set of heuristics (based

on existing research in the field) which may be applied to a incident of disorientation to

determine its probable nature and underlying cause. During the experiment sessions the

facilitator noted all observed incidents of disorientation. Afterwards the video and screen

captures were synchronized and each recorded incident of disorientation was scrutinized

in terms of the disorientation model. Using this process those incidents of disorientation

which were overly influenced by novice effects were discarded.

207
 The study results results (completion time, navigation actions etc.) were probably

somewhat skewed by novice effects. However, as broad patterns in the data are primarily

of interest this was considered an acceptable situation.

7.8.2 Tasks

The initial plan for the experiment was to have participants carry out live maintenance

on a system. Essentially, each participant was to be given a set of small scale

maintenance tasks, and would then be required to explore the system, identify and

comprehend the appropriate code, and make the necessary alterations. This design

represented the most valid approximation of real life programmer behavior, beyond an

observation oriented field study.

 However, during the study pilot it was observed that the participants, having

varying degrees of experience and ability, found it very difficult to complete their

maintenance tasks in a realistic period of time. Initially, the idea of reducing task size and

complexity to boost completion times was considered. However, as tasks were simplified

the realized dawned that participants would not carry out adequate source code

exploration (both amount and type) for the study to gather sufficient data and identify

patterns. Eventually, it was decided to have participants carry out pure exploration tasks

and abandoned the idea of live maintenance.

 There are two treats to validity associated with the task selection. The first threat

is concerned with realism, and the second scope. Programmers generally carry out source

code exploration in relation to specific development and maintenance tasks (Singer et al.

208
97). As such the tasks, in which a programmer explores source code in order to answer a

number of predefined questions, lacks realism. Secondly, the task selection was designed

to exercise the available functionality of the fluid source code editor. As such it could be

argued that the task definitions were biased towards the inline interface.

209

Chapter 8

Conclusion & Future work

“What are the advantages and disadvantages of inline source code exploration, and what

effect does it have on programmer disorientation?”

- Research question.

This thesis has explored the concept of inline source code exploration as a means of

reducing the incidence of programmer disorientation during source code exploration

activities in an IDE setting.

 The methodology involved the development of a prototype implementation of

inline source code exploration for the Eclipse IDE, entitled the ‘fluid source code

editor’(Desmond et al. 2006). The fluid editor supports the inline exploration of Java

source code. This allows the programmer to explore code by introducing related

declarations and search results into the context of a focal source code display, in an

interactive, progressive and nested manner. The approach contrasts with the traditional

210
mechanism of explicitly navigating between discrete isolated displays. The prototype also

supports to the introduction of non source code artifacts such as images and web

resources.

 The fluid editor was used as the basis of a user experiment designed to compare

the level of disorientation experienced over a series of predefined source code exploration

tasks. Participants completed half the tasks using an inline exploration interface (the fluid

editor), and the other half using a standard exploration interface without inline

capabilities (the standard Eclipse IDE). Disorientation was measured using a combination

of metrics such as task completion time, visual momentum in the interface and navigation

activity, in addition to an in depth analysis of participant behaviour, comments and

gestures observed over the course of the experiment. Observations of disorientation were

subsequently interpreted using recognized and accepted patterns of disorientation mined

from existing research literature, both in the field of general and programmer specific

disorientation.

 The findings of the experiment suggest that participants using the inline interface

experienced a reduced incidence of disorientation and consequently enjoyed increased

productivity when performing the exploration tasks.

8.1 Trends

The experiment was exploratory in nature, focusing on trends rather than a fixed

hypothesis. Participants experienced a 14% reduction in task completion times using the

211
inline interface, a 31% reduction in overall navigation carried out and an 89% reduction

in cognitively expensive switching between discrete source code displays.

 Participants expressed greater satisfaction with the inline interface in a number of

categories including ease of use, perceived confusion and spatial awareness in the code

space (based on satisfaction questionnaires filled out by participants after each task set).

Participants also commented favourably on the inline source code exploration approach

during feedback interviews and all agreed that they could readily envisage themselves

making use of the technology if made available as a mainstream IDE based offering.

8.2 Findings

The findings of the research fall into three categories. Findings associated with

programmer disorientation in the standard IDE. Findings related to the effectiveness of

the inline interface at alleviating identified programmer disorientation, and related to the

usability of the approach. And finally, findings regarding the usability of the fluid source

code editor prototype.

8.2.1 Disorientation in the standard IDE

Based on observations gathered during the experiment, specifically on the standard

interface (without inline capabilities), a set of factors and situations which typified the

incidence of programmer disorientation occurring during source code exploration

212
activities in the IDE environment was synthesized. These findings are summarized for

quick reference in Table 8.1.

The cognitive drain associated with explicit navigation between sequences of isolated

source code displays can result in distraction and loss of task focus.

A lack of navigation history/context in the IDE can lead to difficulties re-contextualizing

after a loss of task focus and also increases cognitive overhead during exploration tasks.

Programmers have issues finding known locations in the IDE display space due to:

• The limited history support in the IDE (inability to record digressions)

• The visually homogeneous nature of source code (Makes it difficult to identify

code in the IDE display space)

• A lack of familiarity with the source code structure forces the programmer to

search within the display space

Thrashing is common when attempting to understand and conceptually model

fragmented source code. The IDE support for viewing multiple source code displays is

limited and/or too cognitively expensive.

Table 8.1: A summary of findings related to the incidence of programmer disorientation

during source code exploration activities in the Eclipse IDE.

It was noticed that, in accordance with existing research (Zelwegger et al. 2000), the

process of explicitly navigating between discrete source code displays, a fundamental

aspect of modern IDEs exhibiting a keyhole display architecture with low visual

momentum, is a cognitively draining process which results in problems maintaining focus

during exploration activities. Furthermore, because there is no explicit representation of

navigation context (the path or sequence of source code elements/locations leading to the

213
currently visible source code display), programmers experience difficulties regaining

orientation and focus having become distracted in the interface. This finding coincides

with the general idea that navigation context is an important element in reminding a

programmer of their ongoing intent and maintaining orientation in code space (Thüring et

al. 95; Storey et al. 1999; De Alwis & Murphy 2006).

