
Model Driven Visualization: Towards a Model Driven Engineering
Approach for Information Visualization

by

Robert Ian Bull
B.Math, University of Waterloo, 2000
M.Math, University of Waterloo, 2002

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

c© Robert Ian Bull, 2008
University of Victoria

All rights reserved. This dissertation may not be reproduced in whole or in part by
photocopy or other means, without the permission of the author.

ii

Model Driven Visualization: Towards a Model Driven Engineering Approach for

Information Visualization

by

Robert Ian Bull
B.Math, University of Waterloo, 2000
M.Math, University of Waterloo, 2002

Supervisory Committee

Dr. Margaret-Anne Storey, (Department of Computer Science)
Supervisor

Dr. Hausi A. Müller, (Department of Computer Science)
Departmental Member

Dr. Yvonne Coady, (Department of Computer Science)
Departmental Member

Dr. Nigel Livingston, (Department of Biology)
Outside Member

iii

Supervisory Committee

Dr. Margaret-Anne Storey, (Department of Computer Science)
Supervisor

Dr. Hausi A. Müller, (Department of Computer Science)
Departmental Member

Dr. Yvonne Coady, (Department of Computer Science)
Departmental Member

Dr. Nigel Livingston, (Department of Biology)
Outside Member

ABSTRACT

Model Driven Engineering (MDE) is an approach to software development by which soft-

ware is specified, designed, implemented and deployed through a series of models. While

the capabilities of MDE have been realized in many aspects of software development, there

is no MDE supported technique for generating information visualizations. Information vi-

sualization is a technique that supports human cognition through interactive graphics by

enabling users to identify data patterns more easily, summarize information or abstract

concepts that are not easily comprehended from the underlying data. As more systems are

designed using model driven engineering approaches there is now a need to support a model

driven approach for creating such visualizations. This research explores the feasibility of a

model driven approach to view creation that is compatible with the goals of MDE.

We approach the problem of developing an MDE technique for view creation in two

ways. First, we examine how MDE technologies are used for specifying, designing, and

iv

maintaining software systems to uncover the aspects of software customization that are

supported through MDE. Second, we analyze six existing visualization tools to determine

three functional requirements and six design recommendations for visualization creation

and customization tools. Combining MDE principles and information visualization re-

quirements, we propose Model Driven Visualization (MDV), a model based approach to

view creation. MDV includes platform independent models for common visualizations, as

well as a technique to generate platform specific instances of these models. Finally, using

MDV we show that standard visualizations can be recreated in a concise syntax, that is

compatible with the goals of model driven engineering.

MDV contributes to the fields of model driven engineering, information visualization

and software engineering. In particular, this research 1) provides a collection of formal

view models for common information visualization techniques, 2) outlines a method for

designing and customizing information visualizations using MDE, 3) presents a code gen-

eration technique for integrating MDE with the model-view-controller pattern, and 4) con-

tributes an open-source visualization toolkit to the Eclipse project.

v

Table of Contents

Supervisory Committee ii

Abstract iii

Table of Contents v

List of Tables xii

List of Figures xiv

List of Listings xvii

List of Abbreviations xix

Acknowledgement xx

I The Problem xxi

1 Introduction 1

TABLE OF CONTENTS vi

1.1 Motivation . 2

1.2 The Problem . 3

1.3 Goals and Objectives . 4

1.4 Approach . 5

1.5 Scope . 6

1.6 Evaluation . 6

1.7 Contributions . 7

1.8 Organization of Thesis . 7

2 Model Driven Engineering 10

2.1 Software Customization . 11

2.2 An Introduction to Software Modeling . 15

2.2.1 Example System . 17

2.3 Models . 19

2.4 Model Constraints . 21

2.4.1 Object Constraint Language . 21

2.5 Model Transformations . 24

2.5.1 Text to Model Transformations 24

2.5.2 Model to Text Transformations 25

2.5.3 Model to Model Transformations 25

2.6 Model Driven User Interfaces . 29

2.7 Drawbacks of MDE . 30

2.8 Summary . 31

3 Designing and Customizing Information Visualizations 32

3.1 Information Visualization . 33

3.2 Enabling Visualizations Through Technology 34

3.3 Information Visualization Taxonomies . 37

3.4 Customizations of Visualizations . 39

TABLE OF CONTENTS vii

3.4.1 Data Customization . 39

3.4.2 Presentation Customization . 40

3.4.3 Control / Behaviour Customization 41

3.4.4 Current Approaches to Visualization Customization 41

3.4.5 Discussion . 43

4 A Study of how Visualizations are Created 44

4.1 Case Study Overview . 45

4.2 Generic Visualization Tools . 48

4.2.1 Many Eyes . 49

4.2.1.1 Many Eyes Model . 49

4.2.1.2 Many Eyes Views . 49

4.2.1.3 Many Eyes View Creation 50

4.2.1.4 Many Eyes Presentation Customization 50

4.2.1.5 Many Eyes Control / Behaviour Customization 50

4.2.1.6 Many Eyes: Lessons Learned 50

4.2.2 Business Intelligent and Reporting Tool 51

4.2.2.1 BIRT Model . 51

4.2.2.2 BIRT Views . 51

4.2.2.3 BIRT View Creation 52

4.2.2.4 BIRT Presentation Customization 52

4.2.2.5 BIRT Control / Behaviour Customization 53

4.2.2.6 BIRT: Lessons Learned 53

4.3 Domain Specific Visualizations . 53

4.3.1 Jambalaya . 54

4.3.1.1 Jambalaya Model . 54

4.3.1.2 Jambalaya Views . 55

4.3.1.3 Jambalaya View Creation 57

TABLE OF CONTENTS viii

4.3.1.4 Jambalaya Presentation Customization 58

4.3.1.5 Jambalaya Control / Behaviour Customization 59

4.3.1.6 Jambalaya: Lessons Learned 59

4.3.2 Portable Bookshelf (PBS) . 60

4.3.2.1 PBS Model . 60

4.3.2.2 PBS Views . 61

4.3.2.3 PBS View Creation . 62

4.3.2.4 PBS Presentation Customization 63

4.3.2.5 PBS Control / Behaviour Customization 63

4.3.2.6 PBS: Lessons Learned 63

4.3.3 Creole: Software Visualization 64

4.3.3.1 Creole Model . 64

4.3.3.2 Creole Views . 65

4.3.3.3 Creole View Creation 66

4.3.3.4 Creole Presentation Customization 67

4.3.3.5 Creole Control / Behaviour Customization 67

4.3.3.6 Creole: Lessons Learned 67

4.4 Task Specific Visualizations . 68

4.4.1 The Plug-in Model . 70

4.4.2 The Plug-in View . 70

4.4.3 Customizing the View . 70

4.4.4 Configuring the Presentation . 71

4.4.5 Configuring the Control / Behaviour 72

4.4.6 Custom Visualization: Lessons Learned 72

4.5 Discussion . 73

4.5.1 Functional Requirements . 75

4.5.2 Design Recommendations . 76

4.5.3 Summary . 77

TABLE OF CONTENTS ix

II The Solution 79

5 A Catalog of Platform Independent View Models 80

5.1 Types of Data . 82

5.2 Pattern Language . 82

5.3 Catalog of Patterns . 83

5.4 Future Work . 98

5.5 Summary and Limitations . 99

6 Zest: A Visualization Toolkit for Eclipse 101

6.1 Modularizing Graph Based Visualizations 103

6.2 Why Design this Framework? . 103

6.3 MVC Framework . 104

6.4 The Architecture of Zest . 108

6.5 Additional Zest Views . 109

6.6 Discussion . 109

7 Model Driven Visualization 111

7.1 NHL Statistics: A Running Example . 112

7.2 MDV: An Overview . 114

7.3 Generating the Models . 116

7.3.1 Running Example: Generating the Map Viewer 117

7.4 Formalizing View Creation . 117

7.4.1 Running Example: Specifying the View 120

7.5 Integrating Multiple Views: Snap Points 121

7.5.1 Running Example: Linking Multiple Views 123

7.6 Tool Support . 127

7.7 Discussion . 128

TABLE OF CONTENTS x

III The Evaluation 130

8 Evaluation 131

8.1 MDV: A Visualization Customization Environment 132

8.1.1 Functional Requirements . 132

8.1.2 Design Recommendations . 134

8.2 Creating Exemplar Visualizations . 136

8.2.1 Jambalaya View . 138

8.2.2 Extending the Member-Area View 140

8.2.3 Plug-in View . 142

8.2.4 Outcome . 145

8.3 Validating the Goals of Model Driven Engineering 147

8.4 Modeling in Practice . 149

8.5 Limitations . 150

9 Conclusions 152

9.1 Future Work . 154

9.1.1 Study the evaluation of API design for a graphing toolkit 154

9.1.2 MDE Tool Support . 154

9.1.3 Generating Interactivity Through UML Activity Diagrams 155

9.1.4 Other ways to integrate multiple views 155

9.1.5 Finer Granularity for View Models 155

9.1.6 Improved MDE Education . 156

9.2 Contributions . 156

9.2.1 Contributions to the Information Visualization Community 156

9.2.2 Contributions to the Model Driven Engineering Community 157

9.2.3 Contributions to the Software Engineering Community 158

References 159

TABLE OF CONTENTS xi

Appendix A Visualization Patterns 183

Appendix B Java Emitting Templates 209

Appendix C ATL Transformations 214

Appendix D Evaluation Transformations 218

xii

List of Tables

2.1 Interaction Style Customizations . 12

2.2 OCL predefined types . 22

2.3 Built-in OCL Operations . 23

2.4 Basic Customer Management System Constraints 24

3.1 Visualization Definitions . 33

4.1 Overview of visualization tools and their customization techniques 46

4.2 Visualization Tools Comparison Chart . 73

4.3 Summary of requirements and recommendations for a visualization cus-

tomization environment . 78

7.1 Questions regarding NHL Statistics . 113

8.1 Summary of how MDV supports the creation and customization of visual-

izations. 137

8.2 MDV Based vs. Hand Coded Solution, Comparison of Statements 146

LIST OF TABLES xiii

A.1 Goals vs. Age . 187

xiv

List of Figures

1.1 Thesis outline . 8

2.1 Methods of Customization . 14

2.2 Overview of the MDE Process . 16

2.3 Platform Independent Model for Customer Management System 18

2.4 Hierarchical Classification of the 13 UML Diagrams 19

2.5 Model Management Four Layer Architecture 20

2.6 Model to Model Transformation . 26

2.7 HTML Showing Class Overview . 28

3.1 Reference Model for Visualization . 34

3.2 Sample Widgets . 35

3.3 Relationship Between Versatility and Specialization 37

4.1 Nine Views from Many Eyes . 48

4.2 SHriMPBib Model . 55

4.3 Member Document View . 56

LIST OF FIGURES xv

4.4 Members, Documents and Area of Interest 57

4.5 Treemap Showing Documents and Areas of Research Interest 58

4.6 Model to Which Artifacts Extracted from CFX Conform 61

4.7 Architecture of the Linux Kernel . 62

4.8 Xia Data Model . 65

4.9 Xia CVS Visualization . 66

4.10 Plug-in Dependency View . 69

4.11 Plug-in Dependency Model . 69

5.1 Example of a Bar Chart and Histogram . 85

5.2 Bar Chart View – Formal Model A . 86

5.3 Bar Chart View – Formal Model B . 87

5.4 Graph Example . 89

5.5 Graph Viewer – Formal Model . 91

5.6 TreeMap . 92

5.7 TreeMap Viewer – Formal Model . 94

5.8 Nested Viewer . 95

5.9 Nested Graph Viewer – Formal Model . 96

5.10 Template Model of an Abstract View Container 98

5.11 Concrete View Models Based on the View Container 99

6.1 Relationship Between a View, Viewer and Model 102

6.2 Zest Screenshot . 106

6.3 Overview of Adapter Algorithm . 107

6.4 Zest Architecture . 108

7.1 NHL Hockey Statistics Model . 113

7.2 Overview of MDV . 115

7.3 XML Data Rendered in a Geographical Map 118

7.4 Treemap Showing Goals Per Year in the NHL since 1918 122

LIST OF FIGURES xvi

7.5 Snap Point Activity Diagram . 124

7.6 Snap Point Model . 125

7.7 Several Coordinated Views of NHL Statistics 127

8.1 MDV: Member Area View . 140

8.2 Updated Member Area View . 141

8.3 Plug-in Model . 142

8.4 Node Link Model . 143

8.5 Highlight Shortest Path Activity Diagram 146

A.1 List Viewer – Formal Model . 185

A.2 Age vs. Goals Example . 188

A.3 Line Chart Viewer – Formal Model . 189

A.4 Pie Chart Viewer – Formal Model . 192

A.5 Map of Paris . 194

A.6 Map Viewer – Formal Model . 195

A.7 Presentation of Trivariate Data . 197

A.8 Heat-Map Viewer – Formal Model . 198

A.9 Table Viewer – Formal Model . 201

A.10 Parallel Coordinate Viewer – Formal Model 204

A.11 Tree Viewer – Formal Model . 207

xvii

List of Listings

2.1 Customer Ratings Constraints . 23

2.2 Model to Text Generator for an Accessor / Mutator Pair 25

2.3 Simple transformation from ECore to HTML 28

4.1 Colour adapter for graph node . 71

6.1 Content Provider for Node-Link Viewer 105

6.2 Code Snippet for Zest Example . 106

7.1 XML Data for the Map View . 117

7.2 View Mapping to create a Bar Chart . 119

7.3 Goals to TreeMapItem Transformation . 121

7.4 Year to TreemapItem Transformation . 121

7.5 ATL Transformation for Integrated View: Rule1 126

7.6 ATL Transformation for Integrated View: Markers and Items 126

8.1 Re-creating the Member-Area View . 139

8.2 Updated Member Area View Rules . 141

8.3 Data Customization for Plug-in Visualization 144

8.4 Declarative Transformation . 147

LIST OF LISTINGS xviii

8.5 Transformation Written in Java . 148

B.1 Jet Transformation for generating Content Providers) 210

B.2 Jet Transformation for Synchronizing Content Providers) 212

C.1 ATL Transformation: Hockey Model to Bar Chart (from Section 7.4) 215

C.2 ATL Transformation: Hockey Model to TreeMap (from Section 7.4.1) . . . 216

C.3 ATL Transformation: SnapPoint Transformatoin (from Section 7.5) 217

D.1 ATL Transformation: Create Plug-in Dependency View 219

D.2 ATL Transformation: Shortest Path Transformation 221

D.3 ATL Transformation: SHriMPBib Member Area View 224

D.4 ATL Transformation: SHriMPBib Member Area View 2 226

xix

List of Abbreviations

MDE: Model Driven Engineering MDV: Model Driven Visualization
PDE: Plug-in Development Environmenttm GMF: Graphical Modeling Frameworktm

GEF: Graphical Editing Frameworktm EMF: Eclipse Modeling Frameworktm

XML: Extensible Markup Language XMI: XML Metadata Interchange
OCL: Object Constraint Language OMG: Object Management Group
UML: Unified Modeling Language MOF: Meta-Object Facility
MDA: Model Driven Architecturetm HCI: Human Computer Interaction
BPEL: Business Processes COTS: Commercial Off The Shelf

and Execution Language Software
API: Application Programmer Interface JET: Javatm Emitting Template
FoF: Friend of a Friend

PDE, GMF, GEF and EMF are trademarks of the Eclipse Foundation.

MDA is a trademark of the Object Management Group.

Java is a trademark of Sun Microsystems.

xx

Acknowledgement

First and foremost I would like to thank my supervisor Dr. Margaret-Anne (Peggy)

Storey. Peggy, your patience, encouragement and wealth of great ideas will never be for-

gotten. Your enthusiasm extends to the entire Chisel group, of whom I am forever indebted.

I could not have completed this work without every one of you.

I would also like to thank my examining committee. Dr. Nigel Livingston, Dr. Yvonne

Coady and Dr. Hausi Müller, each one of you had a profound impact on me during my

time at the University of Victoria. In addition to my supervisory committee, Mr. Bran Selic

deserves a very special thank-you for agreeing to be my external examiner. The advice you

offered me was invaluable.

I am very grateful to Dr. Marin Litoiu, Dr. Kelly Lyons and the IBM Centers for

Advanced Studies (CAS), not only for the financial and technical support, but also the

emotional support offered by the very encouraging CAS community.

Several members of the Eclipse community played an important role throughout my

PhD, offering guidance, wisdom and advice. Thank-you Dr. Ed Merks, Chris Aniszczyk

and Wassim Melhem.

Mom, Dad, Joanna and Jacquie, thank-you for always being there for me. How I ever

became a doctoral student is anybody’s guess, but I know I could have never made it this

far without your support.

However, none of this would have been possible without the love and support given to

me by my wife and best friend, Tricia. Tricia, before I started my PhD you told me that

this was something I could do. It was your belief in me that gave me the confidence to

undertake this task.

Finally, thank-you Sadie for giving me smiles and hugs and the end of every day.

Part I

The Problem

CHAPTER 1

Introduction

MODELING is a cornerstone of all traditional engineering disciplines [Sel03]. From

conception and design, through construction and maintenance of any engineered system,

modeling plays a critical role. Over the past 40 years, software engineers have explored

how lessons learned from traditional engineering disciplines can lend themselves to the

design, construction, deployment and maintenance of software.

Model Driven Engineering (MDE) is an approach to software development by which

software is specified, designed, implemented and deployed through a series of models. This

approach helps reduce accidental complexity [FPB87] through a more rigorous engineer-

ing process. Many MDE researchers propose that every aspect of software development

can be modeled and that “everything is a model” [Béz05]. MDE formalisms have been em-

ployed in several areas of software engineering, including: the design of domain specific

languages (DSLs) [vDKV00], database and data structure design [KR03], user interface

specification [Kov98], business process design [PE00], and reverse engineering [Fav04b].

1.1 Motivation 2

By extending the notion of MDE into all these areas, these interrelated components have

been separated into manageable units [KR03].

1.1 Motivation

While the capabilities of MDE have been realized in many domains, the approach has not

been universally applied to all aspects of a software system. This became evident while

studying the effectiveness of Zoomable User Interfaces [FB95] with one of our industry

partners in 2003. While the results of this study were inconclusive, the experiment itself

resulted in some interesting insights into the importance of having a lightweight means of

customizing information visualizations. At IBM Canada in Toronto, Ontario, we, along

with members of the IBM User Centred Design team, planned the experiment, designed

business models and performed the study. Concurrently, a group of researchers at the Uni-

versity of Victoria, in Victoria, British Columbia, customized the tools for use within the

business process domain [RLS+03]. As the study was performed, initial feedback sug-

gested that additional customization was required. Due to the geographical constraints

between the experimenters and the tool developers, unclear requirements and other respon-

sibilities, each customization requests required several days to complete. In each case, these

customizations were simply a transformation of the underlying model or modifications to

the attributes which describe how the data was to be visualized. Since the experimenters

were not familiar with the tool, they were not able to make the modifications or customiza-

tions themselves.

To support tool developers facing similar customization problems, we believe leverag-

ing MDE technologies could help discovered that there was no MDE technique for gener-

ating and customizing information visualizations.

1.2 The Problem 3

1.2 The Problem

While MDE has been applied to many aspects of a software system, there is no technique

for generating information visualizations within the context of Model Driven Engi-

neering. We define information visualization as a technique that supports human cognition

through interactive graphics by enabling users to more easily identify data patterns, sum-

marize information or abstract concepts that are not easily comprehended from the under-

lying data. In contrast to scientific visualization, where the visualizations tend to be based

on physical objects, information visualization tends to represent nonphysical information

in an abstract form [CMS99]. Examples of information visualization includes interactive

charts, tables, node-link diagrams, scatter-plots, and parallel coordinates, among others.

Software engineers are starting to realize the potential of information visualizations,

which are becoming an integral part of many software systems. Since an increasing num-

ber of these software systems are constructed using a series of models and model driven

engineering techniques, the lack of integration between MDE and information visualiza-

tion means that these visualizations are often constructed as an afterthought, commonly

integrated in an ad hoc manner. This disconnect between information visualization and

the rest of the system requires developers to manage multiple development paradigms and

leads to a lack of continuity across the system. As well, many of the benefits of MDE

cannot be extended to the visualizations since they have been designed without a formal

model, an important component in MDE.

Effective visualizations are often designed for particular users by highly creative de-

signers working with complex data models. At the onset of this work, it was unclear if it

was feasible to model views formally and that constraining the designers by imposing a

formalism may not be an effective means for creating visualizations. However, by formally

capturing the design of a visualization through models, we have shown that designers can

share their design, validate their models and capture the users’ requirements so that future

developers can make sound choices before the system is deployed.

1.3 Goals and Objectives 4

1.3 Goals and Objectives

As more systems are designed using model driven engineering approaches and end-users

demand more interactive visualizations, the need to support a model driven approach for

creating such visualizations is clear. The goal of this research has been to develop a model

driven approach to view creation that is compatible with the goals of MDE. Software

modeling and models in general are designed for five reasons: abstraction, understandabil-

ity, accuracy, predictiveness and inexpensiveness [Sel03]. A model driven approach to the

creation of visualizations should be compatible with these five criteria:

1. Abstraction: A model of a system should reduce the details of the system it repre-

sents.

2. Understandability: A model should be easier to understand than the system it mod-

els. In essence, a model must be presented in a manner than makes sense to those

that use it.

3. Accuracy: A model must not lie. While abstraction may summarize or hide impor-

tant details, the meaning of these details should not be altered by a model.

4. Predictiveness: A model should be executable in order to help an engineering predict

specific system behaviour. In the case of mechanical engineering, engineers design

models to test characteristics such as the interplay between forces. Software models

should also be executable, allowing designers to test requirements such as memory

constraints and user interaction.

5. Inexpensiveness: A model must be inexpensive to produce. If a model is more

expensive than the system it is modeling, then few designers will take the time to

properly model their system. A model should allow designers to construct an accu-

rate prototype efficiently, that is easy to understand, modify and test.

1.4 Approach 5

Specifically, the goals of our research has been to answer the question: can visualiza-

tions be generated and customized using MDE techniques? In particular, we set out to

meet the following objectives:

1. Develop a technique for formally modeling visualizations;

2. Develop tool support for our technique;

3. Demonstrate how the approach can be used to create key visualizations; and

4. Evaluate our approach against the goals of MDE.

1.4 Approach

We approach the problem of developing a model driven approach to view creation in two

ways. First, we examine how MDE technologies are used for specifying, designing, and

maintaining software systems to uncover the aspects of software customization that are

supported through MDE (Chapter 2). In particular, we explore how models, constraints

and transformation languages can be leveraged for software development. Second, we

analyze how information visualizations are customized (Chapter 3) by studying how six

existing visualization tools support view creation (Chapter 4). From this analysis, three

functional requirements and six design recommendations for the customization of visual-

izations are revealed. These requirements helped us formalize a series of platform inde-

pendent view models (Chapter 5), as well as a platform specific toolkit for information

visualization (Chapter 6). Combining these aspects from MDE and information visualiza-

tion, we propose Model Driven Visualization (MDV), a model based approach to view

creation (Chapter 7). Finally, using MDV, we show that standard visualizations can be

recreated in a concise syntax that is compatible with the goals of model driven engineering

(Chapter 8).

1.5 Scope 6

1.5 Scope

The focus of this work is to define formal models of information visualizations. By defin-

ing these models, we draw a connection between information visualization and model

driven engineering. Many of the examples in this thesis focus on graph based visual-

izations. Graph based visualizations have been shown to be useful in a wide variety of

domains including: biology, chemistry, object-oriented systems, data structures, real-time

systems, knowledge-representation, project management, logic programming, and circuit

schematics [HMM00]. In the fields of software maintenance, reverse engineering and re-

engineering, almost 70% of respondents to Koschke’s survey reported using some form

of graph based visualization in their tool [Kos03]. This dissertation has direct applicabil-

ity to these researchers, particularly with the notion of Model Driven Reverse Engineer-

ing [Fav04b] on the horizon. While many of our examples focus on graph based visual-

izations, we show how other visualization techniques, such as charts and tables relate to

MDV.

1.6 Evaluation

We evaluate our model driven approach to view creation with respect to our goal and objec-

tives. First, this work is evaluated in terms of its practicality. A view is constructed using

traditional view customization techniques and then reproduced using Model Driven Visual-

ization (MDV). From here, a number of lessons learned are synthesized. Second, the work

is evaluated from the perspective of model driven engineering. The five characteristics of

a model are presented and we discuss how MDV meets these criteria. Finally, we discuss

the limitations of this approach.

1.7 Contributions 7

1.7 Contributions

This research directly contributes to the fields of model driven engineering and informa-

tion visualization. For the model driven engineering community, this work demonstrates

the feasibility of modeling visualizations by integrating these views into systems currently

being built using MDE. We provide advice for how MDV can be used to design effective

views. In addition, this work presents a formal specification of 12 common visualization

techniques.

For the visualization research community, this work presents a notation that can be

used to create, maintain and share customized visualizations. This will better enable prac-

titioners and other researchers to reproduce previous results. The combination of platform

independent view models, platform specific implementations and formal view mappings,

enables designers to create a working visualization prototype from a given data-set, with

little or no programming effort. Another key contribution of this work is a new informa-

tion visualization toolkit for the Eclipse integrated development environment [ECL]. This

toolkit has been engineered so that designers and software developers can make use of

graph based visualizations without using complex graph based Application Programmer

Interfaces (APIs).

1.8 Organization of Thesis

The thesis is organized into three parts, The Problem (Chapters 1 through 4), the Solution

(Chapters 5 through 7) and The Evaluation (Chapters 8 and 9) (Figure 1.1).

Chapter 2 (Model Driven Engineering) serves as a background on MDE. The prob-

lem of software customization is introduced and the application of MDE is explored as a

possible solution. As well, an example system is built using models to demonstrate the

practicality of MDE. Finally, the chapter outlines state-of-the-art research related to model

based user interface design.

1.8 Organization of Thesis 8

1. Introduction
6. Zest

2. Model
Driven

Engineering

3. Information
Visualization

4. Visualization
Customization

5. Platform
Independent
View Models

7. Model
Driven

Visualization
8. Evaluation 9. Conclusion

Figure 1.1: Thesis outline

Chapter 3 (Designing and Customizing Information Visualizations) examines the

relevant background material regarding information visualization. The tools used to design

visualizations, as well as several visualization taxonomies, are introduced.

Chapter 4 (A Study of how Visualizations are Created) examines the problem of

view customization. In order to better understand view construction, five interactive visu-

alizations are examined. In this chapter we look at the data structures the designers started

with and how these structures are customized for presentation purposes. The chapter con-

cludes by distilling a number of functional requirements and design recommendations for

a visualization customization environment.

Chapter 5 (A Catalog of Platform Independent View Models) serves two purposes.

For interaction design specialists, it demonstrates how visualization can be modeled and

presents an extendable catalog of visualization techniques. For model driven software en-

gineers, it presents a number of platform independent view models that can be leveraged to

present complex information spaces.

Chapter 6 (Zest: A Visualization Toolkit for Eclipse) describes a platform specific

graph based visualization toolkit. The toolkit is intended for Eclipse developers interested

in adding node-link visualizations to their applications.

Chapter 7 (Model Driven Visualization) builds on our knowledge of model driven

engineering and information visualization. This chapter focuses on how information visu-

1.8 Organization of Thesis 9

alizations can be integrated into systems designed using MDE practices and demonstrates

how visualizations can be modeled.

Chapter 8 (Evaluation) evaluates our model driven approach to view creation in the

context of both MDE and information visualization. With respect to information visual-

ization, we demonstrate the feasibility of our approach by reconstructing views that were

originally designed using high-level programming languages and specialized tools. With

respect to software modeling, we demonstrate how model driven visualization meets the

goals of MDE.

Chapters 9 (Conclusion) summarizes this work, reiterates the contributions, outlines

the limitations and presents some ideas for future research.

10

CHAPTER 2

Model Driven Engineering

AS software systems become more complex, better abstractions and more maintain-

able software systems are sought. In the 1950’s, software engineers turned to assembly

languages to separate the program from the hardware for which it was written. In the

1950’s through 1970’s, high-level languages, like Fortran, Algo, Cobol, PL/I, APL, Pascal

and C were introduced to further abstract the problem of writing software.

In the 1980’s and 1990’s, the concept of modules was introduced to improve how pro-

grams scale by offering better abstractions. One of the most successful examples of mod-

ules is the concept of the “Object” or object oriented systems. In these systems, everything

is considered an “Object” and objects are first class citizens. This means that engineers

can specify solutions in terms of the entities, operations on the entities and their intercon-

nections. By raising the level of abstraction, these paradigms reduced the gap between the

problem and the solution domains [GSCK04] (Page 60).

As software continues to grow in complexity, software engineers look for more abstract

2.1 Software Customization 11

representations of systems allowing them to truly specify solutions, rather than “program

computers”. Balzer was one of the first to describe a process of successive refinement from

which an implementation could be gradually generated from a specification [Bal81]. Many

other researchers built on his work proposing such systems as Computer Aided Software

Engineering (CASE) [Cas85] and environments to allow developers to design software

through pictures [Was90]. This early work lead many researchers and practitioners to focus

on system modeling [Ken02, Sel03, Sel06].

Because of the reusable nature of models, software modeling is often used to provide

customized software at a relatively low cost. This chapter introduces the notion of software

customization through Model Driven Engineering (MDE) and explains how modeling can

be leveraged to help support tool development. Section 2.1 describes the importance of

software customization. Section 2.2 presents an introduction to MDE, and through a simple

example shows how an application can be designed, customized and ultimately deployed

using this approach. The core MDE concept, the model, is presented in Section 2.3. Tech-

nologies central to MDE such as constraints and model transformations are described in

Sections 2.4 and 2.5. Section 2.6 explores some of the research related to model driven

interface design and finally Section 2.7 presents limitations of software modeling.

2.1 Software Customization

Michaud sees the customization of software as an important part of the software lifecycle

requiring the input and expertise of three main groups of stakeholders [Mic03]: 1) de-

veloper 1, 2) users and 3) customizers. Developers, i.e. tool-smiths, are responsible for

creating the initial system and setting the stage for future customization. Users are at the

other end of the spectrum as they ultimately use the application to perform tasks. The

customizers 2 mediate these two groups tailoring generic software systems for particular
1Michaud used the term designer instead of developer, however, designer is a commonly used term especially in the context of

human-computer interaction so we have chosen the term developer for clarity.
2Michaud also refers to a customizer as a Guru

2.1 Software Customization 12

Customization Style Description
Options Screens Uses check boxes, combo boxes, etc.
Wizards Guides a user through a set of choices
Configuration Files Settings are recorded in a separate textual format
Macros Recorded user actions to automate common tasks
Visual Builders Interactive diagram
Scripts Custom or common script language
Application Generators Interpret domain specific specifications to automate

the generation of the software from pre build modules.

Table 2.1: Interaction Style Customizations

users and their needs. The three groups, developers, users and customizers, help classify

stakeholders, but these groupings are an abstraction and in reality individuals often fall into

more than one group.

The concept of software customization has also been used in software product lines in

which a “family” of software products are all based on the same platform [Böc05]. The

platform provides a number of customization points that designers can tweak to generate

highly customized software.

Michaud’s inspiration for software customization came from Wasserman who identified

three levels of integration between two or more applications [Was90]. Michaud suggests

that these three levels of integration, data, presentation, and control, are also appropriate

categories to classify software customization [Mic03]. Data customization includes both

the customization of the data format and data content. Customizing data is performed to

make the application compatible with additional information sources and altering informa-

tion for further processing. Presentation customization alters how information is organized

and accessed through the display. The customization of presentation also includes the

configuration of the aesthetics and “look and feel” of an application. Finally, control or

behaviour customization tailors which features are available (through feature selection and

feature addition), which options are enabled, how features are enhanced or constrained and

finally, how multiple features are coordinated.

2.1 Software Customization 13

The customization categories, data presentation and control, also form the basis for the

model-view-controller (MVC) architectural pattern. The MVC pattern was first popular-

ized with Smalltalk-80. Smalltalk used this pattern to make a clear divide between domain

objects and presentation objects. Since Smalltalk’s use of MVC, many graphical toolk-

its include an MVC component so domain objects can be completely self contained and

operate without reference to the presentation.

In addition to the three aspects of software that can be customized, two broad categories

of software customization techniques have been outlined by Michaud [Mic03]: source code

customization and interaction styles. Source code customization includes any activities that

require the modification of the original source code. Interaction styles include customiza-

tions that do not require modification of source code such as options screens, wizards, or

configuration files. Table 2.1 outlines seven interaction style customizations.

While these two broad categories seem reasonable, the distinction between them is

starting to blur. End user products like the Firefox web browser, Microsoft Vista and

even Facebook, provide scripting languages and sample scripts (called “add-ons” or “ex-

tensions”) that users can install to create a personalized work environment. Users are not

only installing existing scripts (which according to Michaud would be interaction style

customizations), but they are also adapting the scripts for their own needs. We have taken

inspiration from Michaud’s categories, but instead of considering them as mutually exclu-

sive groups, we have created a continuum of configuration techniques and loosely grouped

these interaction techniques into three overlapping categories: 1) User Interface (UI) sup-

ported customization, 2) Domain Specific Language (DSL) supported customization and

3) customization supported through source code modification(Figure 2.1). The methods of

customization in Figure 2.1 are ordered by the flexibility of the approach. Scripting lan-

guages, or end user programming, are often seen as a good compromise between ease of

use and flexibility [TMWW93, TWSM94].

UI and DSL supported customizations have been used extensively in software devel-

opment. As mentioned earlier, software customization through application generators was

2.1 Software Customization 14

Op
tio

n
Sc

re
en

s

W
iza

rd
s

Co
nf

ig
ur

at
io

n
Fi

le
s

M
ac

ro
s

Vi
su

al
 B

ui
ld

er
s

Sc
rip

ts
Ap

pl
ica

tio
n

Ge
ne

ra
to

rs
So

ur
ce

 C
od

e
M

od
ific

at
io

n

UI Supported Customization

DSL Supported Customization

Customization Supported
Through Source Code

Modification

Least
Customizable

Most
Customizable

MDE

Figure 2.1: Methods of Customization

first made popular in the 1980’s and 1990’s with Computer Aided Software Engineering

tools (CASE). While an ingenious idea at the time, many CASE tools suffered because the

all-purpose graphical language used to design systems was too general and did not map

well to problem domains. As well, the translation technologies available at the time pro-

duced code that was too complex, making it hard to develop, debug and maintain [Sch06].

Template driven programming, on the other hand, is just starting to emerge as a main-

stream option for software development and configuration. In this case, application gener-

ators create boilerplate code from templates through the interpretation of a domain specific

model, and then the boilerplate code can be customized, extended or used within other ap-

plications. The OMG’s standardization of Model Driven Architecturetm and tools like the

Eclipse Modeling Framework and Open Architecture Ware (oAW) [BSM+03, Voe] have

paved the way for application generators and template driven software customization. To

better understand how tools like these assist with software customization, we examine the

concepts behind model driven engineering.

2.2 An Introduction to Software Modeling 15

2.2 An Introduction to Software Modeling

Software development is not easy. Software engineering encompasses many facets such as

requirements analysis, software architecture design, implementation, testing, deployment

and maintenance [Som04]. Several issues can impede these activities making software

development a great challenge, including [BCT05]:

1. A full understanding of the problem space is rarely achieved;

2. Many conflicting constraints must be resolved;

3. Software development is a dynamic process in which change must be addressed

throughout all stages of development; and

4. An engineering process must be employed to manage risk, return on investment anal-

ysis, documentation, resource management, etc.

One of the most fundamental techniques used by software engineers to address these

challenges is the use of models and modeling. “Models are used to reason about a problem

domain and design solutions in the solution domain [BCT05].” As Wegener explains,

modeling helps alleviate many of these challenges by [Weg02]:

1. reducing the cost throughout an application life-cycle;

2. reducing the development time for new applications;

3. improving application quality; and

4. increasing the return on investment.

According to Schmidt, “Model-driven engineering technologies offer a promising ap-

proach to address the inability of third-generation languages to alleviate the complexity of

platforms and express domain concepts effectively [Sch06]”. To alleviate this complexity

using MDE, software engineers design Platform Independent Models (PIMs), and translate

2.2 An Introduction to Software Modeling 16

Platform Independent Meta
Modeling Language

(UML)
Conforms

Web Language (HTML,
JSP, JavaScript)

Java Language
Desktop Application

Conformspublic class Customer {
 private String lastName;
 private String firstName;
 private String postalCode;
 private Rating rating;

 public String getLastName() {
 return this.lastName;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public String getPostalCode() {
 return this.postalCode;
 }

 public String getRating() {
 return this.rating;
 }

 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
}

public class Customer {
 private String lastName;
 private String firstName;
 private String postalCode;
 private Rating rating;

 public String getLastName() {
 return this.lastName;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public String getPostalCode() {
 return this.postalCode;
 }

 public String getRating() {
 return this.rating;
 }

 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

}

public class Customer {
 private String lastName;
 private String firstName;
 private String postalCode;
 private Rating rating;

 public String getLastName() {
 return this.lastName;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public String getPostalCode() {
 return this.postalCode;
 }

 public String getRating() {
 return this.rating;
 }

 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
}

Transformation:
UML to Desktop

Application

Transformation:
UML to

WebProject

Code Generation Code Generation

Platform
Independent

Model

Platform
Specific
Model

Conformspublic class Customer {
 private String lastName;
 private String firstName;
 private String postalCode;
 private Rating rating;

 public String getLastName() {
 return this.lastName;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public String getPostalCode() {
 return this.postalCode;
 }

 public String getRating() {
 return this.rating;
 }

 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
}

public class Customer {
 private String lastName;
 private String firstName;
 private String postalCode;
 private Rating rating;

 public String getLastName() {
 return this.lastName;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public String getPostalCode() {
 return this.postalCode;
 }

 public String getRating() {
 return this.rating;
 }

 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

}

public class Customer {
 private String lastName;
 private String firstName;
 private String postalCode;
 private Rating rating;

 public String getLastName() {
 return this.lastName;
 }

 public String getFirstName() {
 return this.firstName;
 }

 public String getPostalCode() {
 return this.postalCode;
 }

 public String getRating() {
 return this.rating;
 }

 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
 public void setRating(R r) {
 this.rating = r;
 }

 public void updateCustomer() {
 // do something to update
 // the customer
 }
}

Figure 2.2: Overview of the MDE Process

these PIMs to Platform Specific Models (PSMs) [Met05, GGZ+05]. A platform indepen-

dent model is a model of a system that does not contain technical details about the solu-

tion, such as, the implementation language, database technology and even delivery method

(web-based or rich client).

Modeling software in a platform independent manner enables engineers to design so-

lutions without concerning themselves with the implementation details. For example, a

developer may specify a set of classes such as a customer purchase order tracking system,

and using MDE, these classes can be generated for different platforms such as a C++ appli-

cation targeted to run under Linux or as a Java application configured to work with a web

framework. By building software in this manner, engineers can design, prototype and sim-

ulate their system before choosing their execution environment. Depending on the results

of the simulation, a target environment (or multiple target environments) that meets their

constraints, can be chosen.

2.2 An Introduction to Software Modeling 17

In order for the models to be shared amongst developers and to support tool inter-

operability, the PIMs must conform to a standard notation [Béz05]. Several industry stan-

dards have emerged, such as the Unified Modeling Language (UML) [OMG07b], MOF

[OMG06a] and XML Schema [W3C04]. Figure 2.2 illustrates how the same specifica-

tion can target several different platforms. In this example, the same UML model can be

used to generate a Java rich client system or a web application. To support both platforms,

a transformation must exist to describe how the UML model can be translated to both

Java and web based platforms. A code generator, can then be invoked to create the sys-

tem [SwJBHH06]. By using existing models and transformations, engineers can abstract

the concept of “programming computers” to the concept of solution modeling [SK02].

2.2.1 Example System

To illustrate how MDE is used in practice, we describe an example customer management

system. The customer management system (CMS) will be used to track customers, their

accounts, and their purchases. The CMS will also allow sales representatives to associate

a rating with each customer such that a gold star customer will receive a 25% discount, a

silver star customer will receive a 10% discount and a bronze star customer will receive a

5% discount.

Figure 2.3 shows a platform independent model for this system. Since the diagram is a

more abstract representation than the code, it is easier to inspect and ensure it matches the

designer’s conceptual model.

In order to implement this system, several other decisions must be made, such as choice

of platform. If the system is to be deployed as a web application the designer must further

decide on which web technologies to use (such as JSP, .NET or the Google Web Toolkit

(GWT)). Another decision concerns data persistence: XML or a relational database. These

are all examples of platform specific issues. Software development processes, such as the

waterfall or spiral model [Roy70, Boe88], require these decisions be made up-front (after

considerable analysis), because development cannot continue until these platform specific

2.2 An Introduction to Software Modeling 18

-companyName : String
Organization

-lastName : String
-firstName : String
-postalCode : String
-rating : Ratings

Customer

-accountNumber : Integer
-accountName : String

Account -poNumber : Integer
-poName : String
-purchasePrice : Double
-totalCost : Double
-discount : Double

PurchaseOrder

1

-orders0..*

1

-accounts0..*

Inventory

1

-Inventory1

1

-customers0..*

+Gold
+Silver
+Bronze

«enumeration»
Ratings

-name : String
-id : Integer
-location : String

Item

0..1

-items0..*

0..1
-items

*
-paymentAccount1

-purchases 0..*

Figure 2.3: Platform Independent Model for Customer Management System

issues have been resolved. These are all decisions that engineers would rather delay until

the last possible moment since changing them often incurs a great cost.

To account for changing requirements, agile development practices, such as eXtreme

Programming (XP) [Bec99] encourages the constant refactoring [Fow99] of the code. How-

ever, platform decisions (such as choice of language or persistence technology) are very

difficult to change once development has started. Model driven development supports the

construction of the model independently of the platform, and through the use of transforma-

tions, the platform specific implementation is generated. From a single UML class diagram

(such as the one in Figure 2.3), multiple implementations (such as a Java and C++ version)

can be generated, and both versions can be tested for performance, scalability and other

non-functional requirements.

2.3 Models 19

684 UML Superstructure Specification, v2.1.2

Figure A.5 - The taxonomy of structure and behavior diagram

Structure diagrams show the static structure of the objects in a system. That is, they depict those elements in a
specification that are irrespective of time. The elements in a structure diagram represent the meaningful concepts of an
application, and may include abstract, real-world and implementation concepts. For example, a structure diagram for an
airline reservation system might include classifiers that represent seat assignment algorithms, tickets, and a credit
authorization service. Structure diagrams do not show the details of dynamic behavior, which are illustrated by behavioral
diagrams. However, they may show relationships to the behaviors of the classifiers exhibited in the structure diagrams.

Behavior diagrams show the dynamic behavior of the objects in a system, including their methods, collaborations,
activities, and state histories. The dynamic behavior of a system can be described as a series of changes to the system over
time. Behavior diagrams can be further classified into several other kinds as illustrated in Figure A.5.

Please note that this taxonomy provides a logical organization for the various major kinds of diagrams. However, it does
not preclude mixing different kinds of diagram types, as one might do when one combines structural and behavioral
elements (e.g., showing a state machine nested inside an internal structure). Consequently, the boundaries between the
various kinds of diagram types are not strictly enforced.

The constructs contained in each of the thirteen UML diagrams is described in the Superstructure clauses as indicated
below.

• Activity Diagram - “Activities” on page 295
• Class Diagram - “Classes” on page 23
• Communication Diagram - “Interactions” on page 457
• Component Diagram - “Components” on page 143
• Composite Structure Diagram - “Composite Structures” on page 161
• Deployment diagram - “Deployments” on page 193

Diagram

Structure
Diagram

Behavior
Diagram

Interaction
Diagram

Use Case
Diagram

Activity
Diagram

Composite
Structure
 Diagram

Class Diagram Component
Diagram

Deployment
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Object
Diagram

State Machine
Diagram

Package
Diagram

Communication
Diagram

Timing
Diagram

Figure 2.4: Hierarchical Classification of the 13 UML Diagrams

2.3 Models

Software models are used to help engineers design and reason about complex software

systems. Software models are often informal sketches that are discarded once the code

is written. While this approach may be sufficient for code-centric software development,

with a model-driven approach, the models themselves become the primary software de-

velopment artifacts [Sei03]. To support model-driven development, a family of standard

software modeling languages has emerged. Included in this “family of models” is the

Unified Modeling Language (UML), an object oriented modeling language that includes a

graphical syntax. UML is used to create an abstract model of a system.

UML currently has 13 diagram types that can be grouped into three categories: 1) struc-

ture diagrams, 2) behaviour diagrams and 3) interaction diagrams. Figure 2.4 shows the hi-

erarchical classification of the 13 UML diagram types. Arguably the most common UML

diagram is the class diagram. The class diagram represents the system’s classes, attributes,

and relationships between classes. In particular, the class diagram can be used to model

association, aggregation, composition and generalization relationships [OMG07b].

2.3 Models 20

 Meta-Object Facility

UML Concepts

Domain Concepts

User
Data

Instance Of

Instance Of

Instance Of

Mountain Bike
Road Bike

Touring Bike

Bike

Class

Class

M0

M1

M2

M3

Figure 2.5: Model Management Four Layer Architecture

While UML is a platform independent modeling language, it is geared towards object

oriented systems and not necessarily ideal for representing all types of models such as data

warehouses, workflow, software process, etc [Béz01]. To combat the emergence of several

incompatible modeling languages, a meta-modeling notation, Meta-Object Facility (MOF

pronounced Mof) [OMG06a], was specified. A meta-model is a model of a modeling

language. By using MOF compliant models (such as UML), designers are ensured that

all their models will be compatible as models can be transformed from one language to

another.

Once a model has been specified, it can be instantiated. If properly instantiated, the

instance is said to “conform” to the model. A system can be designed using UML by

creating a number of UML models to represent the system, and then generating (either by

hand or through an automated process) a software system that conforms to the model.

To illustrate the relationship between software models, meta-models and the systems

under study, a four-layer architecture and meta-modeling foundation was proposed [AK03]

(Figure 2.5). In this architecture, MOF can be used to define a series of compatible mod-

eling languages. These modeling languages (such as UML) can then be used to describe

2.4 Model Constraints 21

domain specific concepts. Finally, user data can be instantiated.

Other standard formats for software have also been used. Rigi and the Portable Book-

shelf (PBS) [MK88, FHK+97], two software reverse engineering tools, use the Rigi Stan-

dard Format (RSF) [Ken96] and Tuple-Attribute (TA) [Hol97] formats respectively. Both

of these formats represent software artifacts as a set of triples (e.g. call main printf to rep-

resent that main calls printf). To combat the number of incompatible reverse engineering

tools that have emerged, a general purpose graph exchange language (GXL) [GXL] has

been proposed.

2.4 Model Constraints

Models themselves are not sufficient to fully represent a complex system. Models contain

information about the elements, attributes and relationships in a system, however, they say

very little about the constraints. Model constraints are important to enforce data integrity

and to eliminate redundancies. Class diagrams, for example, can constrain the cardinality

among members, however, more advanced constraints are often needed. An example of

data integrity from the CMS example is that no two accounts can have the same account

number. While a model can describe an account number and its properties, using a UML

class diagram alone there is no way of expressing this constraint. An example of how

constraints can help eliminate redundant data is to indicate that a customer’s full name is

actually a concatenation of their first name and last name.

2.4.1 Object Constraint Language

Constraints can be specified in a number of ways including natural language, predicate

logic or a high level programming language such as C++ or Java. While natural languages

are traditionally chosen, the ambiguities of these languages make them a poor choice. Pred-

icate logic does not suffer from these ambiguities, but its use is often difficult to master.

Standard computer programming languages, such as C++ or Java, are often seen as a good

2.4 Model Constraints 22

Type Values Operations
Boolean true, false and, or, xor, implies, if-then-else
Integer -10, 4, 8, 16, 23, 32, 42 *, +, -, /, abs()
Real 1.5, -3.14, *, +, -, /, floor()
String “The quick brown fox” concat(), size(), substring()

Table 2.2: OCL predefined types

compromise, however, choosing these languages tends to tie modelers to a specific plat-

form. The Object Constraint Language (OCL) [OMG06b] has consequently been proposed

as a platform independent way to specify constraints on an object model. OCL is a stan-

dard put forth by the OMG, the same standards body working on UML and other modeling

standards. OCL is suited for both specifying invariant conditions that must be true when

the system is validated, as well as specifying queries over objects in the system.