 It was noticed that finding and revisiting previously visited source code elements

and locations was problematic and occasionally resulted in disorientation due to

excessive concentration on display searching and interface manipulation activities. A

number of discrete factors underpinning with this phenomenon were identified. The

history stack in modern IDEs such as Eclipse is limited to a single linear path of visited

locations and consequently cannot record exploratory digressions. This limitation leads to

difficulties returning from digressed code. The visually homogenous nature of source

code results in problems identifying relevant code in the IDE display space. Finally, a

lack of familiarity with the organization structure of the code forces programmers to rely

on exhaustive searching in the display space, as opposed to cognitively cheaper facilities

such as direct navigation via the package explorer or indexing based on type or resource

name. Exhaustive searching in the display space is cognitively demanding and can lead to

disorientation.

 Programmers suffer from a lack of task context in the IDE (a summary of the

source code artifacts related to a particular exploration task) and will sometimes adapt an

ad-hoc representation using editor tabs. This rudimentary representation is used as an

orientation and navigation aid, and in some cases as a conceptual map of the exploration

214
space. It was observed that the creation and use of ad-hoc task context was not systematic

but occurred as a response to perceived disorientation in the interface, generally related to

finding information in the display space and comprehending complex interactions

between source code elements.

 Finally the study indicated that thrashing is a common activity during the

exploration and comprehension of fragmented source code, far more that was expected.

Moreover the facilities available in modern IDEs to support the simultaneous

consideration of related source code, which could mitigate the problem (such as multiple

editor displays, pop-ups and the declaration view in Eclipse) are generally too limited or

cognitively expensive to use. For instance comparing two source code displays in a single

editor requires considerable interface adjustment to the point where the programmer may

lose focus on their task.

8.2.2 Inline source code exploration

The study indicated that the inline interface (the fluid source code editor) was successful

at alleviating certain aspects of the disorientation problems identified on the standard

interface. The effectiveness of the inline source code exploration approach is summarized

for quick reference in Table 8.2.

215

Inline source code exploration eliminates the cognitive drain associated with explicit

navigation between source code displays. As a result, programmers are less prone to

losing task focus.

Inline source code exploration provides a visible representation of navigation history/

context. This representation eases re-contextualization after distraction, supports

orientation in the code space and reduces the programmers cognitive overhead.

Support for exploratory digressions in context eases the programmers return from an

exploratory digression and in many cases eliminates the need to search for previously

visited code.

Inline source code exploration supports the exploration and comprehension of

fragmented source code by providing a visible representation of navigation history and

allowing the programmer to view multiple code fragments with minimal interface

manipulation

Table 8.2: A summary of findings related to inline source code exploration, specifically its

effectiveness at alleviating programmer disorientation.

In general the study indicated that the ability to explore source code by progressively

introducing related source code declarations into a single source code display (the core

tenet of the inline approach) reduces the cognitive drain on the programmer during

exploration activities. It was observed that participants were far less prone to becoming

distracted and losing task focus when introducing source code as opposed to explicitly

navigating between discrete source code displays. This phenomenon is a result of the

visible navigation context/history relieving the programmer of the cognitive burden

required to maintaining orientation in the code space, as well as providing an explicit

visual reminder of ongoing intent.

216
 When a programmer does become distracted, a visual representation of navigation

history supports re-contextualization. It was observed during the study that when

participants become distracted on the inline interface, generally when considering the

descriptive prompts associated with the exploration tasks or conversing with the

experiment facilitator, re-contextualizing to the ongoing exploration focus was facilitated

by the visible navigation summary provided by the inline interface. On the standard

interface, without a visible representation of navigation history, participants would

occasionally need to backtrack to previously visited locations in order to regain

navigation context.

 The ability to pursue and evaluate exploratory digressions without leaving the

original exploration context reduced the requirement to search through the display space

in order to return to previously locations in the exploration path, an activity which is

prone to disorientation. It was observed that when using the inline interface participants

were able to return from a pursued digression in a cognitively cheap fashion, simply by

closing the appropriate level in an expansion tree.

 The exploration and comprehension of fragmented source code was somewhat

aided by the inline interface. Participants were able to get an overview of fragmented

source code via the navigation history provided by the inline interface. This facility was

particularly useful when there was a need to examine multiple fragments of source code

from the same expansion level in a simultaneous manner, or when comprehending

scattered control flow involving small to medium scale method declarations.

217
8.2.3 Disorientation in expansion space

In addition to observing the effectiveness of inline source code exploration at alleviating

disorientation, a type of disorientation specific to inline exploration was also identified.

This phenomenon is referred to as ‘disorientation in expansion space’. Essentially once a

certain saturation of introduced information is achieved (generally 6 or more levels of

nested inline introduction, or when a particularly sizable declaration is introduced which

requires scrolling of the introduced content) programmers begin to show signs of losing

orientation in the introduced source code.

 On a number of occasions throughout the experiment, participants suddenly lost

track of their location in the introduced source code, and consequently suffered from a

loss of intent or focus. The same issue affected the comprehensibly of introduced source

code, participants has issues comprehending complex expansion trees as a result of being

unable to track relationships between introduced source code declarations. A significant

factor contributing to the incidence of disorientation in expansion space is the

introduction mechanism used by the fluid source code editor. The fluid editor will split

source code declarations in order to introduce nested declarations in an inline manner.

However when a number of declarations are split in a nested manner it becomes difficult

to identify and trace the sequence of introductions leading to the currently focal

introduction. Essentially, the traceability of the code is compromised.

 A potential solution to the issue of disorientation in expansion space is the use of

an after declaration introduction technique whereby the introduced declaration is located

after the source declaration. This would eliminate the need to split declarations and thus

218
maintain the traceability of the code. However, the approach complicates the existence of

multiple declarations originating from a single declaration. Multiple declarations would

need to be stacked in the order of their introduction. The exploration of introduction and

interface design techniques to combat disorientation in expansion space is a significant

item of future work.