An example of an OCL constraint for our customer management system is that each

Item in our Inventory must have an ID greater than zero. This can be specified by adding

the following constraint to the Item class: self.id > 0.

OCL has several predefined types available for modelers to use. The basic OCL types

are shown in Table 2.2.

OCL also supports the notion of a Collection. A Collection is an abstract type with Set,

Sequence, and Bag as the concrete subtypes. A Set is similar to a mathematical set in that it

does not contain duplicates. A Bag is similar to Set, although it can contain duplicates and

a Sequence is like a Bag in which the elements are ordered. Table 2.3 shows the operations

available on the collection types.

OCL is emerging as the standard constraint language for UML based models. OCL

originated in IBM’s insurance division [FC01, p. 24], making it more suited for business

modelers than a highly mathematical formal languages like predicate logic.

To demonstrate how OCL can be used in practice we will add several constraints to

our working example. Consider the Customer, Account and PurchaseOrder classes pre-

sented in Figure 2.3 from the customer management system described in Section 2.2. From

2.4 Model Constraints 23

Operation Usage
select(boolean-expression) Selects a subset of a collection whose criteria matches the

selection criteria
reject(boolean-expression) Removes all elements who criteria matches the boolean-

expression
collect(expression) Returns a collection derived from the original collection by

applying the expression to each element.
forAll(boolean-expression) Returns true if for each element in the collection, the

boolean-expression evaluates to true; return false otherwise.
exists(boolean-expression) Returns true if the boolean-expression evaluates true for at

least 1 element in the collection.
isUnique(body) Returns true if for each element in the collection the body

evaluates to a unique value
any(body) Returns any element in the source collection for which body

evaluates to true
one(body) Returns true if there is exactly one element in the source

collection for which body evaluates to true
sortedBy(body) Returns a set in ascending order.

Table 2.3: Built-in OCL Operations

s e l f . c u s t o m e r . r a t i n g = R a t i n g s : : Bronze i m p l i e s s e l f . d i s c o u n t >= 5 . 0
s e l f . c u s t o m e r . r a t i n g = R a t i n g s : : S i l v e r i m p l i e s s e l f . d i s c o u n t >= 1 0 . 0
s e l f . c u s t o m e r . r a t i n g = R a t i n g s : : Gold i m p l i e s s e l f . d i s c o u n t >= 2 5 . 0

List of Listings 2.1: Customer Ratings Constraints

these three classes it would be acceptable to create a data-set where one customer’s ac-

count was paying for another customer’s purchase. While some customers may consider

this a nice gesture, this behavior is undesirable. In addition to this constraint, several other

constraints are needed for our simple example. In particular, it is important to ensure that

purchase order numbers, account numbers, and stock numbers are unique. Table 2.4 shows

how these constraints can be specified in OCL.

Constraints can also be specified to ensure that a customer’s discount is computed cor-

rectly. Listing 2.1 shows how the discount amount can be verified using OCL.

2.5 Model Transformations 24

Constraint Class OCL Specification
Unique ID Inventory self.items→

isUnique(id)

Unique customer Organization self.customers.accounts→
account numbers isUnique(accountNumber)

Unique purchase Organization self.customers.orders→
order numbers isUnique(poNumber)

Customers only pay Account self.purchases→
for their own purchases forAll(po|po.customer=self.customer)

Table 2.4: Basic Customer Management System Constraints

2.5 Model Transformations

Model transformations are essential for realizing the power of MDE [SK02]. Model trans-

formations transform data instances conforming to one model to data instances conforming

to another. There are several varieties of model transformations including text to model

transformations, model to text transformations, and model to model transformations. Text

to text transformations (like those supported by TXL [CDMS01]) are beyond the scope of

this work, since these transformation are not necessarily related to the modeling of visual-

izations.

2.5.1 Text to Model Transformations

Text to model transformations are concerned with the transformation of strings (or text

files) to models [Voe, JBK06]. These transformations are designed using an annotated

grammar which specifies how strings are parsed and which model elements relate to which

part of the language. Text to model transformations are a key component for creating

domain specific languages [vDKV00].

2.5 Model Transformations 25

<<FOREACH f e a t u r e s AS f>>
p r i v a t e <<f . t y p e . name>> <<f . name>>;
p u b l i c vo id <<f . s e t t e r ()>>(<< f . t y p e . name>> <<f . name>>) {

t h i s .<< f . name>> = <<f . name>>;
}
p u b l i c <<f . t y p e . name>> <<f . g e t t e r ()>>() {

r e t u r n <<f . name>>;
}

<<ENDFOREACH>>

List of Listings 2.2: Model to Text Generator for an Accessor / Mutator Pair

2.5.2 Model to Text Transformations

Model to text transformations describe how a model should be written as a string or text

file. In contrast to text to model transformations, in which the transformation describes how

plain text is transformed to a model, these transformations specify how model elements

should be written in plain text. Listing 2.2 presents an examples of how an accessor /

mutator pair could be generated for an object-oriented system.

2.5.3 Model to Model Transformations

In order for software systems to truly realize the potential of platform independence, mod-

els must exist for several target platforms and model to model transformations [BH02] must

be designed to convert object models from one canonical form to any platform specific in-

stance. MDE proponents expect that writing model to model transformations (hereinafter

known simply as model transformations) will become a common task in software develop-

ment and these transformations will be shared among engineers [JK06].

Figure 2.6 presents an overview of how model transformations are applied to transform

a source model to a target mode [CH06]. Both the source data (Da) and the target (Db)

conform to their respected models (Ma and Mb). The transformation is driven by a trans-

formation engine. The transformations are written in terms of the source and target models,

which means that a particular transformation can be executed on any system conforming to

Ma and produce a system conforming to Mb.

There are a number of strategies for model transformations. Since software models

2.5 Model Transformations 26

Source Model
(Ma)

Target Model
(Mb)

Transformation
Definition

Source Data
(Da)

Target Data
(Db)

Transformation
Engine

Conforms To Conforms To

Refers
To

Refers
To

Reads Writes

Figure 2.6: Model to Model Transformation

usually have a graph based representation, traditional graph transformation theories can be

applied. Many of the approaches stem from triple graph grammars [Kön05, GGL05] spec-

ified by Schürr in 1994 [Sch]. Triple graph grammars use three graph grammars [Pra71]

to specify transformations. The first graph grammar defines the input graph. The second

graph grammar defines the output graph, and the third graph grammar defines the corre-

spondence graph, which tracks the correspondence between the input and output graph.

Czarnecki classified a number of approaches to model transformations [CH03, CH06].

Using feature diagrams, Czarnecki created a classification that represents the areas of vari-

ation within a domain of model to model transformations. Some of the areas include:

types of transformation rules, rule scoping, rule scheduling, and tracing. Regarding trans-

formation rules, Czarnecki indicates that rules can either be declarative, imperative, or a

combination of the two. Declarative languages, like XSLT [W3C99] are more common

and often express the transformation rules in a concise syntax. Declarative languages sim-

ply “declare” how elements in the source are mapped to elements in the target. Imperative

languages, on the other hand, are usually more powerful but achieve this at the cost of

complexity. Imperative languages are Turing complete, meaning they can compute every

Turing-computable function and are as powerful as traditional high level languages. Most

transformation languages support both an imperative and declarative syntax.

Metzger presents a classification of the different types of model mappings [Met05].

2.5 Model Transformations 27

Metzger indicates that model mappings fall into one of three categories: non-ambiguous

mapping, selection and approximation. Non-ambiguous mapping means that elements of

the source can be directly mapped to elements in the target. A selection mapping means that

a subset of elements in the source are mapped to the target. Finally, approximation indicates

that no semantically equivalent elements exist in both the source and target models. The

last two cases require additional processing such as, filtering or the specification of how the

approximated target elements are derived from the source.

To support transformations of models such as UML, the OMG has created a standard

for transformation languages known as Query View Transform (QVT) [OMG07a]. Un-

like triple graph grammars, the source and targets in a model transformation language (like

QVT) are specified in UML or some other MOF compliant model, and the transformation

pre- and post-conditions are specified in OCL. Triple graph grammars and model transfor-

mation languages present two different approaches for transforming graph based structures,

and it has been shown that both approaches have equivalent power [GK07].

While QVT is the ideal solution for our work, at this time there is no reference imple-

mentation available. Since there is no QVT implementation available, we have chosen the

Atlas Transformation Language (ATL) [JK06] in order to document our transformations.

ATL is considered very close to the QVT specification. While we have chosen ATL, it

should be noted that any graph transformation language could be used and we have also

replicated many of these transformations using other languages such as Open Architecture

Ware’s (oAW) XPand [VK06].

Listing 2.3 shows an example declarative transformation rule that maps a Class with

attributes to an HTML table. When this transformation is applied to our customer model,

the HTML page in Figure 2.7 is produced. By using this transformation, software engineers

can easily keep on-line documentation synchronized with their models.

2.5 Model Transformations 28

r u l e e c o r e 2 h t m l {
from s : ECore ! EClass
to t : EHTML! L i s t (

t i t l e <− s . name ,
i t e m s <− s . e A t t r i b u t e s ,
i t e m s <− s . e R e f e r e n c e s

)
}

r u l e r e f e r e n c e 2 l i s t e l e m e n t {
from s : ECore ! ERefe rence
to t : EHTML! L i s t I t e m (

v a l u e <− ’ ge t ’ + s . name . f i r s t T o U p p e r () + ’ () ’
)

}

r u l e a t t r i b u t e 2 l i s t e l e m e n t {
from s : ECore ! E A t t r i b u t e
to t : EHTML! L i s t I t e m (

v a l u e <− s . name
)

}

List of Listings 2.3: Simple transformation from ECore to HTML

Figure 2.7: HTML Showing Class Overview

2.6 Model Driven User Interfaces 29

2.6 Model Driven User Interfaces

Several researchers and practitioners have extended the notion of model driven engineering

to include the design and customization of user interfaces. Kovacevic studied how UML

models can be extended to incorporate user actions and interface controls [Kov98]. Ko-

vacevic argues that software models often focus on the internal data structures used by the

system, and rarely assist with the design and development of user interfaces. However,

studies have shown that in some systems, nearly 50% code is dedicated to the UI [Mye89,

Kov98]. Kovecevic proposed additional UML modeling constructs to enable UI design

support [Kov98].

Bodart et al. presented an approach to UI design based on task analysis [BHLV94]. His

work, Tools foR an Interactive Development EnvironmeNT (TRIDENT), preceded MDE

but the contribution is still significant. The proposed series of models and tools to support

a task analysis process for UI design.

Xulin Zhao et al. studied how business process models can be leveraged to generate

E-Commerce user interfaces [Xul07]. While not specific to MDE, this work demonstrates

the importance of integrating processes and tools within existing platforms using languages

familiar to the designer.

Finally, the Graphical Modeling Framework (GMF) project [GMF] enables software

modelers to design and generate a graph based user interface from a model. While similar

to graph based information visualizations, GMF focuses on data editors. The greatest chal-

lenge in GMF is how to keep data and edit model synchronized. In the case of information

visualization, views are only used for displaying information and the challenge here lies in

how abstractions and summary information can be modeled.

2.7 Drawbacks of MDE 30

2.7 Drawbacks of MDE

Model Driven Engineering is suitable for the design, generation and customization of soft-

ware systems which embody common patterns and recurring solutions. Using MDE for

the development of a CMS system is ideal, as customer management systems are used in

a variety of circumstances, and the models, constraints and transformations, can be reused

effectively. However, some argue that MDE is less suited for one-off solutions which often

do not require much, if any, customization [Gre06].

As in any modeling activity, it is vital that all parties involved interpret the specifications

the same way. However, the existing specifications, such as UML, have been criticized

for their complexity, a situation which has led to many ambiguities [HS05] and the term

metamuddle [FGDTS06].

Another criticism of MDE is that the “specification of a development problem is not

discovered, it is created as the primary artifact” [Weg02]. This requires considerable up-

front cost, a cost that may never be realized especially in problem domains where reusable

patterns and common practices have yet to emerge [Gre06]. Some critics have claimed that

developers working with modeling tools are not any better able to understand the problems

then they were 20 years ago and that “system requirements can never be stated fully in

advance, not even in principle, because the user does not know them in advance - not even

in principle” [Sne07, MJ82].

Since formally describing the entire behaviour of a system up front requires consid-

erable cost, modeling has mostly focused on static structures. The approach MDE has

provided for defining and integrating behaviour, an important component in any software

system, is seldom utilized effectively [HS05]. There are a number of reasons cited for

this, such as complex notations, lack of round-tripping tools and poor integration with the

software lifecycle [HS05].

Finally, MDE requires full buy-in from all the stakeholders. Many tools assume models

are being used for all aspects of the system, and mixing modeling and non-modeling tech-

2.8 Summary 31

nologies is a challenge. This is because “round-tripping”, going from a model to code and

back to the model, still contains a number of open problems. Many of these problems are

currently being addressed in tools such as: From UML to Java And Back Again [BGH+05],

but will likely not impact mainstream software development for a number of years.

Even with improved round-tripping support, mixing development paradigms is undesir-

able. While undesirable, mixing paradigms is unavoidable for aspects in a software system,

such as information visualization, that are seldom designed in a way compatible with model

driven engineering.

2.8 Summary

Model driven engineering is a software engineering process in which a system is designed,

built and deployed through a series of models. In this chapter, we introduced the concept of

software customization and discussed how software modeling, and MDE in particular, can

play a role in this process. Several MDE concepts were introduced including the model,

model constraints, model transformation languages and model driven user interface design.

Finally, the drawbacks of MDE were presented. In particular, the integration problem be-

tween modeled and non-modeled aspects of a system was discussed. One area in particular

that is affected by this integration problem, is information visualization. In the next chap-

ter we will investigate how information visualizations are created and customized to better

understand the ways in which view models can designed.

32

CHAPTER 3

Designing and Customizing Information Visualizations

ADVANCED visualization techniques are thought to be useful in the fields of program

comprehension [SWFM97, PBS93], knowledge engineering [Ala03, ERG02, SMS+01,

MG03], financial analysis [Wat99], business process design [RLS+03] and many other

disciplines [CMS99, HMM00], assisting both with information processing and information

communication. Effective graphic communication assists with transcribing relevant data to

answer pertinent questions and help communicate what has been discovered [Ber81].

An effective visualization makes use of our cognitive ability to process visual infor-

mation. A visualization supports thinking through visual queries on information and by

extending one’s memory [War04]. Visual queries work by providing visual patterns, that

if detected, help solve part of a problem [War04]. Extending one’s memory, on the other

hand, is achieved by the way an image (or pattern) can rapidly trigger long-term memory

to retrieve nonvisual information. In recent years, computer interface technology has im-

proved greatly, and the notion of computer aided visualization has evolved. With higher

3.1 Information Visualization 33

1. Data Visualization: The use of computer-supported, interactive visual representa-
tions of data to amplify cognition.

2. Scientific Visualization: The use of interactive visual representations of scientific
data, typically physically based, to amplify cognition.

3. Information Visualization: The use of computer-supported, interactive, visual rep-
resentations of abstract data to amplify cognition.

Table 3.1: Visualization Definitions

resolution displays and faster response times, computers have enabled designers to rapidly

create highly interactive visualizations.

In this chapter we examine the construction and customization of information visual-

izations. The chapter begins by defining information visualization (Section 3.1) and the

technology which enables it (Section 3.2). The chapter then explores how visualizations

are currently classified (Section 3.3) and discusses the limitations of these classification

systems. The chapter concludes with a look at how visualizations are currently designed

and customized (Section 3.4).

3.1 Information Visualization

Data are presented visually for two purposes: 1) for communicating an idea, and 2) for

discovering the idea itself. While graphics have been utilized for both thinking and com-

munication for thousands of years, the evolution of the computer has dramatically changed

the way these graphics are 1) designed, 2) rendered, and 3) interacted with [CMS99].

With the advent of computer graphics, the notion of information visualization has

emerged. Information visualization has been defined as the use of computer-supported,

interactive, visual representations of data to amplify cognition [CMS99]. Data are of-

ten considered “plain facts”, while information is the result of processing, organizing or

structuring the facts to make them meaningful. In contrast to data visualization (defined in

3.2 Enabling Visualizations Through Technology 34

Visual
Structures

Data
Tables

Raw
Data Views

Data
Transformations

Visual
Mappings

View
Transformations

Figure 3.1: Reference Model for Visualization

Table 3.1 [CMS99]), information visualization focuses on the representation of abstract

data or processed data. As well, information visualizations focus on abstract concepts as

opposed to scientific visualizations that display physically based entities such as the earth

or the human body.

Since abstract or processed data are vital to information visualization, the concept of

data transformations, which typically involves the loss or gain of information, is a cen-

tral component in the visualization reference model (Figure 3.1). In this model, raw data

are mapped to data tables where it is continually refined until the desired, more abstract

representation, is achieved. Once the desired level of abstraction has been reached, visual

attributes can be associated with data elements and views created. These views can then be

rendered and presented to the user.

3.2 Enabling Visualizations Through Technology

Information visualizations make use of both computing hardware and software to render

static and interactive digital images. Building effective visualizations that can help users

with their tasks is an ambitious undertaking. Not only do visualizations need to be designed

and prototyped, they need to be implemented using robust tools that scale to large data-sets

without compromising performance. The visualizations must also be tested to ensure they

actually assist with the tasks users perform. There are several toolkits available to help

software engineers construct such visualizations.

Widget toolkits such as SWT [NW04], AWT [AWT], and GTK+ [GTK] provide com-

3.2 Enabling Visualizations Through Technology 35

Figure 3.2: Sample Widgets

ponents, also known as widgets, for building User Interfaces (UIs). Examples of widgets

include buttons, checkboxes, sliders, radio buttons, and menus (Figure 3.2). Widget li-

braries are extremely versatile, however, they are difficult to use effectively. Since each

widget represents a basic building block like a button, label, or icon, interfaces must be

carefully designed by composing and placing these elements on a blank canvas to represent

information and facilitate interaction. The graphical widget toolkits ensure that the indi-

vidual controls are consistent and conform to user interface standards [DFAB97, p.414],

however, the toolkit cannot enforce the same constraints among groups of controls.

Graphical frameworks, such as JFreeChart [JFr], JGraph [JGr], Piccolo [BMG00], and

GEF [GEF], build upon basic interface components and present the developers with a more

abstract set of tools for building interfaces. For example, instead of drawing squares and

rectangles to create a chart, a designer, with JFreeChart, can create a bar chart by specify-

ing X and Y-axis, bar series, colours, and titles. These toolkits are less versatile than the

3.2 Enabling Visualizations Through Technology 36

underlying widget toolkits but are easier to use as they are targeted towards particular inter-

face styles. For example, JGraph and GEF are used for displaying and editing data using a

directed graph based approach, JFreeChart is designed for displaying and interacting with

statistical data and Piccolo is intended for zoomable user interfaces [FB95].

Treemaps [JS91], hi-graphs [Har88], space trees [PGB02], cone trees [RMC91] and the

table lens [RC94] have also been designed and built using a combination of basic widgets

and higher level toolkits. We consider these to be specialized visualizations. By combin-

ing these specialized visualizations, visual attributes and advanced navigation techniques,

researchers have been able to create representations of data of a million items or more

[FP02]. Despite their capability, these advanced visualizations are not frequently seen in

Commercial Off-The-Shelf (COTS) software.

A number of applications exist to help users visualize information, such as SHriMP

[BSM02], Many Eyes [VWvH+07] and the Business Intelligence and Reporting Tool (BIRT)

[BIR]. Creating and customizing visualizations using these tools requires less program-

ming than the frameworks and toolkits mentioned above, however, they do so at the cost

of customizability. While the tools often support “end user programming” through scripts,

preference dialogs and wizards, they cannot easily be customized for particular user tasks.

They also suffer from “feature bloat”, especially if users only need a small subset of their

available features.

Figure 3.3 shows the spectrum from widgets to specialized visualizations with respect

to versatility. While basic UI widgets are the most versatile, they are the most difficult

to use for creating advanced visualizations. If the data to be visualized maps directly to

a specialized visualization tool, such as a cone tree or treemap, than these tools can be

quite easy to use. If on the other hand, the data does not fit the models, or the information

rendered by these visualizations does not facilitate the user’s needs, then these tools can

become quite cumbersome and ineffective.

There are a number of criteria to consider when using tools to design and customize

visualizations. To understand and categorize the types of visualizations and the constraints

3.3 Information Visualization Taxonomies 37

Specialized
Visualizations

Graphical Frameworks

Widgets

Versatility

High

Low

Specialization

High

Low

Figure 3.3: Relationship Between Versatility and Specialization

they impose, we examine the existing classification systems for information visualization.

3.3 Information Visualization Taxonomies

Interaction designers who design interactive visualizations of information can be broadly

grouped into two categories: 1) those who establish techniques for representing information

(creators), and 2) those who customize the techniques to create specific views (customiz-

ers). While this creator / customizer relationship is not unique to interaction design, the skill

level differs across these two groups. Creators of new visualization techniques, such as the

Table Lens, Treemap, Cone Tree, Space Tree, or graph layout algorithms, are often com-

puter scientists specializing in the area of information visualization. On-the-other-hand,

those who customize these techniques for their own data and use cases, such as financial

analysts, medical researchers, and computer programmers, are often skilled in their domain

but do not necessary have a deep knowledge of information visualization.

A visualization taxonomy gives researchers a common framework, as well as a catalog

of results for others to reference. Bertin categorizes visualizations by the type of data and

provided advice to customizers based on these data types [Ber81]. For example, Bertin

suggests that colour value and size should be used for ordered attributes, but only size

3.3 Information Visualization Taxonomies 38

should be used for quantitative data. Shneiderman [Shn96] outlined how visualizations

could be categorized by their dimensionality (one-, two-, three-dimensional data, tempo-

ral and multi-dimensional data, and tree and graph data) and tasks (overview, zoom, fil-

ter, details-on-demand, relate, history and extracts). Tweedie [Twe97] classified a number

of visualization techniques by the data they represent (data values or data structure, con-

structed data or converted data), the interactivity they support as well as their input/output

relations across time. Card and Mackinlay [CM97] take a similar approach to Tweedie and

classified the variables used in a visualization technique in terms of their data type (ordinal,

quantitative, spatial, etc.), recording function, mark type, retinal properties (colour, size),

position in space / time, among others. Pfitzner’s considered five design aspects in his in-

formation visualization taxonomy [PHP03]: data, task, interactivity, skill level and context.

While this is one of the most comprehensive taxonomies we have seen, Pfitzner did not cat-

egorize any visualization techniques using his taxonomy. Finally Tory and Möller [TM04]

extended the work done by Shneiderman by splitting visualization techniques into two

categories, visualizations that are suited for continuous vs. discrete data, an important dis-

tinction for our work.

Others, such as Price [PBS93], considered how visualization can be categorized within

a specific domain. Price, for example, looked at software visualization. Software visual-

ization focuses on how the design artifacts related to software and its development process

can be presented graphically [Die07, p. 3].

Chi presented the date-state reference [Chi00], a catalog of 36 visualization techniques.

For each visualization technique, Chi outlined the abstractions and transformations that

could be applied. By presenting the visualizations in this manner, a customizer can quickly

see the possible operations for a given technique. Of all the taxonomies, Chi’s is the most

closely related to our work as Chi begins to explore the way visualizations can be cus-

tomized.

Many of the proposed taxonomies are aimed at designers who create new views by pro-

viding them with a framework and vocabulary that organizes the design space. With larger

3.4 Customizations of Visualizations 39

displays and powerful computers available to many end-users, more software engineers

are simply using information visualization as a tool and few frameworks provide a catalog

(with accompanied tool support) to assist engineers when choosing between alternatives

and exploring the customizable features of each.

3.4 Customizations of Visualizations

As discussed in Section 2.1, to study how visualizations are customized we take inspiration

from Michaud and ultimately Wasserman [Mic03, Was90]. Michaud identified three ways

in which software systems can be customized: 1) data, 2) presentation and 3) behaviour.

We have refined these customization terms slightly from how Michaud used them, however,

much of the context remains.