8.3 Future work

This research effort, focusing on inline source code exploration and programmer

disorientation, has opened up a number of valuable research and development avenues

which are deserving of additional consideration.

8.3.1 Inline editing

Inline editing is a compelling concept which has been raised at various points, by various

people, throughout the research effort associated with this thesis. Having demonstrated or

spoken about the fluid editor prototype, an invariable request is for the ability to edit

introduced source code declarations. Because the primary focus if this research was

source code exploration, this particular avenue of investigation has never been pursued

beyond discussion and some playful prototyping.

219
 An interesting element of future work would be to look into the concept of editing

inline declarations and determine if and how this functionality might be useful for

programmers working with source code.

8.3.2 Further evaluation

The user study associated with this research was limited both in terms of its size and its

scope. Only eight participants were involved, and more significantly, the experiment

involved relatively small and limited exploration tasks. To really get a sense for the

usability of inline source code exploration it would be necessary to perform an expanded

user experiment, including a larger participant base and a more realistic task set.

 The ideal situation would be a field study in which professional programmers

could be observed performing their normal development and maintain tasks in an IDE

with the fluid editor installed.

8.3.3 Improvements to existing work

The fluid source code editor is a rudimentary but stable implementation of inline source

code exploration for the Eclipse IDE. However based on the user experiment some areas

of the system, and the overall approach, need additional prototyping and development:

• Design and placement of fluid annotations

• Introduction technique and format

220
8.3.3.1 Design and placement of fluid annotations

It was observed during the study that participants experienced issues identifying the

appropriate fluid annotation for a given source code reference. This was particularly the

case for method references where the annotation is placed at the closing parameter

bracket. It was sometimes difficult for users to identify the correct annotation in a

complex block of nested source code. Furthermore, when a large number of annotations

are placed in close proximity it proved difficult to select one individual annotation due to

overlapping bounding regions. The design and placement of fluid annotation needs some

additional design and evaluation.

8.3.3.2 Introduction techniques

The introduction technique implemented by the fluid editor needs to be reconsidered in

light of newly developed knowledge related to ‘disorientation in the expansion space’,

See Chapter 7, Section 7.2. The splitting of source code declarations as part of inline

exploration is problematic as it often leads to highly complex expansion trees. As a result

the programmer has difficulty tracing the relationships between nested inline

declarations.

 The size of introduced declarations is also a significant problem. Some source

code declarations, generally methods and types, can be larger than the available editor

viewport. When they are introduced, the programmer may need to scroll out of the

existing context to view all of the introduced code. This introduces scope for

221
disorientation associated with inline source code exploration. Some additional work

should focus on preventing the introduction of large declarations, or more ambitiously,

displaying large declarations in such a way that they are readable and explorable, but do

not take up all of the available display space.

8.4 Vision

Having spent a number of years immersed in the field of programmer disorientation, I

have developed a deep sense of the fundamental underlying problems which contribute to

the phenomenon. I have also identified a significant void in the design of modern

integrated development environments and how they support programmers during their

work.

 When carrying out a development or maintenance task on a particular software

system, a programmer has three elements of knowledge which are of fundamental

importance to maintaining focus and orientation (Storey et al. 1999):

• Navigational context

• Task context

• The emerging conceptual model

Navigational context refers to the programmers sense of spatial awareness in the code

space, essentially where they are now, how they got to the current location and how to

222
find locations and elements of interest. Task context refers to knowledge of task being

carried out, including specific artifacts in the code space which are of particular

relevance. Finally, the emerging conceptual model is the programmers current

understanding of the implementation, which is generally filtered on a particular aspect or

feature of the system related to the current task.

 At the moment, navigational context, task context and the emerging conceptual

model are maintained at various levels of the programmers memory (working, short

terms and long term). There is no explicit representation in the IDE that can be referred to

or shared. This situation exhibits a number of drawbacks. Firstly, context represents a

significant ongoing mental burden on the programmer. Secondly, when the programmer

becomes distracted, either by external factors or interface problems, aspects of their

mental representation of context may be forgotten. This process of losing context forms

the essence of programmer disorientation, and the ongoing struggle to refresh context

from the IDE display forms the essence of programmer re-orientation.

 An extremely promising area of research in the field of programmer disorientation

is the provision of a visible and interactive representation of the programmers navigation

context, task context and emerging conceptual model in the IDE. This concept is referred

to as providing a ‘prosthetic context’. A prosthetic context would significantly reduce the

mental burden on a programmer, reduce the incidence of programmer disorientation and

ease the process of re-contextualization in the event of external and internal distractions.

Overall this would significantly improve programmer productivity and satisfaction.

223
 I have carried out some Initial prototyping in the area of prosthetic context in the

form of an Eclipse plug-in which allows the programmer to call up an overlay view

containing a temporarily ordered graph of the current navigation context. The graph,

which is implicitly computed from the programmers most recent navigation actions,

presents a digression oriented view of the programmers navigation history with recently

visited locations highlighted for orientation purposes. The programmer can leverage this

display as an ongoing navigation and orientation aid during development and exploration

tasks.

 However, navigation history can also be leveraged to infer task context, and also

form the basis of an explicit representation of the programmers conceptual model. For

instance, one might extend the tool to apply a degree of interest model to the

programmers navigation history (Kersten & Murphy 2005). This aim is to identify those

elements in the system which the programmer repeatedly visits, and also determine

visiting patterns such as how often the programmer visits one location after another etc.

This information paints a picture of the programmers task context and indicates the

‘implicit architecture’ of the concern they are currently working. If stored and visualized

in an appropriate manner this information can form the basis of an implicitly generated

‘context model’ associated with the programmers task.