3.4.1 Data Customization

Choosing which data to present is central to any effective visualization [CMS99]. The

customization of data within the context of information visualization refers to which data

are presented and how the data is structured. The customization of data are commonly

known as data preparation. Three data preparation operations can be applied to a data-set:

1. Filtering of information: Filtering removes information so it is not displayed in

the view. Information can be removed because it is not relevant to the task at hand,

because it is omnipresent, that is, it is everywhere and showing it is not needed, or

because new information has been derived and the original data are no longer needed.

2. Moving and renaming existing information: Moving and renaming information is

the process of changing the structure of the data without adding or removing any-

thing.

3. Deriving new information: Deriving new information is the most complex task, but

when done properly, often leads to the most interesting results. Grouping or combin-

3.4 Customizations of Visualizations 40

ing elements, calculating new attributes or inferring relationships are all examples of

how new information can be computed.

While these three data processing operations are commonly performed, it is the combi-

nation of these operations that are required to create truly effective visualizations.

3.4.2 Presentation Customization

In any visualization, the image is what immediately captures the attention of the user and

it is the image that is intended to help the user with their tasks. Presentation customization

refers to how artifacts are rendered within a view and is known as visual mapping [CMS99].

This includes choice of colour schemes, icons and visual cues, decorators, two or three di-

mensional rendering, and so forth. The choice of how visual attributes are customized is

only as limiting as the designer’s imagination. Enumerating all the possibilities is not feasi-

ble. View transformations, where particular elements are magnified or brought into focus,

are also a form of presentation customization. The result of presentation customization is

a customized visual rendering of the processed data.

Presentation customization can also be used to configure animations, another powerful

mechanism enabled by computer supported information visualizations. Animations can be

used to highlight elements of the view, bring details into focus, or help a user maintain

context while switching perspectives.

Although enumerating or modeling all the customizable attributes of a visualization

technique is not feasible, choosing a subset and standardizing these visual attributes is an

important usability concern. By standardizing the ways in which the visual attributes can

be customized, users can begin to interpret the interface through recognition rather than

recall [Nor98].

An effective framework allows customizers and designers to extend a system’s presen-

tation in any manner, often through changes to the source code, but it also supports the

formalization and sharing of common customizable components.

3.4 Customizations of Visualizations 41

3.4.3 Control / Behaviour Customization

The biggest distinction between a diagram (one presented on paper for example) and an

information visualization, is the interactions enabled by the machine. Like presentation,

the number and types of actions that can be applied within an interactive visualization are

infinite and are dependent on the type of visualization chosen. Node link diagrams, for

example, often support layout actions, and tables may support the sorting and reordering of

rows and columns. The control / behaviour customization refers to the customizer’s ability

to specify the actions supported by the view and configure the appropriate attributes. This

includes how elements respond to selection, which elements should receive focus, and

when and how multiple interactive views can be combined.

3.4.4 Current Approaches to Visualization Customization

Separating data from how it is presented is considered good engineering practice. A num-

ber of researchers have approached this problem through different model view controller

implementations. While this architecture is effective, there is no standard approach to cus-

tomizing visualizations. Graph query languages, shell scripts and visual queries have all

been used.

Graph query languages such as GraphLog [CMR92], Grok [Hol99], and GUPRO [LSW01]

can be used to manipulate graph structures. While a seemingly reasonable approach for

customizing relational data, these languages are not designed for view customization as

they have their roots in predicate logic or graph algebra. In all these cases, tool support

and seamless integration between the language and view is fairly rudimentary. This means

that view customization and data rendering are decoupled and processed in batch mode.

Because of the lack of tool support and limited integration, these languages can be difficult

to use and do not map easily to the task of customizing views.

Tools such as Snap Together Visualization [NS00, NCS02], SHriMP [BSM02] and

Rigi [TWSM94] provide scripting languages to customize the views. These languages can

3.4 Customizations of Visualizations 42

be used to filter the types of data displayed and modify the display properties. Coupling

the scripting language with the visualization tool helps the interaction designer, but like the

languages mentioned above, they can be difficult to learn and do not necessarily improve

the efficiency of view creation. Mackinlay [Mac86] used sentences of graphical languages

to support automated view creation of databases. For example, designers could use the

phrase “Present the Price and Mileage relations. The details about the set of Cars can be

omitted” to represent information about price and mileage in a database of cars for-sale.

This approach, like many query languages, assumes that the individual posing the queries

has a strong understanding of how the data are structured.

GSee [Fav01], Bloom [Rei01], Chive [CE04] and the work by Consens et al. [CMR92]

present software visualization tools that have domain specific languages designed for de-

scribing views. Unlike the languages described above (Grok, GUPRO, etc.), these lan-

guages integrate the customization language within the visualization toolkit so users can

easily experiment with ideas and immediately see the result. GUESS [Ada06], a language

and interface for graph exploration, is the most recent tool in this space. GUESS combines

an interpreted language, called Gython, with a graphical front end combining analysis and

visualization into one package. The GUESS authors refer to this as Exploratory Data Anal-

ysis (EDA) [Tuk77] for graphs.

Exploratory data analysis through Visual Query Languages (VQL) and Visual Query In-

terfaces (VQI) provide a more intuitive interface for data analysts to pose questions [MK93].

Favre suggested using the Hy+ [MS95] query language to compose graphical queries with

the GSee system, while Reiss proposed the MURAL [Rei02] VQL. Using visual query lan-

guages to create views for software systems is still in its infancy and the existing tools

provide little support to help an interaction designer create the most effective view for their

structured data-set.

3.4 Customizations of Visualizations 43

3.4.5 Discussion

While Michaud has shown that software customization can be achieved and properly de-

scribed by separating the customization of data, presentation and control / behaviour, very

few visualizations are designed is such a formal way. In fact, many interactive visualiza-

tion are designed in an ad hoc manner, as one-off solutions to a specific problem without

documenting the design decisions that influenced the view. This practice makes it very dif-

ficult for future researchers and tool designers to recreate the success that the original view

designer achieved. This also means that common patterns uncovered by view designers are

not adequately made explicit for replication purposes. To provide insight into how tools

are leveraged to create and customize information visualizations, we next examine several

views that have been designed over the past decade.

44

CHAPTER 4

A Study of how Visualizations are Created

VISUALIZATIONS, such as those created for software systems or other large bodies

of knowledge, are most effective when they have been customized for individual users and

their tasks [MMC02, Sto98]. Information visualizations can be designed and customized

by people ranging from end-users with very little technical expertise, to advanced computer

users.

Effective visualizations are ideally created by domain experts, a group of people skilled

in a particular domain but whose technical expertise can vary greatly from one to another.

While some domain experts may be experienced computer users who are comfortable pro-

gramming a custom visualization from scratch, others are much less technical. To support

the design and customization of visualizations by domain experts with varying degrees of

technical skills, a variety of different approaches to view creation have been proposed.

Visualizations can be created using end-user applications. These applications ease the

process of designing visualizations through wizards and dialog boxes. Often limited in

4.1 Case Study Overview 45

scope, these applications are easy to use and integrate well with existing data-sets such as

spreadsheets and common databases. While these tools can be easy to use, they are often

bound to one specific application.

For more tailored applications, such as a software development environment, visual-

izations are much easier to use if they are integrated with the rest of the system. Domain

specific visualizations can provide the infrastructure to achieve this level of integration,

but a designer with some technical expertise is often required. The designer in this case

is responsible for customizing a visualization toolkit and integrating it with existing tech-

nologies. Once the integration is completed, the views can be used and shared among

end-users.

To facilitate task-specific visualizations, a custom view may have to be built from

scratch. Views built from scratch are designed by software engineers working closely with

domain experts. Unlike a visualization that has been customized for an entire domain,

such as a generic visualization for computer networks, a custom coded visualization pro-

vides a more focused view. This is due to each artifact, its visual attributes and associated

behaviour being carefully designed to assist users with a particular task.

In all cases of 1) end-user applications, 2) domain specific visualizations and 3) task

specific visualizations, three aspects must be considered: 1) data customization, 2) presen-

tation customization and 3) control / behaviour customization. In this chapter we study how

these three aspects to view creation are actually configured for a series of six visualization

tools and applications. This exercise culminates in a set of requirements that can be used

for designing a model based environment for designing and customizing visualizations.

4.1 Case Study Overview

To understand the process of designing and customizing views better, we study six dif-

ferent approaches to view creation. Two general purpose visualization applications, three

domain specific visualizations and a custom task specific view are analyzed. The two gen-

4.1 Case Study Overview 46

Methods of Customization
C

us
to

m
iz

ab
le

A
sp

ec
ts

UI Supported DSL Supported Source Code
Customization Customization Modification

D
at

a

C
us

to
m

iz
at

io
n Information Jambalaya /

PBS
Creole/

Filtering Creole / M.E. PDE Viz
Renaming / Moving

BIRT BIRT CreoleInformation
Deducing

Creole
PBS / Creole

New Information BIRT PDE Viz

Presentation Customization Jambalaya/
PBS PDE Viz

Creole / BIRT
Behaviour / Control

Jambalaya BIRT PDE Viz
Customization

Table 4.1: Overview of visualization tools and their customization techniques

eral purpose applications studied are Many Eyes [VWvH+07], a public website used to

create and share views, and the Business Intelligent and Reporting Tool (BIRT) [BIR], a

report designer for relational data. The three domain specific visualizations examined are

Jambalaya [SMS+01], Creole [LMSW03], and the Portable Bookshelf (PBS) [FHK+97].

Jambalaya is a domain specific visualization toolkit for knowledge management integrated

with Protégé [NFM], while Creole and PBS are visualization toolkits for software visu-

alization. Creole is integrated with Eclipse [ECL] while PBS is a suite of tools geared

towards software design reconstruction and integrated with several command line Unix

utilities. Finally, the custom view studied is a visualization tailored to help software en-

gineers understand the dependencies between Eclipse Plug-ins (PDE Viz). This view was

designed from the ground up to meet the needs of sophisticated users and integrates seam-

lessly with the Eclipse Integrated Development Environment (IDE).

These six technologies were chosen because together they enumerate the possible com-

binations of the customizable aspects of software, and methods of customization (Ta-

ble 4.1). Studying how visualizations are designed and customized is a non-trivial task

as most designers neither adequately document how their views are created nor describe

the design decisions they considered.

4.1 Case Study Overview 47

In recent years, researchers have focused on the importance of evaluating views, but

without proper documentation of how the views are created, it makes it difficult (and some-

times impossible) for others to recreate the view. Tool designers looking within the research

community for ideas on how to best visually represent their data, often have to try to un-

derstand how a view was constructed from screen-shots and the prose describing it. Even

a simple statement like, the nodes represent classes, the edges represent relationships be-

tween them and a spring layout algorithm is applied is ambiguous. Which classes are

represented, which relationships (inheritance, composition, calls, depends, uses, etc.) are

included and which parameters are passed to the spring layout? These are important deci-

sions, and if the view received a favorable evaluation, tool designers will need to know this

information if they need to recreate the view.

To understand the process of designing and customizing visualizations better, and to

derive the requirements for a visualization design environment, we follow this process:

1. Analysis of the underlying data-model: When available, the underlying data-model

for each tool is captured and documented using UML.

2. Review of the visualizations: For each tool, the available visualization techniques

and a description of the uses of each visualization technique are documented.

3. Examination of the view creation: A description of how views are customized

from the underlying data-model is uncovered. This includes which visualization

techniques are chosen and which data processing operations are performed.

4. Examination of the presentation customization: The techniques used to customize

the visual aspects of the view are captured. This includes how colours, shapes and

other visual attributes can be customized.

5. Examination of the control / behaviour: The actions chosen and the ways they are

configured is documented. For example, in the case of graph visualizations, this may

include the ability to select elements or re-execute layout algorithms.

6. Review of the lessons learned: A set of lessons learned is distilled for each tool.

4.2 Generic Visualization Tools 48

Figure 4.1: Nine Views from Many Eyes

4.2 Generic Visualization Tools

The first category of technologies studied are generic visualization applications. Many vi-

sualization applications are stand-alone software systems intended for end-users that sup-

port the creation and customization of information visualizations. Visualization applica-

tions are often configured to work with a number of existing data-sources, and through

wizards, preference panels and domain specific languages, end-users can create custom

views. While the applications may support a number of standard data formats, they rarely

provide a means to incorporate the views into other systems. Two applications that meet

this profile, Many Eyes and BIRT, are presented below.

4.2 Generic Visualization Tools 49

4.2.1 Many Eyes

Many Eyes is a public web site that enables anyone to upload data, create interactive

visualizations, and share their results [VWvH+07]. As the designers of Many Eyes de-

scribe: “the goal of [Many Eyes] is to support collaboration around visualizations at a

large scale by fostering a social style of data analysis in which visualization’s not only

serve as a discovery tool for individuals but also as a medium to spur discussions among

users.” [VWvH+07] The site supports a number of visualization techniques including:

charts (bar, line, stack and bubble), maps, tag clouds, treemaps and graphs (Figure 4.1).

4.2.1.1 Many Eyes Model

To make use of the visualizations provided by Many Eyes, comma delimited text file must

first be uploaded to the site and a visualization technique must be selected. Different visu-

alization techniques have different constraints. For example, to create a node-link view, the

data must contain at least two columns with intersecting sets of data. Once uploaded, the

user can select a column for the source and a column for the destination nodes. Many Eyes

will then generate a view, apply a layout, and render it using a Java applet that supports pan

and zoom operations.

4.2.1.2 Many Eyes Views

Many eyes contains 16 visualization types including maps (both world and individual coun-

tries), charts, node-link diagrams, treemaps and tag clouds. The authors of Many Eyes

have not published formal models for any of the views, however, by reading the documen-

tation and experimenting with the system, approximate models can be derived. Finally, the

views cannot be linked in any way, so designing views with overview+detail, or details-on-

demand is not possible.

In terms of the visualization reference model described in Section 3.1 [CMS99], Many

Eyes provides no support for the data preparation stage.

4.2 Generic Visualization Tools 50

4.2.1.3 Many Eyes View Creation

Views are created in Many Eyes by mapping elements to visual attributes. Once a data-

set is uploaded, a view type (bar chart, line chart, map, graph, etc.) can be selected and

then elements from the data-set can be mapped to visual artifacts. This simplified interface

means that complex data customization operations cannot be performed. To perform data

abstractions, or other data customization operations, the data must be processed prior to

being uploaded.

4.2.1.4 Many Eyes Presentation Customization

While data can be mapped to visual elements, Many Eyes provides little support for config-

uring visual properties such as colour, icon, or label. By not supporting these customization

options, Many Eyes has a relatively simple user interface.

4.2.1.5 Many Eyes Control / Behaviour Customization

Each view has a number of associated actions, but like the customization of the visual

attributes, Many Eyes provides no facilities to customize them nor facilities for choosing

the actions available for each view. For example, in the layout action on the node-link

diagram, the user has no control over which layout is performed nor for choosing the control

parameters.

4.2.1.6 Many Eyes: Lessons Learned

Using Many Eyes to create visualizations of data is remarkably easy, but ease of customiza-

tion is achieved by limiting the available options. Many Eyes provides very little support

for data exploration since all queries and data processing must be completed using a sep-

arate program. This separation removes any record of the data processing step. Starting

from a single data-set, and performing a number of abstractions and calculations, a user can

quickly end up with several data files without any history of how each was created. Also,

4.2 Generic Visualization Tools 51

once a data-set is uploaded, it cannot be modified to evolve the view.

Many Eyes facilitates the construction and sharing of visualizations for the end-user

through an easy to use interface and web based system. From a single data-set, an end-user

can create both a bubble, bar and line chart, share them with others, and solicit feedback

on the findings.

4.2.2 Business Intelligent and Reporting Tool

The second general purpose visualization application studied is the Business Intelligent

and Reporting Tool (BIRT) [BIR]. BIRT is a reporting system for both desktop and web

applications. Working from several data-sources, a variety of standard charts and table

based reports can be designed and exported to a number of formats or published on the web.

BIRT also has a “report designer” a tool that enables designers to construct new reports by

dragging and dropping report elements from a pallet. Those users designing BIRT reports

are usually advanced business users with a moderate degree of technical skills. Once the

charts have been designed and exported, they are presented to an end-user for analysis. The

end-user in this case is not required to have any technical expertise.

4.2.2.1 BIRT Model

BIRT supports a number of data-sources including flat files, structured XML, web service

data and relational databases. By interfacing with these data-sources, designers can create

reports without first exporting their data or maintaining multiple data files. Also, since the

visualizations are designed directly on the underlying data, the views automatically update

as the data evolves.

4.2.2.2 BIRT Views

BIRT reports have an assortment of standard statistical charts, such as, line, bar, pie, etc.

While several charts can be placed in one report, the charts cannot be linked, however,

4.2 Generic Visualization Tools 52

they do provide more interactivity than other business charting applications such as Excel.

For example, elements in a BIRT chart can be associated with an action and configured

through JavaScript, such that when an end-user selects something, a dialog or pop-up can

be displayed.

4.2.2.3 BIRT View Creation

Views are created using a sophisticated report design tool intended for designers or end-

users with a moderate degree of technical expertise. Once the charts have been selected,

the data axes can be configured. BIRT also supports many advanced features allowing the

designer to create summary reports directly from the data-source using a variety of abstrac-

tions and data filtering operations. The report design tool uses a combination of dialog

boxes and SQL queries for customization purposes. SQL queries are used to derive in-

formation and compute new data columns, and the dialog boxes are used to select which

columns to display. This approach enables a single data-source to be used in the construc-

tion of several views, and as the data-source is updated, the views dynamically evolve.

One notable shortcoming to BIRT’s approach to view creation is that no preview of the

view is available at design time. Consequently, once a chart is configured, the designer has

to go through an additional step of exporting the view before they can see the results. This

is likely due to the fact that heavy computing resources are needed to extract the data from

the data-source and render the view.

4.2.2.4 BIRT Presentation Customization

Visual attributes can be selected and customized using a series of dialog boxes. Effects such

as a 3-dimensional appearance or the choice of colours and fonts can all be customized. In

some views, a designer can also apply effects based on a criteria such as “exploding” a slice

in a pie chart if a certain condition is met.

4.3 Domain Specific Visualizations 53

4.2.2.5 BIRT Control / Behaviour Customization

Choosing actions and customizing the control is supported in BIRT through JavaScript. By

selecting one of the preset configurable actions, which includes Mouse Click, Keyboard

Click, and Mouse Over, a custom script can be executed. BIRT provides a number of

standard scripts such as “navigate to URL” and “highlight element.” The combination of a

scriptable interface with predefined scripts, provides the designers with the tools to easily

make use of common controls while still supporting the flexibility of advanced operations.

4.2.2.6 BIRT: Lessons Learned

BIRT provides a rich environment for designing and customizing chart based information

visualizations. The drag and drop interface used to create the views is simple to use, while

still supporting powerful data deriving operations through SQL queries.

Unlike Many Eyes, BIRT supports data processing so that many different views can be

created from a single source. Moreover, when a data-source is updated, the views can be

instantly regenerated.

BIRT’s approach to customizing presentation and control is highly versatile. By com-

bining a UI driven approach with script writing, highly customized reports can be created.

BIRT also provides a number of predefined scripts so that both novice and experienced

designers can make use of the most common operations without the need to write code.

4.3 Domain Specific Visualizations

In contrast to the generic visualization applications discussed above, which run as stand-

alone tools for the purpose of visualizing any type of information, a domain specific visu-

alization is a suite of visualization tools intended for a particular domain. Because domain

specific visualizations target a specific set of end-users, these views can often be integrated

with existing systems that are familiar to the user.

4.3 Domain Specific Visualizations 54

We study three domain specific visualization toolkits: 1) Jambalaya, 2) the Portable

Bookshelf (PBS) and, 3) Creole. In each case, we uncovered how advanced users created

and customized a specific view for end-users to consume.

4.3.1 Jambalaya

Jambalaya was created to assist with the comprehension of ontologies. Jambalaya is inte-

grated directly within Protégé [NFM], a popular ontology editor, and can be further cus-

tomized to produce a number of task-specific views.

Allen [All03], a researcher at the University of Victoria, further customized Jambalaya

to create a tool called SHriMPBib. SHriMPBib was designed to help researchers track, rate,

search and archive publications. The highly customized instance of Jambalaya provided

researchers with a rich interface from which to enter the data about publications, browse

existing entries, and visualize the information.

When SHriMPBib was put in production, 15 users registered and almost 600 documents

were entered. The documents could be rated and marked with a research area. While the

size of the system is small, the complexity of managing these documents was still a barrier

for the users. Allen created several visualizations to help users manage their documents.

4.3.1.1 Jambalaya Model

Jambalaya uses an ontology as its core data model. An ontology is an explicit specification

of a conceptualization [Gru95]. An ontology describes the elements that exist in a domain

and the relationships between them. In the case of SHriMPBib, Allen defined an ontology

for academic publications consisting of four main class hierarchies (Figure 4.2): 1) Docu-

mentArea, 2) User, 3) Document, and 4) Rating. Each of these hierarchies has a number of

classes and each class has a number of slots. For example, the document hierarchy has six

concrete subclasses, (Book, ConferenceProceeding, Generic, JournalArticle, Article and

Webpage), and these classes have slots such as Pages, Keywords, and Author. Slots can

4.3 Domain Specific Visualizations 55
package DefaultName

Person

User
+ firstName : String
+ givenName : String
+ nick : String
+ phone : String
+ surName : String

Document
+ abstract : String
+ author : String
+ keywords : String
+ title : String
+ URL : String
+ year : String

Book
+ pages
+ publisher

ConferenceProceeding
+ conferenceName
+ pages
+ location

Generic JournalArticle
+ journal
+ issue
+ pages
+ volume

MagazineArticle
+ date
+ issue
+ magazine
+ pages
+ volume

Webpage

Project
+ name

Organization
+ name

Image
+ URI

Annotation
+ text : String

UserRating

Rating
+ name : String

<<Singleton>>
DocumentArea

+readBy

1..*

+documents
*

+project1..* +img1+fundedBy1..*

+website
1

+ratedBy
1

+user
1

+docRatings*

+userComment

*

+areas

1..*

+rating1

Figure 4.2: SHriMPBib Model

also connect classes, such as the connection between a user and their read documents. The

DocumentArea class actually represents a taxonomy of document areas (such as software

engineering, information visualization, and algorithms), but was omitted from the diagram

for readability.

4.3.1.2 Jambalaya Views

Jambalaya’s main visualization is a nested node-link view. By default, Jambalaya shows

all nodes and edges that exist in a system. For SHriMPBib, Allen created several custom

views to help users manage a collection of documents, three of which are discussed below.

The first view is the “Member Document View”. In this view, a node link diagram is

displayed and each user is represented as a node “connected” to the documents they rated.

By applying a spring layout to this graph, a visualization, such as that shown in Figure 4.3,

is rendered. It is easy to see that for this view that three users (User 1, User 2 and User 3),

4.3 Domain Specific Visualizations 56

Figure 4.3: Member Document View

4.3 Domain Specific Visualizations 57

Figure 4.4: Members, Documents and Area of Interest

all reviewed the same paper.

The second view (Figure 4.4) extends the first view by adding the DocumentArea as

a node to the graph, such that each document is connected to a “document area”. The

document is also connected to all the users who rated it. Using this view, it can be seen

that User 1 and User 2 both read papers on Information Visualization, while Artificial

Intelligence articles were only read by User 1.

The final view uses a Treemap [JS91] to show all the research areas (Figure 4.5). Each

rectangle in the treemap contains a list of papers in that area, colour coded by the individual

who added them. The boxes are sized according to the number of documents contained

within it. This view highlights the areas of research that are dominant, and by looking at

the map, the experts in each area can easily be identified.

4.3.1.3 Jambalaya View Creation

Creating views in Jambalaya, like the ones Allen created, requires a moderate degree of

technical skill. Because Jambalaya is already configured to work with Protégé, no custom

code is required to create the views. Instead, the designer customizes the views by enabling

filters, deriving new relationships and applying specific layout algorithms through a set of

preference panels. The first view is designed by opting to show only elements of type

4.3 Domain Specific Visualizations 58

Information Visualization Knowledge Engineering Algorithms

Figure 4.5: Treemap Showing Documents and Areas of Research Interest

“User” and “Document”. For the document, the node is coloured based on the “Added

By” field. Finally, all edges that connect users to their documents are shown. To create

the second view, the first view is extended and all the elements of type “Area” are enabled.