 Furthermore, if managed and packaged correctly a developer could even load a

previous developer’s ‘context model’ and use it to guide a related task. For instance a

developer working on a bug associated with a particular feature could load and view the

context model recorded by the original developer as they navigated between the various

224
program artefacts during the initial development effort. This idea adds an entirely new

dimension to program documentation and modelling and programmer collaboration.

225

Chapter 8

Bibliography

Brooks, R. (1983). ‘Towards a theory of the comprehension of computer programs’. In

International Journal of Man-Machine Studies, 18, pp. 543-554.

Brown, P.J. (1989). ‘Do we need maps to navigation round hypertext documents?’. In

Electronic publishing - Origination, Dissemination, and Design, 2(2), pp. 99-100.

Bryant, A., Catton, A., De Volder, K. and Murphy G.C. (2002). ‘Explicit programming’.

In Proceedings of the 1st International Conference on Aspect Oriented software

development, pp. 10-18.

Card, S. K. and Nation, D. (2002). ‘Degree-of-Interest Trees: A Component of an

Attention-Reactive User Interface’. In Proceedings of the Working Conference on

Advanced Visual Interfaces. pp 231-245.

226
Chin, J. P., Diehl, V. A. and Norman, K. L. (1988). ‘Development of an instrument

measuring user satisfaction of the human-computer interface’. In Proceedings of the

SIGCHI conference on Human factors in computing systems, pp. 213 - 218.

Chu-Carrol, M.C, Wright, J. and Ying, A.T.T. (2003). `Visual separation of concerns

through multidimensional program storage'. In Proceedings of the 2nd international

conference on Aspect-oriented software development, pp. 188-197, New York, NY, USA.

ACM.

Clark, H.H. and Haviland, S.E. (1974). ‘Psychological processes as linguistic

explanation’. In D. Cohen, Ed., Explaining Linguistic Phenomena. Hemisphere,

Washington, pp. 91–124.

Conklin, J. (1987). ‘Hypertext: An Introduction and Survey’, In Computer, 20(9), pp.

17-41.

Cook, R. I., and Woods, D. D. (1996). ‘Adapting to new technology in the operating

room’. In Human Factors, 38, pp. 593–613.

De Alwis, B. and Murphy, G.C. (2005). ‘Remaining Oriented During Software

Development Tasks: An Exploratory Field Study’. Technical Report TR-2005-23, Dept.

of Computer Science, University of British Columbia.

227
Desmond, M., Storey, M.A.D. and Exton, C. (2006). ‘Fluid source code views’. In

Proceedings of the 14th IEEE International Conference on Program Comprehension, pp.

260-263.

Dijkstra, E. W. (1968). `Letters to the editor: go to statement considered harmful'. In

Communications of the ACM, 11(3), pp. 147-148.

Eclipse (2009a). ‘Eclipse.org home’, [Online] available: http://www.eclipse.org [accessed

May 01, 2009].

Eclipse (2009b). ‘RFC Loss of Context - Draft 1’, [Online] available: http://

dev.eclipse.org/viewcvs/index.cgi/platform-ui-home/loss-of-context/Proposal.html?

view=co [accessed May 01, 2009].

Eclipse (2009c). ‘Eclipse Java development tools (JDT)’, [Online] available: http://

www.eclipse.org/jdt [accessed May 01, 2009].

Eclipse (2009e). ‘Eclipse Mylyn Open Source Project’, [Online] available: http://

www.eclipse.org/mylyn [accessed May 01, 2009].

http://www.eclipse.org
http://www.eclipse.org
http://dev.eclipse.org/viewcvs/index.cgi/platform-ui-home/loss-of-context/Proposal.html?view=co
http://dev.eclipse.org/viewcvs/index.cgi/platform-ui-home/loss-of-context/Proposal.html?view=co
http://dev.eclipse.org/viewcvs/index.cgi/platform-ui-home/loss-of-context/Proposal.html?view=co
http://dev.eclipse.org/viewcvs/index.cgi/platform-ui-home/loss-of-context/Proposal.html?view=co
http://dev.eclipse.org/viewcvs/index.cgi/platform-ui-home/loss-of-context/Proposal.html?view=co
http://dev.eclipse.org/viewcvs/index.cgi/platform-ui-home/loss-of-context/Proposal.html?view=co
http://www.eclipse.org/jdt
http://www.eclipse.org/jdt
http://www.eclipse.org/jdt
http://www.eclipse.org/jdt
http://www.eclipse.org/mylyn
http://www.eclipse.org/mylyn
http://www.eclipse.org/mylyn
http://www.eclipse.org/mylyn

228
Eclipse (2009f). ‘Folding in Eclipse Text Editors’, [Online] available: http://

www.eclipse.org/articles/Article-Folding-in-Eclipse-Text-Editors/folding.html [accessed

May 01, 2009].

Eclipse (2009g). ‘SWT: The Standard Widget Toolkit’, [Online] available: http://

www.eclipse.org/swt [accessed May 01, 2009].

Edwards, D.M. and Hardman, L. (1999). ‘Lost in hyperspace: cognitive mapping and

navigation in a hypertext environment’. In Hypertext: theory into practice, Intellect

Books, UK, pp. 90-105.

Elm, W.C. and Woods, D.D. (1985). ‘Getting lost: A case study in interface design’. In

Proceedings of the 29th Annual Meeting of the Human Factors Society, pp. 927-931.

Elves, R.D. (2005). ‘NavTracks - Helping Developers Navigate Source Code’. MSc.

Thesis, University of Victoria, Victoria BC.

Foss, C.L. (1989a). ‘Tools for reading and browsing hypertext’. In Information

Processing and Management: an International Journal, 25(4), pp. 407-418.

Foss, C.L. (1989b). ‘Detecting users lost: empirical studies on browsing hypertext’, In

Technical Report (Rapports de recherche) No 972, INRIA, Sophia-Antipolis.

http://www.eclipse.org/mylyn
http://www.eclipse.org/mylyn
http://www.eclipse.org/mylyn
http://www.eclipse.org/mylyn
http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org
http://www.eclipse.org

229
Garrett, L.N., Smith, K.E. and Meyrowitz, N. (1986). ‘Intermedia: issues, stratagies, and

tactics in the design of a hypermedia document system’. In Proceedings of the 1986 ACM

conference on Computer-supported co-operative work, pp. 163-174.