An edge is added from each document to all of its associated areas. Finally, the edges are

coloured red and decorated with an arrow head to make them stand out.

A different approach is used to create the third view. In this case, three of the elements

(Area, Document and User) are grouped hierarchically. A treemap [JS91] layout is then

applied such that the size of the rectangle is dependent on the number of descendants. All

other elements are filtered from the view.

In all three views, the choice of elements to show was performed using a selection

dialog. The selection dialog provides an option to show and hide elements by type. While

this was satisfactory in this case, the UI does not support complex filters.

4.3.1.4 Jambalaya Presentation Customization

Jambalaya supports the customization of visual attributes through wizards and UI dialog

boxes. For SHriMPBib, Allen was able to choose a colour, border style, label position and

optional image. For edges, the possible customizable visual attributes include colour and

edge style such as solid, dotted or curved.

As well as configuration based on type, nodes can be coloured based on their attributes.

4.3 Domain Specific Visualizations 59

For example, a colour value can be chosen based on number of descendants or the value

of a given attribute. In the case of SHriMPBib, the documents are coloured to help users

see who added them. If two documents are added by the same user, they are coloured the

same.

4.3.1.5 Jambalaya Control / Behaviour Customization

Jambalaya has a number of default actions such as the execution of a layout algorithm,

selection triggers, zooming and panning. To change the default behaviour, or to disable

these actions, the designer is required to write custom code. The only exception to this

are the “Quick-Views”, a tool that allows designers to create a custom view for end-users.

Using the quick-view editor, the designer can decide which nodes and edges to show, and

which options the initial layout should include.

4.3.1.6 Jambalaya: Lessons Learned

Creating a visual representation of an instance of an ontology with Jambalaya, like those

Allen created, requires a number of subtle features. Allen’s views made use of: 1) filtering

(nodes and edges), 2) configuration of visual attributes (namely node and edge colour), 3)

re-organization of the hierarchy, and 4) the configuration of layout algorithms.

Jambalaya’s UI approach to view customization made it very easy for Allen to cus-

tomize the view for the needs of her users, however, there are a few limitations to this

technique. First, not all data deriving operations are possible. For example, if a node is hid-

den, all the descendants of that node are also hidden (i.e. the nodes cannot be re-parented).

Second, views can only be specified at a high level. For example, filters cannot be chosen

based on the value of an attribute such as hiding all documents whose name starts with

Artificial. Finally, since all the customizations were designed through a UI, the actual de-

sign decisions were never captured making them impossible to fully reproduce. In the case

of SHriMPBib, the configuration of the spring layout algorithm was never documented,

although it would appear this configuration was an important aspect of the tool’s success.

4.3 Domain Specific Visualizations 60

4.3.2 Portable Bookshelf (PBS)

The second domain specific visualization studied is the Portable Bookshelf (PBS). PBS

is a tool to help software engineers understand and re-document the design of a soft-

ware system. PBS has three components: 1) The C Fact Extractor (CFX), 2) a domain

specific language for manipulating graphs (Grok [Hol]), and 3) a graph rendering tool

(LSEdit [Pen93]).

Many software systems do not have a documented system architecture [GS93] and to

address this issue, Bowman et al. made use of the PBS toolkit to design an architectural

reconstruction and re-documentation process and applied this technique to the Linux ker-

nel [BHB99]. The architectural reconstruction and re-documentation process follows the

general reverse engineering process outlined by Chikofsky and Cross [CI90]. In partic-

ular, low-level artifacts such as files, functions, variables and the relationships between

them are extracted using the CFX fact extractor [FHK+97, Hol97] to re-construct the

“As-Built” [MNS01] system architecture. These artifacts are then abstracted to produce

high-level information, such as, the dependencies between modules and subsystems using

Grok [Hol]. Grok is a domain specific language for manipulating graphs based on Tarski

algebra. Finally, the results are visualized using a rudimentary tool called LSEdit [Pen93].

4.3.2.1 PBS Model

PBS uses a relational model based on triples. The triples can be of two forms: 1) source,

destination and relation name, or 2) element, attribute name and attribute value. The first

type of triple defines edges in a graph while the second type defines attributes. In addition

to these two types of triples, PBS supports named entities. Since the entities, relationships

and attributes are named, a model (or schema) can be created.

The artifacts extracted by PBS’s fact extractor, CFX, are “low-level”, similar to those

extracted by Rigi [MK88], Dali [KC98], CPPX [MDH01] and Ciao [CFKW95]. Low-

level artifacts are code artifacts close to the statement level, such as, function main calls

4.3 Domain Specific Visualizations 61
package tamodel

SourceFile
+ name : String

Macro
+ location : int

Type
+ location : int

Struct
+ locationStart : int
+ locationEnd : int

Union
+ locationStart : int
+ locationEnd : int

Enum
+ locationStart : int
+ locationEnd : int

Variable
+ varDefLoc : int
+ varDclLoc : int

Function
+ defLocStart : int
+ defLocEnd : int
+ dclLoc : int

LibraryFunction
+ defLocStart : int
+ defLocEnd : int
+ dclLoc : int

+macros

*

+types

*

+structs

*

+unions

*

+enums

*

+libraryFunctions

*

+functions
*

+variagles

*

+includes
*

+srcReferences { unique }
*

+srcCalls
*

+libraryCall
*

Figure 4.6: Model to Which Artifacts Extracted from CFX Conform

function print and function print uses variable device. In the case of the Linux Ar-

chitecture example, we could not find an explicit schema to which the facts extracted by

CFX conform, however, Bowman et al. present the relevant concepts in their paper “Con-

necting Architecture Reconstruction Frameworks” [BGH00]. In this paper, Bowman et al.

presents nine elements: Variable, Function, Library Function, Macro, Type, Struct, Union,

Enum and Source File. There are several relationships in this model including Variable

Definition, Variable Declaration, Function Definition, Function Declaration, Reference,

and Call. Figure 4.6 presents the model as a k class diagram.

4.3.2.2 PBS Views

PBS supports a nested graph view similar to the one used in Jambalaya. In the case of

the Linux kernel visualization, Bowman used the view to show a high-level description

of the major subsystems and their dependencies (Figure 4.7 (A)). From this view, it can be

4.3 Domain Specific Visualizations 62

File System

Network
Interface

Memory
Manager

Process
Scheduler

Inter-Process
Communication

Initialization Library

File System

A) Interdependencies of the Subsystems
Within the Linux Kernel

B) Architecture of the Linux File System

Memory
Manager

Network
Interface

Init
Process

Scheduler
Inter-Process

Communcation

System Call
Interface

Executable File
Formats

Virtual File
System

Device
Drivers

Logical
File Systems

File
Quota

Buffer
Cache

Figure 4.7: Architecture of the Linux Kernel

seen that the Linux kernel has seven subsystems and 37 inter-subsystem dependencies. The

nested view also supports a number of navigation actions, including “dive-into” in order to

display elements within a subsystem (see Figure 4.7 (B)).

4.3.2.3 PBS View Creation

Creating views to help re-document software design from low level artifacts is a multi-step

process. In the case of the architectural reconstruction of the Linux kernel, Bowman first

mapped each file (or module) to a subsystem. The subsystems were then grouped hierar-

chically. Bowman performed this mapping manually, creating data files that contained the

desired mappings. Once completed, Bowman merged his mapping files with the extracted

source artifacts.

Since subsystems have no direct relationship between one another, composite relation-

ships, or lifted edges, must be computed [FKO98]. In this case, a relationship between two

subsystems (A and B) is added if an element in the set of descendants of subsystem A has

a relationship (calls or references) to an element in the set of descendants of subsystem B.

Bowman used Grok [Hol], a DSL intended for manipulating directed graphs, to compute

these abstractions.

4.3 Domain Specific Visualizations 63

4.3.2.4 PBS Presentation Customization

PBS supports two methods for customizing visual attributes. Initially, each element can be

annotated with an attribute describing its shape, label and colour. For the Linux architec-

ture visualization, the subsystems are represented using blue rectangles and modules are

rendered as red rectangles with double borders on the left. The initial visual attributes are

configured using a Grok script. In addition to Grok, PBS supports dialogs to further con-

figure the visual attributes. By combining both approaches, an initial assignment of colours

and shapes can be performed by an experienced designer, while still allowing the end-user

to change these attributes as their tasks evolve.

4.3.2.5 PBS Control / Behaviour Customization

PBS neither supports the customization nor the configuration of control / behaviour. There

are several actions available, such as navigation, panning, zooming and a history panel, but

designers are not able to modify the behaviour nor can they disable features.

4.3.2.6 PBS: Lessons Learned

Recovering software architecture diagrams or other design artifacts from source code and

presenting the results visually is common practice to help software engineers better un-

derstand the structure of a large software system [FHK+97, MK88, HH02, TH96, KC98].

Construction of these views requires a number of visualization customization methods, in-

cluding: 1) the union of several data-sources, 2) configuration of visual elements (edge

colour and node shapes), 3) edge lifting or abstraction and 4) node and edge filtering.

By separating the configuration of the view from a description of the view itself, and

specifying the design through a DSL, a detailed description of how the view is designed

is available. This approach makes it much easier for future researchers and tool-smiths

to recreate the visualization for a different, yet similarly structured data-set (such as the

architecture of the Mozilla web browser [GL00]).

4.3 Domain Specific Visualizations 64

To further customize a visualization, the designer must first modify the DSL and then

use the modified program to re-generate the views. The main drawback with this approach

is the disconnect between the view and tools used to customize the view. This lack of

integration may limit the designers efficiency. Finally, it is unclear if Grok, a DSL based

on Tarski algebra, is the most intuitive notation for designing visualizations of software

systems.

4.3.3 Creole: Software Visualization

The final domain specific visualization studied is Creole, a plug-in for the Eclipse inte-

grated development environment that supports a number of different software visualization

options.

While several tools exist to help developers understand the static structure of their soft-

ware, Wu [Wu03] noted that version control information is hard to understand because of

ineffective visual representations. To improve the understanding of historical software ar-

tifacts, Wu developed Xia, a customized version of Creole for version control information.

When Wu began her work, Creole did not support version control data, so the design

and customization of Xia’s views was done through a mixture of programming and user

interface preference panels. Wu wrote custom code to extract CVS information, filter unin-

teresting elements and construct a more suitable data representation. The preference panels

were used to customize the visual attributes and fine tune the data filtering parameters.

4.3.3.1 Creole Model

Creole uses a typed graph model with edges labeled as “hierarchical” to support nest-

ing. As well, Creole can interpret a number of standard graph exchange formats including

TA [Hol97], GXL [GXL, HSW00] and RSF [MK88]. By default, Creole extracts a number

of source code artifacts from a Java program.

To visualize information about software history, Wu used the Eclipse CVS API to pop-

4.3 Domain Specific Visualizations 65
package xiamodel

Project
+ name : String

Version
+ revision : String

Folder
+ tag : String
+ relativePath : String
+ folderName : String

FileRevision
+ revision : String
+ tag : String
+ relativePath : String
+ fileName : String
+ numberOfChanges : int
+ lastCommittAuthor : String
+ lastCommittDate : Date
+ comments : String
+ size : int

CVSArtifact
+ location : String
+ elementType : String
+/ artifactID : String

+contains
*

+contains
*

+files
*

+folders
*

Figure 4.8: Xia Data Model

ulate a custom data-model. Wu’s model has four types of elements: Project, Version,

Folder and FileRevision. Each type has an artifactID to uniquely identify the element, a

networkLocation, and a field representing the elementType. The FileRevision type also

contains a number of attributes including name, size, numberOfChanges, commitAuthor,

commitDate, tag and comments. The edges are limited to containment relationships, such

that file revisions are “contained” within their parent folder, folders are contained within

versions (or other folders) and versions are contained within projects. Figure 4.8 shows a

UML class diagram for this model.

4.3.3.2 Creole Views

Like many other toolkits, Creole uses a nested graph view. Both the nodes and the edges

can be configured and a number of graph layout algorithms can be applied. In the case of

Xia, only nested treemap views are used. Projects, versions, folders and files are nested

within one another. The project is shown at the root, with versions, folders and files below.

The hierarchy is expandable, meaning that a user can just view the project, or expand all

4.3 Domain Specific Visualizations 66

Figure 4.9: Xia CVS Visualization

the descendants to see the files that make up the different versions.

The treemap algorithm is configured in a number of different ways depending on what

is intended from the view. For example, within a folder, all the subfolders and files can be

positioned based on their size (lines of code) or number of revisions.

Colour is also used frequently within Xia to distinguish both nominal and ordinal data.

Different colours are assigned to different nominal attribute values, and colour intensity is

used to distinguish ordinal data.

Figure 4.9-left shows how Xia displays an overview of all files in the system colour

coded by the developer who last worked on them. Figure 4.9-right presents the same sys-

tem, but in this case colour intensity was used to represent the last modified date.

4.3.3.3 Creole View Creation

Creole supports many software visualizations including call traces and system decomposi-

tion diagrams. Using a series of dialog boxes, a designer can tailor these views or create

an entirely new one. Since Creole did not support CVS information when Wu began her

work, she first developed a custom data extraction tool to retrieve the necessary data from

CVS, and then used a series of dialog boxes to finalize the presentation.

4.3 Domain Specific Visualizations 67

4.3.3.4 Creole Presentation Customization

Creole supports the configuration of visual attributes through a series of UI dialog boxes.

The node properties that can be configured are: size, shape, colour, border and label. Also,

a number of visual attributes can be configured for the edges, such as colour, line style,

width and label.

In the first Xia view, colour is used to represent the developer who committed the most

recent change. In the second view, colour intensity is used to indicate the date of the most

recent change. Labels are placed above the nodes, and the default rectangle shape was

chosen.

4.3.3.5 Creole Control / Behaviour Customization

Creole does not support an extensive set of customizable actions. Current versions of Cre-

ole allow designers to specify a set of “Quick View” actions, like the ones specified in

Jambalaya, but these were not available when Wu designed Xia.

4.3.3.6 Creole: Lessons Learned

Creole can be customized by mapping Java artifacts to visual elements. In the case of Xia,

Wu extended the model by including a custom data extractor to integrate file version history

into the application.

Once the version history was extracted, the visual artifacts were customized based on

attribute values such as date and author. For nominal data (author) a simple colour mapping

was performed. For ordinal data (date committed) a colour intensity value was assigned.

Because Creole does not support an adaptable data model, an intermediate data repre-

sentation was designed to bridge between Eclipse and Creole. This extra step meant that

the designer, Wu in this case, had to understand the internal details of both Creole and

Eclipse.

Like Jambalaya, the UI based customization used in Creole provides an easy way to

4.4 Task Specific Visualizations 68

modify the view. Since the view was customized through both source code modifications

and option dialogs, the details of the customization were not isolated, but rather distributed

across a number of files in multiple formats.

4.4 Task Specific Visualizations

Many visualizations are designed and implemented to assist end-users with a specific task.

These views are highly tailored and are developed as custom solutions to specific problems.

Since it is difficult to understand the subtleties of how a specialized tool is created and

customized without taking part in the tool’s design, we studied a visualization that we

engineered from a set of requirements gathered from experts in the field of Eclipse plug-in

development.

The view we constructed is a plug-in dependency view for Eclipse [Bul]. The view is

intended to assist software engineers who develop plug-ins for Eclipse, as they often have

trouble understanding the dependency stack for a given plug-in. As described by a Eclipse

committer on a feature request:

“When validating the set of runtime plug-ins, it’s almost impossible to under-

stand why a given plug-in is disabled. Doing this requires hunting around in

the tree of disabled plug-ins. [Hud]”

The plug-in dependency view (shown in Figure 4.10) was implemented over the course

of a summer and the requirements taken from a number of experts. The view was well

received and initial feedback was quite positive. To study the customization of this view,

we looked at what was required to configure data, presentation and control / behaviour. The

view was designed using Eclipse and a high-level programming language (Java).

4.4 Task Specific Visualizations 69

Figure 4.10: Plug-in Dependency View
package pdemodel

BundleDescription
+ symbolicName : String
+ location : String
+ id : long

BundleSpecification
+ resolved : boolean

+supplier

1

+requiredBundles
*

+descriptor
0..1

Figure 4.11: Plug-in Dependency Model

4.4 Task Specific Visualizations 70

4.4.1 The Plug-in Model

The model used by the Plug-in Development Environment (PDE) to represent dependen-

cies is straight-forward. Each plug-in is represented by a BundleDescription and all the

dependencies are represented by a BundleSpecification1. Each specification has 0 or 1

descriptors (depending whether or not the specification can be resolved). The model is

shown in Figure 4.11. In Eclipse, the model is represented as an object model described by

a series of Java classes.

4.4.2 The Plug-in View

The PDE visualization is a single view used to display the dependencies between plug-ins.

A number of navigation actions are available, as well as a number of actions that highlight

plug-ins for different analysis tasks. The default view (Figure 4.10) shows the selected

plug-in and all dependent plug-ins. Directed edges are drawn to show the relationships and

a hierarchial layout algorithm is applied.

The view is integrated within Eclipse using the Eclipse plug-in mechanism. By inte-

grating the view in this manner, end-users can view their dependencies without the burden

of launching a separate tool.

4.4.3 Customizing the View

The creation of the plug-in dependency view is done by tightly integrating a graph ren-

dering engine [BBS04] with the Eclipse plug-in development environment. This approach

provides up-to-date information about the plug-ins and their relationships. To create the

view, the plug-in registry is first traversed, starting with the selected element. For each

dependency, the specification was resolved and a list of indirectly dependent plug-ins is

computed. This idea is applied recursively until there are no more plug-ins left to be re-

solved.
1The terms bundle and plug-in are used interchangeably, although bundles are the terms used in the OSGi specification [All08], the

term plug-in is still accepted for historic reasons and the term more widely used within Eclipse.

4.4 Task Specific Visualizations 71

p u b l i c Colo r g e tB ac k g r ou n dC o l o u r (O b j e c t e n t i t y) {
i f (e n t i t y == t h i s . roo tNode)

re turn LIGHT GREEN ;
e l s e i f (e n t i t y == t h i s . s e l e c t e d)

re turn LIGHT BLUE ;
e l s e i f (i n t e r e s t i n g D e p e n d e n c i e s . c o n t a i n s (e n t i t y))

re turn ORANGE;
e l s e

re turn LIGHT GREY ;
}

List of Listings 4.1: Colour adapter for graph node

In the view, a node is used to represent each plug-in. The name of the plug-in is used

as the label, and a decorated icon is added to the model to indicate a number of properties

about the plug-in. A directed edge was drawn between the source plug-in and all the plug-

ins directly referenced.

The graph based rendering engine is an MVC framework that makes use of model

adapters, a design pattern [GHJV95] that separates the model from its visual representation

and places all the code used to calculate the view model in one place.

4.4.4 Configuring the Presentation

The customization of the visual attributes, such as node and edge colours, labels, font, and

icons is done programmatically and supported through an adapter pattern. This pattern

supports the addition of decorators (modified icons), labels, colours and so on, in a model

independent manner. For example, setting the node colours to blue requires no knowledge

of the graphing framework or rendering engine, instead, a single interface with all the

configuration options is implemented. Listing 4.1 shows the method used to choose the

colour based on selection.

Customizing the visual attributes in this manner places all the UI configuration options

in one place and provides fine grained control over the customizable options, however, a

complete rebuild of the application is required for the changes to take effect.

4.4 Task Specific Visualizations 72

4.4.5 Configuring the Control / Behaviour

The plug-in dependency viewer, of all the tools studied, had the most configurable actions.

Each of the actions were configured using a high-level programming language.

The plug-in dependency view supports a number of actions that are triggered based on

selection, such as, highlighting the shortest path between two elements and filtering nodes

through a quick filter option. It was hypothesized that by providing actions such as these,

users could more easily understand the relationships between the plug-ins. The shortest

path action was designed by incorporating Dijkstra’s shortest path algorithm [Dij59] into

the onSelection() method.

4.4.6 Custom Visualization: Lessons Learned

The primary difference between the creation of a custom view and the creation of the other

views is the predominant use of a programming language to configure the visualization.

A high level programming language provides more flexibility than any of the previous

approaches, but more tightly couples the implementation of the view to its specification.

The use of an MVC framework and model adapters helps isolate the view customization

from the underlying rendering engine. Model adapters are used both for the customization

of the data and the presentation. Concerning the data, an abstraction is performed to bypass

the BundleSpecification and directly link all BundleDescriptions that are dependent on

one another. Regarding the presentation, a graph node is used for each BundleDescription

and graph connection is used for each derived relationship. The icon, colours and labels are

then configured using the label providers. All these adapters made it very easy to modify

which elements are shown and how they are displayed. For example, after a consultation

with a graphics designer, the colours were modified to meet existing colour.

A high-level programming language supports the design, customization and implemen-

tation of an interactive visualization. However, to design effective views in this manner, a

programmer, as well as someone with a deep understanding of the domain, is required.

4.5 Discussion 73

V
is

ua
liz

at
io

n
To

ol
s

C
on

cr
et

e
V

is
ua

liz
at

io
ns

U
IS

up
po

rt
ed

C
us

to
m

iz
at

io
n

D
SL

Su
pp

or
te

d

C
us

to
m

iz
at

io
n

C
us

to
m

iz
ed

T
hr

ou
gh

Pr
og

ra
m

m
in

g

D
ev

el
op

ed
by

U
s

D
at

a

C
us

to
m

iz
at

io
n

Pr
es

en
ta

tio
n

C
us

to
m

iz
at

io
n

C
on

tr
ol

/B
eh

av
io

ur

C
us

to
m

iz
at

io
n

Many Eyes • • •
BIRT • • • • • •
Jambalaya • • • • •
PBS • • • •
Creole • • • • •
PDE Viz • • • • • •

Table 4.2: Visualization Tools Comparison Chart

4.5 Discussion

To better understand the process of creating and customizing visualizations, two applica-

tions, three frameworks and a custom view were examined. Table 4.2 summarizes these six

tools according to the customization options they support.

Creating and customizing visualizations for a particular domain is not an easy task.

As the previous examples have shown, and the reference model for visualization reaffirms

(Section 3.1) [CMS99], the data, visual attributes and control/behaviour must be designed

appropriately for the end-users. Since it is difficult for anyone to fully evaluate a solution

without a working prototype, the design and customization of views such as these is a

highly iterative process, one in which developers provide users with working prototypes to

evaluate. The results of these evaluations drive further enhancements, but these too must

be evaluated. To support this cycle, developers, customizers and users need a mechanism

to quickly incorporate changes back into the system and remove unnecessary complexity.

Many engineers are integrating new tools within existing, familiar environments to help

solicit feedback without requiring the end-users to switch tools or completely change their

4.5 Discussion 74

work habits.

Integrated development environments, such as Eclipse, Visual studio, IBM Montana

[SKBS97] and even Emacs, and office productivity tools, such as MS Office and Open

Office, are effective because they integrate relevant tools into a single environment. In the

case of the office productivity tools, spell checkers, spreadsheets, image editors, etc, are all

available without requiring the user to switch applications or to learn new tools. In addition

to the assortment of tools provided, these environments can be extended to add additional

functionality through scripting, extensions points or an open API [KLM04].

Just-in-time comprehension [SLVA97] outlines the importance of providing compre-

hension tools to users when they need it. Since visualizations can often be used to help

users understand information, visualizations should also be presented to the user in a just-

in-time manner. This means that users should not be faced with the task of switching

applications or exporting information in order to assist them with their current task.

While an open access layer is important to support integration, more than just embed-

ding an application is often needed. A tool should conform to the same “look and feel” and

provide the same interaction techniques as the system in which it is integrated. By tightly

integrating visualization tools within existing applications, not only is “just-in-time visual-

ization” supported, but it also helps lower a substantial barrier to adoption [FES03]. This

is particularly important in software engineering tools where many developers believe they

“don’t need visualizations” [Die07] even though there is evidence that the cognitive support

offered by visualizations improves productivity for some users [Die07, SDBP98, Zha03].