Gold, R., Chang, B.W., Zellweger, P.T., and Mackinlay, J (2000). ‘Fluid Fiction: Harry

the Ape’. Exhibit at the San Jose Tech Museum of Innovation, March 1 - September 7,

2000.

Halasz, F.G. (1988). ‘Reflections on NoteCards: seven issues for the next generation of

hypermedia systems’. In Communications of the ACM, 31 (7), pp. 836–852.

Halasz, F.G., Moran, T.P. and Trigg, RH. (1986). ‘Notecards in a nutshell’. In ACM

SIGCHI Bulletin, 17 (SI), pp. 45-52.

Harrison, W. and Ossher, H. (1993). ‘Subject-Oriented Programming - A Critique of Pure

Objects’. In Proceedings of 1993 Conference on Object-Oriented Programming Systems,

Languages, and Applications, pp. 411 - 428 .

Henderson, A. D. and Card, S. (1986). ‘Rooms: the use of multiple virtual workspaces to

reduce space contention in a window-based graphical user interface’. In ACM

Transactions on Graphics, 5(3), pp.211-243.

230
Hochberg, J. and Gellman, L. (1977). ‘The effect of landmark features on mental rotation

times’. In Memory and Cognition, 5, pp. 23–26.

Igarashi, T., Mackinlay, J.D., Chang, B.W. and Zellweger, P.T. (1998). ‘Fluid

visualization of spreadsheet structures’. In Proceedings of the IEEE Symposium on Visual

Languages, pp. 118.

Intellij (2009). ‘Intellij IDEA’, [Online] available: http://www.jetbrains.com/idea/

[accessed May 01, 2009].

JHotDraw.org (2009). ‘JHotDraw start page’, [Online] available: http://jhotdraw.org

[accessed May 01, 2009].

Jakobsen, M.R. and Hornbaek, K. (2006). ‘Evaluating a fisheye view of source code’. In

Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 377 -

386.

Janzen D. and De Volder, K. (2003). ‘Navigating and querying code without getting lost’.

In Proceedings of the 2nd international conference on Aspect-oriented software

development, pp. 178-187.

http://www.jetbrains.com/idea/
http://www.jetbrains.com/idea/
http://jhotdraw.org
http://jhotdraw.org

231
Kersten, M. and Murphy, G.C (2005). ‘Mylar: a degree of interest model for IDEs’. In

Proceedings of the 4th international conference on Aspect-oriented software

development, pp. 159-168.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.J. and Irwin,

J. (1997). ‘Aspect-oriented programming’. In Proceedings of the 11th European

Conference on Object-Oriented Programming, pp. 220-242.

Kim, H. and Hirtle, S. C. (1995). `Spatial metaphors and disorientation in hypertext

browsing'. In Behavior & Information Technology, 14(4), pp. 239-250.

Ko, A.J., Aung, H. and Myers, B.A. (2005). `Eliciting design requirements for

maintenance-oriented IDEs: a detailed study of corrective and perfective maintenance

tasks'. In Proceedings of the 27th international conference on Software engineering, pp.

126-135, New York, NY, USA. ACM Press.

Mahmoud, E. G. A. (1993). Overcoming Disorientation in a Hypermedia Environent with

a Visually Based Builder and Navigator Tool. PhD. Thesis, George Washington

University.

Mantei, M.M. (1982). ‘Disorientation Behavior in Person-Computer Interaction’. Ph.D.

Thesis, University of Southern California.

232
Mayes, T., Kibby, M. and Anderson, T. (1990). ‘Learning about learning from hypertext’.

In Jonassen DH, Mandl H (Eds.), Designing hypermedia for learning, pp. 227–250.

London, UK: Springer-Verlag.

McAlesse, R. (1999). ‘Navigation and browsing in hypertext’. In Hypertext: theory into

practice, Intellect Books Exeter, UK, pp. 5-38.

Microsoft (2009). ‘Visual Studio’, [Online] available: http://www.microsoft.com/

visualstudio/ [accessed May 01, 2009].

Murphy, G.C., Kersten, M. and Findlater, L. (2006). ‘How Are Java Software Developers

Using the Eclipse IDE?’. In IEEE Software, 23(4), pp. 76-83.

Nielsen, J. (1990). ‘The Art of Navigating Through Hypertext’. In Communications of

the ACM, 33(3), pp. 296-310.

Netbeans (2009). ‘Welcome to netbeans’, [Online] available: http://www.netbeans.org

[accessed May 01, 2009].

Parnas, D. L. (1972). ‘On the criteria to be used in decomposing systems into modules'.

In Communications of the ACM, 15(12), pp. 1053-1058.

http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/
http://www.netbeans.org
http://www.netbeans.org

233
Pennington, N. (1987). ‘Stimulus structures and mental representations in expert

comprehension of computer programs’. In Cognitive Psychology, 19, pp. 295-341.

Schneiderman, B. (1980). ‘Software Psychology: Human Factors in Computer and

Information sciences’. Winthrop Publishers, Inc.

Schneiderman, B. and Mayer, R. (1979). ‘Syntactic/semantic interactions in programmer

behavior: A model and experimental results’. In the International Journal of Computer

and Information Sciences, 10(5), pp. 219-238.

Schümmer, T. (2001). ‘Lost and Found in Software Space'. In HICSS '01: Proceedings of

the 34th Annual Hawaii International Conference on System Sciences, 9, Washington,

DC, USA. IEEE Computer Society.

Singer, J., Elves, R. and Storey, M.A (2005). ‘Navtracks: Supporting Navigation in

Software Maintenance’. In Proceedings of the 21st IEEE International Conference on

Software Maintenance, pp. 325 - 334.