To support the creation and customization of visualizations, and the integration of these

views into existing systems, we need to determine a general set of requirements for envi-

ronments that support view creation. Distilling requirements and providing advice from

the study of existing tools as been successfully done in other domains. In particular, Kienle

studied relevant tool building experiences and case-studies to distill practical advice for

how software components could be used to build reverse engineering tools [Kie06]. Wong

studied the successes and failures of several tool integration and reverse engineering tech-

4.5 Discussion 75

nologies to provide feedback into software understanding tool requirements [Won00].

Regarding visualization customizations, both functional requirements and design rec-

ommendations are distilled. The functional requirements are based on the aspects of soft-

ware that can be customized, as outlined in Section 3.4: 1) data, 2) presentation 3) con-

trol/behaviour. The design recommendations are a direct result of our experience evaluating

these six visualizations.

4.5.1 Functional Requirements

The functional requirements for a customizable visualization environment are based on

the general requirements for any customizable software component and related to the cus-

tomization of data, presentation and control / behaviour.

Data integration is an important aspect of any visualization. As described in Sec-

tion 3.4.1, a visualization must be configured to show the relevant information and hide

the rest. This is accomplished through a combination of operations that filter data, derive

new data and move / rename data. The visualizations we evaluated reiterated the impor-

tance of these operations. The means by which the data were customized between the tools

varied, but the importance of being able to easily specify simple things (such as filters)

and still support complex data processing (such as data deriving queries) is clear. The

tools that do not support complex queries often require custom code. This further separates

configuration options and makes it harder to reproduce the visualizations.

As Section 3.4.2 outlines, the image in a visualization is what immediately grabs the

users’ attention. In the case of the six visualizations we studied, the majority of config-

urable visual elements revolved around choice of icons, labels, colours, and shapes. All of

these attributes are commonly exposed through an API, prompting a recommendation that

a visualization customization environment should allow the customization of all exposed

visual attributes.

Control and behaviour are important aspects of any visualization as explained in Sec-

tion 3.4.3. Many widget toolkits and frameworks outline which types of actions should be

4.5 Discussion 76

customized and provide hooks for those developers who wish to override or add entirely

new controls. Both the configuration of common behaviour (such as selection and mouse

interaction) and the addition of new behaviour (such as the introduction of new layout al-

gorithms) should be supported by a visualization customization environment.

4.5.2 Design Recommendations

In addition to the functional requirements, we propose several design recommendations.

These recommendations were derived by looking at the facilities that make each visualiza-

tion toolkit appropriate for the design and configuration of its views.

From studying these tools, the UI based approach provides the most efficient customiza-

tion methods. While the UI based approach was the most efficient, since configurations

could all be completed through option panels and dialog boxes, this approach was not

nearly as flexible as the visualizations coded by hand. The plug-in dependency view was

highly customized for a particular use.

In addition to the tradeoff between efficiency and flexibility, the importance of an inte-

grated environment for designing visualizations was also realized. In the case of Jambalaya

and Creole, the customizer could immediately see the results of their customization, pro-

viding verification that their modifications worked as intended, whereas in the case of the

Portable Bookshelf, each modification required an entire batch process to be executed, and

a new instance of the visualization to be launched. This constant switching between data

processing scripts and viewing the results leads to a less streamlined feedback loop.

As well as integrating the view customization techniques within an integrated environ-

ment, any complex queries or transformation rules that exist should be written in a language

familiar to the customizer. Developing a new domain specific language and adding it to the

sea of technologies that already exist, means a steeper learning curve and higher barrier to

adoption.

The learning curve is not only a problem for end-users but also for developers faced

with integrating several toolkits and technologies. In many graphical toolkits, developers

4.5 Discussion 77

are required to tie themselves to a particular framework, resulting in the maintenance of

the original data model plus the view model. By providing model adapters (for both the

data model and the presentation options) and designing the tool as an MVC framework,

the developer can concern themselves only with their original data model. This design

principle is generally known as “separation of concerns” [Som04, p.425].

Any existing viewers or widgets should be leveraged especially if a standard has pre-

viously been established. Users become familiar with the actions, look and feel, and in-

teraction techniques provided by a system, such as single click vs. double click for action

invocation. An unfamiliar widget toolkit often requires users to retrain themselves even for

basic tasks [DFAB97]. If an existing widget is not available and a new one is designed, care

should be taken when choosing default behaviours, colours and feedback mechanisms.

Finally, the importance of isolating the view from its specification was realized, not

only to help separate the concerns, but to better document how the view was created. Very

few tool designers, in research or elsewhere, adequately document how they construct their

visualizations, making studies like this very difficult. If the views have been properly

decoupled from the data, the customization code could be isolated.

4.5.3 Summary

In summary, an environment that supports the configuration and customization of visual-

izations should meet both the functional requirements outlined by Michaud and follow the

design recommendations distilled through the analysis of these tools. Table 4.3 summarizes

these requirements and recommendations.

From our study of these six visualization tools and the analysis of both the functional re-

quirements and design recommendations, we now turn our focus to how visualizations can

be created and customized using model driven engineering. Chapter 5 describes how PIMs

can be used to capture the customizable properties of a visualization technique. Chapter 6

focus on the PSM of one such technique; and finally, Chapter 7 combines the two models

to form Model Driven Visualization.

4.5 Discussion 78

Functional Requirements:

F-1 Data Customization: A visualization must be configured to show the relevant infor-
mation and hide the rest. This is generally accomplished through a combination of
data filtering, data deduction and moving / renaming data.

F-2 Presentation Customization: A visualization customization environment should al-
low the selection and configuration of all exposed visual attributes.

F-3 Control/Behaviour Customization: An environment must support both an efficient
method for action selection and Turing complete language for the design and creation
of new controls and behaviours.

Design Recommendations:

DR-1 Efficient view specification: The manner in which view are customized (data, pre-
sentation and behaviour) should be done in a efficient manner when possible, while
still supporting the case for complex operations.

DR-2 Integrated tool support: View customization should be performed in a tool that
instantly allows the customizer to see the results of the efforts. As well, for a selected
view, the customization options should be obvious.

DR-3 Familiar language or notation: While concise, efficient view specification is al-
ways sought, sometimes complex queries are required. This case, a familiar language
or notation is suggested. This is especially important if the customizers are already
using an existing language for other system customization specifications.

DR-4 Provide view model adapters: By providing model adapters (for both the data
model and the presentation options) the toolkit manages the synchronization and
allows the developer to concern themselves only with their original data.

DR-5 Use existing viewers when available: Since users familiarize themselves with
colours, look and feel and the behaviour of many standard widgets, using a native
toolkit allows a user to leverage this knowledge.

DR-6 Explicit view specification: By explicitly describing how the view is designed, mod-
ifications and enhancements can more easily be applied. As well, the design choices
can be formally analyzed and future researchers can recreate the views from the im-
proved documentation.

Table 4.3: Summary of requirements and recommendations for a visualization customiza-
tion environment

Part II

The Solution

80

CHAPTER 5

A Catalog of Platform Independent View Models

THE grace and beauty of an experienced craftsman’s work is astounding. The design

always seems right and even the blemishes seem planned. An experienced interaction

designer is no different. Visualizations seem to “make sense” and the intended effects

appear to leap off the page. What makes these experts so proficient is experience.

Johann Gutenberg’s printing press (1439) was one of the first tools to support the cre-

ation and sharing of visualizations. While book printing was considered an art form, and the

skills required were passed down from master to apprentice, the computer, and other recent

technical advancements, have enabled virtually anyone to create visual representations of

information. In a field such as computer supported information visualization - where many

people design and customize visualizations, but few are experts - capturing, publishing,

and sharing proven designs is paramount. To effectively capture and communicate design

rationale, an accepted notation must be used.

Various systems exist for classifying visualizations based on different facets, such as

5. A Catalog of Platform Independent View Models 81

dimensionality, interactivity and data-type. Often designed to guide researchers to new op-

portunities [Shn96], these systems are not necessarily intended for visualization designers,

as they rarely discuss the customizable properties available for each visualization.

Enumerating all visualization techniques and customizable properties that each tech-

nique supports is neither feasible nor necessary as experienced interaction designers do not

solve every problem from first principles [GHJV95, page 1]. Instead, they draw on pre-

vious experience and reuse solutions that have worked for them in the past. The purpose

of this chapter is to document these design decisions and the customizable attributes of

information visualization techniques as a set of patterns.

Patterns have been successfully documented and are used in several fields, including

software design [GHJV95] and urban architecture [AIwMJ+77]. A visualization pattern

is an expression of how an information visualization technique can be customized for a

particular use. Each pattern includes a section to illustrate the problem it intends to solve

and presents the solution through a formal model. The solution describes the variables, or

configurable attributes, which can be used to customize the solution to fit specific needs.

The central concept in each of our visualization patterns is the formal model. The

model describes the visualization in terms of its customizable attributes, in particular the

data, presentation, and actions it supports. Each model is described using a MOF compliant

class diagram and has also been modeled using EMF [BSM+03].

This chapter begins by reviewing the different types of data (Section 5.1) around which

our visualization models are designed. The chapter continues by describing how platform

independent view models can be described as a catalog of patterns. This includes a descrip-

tion of the pattern language (Section 5.2). Section 5.3 presents four such patterns for the bar

chart, node-link, treemap and nested node-link visualizations. We then present some ideas

for how the concept of visualization patterns can be extended using alternative modeling

techniques (Section 5.4). Finally, Section 5.5 summarizes the chapter.

5.1 Types of Data 82

5.1 Types of Data

Data, in the most basic form, can be distinguished according to four basic types: nominal,

ordinal, interval, and ratio [Ste46]. Nominal data are data that belong to distinct discrete

categories such as eye colour (blue, green, brown, black). There is no rank or measurable

difference between these types. The only operation nominal data supports is equality. Or-

dinal data are measurements that can be ranked. For example, students at a university can

be categorized and ordered by year of study. Ordinal data supports both equality and rank-

ing. Interval data are characterized by their scale, such that the differences between data

points can be meaningfully measured. An example of the interval scale is the height of

the students in a class. All interval data can be reduced to ordinal data, that is, all interval

data has an implicit rank, however, the opposite is not true. Interval data supports equality,

rank-ordering and equality of intervals. Finally, ratio data exists when the four operations:

equality, rank-ordering, equality of intervals and equality of ratios, apply.

Within our models, we have introduced a few custom data types. These data types are

related directly to one of the data types mentioned above, but provide more context. In-

cluded in these custom data types are binary (a nominal data type), longitude and latitude

coordinates (both interval data), ImageURI (a nominal data type used to represent an im-

age), and Label (a nominal data type used for headers and titles). As well, rectangle, point

and dimension are defined (these are all tuples of interval data).

When new visualization patterns are presented, it is suggested that new custom data

types be introduced if they provide more context and no suitable type exists. For example,

a time-line may introduce the interval type date.

5.2 Pattern Language

The visualization patterns are both informally and formally described. Informally, each

pattern describes when the visualization is appropriate and gives an example. Formally,

5.3 Catalog of Patterns 83

each view is presented with a platform independent model described as a MOF compliant

model with constraints described in OCL. The model outlines how the data are structured.

This should help an engineer decide if their data-set is properly suited for visualization

using a particular pattern. Each visualization pattern has the following components:

1. The model name is used to identify the technique.

2. The intent informally describes what will be achieved by applying this technique to

a particular data model.

3. The motivation outlines when this view technique should be applied and informally

describes how a viewer for this data would be structured.

4. The formal model presents the platform independent models of the view technique.

The models describes the types of elements rendered by this technique, as well as

the configurable attributes and model constraints. Because visualization techniques

can often be used for many structurally different data-sets, multiple models can be

described for a single visualization technique.

5. The configurable attributes outline which visual attributes can be configured.

6. The configurable user interactions detail the interaction techniques that can be ap-

plied to this view to support both understanding and navigation.

7. The known uses gives a concrete example of how this technique has been used.

Software toolkits that support this technique are also listed.

5.3 Catalog of Patterns

As in other fields where patterns have been utilized, the patterns described here are not

new. Many of these patterns have existed for decades, but until now, they have not been

formally captured. Visualization patterns help customizers choose between alternatives and

make it easier to reuse successful designs. The patterns presented here are not meant to be

5.3 Catalog of Patterns 84

complete; however, they give an overview of the problem, solution and alternatives, for

how visualizations are designed.

Four key visualization patterns have been documented here. These four patterns were

the most common visualization techniques encountered while studying how visualizations

are designed and customized (Chapter 4). An additional eight patterns have been included

in Appendix A. This catalog can be expected to grow as other researchers contribute to it.

5.3 Catalog of Patterns 85

Bar Chart

Intent

A common visualization, especially in business reporting, is the bar chart. Bar charts are

used in a variety of situations where non-continuous items (or groups of items) each have

an ordinal or interval value. These charts can either be horizontal or vertical and the height

(or length) of the bar represents the value.

Motivation

When faced with at least nominal items (or categories of nominal items) each with an asso-

ciated interval value, it is often desirable to compare these items. Looking at sales records

over time, or sales records by division over time, can indicate market trends, pin-point top

performers and highlight problem areas. While commonly used to compare values, bar

charts seldom scale as all bars should be visible to produce an effective visualization.

Sheet1

Page 2

CS
130

CS
134

CS
246

CS
241

CS
340

CS
350

CS
354

CS
370

CS
456

CS
480

CS
446

CS
447

CS
448

50

55

60

65

70

75

80

85

90

95

100

A Student's Grades for CS Courses

70-74 75-79 80-85 86-89 90-95

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Histogram Of A Student's Grades

Figure 5.1: Example of a Bar Chart and Histogram

Another option, when faced with too many items, is to group the number of elements

into “buckets”, and present the number of elements in each bucket (as often done in a

histogram). Figure 5.1 shows the same data represented as a bar chart showing the ordinal

5.3 Catalog of Patterns 86
package barchart

CategorizedBarChartViewer
+ minYValue : Interval[0..1]
+ maxYValue : Interval[0..1]
+ chartTitle : Label
+ yAxisTitle : Label
+ xAxisTitle : Label
+ showDepth : Binary

Category
+ name : Nominal
+ showLabels : Binary

Value
+ value : Interval

Item
+ label : Nominal

SimpleBarChartViewer
+ minYValue : Interval[0..1]
+ maxYValue : Interval[0..1]
+ chartTitle : Label
+ yAxisTitle : Label
+ xAxisTitle : Label
+ showDepth : Binary

SimpleItem
+ label : Nominal
+ value : Interval

{self.values->isUnique(category)}
{self.category <> null}

{self.values->isUnique(item)}

{self.values->size() = self.chart.items->size()

+categories { ordered }*

+chart
1

+items { ordered }*

+chart

1

+category
1

+values { unique }

*

+values { ordered }

*

+item1

+items { ordered }
*

Figure 5.2: Bar Chart View – Formal Model A

data and a histogram that has grouped the items into buckets in five number increments.

Formal Model

Since bar charts can be used to represent a set of items, or a set of series, we have coded two

different formal models. The first model (Figure 5.2) shows the basic chart. In this model,

the SimpleBarChart has an ordered collection of items. Each item has a label and a value.

In addition to the simple bar chart, we have also modeled a CategorizedBarChart in which

each bar in the chart can belong to a category, or series (Figure 5.3). In both models, the

viewer can be configured with a title, X and Y axis labels and minimum and maximum Y

scale values.

There are a number of constraints specified for this model. The constraints are used to

formally state that each bar in the chart must have a category and each category must have

a value.

5.3 Catalog of Patterns 87

package barchart

CategorizedBarChartViewer
+ minYValue : Interval[0..1]
+ maxYValue : Interval[0..1]
+ chartTitle : Label
+ yAxisTitle : Label
+ xAxisTitle : Label
+ showDepth : Binary

Category
+ name : Nominal
+ showLabels : Binary

Value
+ value : Interval

Item
+ label : Nominal

SimpleBarChartViewer
+ minYValue : Interval[0..1]
+ maxYValue : Interval[0..1]
+ chartTitle : Label
+ yAxisTitle : Label
+ xAxisTitle : Label
+ showDepth : Binary

SimpleItem
+ label : Nominal
+ value : Interval

{self.values->isUnique(category)}
{self.category <> null}

{self.values->isUnique(item)}

{self.values->size() = self.chart.items->size()

+categories { ordered }*

+chart
1

+items { ordered }*

+chart

1

+category
1

+values { unique }

*

+values { ordered }

*

+item1

+items { ordered }
*

Figure 5.3: Bar Chart View – Formal Model B

5.3 Catalog of Patterns 88

Configurable Attributes

Colour, label and order are common configurable attributes for a bar chart. Colour can

be used to distinguish between items and it can also be used to highlight items and bring

them to the user’s attention. The X-Axis, or item ordering, is also configurable as we are

more inclined to correlate items or recognize chronological ordering if they are in close

proximity.

Bar charts can also be rendered either vertically or horizontally. Often labels are easier

to read when shown vertically.

Configurable User Interactions

Many bar charts support configurable user interactions such as a customized event upon

selection. Tools such as BIRT support configurable user interactions through scripts which

can be executed whenever the interaction occurs.

Known Uses

Since the introduction of charting into spreadsheet software such as Excel, bar charts have

been used extensively especially in business reports such as the reports created by BIRT

(see Chapter 4).

5.3 Catalog of Patterns 89

Typed Node Link (Graph)

Intent

Typed node-link diagrams, or graphs, use both nodes and connections to represent rela-

tional information spaces.

Figure 5.4: Graph Example

Motivation

When faced with a collection of elements, related to one another in some manner, un-

derstanding the relationships between these elements can often be a challenge. Examples

of such a structure include the relationships between classes in a software system or the

relationships between individuals in a Friend of a Friend (FoF) network.

In many cases, the elements (vertices) and connections (edges) have a type or colour.

For example, in a software class diagram, a user may wish to distinguish between inher-

5.3 Catalog of Patterns 90

itance edges and composition edges. In a FoF network it may be desirable to separate

friends from work acquaintances.

A problem with using a graph based approach is choosing, implementing and executing

an appropriate layout algorithm to initially position all the vertices. In some cases, such as

a class hierarchy diagram, a tree layout algorithm often produces aesthetically pleasing and

easily understandable diagrams. However, in highly connected information spaces, such as

a FoF network, a tree layout is not very useful.

The number of nodes, edges, available screen real estate and the structure of the graph

must be considered when choosing a layout. Some layouts [BETT94], such as the spring

layout algorithm where the nodes are positions based on “forces” between them, run in

quadratic (O(n2)) time, which for large graphs can be considerably slow. The performance

in edge routing algorithms is often dominated by the number of connections instead of the

number of nodes.

Formal Model

The formal model for the typed node link diagram contains five classes. The GraphViewer

is the root of the model, and contains both the GraphNodes and GraphEdges. Each edge

must contain a source and destination node, and each node can have 0 or more incoming

and outgoing edges. Both the nodes and the edges have a type.

Configurable Attributes

A graph viewer often supports a number of configurable visual attributes. These attributes

include size and position of the nodes, as well as colour, label, and icons on both the nodes

and the connections. Connections can also support properties such as line thickness, the

inclusion of arrow-heads or line style properties. Finally, the node-link diagram usually

supports an initial layout algorithm.

5.3 Catalog of Patterns 91
package nodelink

GraphViewer
+ Layout : LayoutAlgorithm[0..1]
+ bounds : Rectangle

GraphNode
+ label : Label[0..1]
+ location : Point
+ size : Dimension
+ icon : ImageURL[0..1]

GraphEdge
+ label : Label[0..1]
+ icon : ImageURL[0..1]

GraphEdgeType
+ label : Label[0..1]

GraphNodeType
+ label : Label[0..1]

+nodes
*

+viewer

+edges *

+viewer

+edgeTypes
*

+nodeTypes
*

+src

1

+outgoing

*

+nodes
*

+type
1

+incoming

*
+dest

1

+edges
*

+type
1

Figure 5.5: Graph Viewer – Formal Model

Configurable User Interactions

User interaction is very important, especially on large, highly connected graphs. User

interactions such as highlighting neighbors, moving and resizing nodes, filtering, selecting,

and layout have been used to help users explore complex, highly connected data-sets.

Other strategies such as fisheye views, zooming and panning, can also be used to pro-

vide user assistance. Storey described a technique through which nodes can be distorted,

showing more information about the node while still providing context of the surrounding

elements [SM96].

Known Uses

Node link diagrams have been used in a variety of domains, by a number of researchers to

provide a visualization of everything from software systems to physical networks.

5.3 Catalog of Patterns 92

TreeMap

Intent

Treemaps are a hierarchical visualization technique which has successfully been used to

represent over a million nodes [FP02] in space constrained views. Treemaps efficiently

show hierarchically structured information using nested boxes of varying size and colour.

Motivation

Figure 5.6: TreeMap

Treemaps were first designed by Shneiderman in the early 1990’s to help explore disk

space issues for the hard drive in his research laboratory [JS91]. The classical tree viewer

(Appendix A Page 206) and node link diagrams (Page 89) grew too large to be useful, so

Shneiderman explored ways of presenting trees in a space-constrained layout.

5.3 Catalog of Patterns 93

Treemaps work by turning a hierarchical data structure into a space-filling map. In

many cases, the size of the leaf nodes are computed based on some attribute and sized

relative to one another. The internal tree nodes are then sized based on the sum of the sizes

of their descendants. In the example involving the hard drive, each file was represented

as a box and sized based on the file size. The directories that hold the files were then

subsequently sized based on the sum of the sizes of their descendants. This algorithm was

recursively applied until only the root directories remained. This technique allowed the lab

administrator to see which top level directories contained the largest files, and then allowed

the administrator to “zoom-in” to investigate which files in these directories are consuming

the most space. This approach helped identify both large directories that contain lots of

small files (such as music files) or directories that contain a small number of large files

(such as a core dumps).

Several algorithms to control the aspect ratio of the rectangles that make up the treemap

have been proposed [BHvW00, Ben01, BSW02]. These algorithms include the ordered,

squarified and quantum treemap algorithms.

Formal Model

The formal model for the treemap (Figure 5.7) contains three classes, the TreeMapViewer,

TreeMapContainer and TreeMapItem. The TreeMapContainer is a subclass of the TreeMapItem.

Each container, contains 0 or more items, and the items have a size, location, value and la-

bel. The viewer itself can be configured to work as a linear, ordered, or quantum treemap.

This configuration will automatically compute the size and location of each item.

Configurable Attributes

The visual attributes of a treemap that can be configured are the colour, order and label for

each item. The default algorithm, linear, ordered or quantum, can also be specified.

5.3 Catalog of Patterns 94

package treemap

TreeMapViewer
+ childLayoutStrategy : TreeMapType

TreeMapContainer

<<enumeration>>
TreeMapType
(from utils)

Linear
Ordered
Quantum

TreeMapItem
+ bounds : Rectangle
+ value : Interval
+ label : Label

+parent
1

+chidren { ordered, unique }

1..*

+parent

1

+children { ordered, unique }

*

Figure 5.7: TreeMap Viewer – Formal Model

Configurable User Interactions

Selection and mouse-over hover operations are commonly supported by treemaps. Since

treemaps often support several levels of nesting, the mouse-overs can provide information

about node. Many treemaps also support zooming, so users can drill into a particular

section of the tree.

Additional controls such as fisheye distortion and filtering can also be effectively used

on a treemap viewer.

Known Uses

A treemap view is available as part of the Konqueror file explorer [Kon]. The viewer is

useful for identifying directories and files which occupy a large portion of the system. The

treemap viewer is also used in a popular online stock market tracking tool [Wat98, Wat99].

By organizing the stock market into industry verticals such as Health Care, Technology,

Financial, Energy, etc. it can be easily seen which vertical is contributing the most to the

market and in turn, which corporations are driving those verticals. Finally, the treemap has

been used in reverse engineering tools [WMSL04].

5.3 Catalog of Patterns 95

Nested Node Link (Nested Graph)

Intent

The nested node link diagram combines power of a node link viewer with the structure of

a hierarchical system. This view is ideal for information structured as a graph in which a

set of edges span the graph as a tree. In this case, the “tree” edges can be used for nesting

and then the containers and leaf nodes can be attached to one another using connections.

Figure 5.8: Nested Viewer

Motivation

When graphs contain an edge type which is inherently hierarchical, or spans the entire

graph in a tree (or forest) like manner, it may help to nest the nodes instead of displaying

these hierarchical edges. By nesting the nodes within one another, the same navigation

facilities used by trees can be leveraged within graphs.

Unlike trees (Appendix A Page 206) or treemaps (Page 92), the nested node link viewer

also supports edges connecting the elements. Nodes can be connected if they share the same

5.3 Catalog of Patterns 96

parent, or if they have different parents. While the latter can produce graphs where the

edges seem to “fly-off” the screen, this can be addressed through a number of interaction

techniques such as zooming and fisheye displays. Like node link diagrams, the nested

variety also supports typed nodes and connections.

Formal Model

The formal model for this viewer (Figure 5.9) is similar to the node link viewer (Page 89)

with the addition of the container node. The NestedGraphContainer is a subclass of Nest-

edGraphNode, meaning it can be used in place of a graph node. Each node (or container)

has a label and an icon. The edges connect nodes (or containers) to one another, and the

nodes, containers and edges can each have a type.

package nestednodelink

<<EClass>>
NestedGraphViewer

NestedGraphContainer
+ bounds : Rectangle[0..1]
+ Layout : LayoutAlgorithm[0..1]

NestedGraphNode
+ label : Label[0..1]
+ location : Point
+ size : Dimension

NestedGraphEdge
+ label : Label[0..1]

NestedEdgeType
+ label : Label[0..1]

NestedNodeType
+ label : Label[0..1]

{childNodes.size() > 0 = layout <> null

+nodeTypes

*

+edgeTypes

*

+edges
*

+src
1

+outgoing
*

+incoming

*

+dest
1

+edges { unique }
*

+type
1

+root

1

+edges { unique }
*

+type
1

+parent
1

+children
*

Figure 5.9: Nested Graph Viewer – Formal Model

5.3 Catalog of Patterns 97

The only constraint specified on this view is that a layout algorithm must be defined on

any container which has one or more children. Other constraints can also be defined. For

example, a connection may be limited so it only connects nodes with the same parent.

Configurable Attributes

Nested node link diagrams support the same configurable attributes as a standard node link

diagram. This includes label, icons and colours for the nodes, containers and edges. In

addition, the edges can support a line style. Finally, in a nested node-link view, an edge

type can be specified as “hierarchical”, meaning edges of that type will be used for nesting.

Unlike the graph, the nested node link diagram can utilize a different layout for each

level of the hierarchy. For example, in Figure 5.8 some containers were drawn using a tree

layout while others were laid out radially.

Configurable User Interactions

Nested node link viewers often support zooming and panning, allowing users to “dive-into”

a container, as well as operations to navigate across an edge. Additionally, nested diagrams

can support a fisheye view which enlarges a single container while still maintaining its

context [SFM99].

Finally, nested graphs commonly support filtering and ability to expand / collapse con-

tainers to hide extraneous information.

Known Uses

Both SHriMP [BSM02] and LSEdit [Pen93] make use of the nested node link viewer to ren-

der graph based data. LSEdit is primarily used for program comprehension while SHriMP

was originally used for this purpose but has been extended to a number of other domains

such as medical ontologies.

5.4 Future Work 98

package templateexample

ViewContainer
+ items : E[*]
+ getItems () : E
+ addItem (item : E)
+ size () : Integer

<<dataTyp...
E

E > Item

Item
+ label : String

Figure 5.10: Template Model of an Abstract View Container

5.4 Future Work

The visualization patterns described here (and in Appendix A) outline both the structure,

and configurable aspects, of the visualization techniques. While the models have been

instantiated and used in a number of systems (Chapter 7 and Chapter 8), other design alter-

natives are available. Two avenues for future work include, better element reuse between

models and the design of rendering models.

In general, the models have been designed in isolation so each model could be created

and evolved independently, however, there are compelling reasons for building a single

environment for all the models. For example, lists, maps and charts all exhibit a similar

structure, as they each have a viewer that contains a number of items. Templates could be

used to encourage reuse between these models. Figure 5.10 shows an example of how an

abstract view container could be modeled, and then a concrete view model (such as a tree

or a map), could bind items to this container (Figure 5.11).

As well as reusing elements between models, the way in which the models are described

could be altered. Currently, each model describes the structure and configurable aspects of

the visualization technique. On the other hand, the visualization could be described in

terms of how it will be rendered. For example, instead of modeling the nodes, containers

and edges, in a nested node-link diagram, the model could have been designed in terms of

rectangles, lines and pixels. A description of how these view models are transformed to

rendering models would completely remove the need for platform specific viewers, as any

5.5 Summary and Limitations 99

package templateexample

ViewContainer
+ items : E[*]
+ getItems () : E
+ addItem (item : E)
+ size () : Integer

E > Item

Item
+ label : String

MapViewer
+ centreLat : Latitude
+ centreLng : Longtitude
+ zoomLevel : Integer

<<bind>><E->Marker>

<<dataTyp...
Longtitude

Marker
+ lat : Latitude
+ lng : Longtitude
+ image : Image...

TreeItem
+ icon : ImageURL

<<bind>><E->TreeItem>

TreeViewer

<<bind>><E->TreeItem>

Figure 5.11: Concrete View Models Based on the View Container

compatible rendering engine (such as OpenGL) could be used to execute the view. In our

current implementation, platform specific viewers are used since many of these tools have

years of development and are well polished.

5.5 Summary and Limitations

A visualization pattern provides a mechanism to document the configurable features and

formal model for a visualization technique. In this chapter we have presented four such

patterns for key visualizations. In addition to the four patterns presented here, Appendix A

presents eight more. Each of these patterns present a platform independent view model

that can be used by tool designers when creating platform specific visualization rendering

technologies.

The patterns provide a means for interaction designers to better document the knowl-

edge they have about information visualizations, in a way that can be easily consumed by

others. This documentation will help future engineers design custom views since the data,

attributes and customizable controls, are all explicitly stated.

5.5 Summary and Limitations 100

The platform independent patterns presented here describe a single model and the com-

mon customizable attributes for each visualization technique. For each pattern, there are

several different ways the model could be structured and a number of additional attributes

that could be considered. Using facilities such as a “meta-model zoo” [Fav04a], we hope-

fully can encourage other modelers to extend these patterns by adding alternative models,

constraints, and additional configurable view elements.

Another limitation of these models is the lack of formal validation. Designing models,

much like software, is a highly iterative process influenced by a large number of require-

ments. While the models have been used extensively throughout this work, and test cases

have been designed to ensure quality, no formal approach has been used to guarantee va-

lidity. While this may be seen as a problem, we believe that by placing the models in the

public domain, others can help refine and perfect the models.

Finally, while a visualization pattern is a means of representing a view technique’s data

model and configurable elements, an instance, or platform specific implementation must

be developed to enable the visualization to be incorporated within a software system. In

the next Chapter we describe an implementation strategy that can be used for several of the

graph based visualization patterns including: 1) node-link (Page 89), 2) treemap (Page 92),

and 3) nested node-link (Page 95).

101

CHAPTER 6

Zest: A Visualization Toolkit for Eclipse

FORMAL view models are central to the realization and application of Model Driven

Visualization. A Platform Independent Model (PIM), as presented in Chapter 5, describes

possible data, customizable attributes and associated actions for each visualization pattern.

While these models formally describe visualization techniques, a Platform Specific Model

(PSM) is needed if a visualization is to be used in a software system. PSMs can either make

use of a generic rendering engine or a viewer to display the information. A viewer is a user

interface component for managing and displaying information and conforms to a PIM. We

have chosen to use viewers in this work as many highly optimized ones exist. Examples of

a viewer include: bar charts, graphs, maps, tables and trees. When a viewer is instantiated,

such as a map viewer that shows a map of Canada, it is known as a view. Figure 6.1 shows

the relationship between a view, viewer and associated PIM.

To include an information visualization in an application, a software engineer must

first select and instantiate a viewer, and then populate the instantiated viewer with the ap-

6. Zest: A Visualization Toolkit for Eclipse 102

Operating System
Device

Network
Video
Memory

System
File System

Bar Chart
MetaModelTree

MetaModelNode-Link
Model

Node-Link Viewer

Platform
Independent Models

Platform
Specific Models

(Viewers)

Views

Instantiate

Tree Viewer

Bar Chart Viewer

Conforms To

Figure 6.1: Relationship Between a View, Viewer and Model

propriate data. To populate a viewer with data, a software engineer must either align the

data-model with the view-model, or design an adapter to bridge the two models. While

both approaches are commonly used, they each have a disadvantage. Aligning data and

view models results in a highly coupled system, while a standard model adapter places the

burden of synchronizing models in the hands of the software engineer.

In this chapter we describe Zest, a graph visualization toolkit that provides a mechanism

to separate the data-model from the view-model using an MVC framework and a concept

known as a content provider [SHNM05]. The MVC framework supports the configuration

and customization of a visualization without requiring the developer to manage the model

synchronization, or construct data models conforming to the viewer’s representation.

When using an MVC framework and a set of content-providers, the synchronization

of the data and view-model is managed by the viewer, instead of the developer. Zest is a

visualization toolkit that enables a developer to make use of a content provider for node-

link and nested node-link diagrams. Zest is intended for software developers who wish

to include graph based views within their application. While Zest focuses on node-link

diagrams, the concept has also been applied to sequence charts (Section 6.5).

6.1 Modularizing Graph Based Visualizations 103

6.1 Modularizing Graph Based Visualizations

When designing user interfaces, most software engineers use an existing widget toolkit.

Widget toolkits provide controls such as buttons, sliders, menus, trees, tables and lists.

These interfaces are usually constructed by laying out controls in a window, essentially

using the controls as basic building blocks. However, when developers require richer inter-

faces, custom solutions are designed or a mixture of unrelated technologies are integrated.

Two outcomes are a result of this: 1) very few applications actually make use of the graph

based views, and 2) when these techniques are leveraged, there is no standardized interac-

tion mechanism.

To improve the adoption and standardize the interaction styles for graph based views,

a node-link widget is needed. Zest has been designed to address both of these issues by

providing a standard nested graph widget for SWT [NW04]. As an extension to SWT,

Zest’s API is similar to that of other widgets, meaning that developers who are comfortable

with SWT and the design patterns it employs, should have little difficulty using Zest. There

are four main elements in a Zest view: 1) nodes, 2) connections, 3) containers, and 4) the

graph itself (see Nested Node-Link pattern on Page 89).

Each of the classes in Zest have a number of attributes that help control the appearance

of the graph. The nodes can have a colour, size, label, and icon. Connections attributes are

line style, label, width, and colour. Containers attributes are colour, size, label, and icon,

and finally graph attributes include background colour, bounds and layout algorithm.

6.2 Why Design this Framework?

Several graphing toolkits and applications, such as SHriMP [BSM02], Jambalaya [SMS+01],

Creole [LMSW03], JGraph [JGr], GEF [GEF], YFiles [ytdc], Jung [JUN], and Prefuse [HCL05]

exist, questioning the need for yet another toolkit. Many of these toolkits have years of

development, solid documentation and an active user community. While many of these

6.3 MVC Framework 104

frameworks are very powerful, none of them met all of our needs for a model based visu-

alization toolkit.

Applications such as SHriMP and YFiles are very stable and easy to use, however, both

of these applications are geared towards end-users and are not intended to be integrated with

existing tools. Consequently if a user wants to visualize information in one application,

they first have to export their data, launch a second program, and use this second program

to generate the visualization. The cognitive burden of constantly switching tools is not

conducive to tool adoption.

Toolkits, such as SHriMP, integrate well with other tools like Protégé and Eclipse, how-

ever, since the entire application is integrated with these tools, the separation of data, pre-

sentation and control is difficult. To achieve this level of customization, a finer grained

integration strategy is needed.

Jung and JGraph offer an integration mechanism with a finer grain of control than

SHriMP. These tools could have been leveraged for our work, however to make use of

these toolkits within a software system, developers are expected to fit their data-model

with the toolkit’s view-model. This is often achieved in one of the following ways. The

developer can include information about the visualization directly within the data-model,

tightly coupling the data with the view, or the two models can be developed separately

and an adapter created to keep the models synchronized. Another common approach for

separating the view and data-model is through the use of an MVC framework.

6.3 MVC Framework

An MVC framework for visualization tools is enabled through the use of content providers.

A content provider is a single interface used to reconcile a view and data-model. The con-

tent provider interface represents all the elements in a view-model, and it is the responsibil-

ity of the engineer using the toolkit to implement this interface for their specific data-model.

Listing 6.1 shows a content provider for the node-link diagram. Content providers have

6.3 MVC Framework 105

1 p u b l i c i n t e r f a c e G r a p h C o n t e n t P r o v i d e r ex tends I C o n t e n t P r o v i d e r {
2
3 p u b l i c O b j e c t [] ge tNodes (O b j e c t i n p u t E l e m e n t) ;
4 p u b l i c O b j e c t [] g e t E d g e s (O b j e c t i n p u t E l e m e n t) ;
5 p u b l i c O b j e c t [] getNodeTypes (O b j e c t i n p u t E l e m e n t) ;
6 p u b l i c O b j e c t [] ge tEdgeTypes (O b j e c t i n p u t E l e m e n t) ;
7
8 p u b l i c O b j e c t getTypeOfGraphEdge (O b j e c t graphEdge) ;
9 p u b l i c O b j e c t getTypeOfGraphNode (O b j e c t graphNode) ;

10
11 p u b l i c O b j e c t g e t D e s t i n a t i o n (O b j e c t graphEdge) ;
12 p u b l i c O b j e c t g e t S o u r c e (O b j e c t graphEdge) ;
13
14 /∗ ∗ A t t r i b u t e s ∗ ∗ /
15 p u b l i c O b j e c t g e t L a y o u t (O b j e c t i n p u t E l e m e n t) ;
16 p u b l i c R e c t a n g l e ge tBounds (O b j e c t i n p u t E l e m e n t) ;
17 p u b l i c S t r i n g g e t L a b e l F o r E d g e (O b j e c t graphEdge) ;
18 p u b l i c IconURL g e t I c o n F o r E d g e (O b j e c t graphEdge) ;
19 p u b l i c S t r i n g ge tLabe lForNode (O b j e c t graphNode) ;
20 p u b l i c IconURL ge t I conForNode (O b j e c t graphNode) ;
21 }

List of Listings 6.1: Content Provider for Node-Link Viewer

been successfully applied to tables, trees and lists in the JFace toolkit [GB03, SHNM05],

but we have not seen it used in more complex visualizations.

By implementing this interface, a developer indicates which artifacts in the data-model

are represented by which elements in the view. For example, the developer using this

toolkit indicates which data elements represent nodes, edges, node types, edge types, and

how these elements are related.

Listing 6.2 shows how a developer could implement this interface to create a graph

representing the rules in a Paper-Rock-Scissor’s game (Figure 6.2).

Once the content provider interface is implemented (Listing 6.2), the MVC framework

uses it to construct the internal representation. The construction algorithm works as fol-

lows. The toolkit first queries the content provider for all elements in a depth-first manner

(Figure 6.3-A). A mapping between the objects in the data-model and view-model is cre-

ated. The mapping is traversed again to resolve all reference and attributes (Figure 6.3-B).

This instantiated view model can now be rendered using a toolkit such as Zest.

In addition to creating a visualization, the content provider approach supports dynamic

updates. Updates can be applied at the granularity of subtrees (Figure 6.3-C). If a subtree is

6.3 MVC Framework 106

1 c l a s s G r a p h C o n t e n t P r o v i d e r ex tends G r a p h C o n t e n t P r o v i d e r {
2
3 p u b l i c O b j e c t g e t D e s t i n a t i o n (O b j e c t graphEdge) {
4 i f (graphEdge . e q u a l s ("breaks")) re turn "scissors" ;
5 i f (graphEdge . e q u a l s ("cuts")) re turn "paper" ;
6 i f (graphEdge . e q u a l s ("covers")) re turn "rock" ;
7 re turn "" ;
8 }
9

10 p u b l i c O b j e c t [] g e t E d g e s (O b j e c t i n p u t E l e m e n t) {
11 re turn new S t r i n g []{"breaks" , "cuts" , "covers"} ;
12 }
13
14 p u b l i c O b j e c t [] ge tNodes (O b j e c t i n p u t E l e m e n t) {
15 re turn new S t r i n g []{"rock" , "paper" , "scissors"} ;
16 }
17
18 p u b l i c O b j e c t g e t S o u r c e (O b j e c t graphEdge) {
19 i f (graphEdge . e q u a l s ("breaks")) re turn "rock" ;
20 i f (graphEdge . e q u a l s ("cuts")) re turn "scissors" ;
21 i f (graphEdge . e q u a l s ("covers")) re turn "paper" ;
22 re turn "" ;
23 }
24 }

List of Listings 6.2: Code Snippet for Zest Example

Figure 6.2: Zest Screenshot

6.3 MVC Framework 107

1

2 3

4

7 8

6

9 10

5

1

2 3

4

7 8

6

9 10

5

1

2 3

4

7 8

6

9 10

5

1

2 3

4

7 8

65

1

2 3

4

7 8

65

11

1

2 3

4

7 8

65

11

A B C

D E F

Figure 6.3: Overview of Adapter Algorithm

invalidated, it is removed from the view. The removal includes all elements, relationships

and attributes (Figure 6.3-D). Starting from the root of the subtree, the content provider is

used again to re-query the user model and recreate the subtree again in a depth-first manner

(Figure 6.3-E). Finally, this new subtree is queried again for any attributes and references

(Figure 6.3-F).

Zest provides an MVC framework and content provider approach to view creation for

Eclipse developers wishing to design visualizations. The toolkit has been implemented in

Java using SWT [NW04] and GEF [GEF] and the code is now part of the official Eclipse

release, available for download from: http://eclipse.org/gef/zest. To avoid redundancy and

to leverage the work that has already been performed in the area of graph visualizations,

Zest builds upon SHriMP [BSM02], Jung [JUN] and GEF [GEF]. Zest uses the Draw2D

rendering library from GEF and the layouts from Jung and SHriMP.

While the MVC framework enables the use of existing data-models, a custom content

6.4 The Architecture of Zest 108

SWT

Draw2D JFace

Zest Core

Zest
Layouts

SH
riM

P
La

yo
ut

s

Ju
ng

La
yo

ut
s

Figure 6.4: Zest Architecture

provider and mapping algorithm must be implemented for each viewer. Also, whenever the

model changes, the content provider and the custom mapping algorithm must be updated.

6.4 The Architecture of Zest

Zest has two main components, Zest core and Zest layouts. The layouts package is a device

independent library of algorithms. As a device independent library, the layout package

can be used with a variety of rendering engines. Each algorithm assigns size and location

information to nodes and edges in a graph. Some examples of layout algorithms that we

currently support are: 1) tree, 2) vertical tree, 3) radial, and 4) spring [BETT94].

Zest core is an SWT based rendering engine for nodes, edges and containers. Built on

top of Draw2D, Zest provides a number of optimizations for large graphs and integrates

smoothly with other SWT / Draw2D interfaces. Figure 6.4 shows an overview of the Zest

architecture. This layered architecture implies that components are dependent on those

components below them. Zest requires the layouts, Draw2D and JFace, while JFace and

Draw2D require SWT.

6.5 Additional Zest Views 109

6.5 Additional Zest Views

In addition to node link diagrams, the concept of a content provider based visualiza-

tion tools has also been realized by other researchers. Using patterns inspired by Zest,

a general purpose sequence chart was designed by Del Myers as described by Bennett et

al. [BMS+08].

The sequence chart viewer was designed by synthesizing the available features pro-

vided by existing sequence chart tools. Many of the existing tools worked as stand-alone

applications, and Bennett et al. realized this limitation and designed a reusable sequence

chart. By first reviewing the existing tools, Bennett et al. uncovered a set of requirements

and subsequently designed a visualization model for sequence charts with a series of cus-

tomizable elements. The sequence chart viewer has been deployed and used in a number

of projects including a tool to visualize runtime interactions of a Java program.

6.6 Discussion

By creating visualization toolkits as a set of reusable components, and designing the view-

ers as an MVC framework with associated content providers, software engineers can exper-

iment with different visualization techniques and more easily integrate visualizations into

other systems.

From our experience with Zest, we found it was important to state exactly which fea-

tures Zest supports through the use of a formal model. By designing a formal model, we

could decide which elements and attributes to expose. Since we have the models (Chap-

ter 5), it was very easy to perform this analysis. Only the elements, attributes and references

outlined in our model were exposed. When new functionality was added, we first explored

how the model could be extended and how these extensions would impact the design. Once

this extension was completed, these features were then exposed in Zest.

Exposing new configurable elements means the content providers must be modified.

6.6 Discussion 110

This is accomplished by examining the formal view model and adding the appropriate

methods manually. In the next chapter we discuss how this process can be automated.

111

CHAPTER 7

Model Driven Visualization

THE need to customize visualizations for particular users and their tasks is a complex

process, one supported through a variety of technologies. While toolkits that support cus-

tomization through the user interface are easy to use, they lack the expressiveness needed to

specify complex views. On the other hand, custom coded visualizations are able to support

complex views and enable tight integration with existing systems, however, the construc-

tion of such views requires a designer with a high degree of technical skills. Building

custom visualizations in this manner in results in views designed close to the technical or

solution space rather than the problem space.

Model driven engineering proposes to combat complexity, delay the selection of key

architectural decisions and support software customization through problem decomposition

and separation of concerns [SK02]. Using an MDE approach to software development,

designers work closer to the problem space rather than focusing on the technical aspects of a

solution. Since developers are beginning to design and customize software through models

7.1 NHL Statistics: A Running Example 112

and model transformations [SK02, Sel03, BCT05, BSM+03], we set out to investigate if

this approach is feasible for view creation.

In this chapter, we describe Model Driven Visualization (MDV), a process for designing

and customizing interactive visualizations using principles from model driven engineering.

To demonstrate how MDV can be used for the design and customization of information vi-

sualizations, we designed a series of views to answer three questions posed to us by hockey

enthusiasts. Section 7.1 presents a relational data-set describing 87 years of NHL statistics

that will be used throughout this chapter as a running example. We chose this example since

the domain is easy to understand, the data are readily available, and it is familiar to many in

Canada. Section 7.2 describes the architecture of MDV. The core concept, the platform in-

dependent view model is revisited in Section 7.3, followed by a description of how an MVC

framework can be generated for these view models. Section 7.4 outlines how views can be

formally customized using models, and the NHL statistics model is used as an example.

The chapter also discusses how multiple views can be linked using MDV (Section 7.5) and

a brief overview of the available tool support is outlined (Section 7.6). Finally, the chapter

concludes (Section 7.7) by summarizing how MDV can be used to customize visualiza-

tions with respect to the functional requirements and design recommendations distilled in

Chapter 4.

7.1 NHL Statistics: A Running Example

In order to demonstrate to the reader how MDV is used to design and customize visu-

alizations, a running example will be used. Several views of different National Hockey

League (NHL) statistics will be created. The data-set is of moderate size consisting of 87

years worth of data, 1,115 team statistics and 31,965 individual player records. We worked

with several hockey enthusiasts to design unique views to answer some specific questions

(Table 7.1).

Figure 7.1 shows the UML model to which the data conforms. The model contains 7

7.1 NHL Statistics: A Running Example 113

1. In what years were the most goals scored?

2. Given a player, what teams did he play for throughout his career?

3. Given a player, how many points did he score each year of his career?

Table 7.1: Questions regarding NHL Statistics

package nhlmodel

Year

PlayerList

PlayerYearlyStats
+ gamesPlayed : int
+ goals : int
+ assists : int
+ PIM : int
+ name : String

Player
+ name : String Team

+ gamesPlayed : int
+ ties : int
+ wins : int
+ losses : int
+ overtimeLosses : int
+ points : int
+ goalsFor : int
+ goalsAgainst : int
+ PIM : int
+ name : StringGoalieYearlyStats

+ minutesPlayed : int
+ goalsAgainst : int
+ goalsAgainstAverage : double
+ wins : int
+ losses : int
+ ties : int
+ saves : int

SkaterYearlyStats

+years

1

+target1..* +teams1..*
+players

*

+source

1..*

+teams

1..*

+player1

+yearlyStats { ordered }
1..*

Figure 7.1: NHL Hockey Statistics Model

7.2 MDV: An Overview 114

classes: Year, Team, PlayerYearlyStats, GoalieYearlyStats, SkaterYearlyStats, Player

and PlayerList. The Team and PlayerYearlyStats classes are the interesting ones as they

contain most of the information. The information was mined from hockeydb.com.