Singer, J., Lethbridge, T., Vinson, N. and Anquetil, N. (1997). ‘An examination of

software engineering work practices'. In CASCON '97: Proceedings of the 1997

conference of the Centre for Advanced Studies on Collaborative research, pp. 21+. IBM

Press.

234
Soloway, E. and Ehrlich, K. (1984). ‘Empirical studies of programming knowledge’. In

IEEE Transactions on Software Engineering, 10(5), pp. 595-609.

Sourceforge.net (2009). ‘Fluid Editor Project’, [Online] available: http://

fluideditor.sourceforge.net [accessed May 01, 2009].

Storey, M.A.D., Fracchia, F.D. and Muller, H.A. (1999). `Cognitive design elements to

support the construction of a mental model during software exploration'. In Journal of

Systems and Software, 44(3), pp. 171-185.

Tarr, P., Ossher, H., Harrison W. and Sutton, S.M.Jr. (1999). `N degrees of separation:

multi-dimensional separation of concerns'. In ICSE '99: Proceedings of the 21st

international conference on Software engineering, pp. 107-119, New York, NY, USA.

ACM.

Thüring, M., Hannemann, J. and Haake, J.M. (1995). ‘Hypermedia and cognition:

designing for comprehension’. In Communications of the ACM, 38(8), pp 57-66.

Van Dyke Parunak, D. (1989). `Hypermedia topologies and user navigation'. In

HYPERTEXT '89: Proceedings of the second annual ACM conference on Hypertext, pp.

43-50, New York, NY, USA. ACM.

http://fluideditor.sourceforge.net
http://fluideditor.sourceforge.net
http://fluideditor.sourceforge.net
http://fluideditor.sourceforge.net

235
Von Maryhauser, A. and Vans, A.M. (1995). ‘Program comprehension during software

maintenance and evolution’. In IEEE Computer, pp 44-55.

Watts-Perotti, J. and Woods, D.D. (1999). ‘How Experienced Users Avoid Getting Lost in

Large Display Networks’. In International Journal of Human-Computer Interaction,

11(4), pp. 269-299.

Woods, D. D. (1984). ‘Visual momentum: A concept to improve the cognitive coupling of

person and computer’. In International Journal of Man–Machine Studies, 21, pp. 229–

244.

Woods, D. D. and Roth, E. M. (1988). ‘Cognitive systems engineering’. In Handbook of

human–computer cooperation, pp. 3–41.

Woods, D. D. and Watts, J. C. (1997). `How Not to Have to Navigate Through Too Many

Displays'. In M. G. Helander, T. K. Landauer, & P. V. Prabhu (eds.), Handbook of

Human-Computer Interaction, chapter 26. Elsevier Science B.V., Amsterdam, second

edition.

Yatim, N. (2002). ‘A Combination Measurement for Studying Disorientation’. In

Proceedings of the 35th Annual Hawaii International Conference on System Sciences,

5(5), pp. 138.

236
Zellweger, P.T., Chang, B.W. and Mackinlay, J. (1998). ‘Fluid links for informed and

incremental link transitions’. In Proceedings of the ninth ACM conference on Hypertext

and hypermedia : links, objects, time and space - structure in hypermedia systems, pp

50-57.

Zellweger, P.T., Mangen, A. and Newman, P. (2002). ‘Reading and writing Fluid

hypertext narratives’. In Proceedings of the thirteenth ACM conference on Hypertext and

hypermedia, pp 45-54.

Zellweger, P.T., Regli, S.H., Mackinlay, J.D. and Chang, B.W. (2000). ‘The impact of

Fluid Documents on reading and browsing: An observational study’. In Proceedings of

the SIGCHI conference on Human factors in computing systems, pp 249-256.

237

Appendix A

User Experiment questionnaires

Satisfaction Questionnaire

Standard Exploration Interface

Questions are presented on a scale from 0 to 9. Read each question carefully and then

circle the number on the scale that most accurately represents your answer.

1. How did you find the code exploration interface in general?

Very poor 0 1 2 3 4 5 6 7 8 9 Very good

2.- 6. How was the interface to use?

Terrible 0 1 2 3 4 5 6 7 8 9 Wonderful

Hard 0 1 2 3 4 5 6 7 8 9 Easy

238

Frustrating 0 1 2 3 4 5 6 7 8 9 Pleasant

Boring 0 1 2 3 4 5 6 7 8 9 Fun

Confusing 0 1 2 3 4 5 6 7 8 9 Clear

7. It was clear, most of the time, where i was in the source code...

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

8. I often lost my orientation (got lost) in the source code...

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

9. I often felt confused when exploring the source code...

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

10. There was sometimes too much information on the screen at once...

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

239

11. How did you perceive the tasks?

Very poor 0 1 2 3 4 5 6 7 8 9 Very good

12. How would you rate your answers to the tasks?

Very poor 0 1 2 3 4 5 6 7 8 9 Very good

13. - 15. Was the source code...

Hard to understand 0 1 2 3 4 5 6 7 8 9 Easy to understand

Hard to overview 0 1 2 3 4 5 6 7 8 9 Easy to overview

Hard to navigate 0 1 2 3 4 5 6 7 8 9 Easy to navigate

16. Was information in the source code...

Hard to locate 0 1 2 3 4 5 6 7 8 9 Easy to locate

240

Satisfaction Questionnaire

Fluid Exploration Interface

Questions are presented on a scale from 0 to 9. Read each question carefully and then

circle the number on the scale that most accurately represents your answer.

1. How did you find the fluid exploration interface in general?

Very poor 0 1 2 3 4 5 6 7 8 9 Very good

2.- 6. How was the fluid interface to use?

Terrible 0 1 2 3 4 5 6 7 8 9 Wonderful

Hard 0 1 2 3 4 5 6 7 8 9 Easy

Frustrating 0 1 2 3 4 5 6 7 8 9 Pleasant

Boring 0 1 2 3 4 5 6 7 8 9 Fun

 Confusing 0 1 2 3 4 5 6 7 8 9 Clear

241
7. It was clear, most of the time, where i was in the source code.

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

8. I often lost my orientation (got lost) in the source code.

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

9. I often felt confused when exploring the source code.

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

10. Most of the time i had a good idea of the structure of the code.

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

11. There was sometimes too much information on the screen at once.

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

12. It was easy to determine the relationships between expanded pieces of code.

242
I disagree 0 1 2 3 4 5 6 7 8 9 I agree

12. The fluid annotations were distracting...

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

13. The coloring coding of the fluid annotations was helpful..

I disagree 0 1 2 3 4 5 6 7 8 9 I agree

14. How did you perceive the tasks?

Very poor 0 1 2 3 4 5 6 7 8 9 Very good

15. How would you rate your answers to the tasks?

Very poor 0 1 2 3 4 5 6 7 8 9 Very good

16. - 18. Was the source code...

Hard to understand 0 1 2 3 4 5 6 7 8 9 Easy to understand

243
Hard to overview 0 1 2 3 4 5 6 7 8 9 Easy to overview

Hard to navigate 0 1 2 3 4 5 6 7 8 9 Easy to navigate

19. Was information in the source code...

Hard to locate 0 1 2 3 4 5 6 7 8 9 Easy to locate

244

Appendix B

User Experiment participant profile

Participant profile

Please read each question carefully and provide an answer in the space provided. Please
write as clearly as possible keeping answers succinct.

Name: ________________________________

Sex: (M/F) _____________________________

Occupation:
__
__
__
__
__
__

Programming experience:
__
__
__
__
__
__

245

Eclipse experience:
__
__
__
__
__
__

246

Appendix C

User Experiment exit interview

Exit Interview

1. Did you prefer the fluid exploration interface or the standard exploration interface?
Please elaborate.
__
__
__
__
__

2. What advantages or disadvantages did you perceive when using the fluid exploration
interface vs. the standard exploration interface?
__
__
__
__
__

3. Can you identify any aspects of the fluid editor that stood out as particularly confusing
or frustrating?

__
__
__

247
__
__
__

4. Are there any features that you would like to see in future versions of the fluid editor?
__
__
__
__
__
__

Would you see yourself using the fluid editor or a similar system when programming?

__
__
__
__
__

248

Appendix D

User Experiment task descriptions

Task 1A

In the JHotDraw framework a DefaultSDIApplication instance handles the life cycle of a

single document window presented in a JFrame. The JFrame provides all of the

functionality needed to work with the document, such as a menu bar, tool bars and palette

windows etc. A DefaultSDIApplication instance is used to host the JhotDraw sample

application we looked at earlier.

 Your task is to explore the init() method declared on the DefaultSDIApplication

class and answer a set of simple questions. First you will need to locate the init() method

in DefaultSDIApplication.java. DefaultSDIApplication.java is located in the

org,jhotdraw.app package, you can find it with the package explorer view. When you

have found the init() method and are ready to being the task please select Tasks->Begin

new task, enter the task name above and begin.

249
Q1. On what interface is the init() method abstractly declared? Describe how the init()

method is implemented in the type hierarchy from the abstract declaration down to the

DefaultSDIApplication implementation.

Q2. The init() method declared on DefaultSDIApplication calls its superclass init()

method, briefly describe the implementation of this superclass method. What is the type

of the recentFiles field used in this method? What type is the applictionModel field used

in this method?

Q3. The init() method declared on DefaultSDIApplication invokes the initLabels()

method and the initApplicationActions() method in that order. In what class are each of

these methods defined? Both the initLabels() and the initApplicationActions() methods

use a common portion of code, can you identify this code?

Task 1B

In the JHotDraw framework a Drawing represents a container for figures. A Drawing

organizes its Figures into a list and figures can be added and removed from a Drawing as

needed. The DefaultDrawing class provides a basic implementation of the Drawing

interface.

250
Your task is to explore the draw(Graphics2D) method contained in the DefaultDrawing

class and answer a set of simple questions. First you will need to locate the

draw(Graphics2D) method in DefaultDrawing.java. DefaultDrawing.java is located in the

org,jhotdraw.draw package. When you have found the draw(Graphics2D) method and are

ready to being the task please select Tasks->Begin new task, enter the task name above

and begin.

Q1. The execution of the draw(Graphics2D) method is controlled by a lock object. Find

the piece of code which instantiates the lock object. According to the Java doc associated

with the declaration of the getLock() method, the lock object is designed to prevent what

situation?

Q2. Briefly describe the implementation of the ensureSorted() method? After sorting the

figures the draw(Graphics2D) method performs a clipping operation, culling those

figures outside the clipping bounds based on the value of their drawing area. Compare the

implementation of the getDrawingArea() method for the RectangleFigure and the

EllipseFigure types and briefly describe the difference(s) and similarities.

Q3. The draw(Graphics2D) method on the DefaultDrawing class now calls the

draw(Graphics2D,Collection<Figure>) method to draw the clipped figure collection. Can

you identify any redundant execution in the draw(Graphics2D, Collection<Figure>)

method considering the execution of the draw(Graphics2D) method?

251

Task 2A

The drawDrawing() method declared on the DefaultDrawingView class is responsible for

drawing the figures contained in its associated Drawing object. But ultimately each figure

is responsible for drawing itself.

Your task is to trace the control flow of the drawDrawing() method until execution

reaches the drawFill() method on the EllipseFigure class. First you need to locate the

drawDrawing() method in DefaultDrawingView class. DefaultDrawingView.java is

located in the org,jhotdraw.draw package.

When you have found the drawDrawing() method and are ready to being the task please

select Tasks->Begin new task, enter the task name above and begin.

 The line of code “drawing.draw(g)” is the root of the control flow hierarchy. Follow the

execution of the this method until you encounter the drawFill() method on the

EllipseFigure class.

Q1. Describe the execution hierarchy including details such as interfaces and looping

constructs. Assume that the field drawing is of concrete type DefaultDrawing and any

Figure objects encountered are instances of AbstractAttributedFigure.

252
Q2. Describe, at a high level, the steps involved in the draw operation? (use the the

assumptions of variable type outlined above)

Task 2B

The DeleteAction class initiates the removal of a figure in the JhotDraw system The

method actionPerformed(ActionEvent) is executed to initiate the removal of a selected

figure or figures from the active Drawing.

Your task is to trace the control flow of the actionPerformed(ActionEvent) method of the

DeleteAction class until execution reaches the removal of a figure from the active

drawing object (a call to basicRemove(Figure)). First you need to locate the

actionPerformed(ActionEvent) method in the DeleteAction class. DeleteAction.java is

located in the org,jhotdraw.app.actions package. When you have found the

actionPerformed(ActionEvent) method and are ready to being the task please select

Tasks->Begin new task, enter the task name above and begin.

Follow the execution of the actionPerformed(ActionEvent) method until you find the

piece of code which removes figures from the active drawing object (the first call to

basicRemove(Figure)).

253
Q1. Describe the execution hierarchy including details such as interfaces and looping

constructs.

Q2. Describe, at a high level, the steps involved in the draw operation?

Q3. Did you notice any potential issues with the code?

Task 3A

The findFigure(Point2D.Double) method declared on the Drawing interface is used to

find the top level figure which contains a given point.

Your task is to find and explore the implementation(s) of the findFigure() method and

answer a set of simple questions. First you need to locate the findFigure() method on the

Drawing interface. Drawing.java is located in the org,jhotdraw.draw package. When you

have found the findFigure() method and are ready to being the task please select Tasks-

>Begin new task, enter the task name above and begin.

Q1. List all types (concrete and abstract) which implement the findFigure() method of the

Drawing interface.

254
Q2. Examine the various implementations of the findFigure() method and describe at a

high level how they differ in terms of finding the figure for a the given point. What data

structure(s) is used for the storage of figures in each implementation type?

Q3. The implementation of the findFigure() method in the QuadTreeDrawing and

DefaultDrawing types both call a common method. Can you identify this method? Is this

method duplicated in both types?

Task 3B

The addNotify() method declared on the Figure interface is called to inform a figure that

it has been added to a specified drawing. The figure must then inform all registered

FigureListeners that it has been added.

Your task is to find and explore the implementation(s) of the addNotify() method and

answer a set of simple questions. First you need to locate the addNotify() method on the

Figure interface. Figure.java is located in the org,jhotdraw.draw package. When you have

found the addNotify() method and are ready to being the task please select Tasks->Begin

new task, enter the task name above and begin.

Q1. List all types which implement the addNotify() method of the Figure interface (both

abstract and concrete).

255
Q2. The implementation of the addNotify() method in the AbstractFigure class calls the

fireFigureAdded() method. Examine this method and describe its execution flow. What

concrete type is the listenerList field?

Q3. Compare the implementation of the addNotify() method in the AbstractFigure and

the AbstractCompositeFigure classes. Briefly describe the differences at a high level.

Q4. What relationship does the AbstractCompositeFigure class have with the

AbstractFigure class?

Q5. Now examine the implementation of the addNotify() method in the

GraphicalCompositeFigure class. What processing is carried out? What relationship does

the GraphicalCompositeFigure class have with the AbstractFigure class?

Task 4A

The TriangleFigure class represents a triangle in the JhotDraw drawing framework. Your

task is to explore the implementation of the TriangleFigure class and answer a set of

simple questions. First you need to locate the TriangleFigure class contained in

TriangleFigure.java. TriangleFigure.java is located in the org,jhotdraw.draw package.

256
When you have found the TriangleFigure class and are ready to being the task please

select Tasks->Begin new task, enter the task name above and begin.

Q1. At a high level describe how the findConnector(...) and

findCompatableConnectior(...) methods differ from their superclass implementations.

Describe how the findConnector(...) method is implemented in the type hierarchy from

the abstract declaration down to the TriangleFigure implementation.

Q2. The createHandles(int) method on the TriangleFigure class is called to create a

collection of handles (small adjustable widgets) used to manipulate aspects of the figure.

 On a call to the createHandles(int) method on a TriangleFigure instance a collection of

handles is returned. List the various handle objects added to the returned handle

collection in order of their addition to the return handle list. According to the Java doc on

the createHandles(int) interface method, what is the significance of the detail parameter?

Q3. At a high level describe the difference between the setBounds(...) method on the

TriangleFigure class and its superclass implementation? Can you recognize any potential

issues with the superclass implementation?

Task 4B

257
The TextFigure class represents a visible piece of text in the JhotDraw drawing

framework. Your task is to explore the implementation of the TextFigure class and answer

a set of simple questions. First you need to locate the TextFigure class contained in

TextFigure.java. TextFigure.java is located in the org,jhotdraw.draw package. When you

have found the TextFigure class and are ready to being the task please select Tasks-

>Begin new task, enter the task name above and begin.

Q1. Consider the declaration of the getPreferedSize() method on the TextFigure class.

Can you recognize any potential issues or anomalies with this method when compared

with its superclass implementation? According to the Java doc on the interface

declaration of the getPreferedSize() method what component uses getPreferedSize() to

determine the preferred size of a figure.

Q2. The method read(DOMInput) is used to read the serialized state of a stored

TextFigure object from an input stream. Compare the implementation of the

read(DOMInput) method with its overridden superclass implementation. Describe in

detail the essential difference(s) between the two implementations in terms of what gets

read from the stream, the order of reading, and the use of the read data. Could you

recommend a better implementation of the read(DOMInput) method for the TextFigure

class?

258
Q3. The clone method declared on the TextFigure class is called to create a clone of the

current TextFigure instance. Describe or sketch the execution flow of the clone() method

up through the class hierarchy. What fields are assigned on the cloned object and what

order are they assigned?

259

Appendix E

AOSD 2006 Poster

260