7.2 MDV: An Overview

MDE focuses on the tools and technologies to enable engineers to specify solutions in a

platform independent manner, and through a series of model transformations, a platform

specific solution can be generated. To assist engineers with the design and specification of

information visualizations, MDV defines a number of platform independent view models

(Chapter 5), and platform specific viewers (Chapter 6). Using MDV, a view can be designed

in two different ways. Designers can use the viewers programmatically and customize the

view using a content provider. This is intended for designers who are more comfortable

using a high-level programming language and an MVC framework.

Another option for designers who wish to specify solutions in a truly platform indepen-

dent manner, is to specify transformation rules from the data-model to the view-model and

use a transformation engine to interpret the rules and render the view. Both these solutions

help satisfy the design recommendation that views should be specified in a familiar lan-

guage or notation (DR-3). Also, by specifying the view using a content provider or model

transformation language, the customization options becomes explicitly stated (DR-6).

Figure 7.2 shows the components of MDV [BSFL06]. As presented in Chapter 5 (and

expanded in Appendix A), we have designed and documented several platform independent

models and constraints for common viewers (Figure 7.2-A). For each model, a viewer

exists (Figure 7.2-B). The concrete viewers are able to use any instance of the view model

to render the data (Figure 7.2-C). Eclipse’s JFace viewers are leveraged for the tree, list and

table controls. The Business Intelligent and Reporting Tools charting engine is used for the

charts and Zest [BBS04] is used for the node-link diagrams. Since Zest, BIRT and JFace

are used in Eclipse based products (the current target for our technologies), using these

7.2 MDV: An Overview 115

Software
Model

Model
Transformation

Conforms ToConforms To

Operating System
Device

Network
Video
Memory

System
File System

Bar Chart
MetaModelTree

MetaModel

Software Model Views

Represented
By

Bar Chart Viewer
Tree Viewer

Node-Link Viewer

Node-Link
Model

Platform
Independent Models

(PIMs)

Platform
Specific Models

(PSMs)

Platform Specific
Data-Model

Instances

In
st

an
ce

 O
f

In
st

an
ce

 O
f

A

B

C

D

E

F

Figure 7.2: Overview of MDV

7.3 Generating the Models 116

viewers provides a familiar look and feel to the user, satisfying DR-5: use existing viewers

when available. Of course, the viewers are not restricted to these rendering engines, and

Swing trees or JFreeChart view could be used instead.

In order to generate a view from a data model, the designer first chooses the viewer and

then constructs the transformation rules to describe the view. The transformation rules are

applied on the instance data (Figure 7.2-F) by matching elements from their corresponding

data model (Figure 7.2-D). The rules describe which target elements should be generated.

We have tested our MDV framework using both the Atlas Transformation Language [JK06]

and oAW’s xTend tool [Voe] (described in Section 2.5).

7.3 Generating the Models

The models presented in Chapter 5 present accurate documentation for a viewer and out-

line the properties that can be configured. In Chapter 6 we described how content providers

enable a developer to use these models without tightly coupling their application to a spe-

cific view-model. However, the manual construction of the MVC framework is a time

consuming task, one that must be repeated for each visualization pattern.

To address the enormous development effort that would be required to create all these

content providers, we turned to generative programming to automatically generate the cus-

tom content providers from the PIMs [CE00]. By automatically generating the content

providers, new models can be added to the collection and leveraged immediately. The code

generation facility generates both the content providers and the custom mapping algorithm

which uses the content providers to synchronize the view and user models. The Java Emit-

ting Template tool (JET) [Pop04] is used to generate the code. The actual template is

available in Appendix B.

In addition to the content providers, EMF generates an XML tool suite. The XML

tool suite provides serialization/de-serialization capabilities and an XML Schema for each

viewer [W3C04]. Using this approach, a designer can specify a visualization using XML.

7.4 Formalizing View Creation 117

1 <v iewers x s i : t y p e ="vizmodels_5:MapViewer">
2 <markers l a t ="53.5666" l n g ="-113.5166666"
3 l a b e l ="Edmonton: Edmonton Oilers\
4 City of Champions" imageURL="edmonton_oilers.gif" />
5 <markers l a t ="34.05" l n g ="-118.2333"
6 l a b e l ="Los Angeles" imageURL="la_kings.gif" />
7 <markers l a t ="38.65" l n g ="-90.6333"
8 l a b e l ="St. Louis" imageURL="stlouis_blues.gif" />
9 <markers l a t ="40.78333" l n g ="-73.9666"

10 l a b e l ="New York" imageURL="newyork_rangers.gif" />
11 < / v iewers>

List of Listings 7.1: XML Data for the Map View

7.3.1 Running Example: Generating the Map Viewer

To create a visualization using XML, an engineer can serialize their data as an XML docu-

ment conforming to the view model’s schema, and pass the XML document to the viewer

for rendering. For example, the XML in listing 7.1 can be passed to the map viewer to

produce the view in Figure 7.31.

In addition to the XML and programmatic approach, MDV can be leveraged for the

creation and customization of visualizations through the use of model-to-model transfor-

mations. The remainder of this chapter will be dedicated to this approach to view creation.

7.4 Formalizing View Creation

So far we have focused on how visualization techniques can be formally modeled and how

these models can be used within a software system through the use of an MVC framework

or shared XML data-sources. While these practical approaches to view creation are suited

to many object oriented and imperative programming styles, they still tend to tie a software

engineer to a particular language or set of technologies.

To raise the abstraction level of view customization away from the source code and bet-

ter integrate with systems being designed using MDE, we have investigated if visualizations

can be designed and customized using a model transformation language. At this point, we
1Google maps and the SWT native browser widget were leveraged to render the data, but any geographical mapping toolkit which

supports markers could be used.

7.4 Formalizing View Creation 118

Figure 7.3: XML Data Rendered in a Geographical Map

have not seen anyone else who has attempted to use model transformation engines to de-

sign and customize visualizations, and it was unclear to us if these transformation engines

could be leveraged to support all the customization styles outlined in Section 3.4.

Model transformation languages, like ATL [JK06] or QVT [OMG07a], seem like a rea-

sonable choice for data customization since they concisely represent simple model map-

pings, a common customization activity. One-to-one mappings between model elements

and view elements can be done in a declarative manner. For example, in the case of our

hockey example, the creation of a chart highlighting the number of goals Wayne Gretzky

scored each year of his career can be specified with two rules.

The first rule (r1) matches all Players named Wayne Gretzky. A bar chart is created

and a number of visual attributes are configured. The second rule (CreateItem) creates the

actual data point and configures the label and icon for each year of Wayne Gretkzy’s career.

While this language, or technique, for specifying software solutions may not seem intu-

itive at first, it is important to note that transformation languages are very common to those

7.4 Formalizing View Creation 119

1 r u l e r1 {
2 from s : Hockey ! P l a y e r (
3 s . name = ’Wayne Gretzky ’
4)
5 to t : VizModel ! S impleBarChar tViewer (
6 c h a r t T i t l e <− ’Wayne Gre t zky \ ’ s Goals by Year ’ ,
7 x A x i s T i t l e <− ’ Goals ’ ,
8 y A x i s T i t l e <− ’ Years ’ ,
9 showDepth <− t r u e

10)
11 do {
12 t . i t e m s <− s . y e a r l y S t a t s−>c o l l e c t (e | t h i s M o d u l e . C r e a t e I t e m (e)) ;
13 t ;
14 }
15 }
16
17 r u l e C r e a t e I t e m (s : Hockey ! P l a y e r Y e a r l y S t a t s) {
18 to t : VizModel ! S imple I t em (
19 l a b e l <− s . y e a r . year ,
20 v a l u e <− s . g o a l s
21)
22 do {
23 t ;
24 }
25 }

List of Listings 7.2: View Mapping to create a Bar Chart

engineers building systems using MDE, the target audience for this work.

Declarative transformation languages work in an additive manner, that is, data are only

added to the target if it matches a rule. All data elements that do not match a rule are

filtered. While data filtering is an important part of the view customization process it does

not address the more complex case of data processing or data deriving operations.

Data abstraction has been approached in a number of ways [Bul02, MU90, SWFM97],

and model transformation languages support many of the ideas previously studied. Model

transformation tools often provide both a declarative and an imperative component. Declar-

ative transformations are much more concise since they explicitly describe how elements

in the source and target models relate to one another. In the previous example (listing 7.2)

rule r1 would be considered a declarative rule that “declares” that a bar chart should be

created for all hockey players named Wayne Gretzky. The second rule is matched in an

imperative manner. The collect statement (line 12) matches all years that Wayne Gretzky

played, in order, and invokes the CreateItem rule for each. The second rule could have been

7.4 Formalizing View Creation 120

matched in a declarative manner too, however, ATL does not guarantee the order in which

declarative rules are matched.

7.4.1 Running Example: Specifying the View

The previous example was straightforward and did not require any significant data process-

ing. In order to demonstrate how data processing can be used in the creation of visual-

izations, we look at a more complex example. In Section 7.1, three questions were asked

about our NHL data (Table 7.1).

The first question asked: In what years were the most goals scored? While a simple

query could answer the question, a visualization may bring more context and help facilitate

a deeper understanding through visual interaction. An example of a visualization that may

assist in this case is a treemap. In a treemap, each year could be represented as a box, and

nested within each box are players who scored goals that season. Using this approach, it

can be seen not only in what years were the most goals scored, but what players lead the

league that year. To make use of the treemap visualization to answer our question, a few

design considerations must be made: 1) what mappings exist? 2) how do we compute the

values? and 3) how will the treemap be structured? To approach the creation of this view,

we will decompose the problem into two steps: 1) the mapping of Player Goals by Year

where a node is created for each Player with the size of the node determined by the number

of goals scored by that player, and 2) the grouping of these nodes into a Year node.

The first rule (Listing 7.3) shows the declarative mappings that creates a TreeMapItem

for each PlayerYearlyStats element. The label and value of this item are set to the player’s

name and goals scored respectively. This rule could also be extended to filter all players

who did not score a goal, since they are not relevant for this view.

The second rule (Listing 7.4) maps all the Year objects and creates a TreeMapItem

for each. In this transformation, the total number of goals scored that year is computed

using the OCL expression on line 5. This particular expression computes the goals scored

by all players in that year, and uses the sum() operation to add them up. Each of the

7.5 Integrating Multiple Views: Snap Points 121

1 r u l e r1 {
2 from s : Hockey ! P l a y e r Y e a r l y S t a t s
3 to t : VizModel ! TreeMapItem (
4 l a b e l <− s . name ,
5 v a l u e <− s . g o a l s
6)
7 }

List of Listings 7.3: Goals to TreeMapItem Transformation

1 r u l e r2 {
2 from s : Hockey ! Year
3 to t : VizModel ! TreeMapItem (
4 l a b e l <− s . year ,
5 v a l u e <− s . p l a y e r s S t a t s−>c o l l e c t (e | e . g o a l s)−>sum () ,
6 c h i l d r e n <− s . p l a y e r s S t a t s
7)
8 do {
9 t h i s M o d u l e . t reemapView . c h i l d r e n <− t ;

10 t ;
11 }
12 }

List of Listings 7.4: Year to TreemapItem Transformation

TreeMapItems computed in the previous rule are attached as children by the assignment

on line 6.

When executed, this transformation will create a TreeMapViewer, with a node for

each year, and contained within each year is a node for each player (Figure 7.4). From

Figure 7.4, it can be seen that 1992-93 season had the most goals, and if the user expands

that node, the players with the most goals that year can be seen.

7.5 Integrating Multiple Views: Snap Points

The visualizations discussed so far are not coordinated with one another. Integrating sev-

eral views can often lead to more effective visualizations because data can be filtered by

first selecting information in one view, e.g. an overview, and narrowing the information

space. Pattison describes an architecture which supports multiple coordinated views using

the MVC paradigm [PP01]. North describes a method to integrate multiple views using a

system called Snap Together Visualizations [NS00]. Snap is applicable to a variety of situa-

7.5 Integrating Multiple Views: Snap Points 122

Figure 7.4: Treemap Showing Goals Per Year in the NHL since 1918

7.5 Integrating Multiple Views: Snap Points 123

tions, however, it cannot be directly applied to MDV. North’s work uses relational database

queries to generate views and the views are linked through selection and dynamically gen-

erated SQL. In order to make use of synchronized views, we have extended his techniques

for use in MDV.

Instead of dynamic queries to link views, we provide a mechanism by which interaction

designers can annotate models for interconnection. In recognition of the work by North we

have called these annotations snap points [Bul06]. Snap points allow interaction designers

to decide where views should be linked by joining the models. For example, in the case of

our bar chart view showing only Wayne Gretzky’s goals, a listing of all the players could

be “snapped” to the bar chart. This snap point indicates that whenever a player is selected

in the list, the bar chart should be updated to reflect the selected players statistics.

Figure 7.5 shows the activity diagram for a snap point. Whenever an element is selected,

each snap point is resolved. The viewer attached to the snap point is then displayed and

seeded with the current selection.

Through MDV, modelers can dynamically create new views by dragging several models

and “snapping”, or joining, them together. Once the new view coordination model has been

designed, transformation rules can be used to specify the data to display.

7.5.1 Running Example: Linking Multiple Views

Questions 2 and 3 in our list of hockey questions can be answered by looking at details of a

particular player. Question 2 asks Given a player, what teams did he play for throughout

his career and question 3 asks Given a player, how many points did score each year of

his career? In Section 7.4 we designed a view that answered question 3 for a single player,

however, we need a more general solution.

To address questions 2 and 3, we will integrate a map and bar chart with a list of

players. The bar chart shows the number of points a player scored throughout his career

and the map shows where a player played. The map and the bar chart will be snapped to

an item in the list, such than when a player is selected, the map and bar chart are populated

7.5 Integrating Multiple Views: Snap Points 124

SnapOnSelection

getSelection()

getNextSnapPoint()

onSelection

getSnapTo()

showView(snapPoint.selection)

SnapPoint: snapPoint

[hasMoreSnapPoints]

[hasNoMoreSnapPoints]

Figure 7.5: Snap Point Activity Diagram

7.5 Integrating Multiple Views: Snap Points 125
package snapmodel

ListViewer

ListItem
+ label : String
+ icon : URL

SimpleBarChartViewer
+ chartTitle : String
+ minYValue : double
+ maxYValue : double
+ yAxisTitle : String
+ xAxisTitle : String
+ showDepth : boolean

SimpleItem
+ label : String
+ value : doubleSnapPoint

+ selection : EObject[*] { ordered }

AbstractViewer

MapViewer

Marker
+ label : String
+ lat : double
+ lng : double
+ image : URL

+items { ordered }
*

+snapPoints

*

+items { ordered }

1..*

+snapTo

1..*

+markers

*

Figure 7.6: Snap Point Model

with information about the player. The model in Figure 7.6 shows how a snap point can be

added to the list viewer.

Once the snap point has been added, the customized view can be designed using three

transformation rules. The first rule creates a ListItem, BarChart and a MapViewer for

each player (Listing 7.5). The list item and chart are both configured to show the player’s

name, while markers are added to the map and items to the chart. The imperative section

of the rule creates the snap point between the list item and the chart and map views.

Markers and bar chart items are mapped from hockey teams and player stats respec-

tively. BarItems are created for each PlayerYearlyStats object and the value is the sum

of goals and assists (line 2 Listing 7.6). A Map Marker is created for each team a player

played on. After seeding this with a collection of city information (latitude, longitude and

team icon) and executing the transformation, the visualization in Figure 7.7 is produced.

The vertical column on the left shows a filtered list with all the players (Figure 7.7-A).

When a player is selected, both the map and bar chart (Figure 7.7-B & C) are displayed.

This example shows how multiple views can be integrated within the MDV framework.

Views are linked by selection in this case. Other interaction techniques, such as brushing

and linking, overview windows and filtering will be the focus of future work.

7.5 Integrating Multiple Views: Snap Points 126

1 r u l e Rule1 {
2 from s : Hockey ! P l a y e r
3 to t : VizModel ! L i s t I t e m (
4 l a b e l <− s . name
5) ,
6 b : VizModel ! S impleBarChar tViewer (
7 i t e m s <− s . y e a r l y S t a t s ,
8 c h a r t T i t l e <− s . name + ’\ ’ s P o i n t s ’
9) ,

10 m : VizModel ! MapViewer (
11 marke r s <− s . y e a r l y S t a t s−>
12 c o l l e c t (e | e . teams)−>
13 c o l l e c t (f | t h i s M o d u l e . Marker (f))
14)
15 do {
16 t h i s M o d u l e . l i s t V i e w . i t e m s <−t ;
17 t . s n a p P o i n t <− t h i s M o d u l e . Snap (
18 Tuple{ r e f e r e n c e =b , s e l e c t i o n = OclUndef ined }) ;
19 t . s n a p P o i n t <− t h i s M o d u l e . Snap (
20 Tuple{ r e f e r e n c e = m, s e l e c t i o n = OclUndef ined}) ;
21 }
22 }

List of Listings 7.5: ATL Transformation for Integrated View: Rule1

1 l a z y r u l e Marker {
2 from s : Hockey ! Team
3 to t : VizModel ! MapMarker (
4 l a b e l <− s . name
5)
6 }
7 r u l e BarI tem {
8 from s : Hockey ! P l a y e r Y e a r l y S t a t s
9 to t : VizModel ! Bar I tem (

10 l a b e l <− s . y e a r . year ,
11 v a l u e <− s . g o a l s + s . a s s i s t s
12)
13 }

List of Listings 7.6: ATL Transformation for Integrated View: Markers and Items

7.6 Tool Support 127

Figure 7.7: Several Coordinated Views of NHL Statistics

7.6 Tool Support

Specifying software transformations is still not a mainstream activity, but with maturing

technologies and improved education, developers should become familiar with this en-

gineering technique. There are currently a few basic tools to help design and develop

transformations. The Atlas transformation language includes an Eclipse plug-in known as

the ATL Development Tools (ADT) [AI04]. ADT includes an editor, outline window and

transformation debugger. The editor supports syntax highlighting and on-the-fly compi-

lation with syntax checking and error notification. While the ADT tools provide a solid

foundation from which transformation writers can design and implement their rules, there

are some features lacking from the system, namely static type checking of the models and

content-assist.

7.7 Discussion 128

In contrast, Open Architecture Ware’s (oAW) [Voe] transformation toolkit, xTend, sup-

ports content-assist and statically checked models, however, this toolkit lacks debugging

compatibilities.

Graphical model mapping, in which users select elements in a source model and assign

mappings to elements in a target model are starting to appear [FS07]. These tools can make

it easier for designers to see what mappings are possible since both models are presented

together.

While tools to help design transformations are maturing, none of the tools integrate

the rule writing with transformation execution, meaning that a designer has to explicitly

launch the transformation engine and manage the output. To address this issue, we designed

a graphical mapping tool that integrates with our visualization environment to assist users

when designing views. Our tool presents the data model as a diagram showing the elements,

attributes and relationships in a similar manner to a UML class diagram. A list of view

models is also shown so the customizer can choose how the data will be rendered. When a

view type is chosen, the view model is displayed, and view elements can be “dragged” onto

model elements. When completed, the transformation rules are generated and the view is

rendered.

Our tool is still in its infancy and was developed to help us better understand the prob-

lem of tool development for model mapping. Studies to uncover requirements, improve

the design and evaluate the effectiveness of these tools, are important avenues for future

research.

7.7 Discussion

Model driven visualization provides model driven engineers with the tools and technologies

to integrate interactive visualizations in their systems. By separating the customization and

configuration of the view from its underlying model, engineers can explicitly state how

their data should be displayed. This formalism provides a number of benefits including:

7.7 Discussion 129

1) detailed documentation of how the view was constructed, 2) consolidation of all view

customizations into a single place, and 3) the opportunity to design model checkers and

other tool support for view designers.

Part III

The Evaluation

131

CHAPTER 8

Evaluation

THE goal of this research is to develop a model driven approach to the design and

customization of information visualizations that meets the goals of model driven engineer-

ing. In the previous seven chapters, we demonstrated the possibility of creating customized

visualizations using a model based approach, but we have yet to present any insight into

the practicality of using this technique nor have we discussed when this approach is appro-

priate. To substantiate our claim that designing and customizing visualizations through a

model driven engineering approach is a viable option for tool designers, we revisit the four

objectives of this work:

1. Develop a technique for formally modeling visualizations;

2. Develop tool support for our technique;

3. Show how the approach can be used to create key visualizations; and

4. Evaluate our approach against the goals of MDE.

8.1 MDV: A Visualization Customization Environment 132

To ensure that we have met these objectives, we evaluate MDV in three ways. In Sec-

tion 8.1, we discuss how our technique for formally modeling visualizations meets the nine

requirements for a visualization customization environment and we describe the tool sup-

port that we have developed (objectives 1 and 2). In Section 8.2, we show how MDV can

be used to replicate and customize exemplar visualizations (objective 3). We demonstrate

this by replicating two of the concrete visualizations from Chapter 4 and further extending

and customizing one of them. In Section 8.3, we argue how MDV satisfies the five crite-

ria of a good model (objective 4). In addition to the five criteria, we present some model

driven engineering success stories and outline the advantages modeling brings to the pro-

cess of software development (Section 8.4). Finally, we discuss the limitations of this work

(Section 8.5).

8.1 MDV: A Visualization Customization Environment

The first two objectives of this work are to: 1) develop a technique for formally modeling

visualizations, and 2) develop tool support for this technique. In Chapter 7, we demon-

strated the feasibility of using models to create and customize visualizations, however,

for MDV to succeed, it should meet both the functional requirements and design recom-

mendations of a visualization customization environment. These requirements were first

discussed in Section 4.5.

8.1.1 Functional Requirements

In Chapters 3 and 4 we explain that three aspects of software can be customized: data,

presentation and control, and these aspects can be considered the functional requirements

for a visualization customization environment. We also hypothesize that an MDE approach

to view creation could meet these requirements. MDE meets these criteria as follows:

1. Data Customization: Transformation languages support three types of transforma-

8.1 MDV: A Visualization Customization Environment 133

tions, 1) non-ambiguous mapping, 2) selection, and 3) approximation. All three of

these transformation types are relevant for customizing data in a visualization [Met05].

The first transformation type, non-ambiguous mapping, associates data items di-

rectly to view elements. An example of this type of transformation is the rendering

of a node to represent a customer in a customer management system. In this case,

each node represents a single customer and each customer is represented by exactly

one node. Non-ambiguous mappings are considered one-to-one.

Selection, the second transformation type, maps one or more data elements to view

elements only after additional decisions have been made. Filtering is an example of

this type of transformation, as only elements that match a particular criterion are

shown.

Finally, approximation is the most complex transformation type as there is no

semantically equivalent counterparts in the source and target model. In this case,

elements in the target have to be approximated and a formal description of how the

approximated elements are derived, must be specified. Imperative or operational

techniques are often used for this purpose.

The majority of visualizations we analyzed depend on the non-ambiguous map-

ping and selection transformations. This means that an engineer can often specify

a visualization using a series of declarative rules. However, in more complex cases,

advanced transformation languages (such as ATL and QVT) support imperative rules

to handle data deriving operations.

2. Presentation Customization: In MDV, the selection of visual attributes is also per-

formed through a series of model transformations. Most of the visual attributes are a

non-ambiguous mapping from data elements to view properties. For example, labels

and colours are often chosen to represent particular characteristics of the underlying

data.

The use of models to customize the appearance of a visualization assumes that all

8.1 MDV: A Visualization Customization Environment 134

visual attributes can be parameterized. The upfront cost of analyzing and parameter-

izing the customizable attributes may be infeasible in some systems.

3. Control / Behaviour Customization: While MDV is currently limited only to the

configuration of a few actions, our approach demonstrates the possibility of using

models to configure the control and behaviour of a visualization.

For example, we demonstrate how multiple views can be linked using SnapPoints

(Section 7.5). This technique shows how activity models and model transformations

can be combined to create an interactive visualization. While it is feasible to model

behaviour in this manner, tool support to generate platform specific interactions from

the formal models is still lacking.

8.1.2 Design Recommendations

Three of the design recommendations for a visualization customization environment (ef-

ficient view specification, familiar language or notation, and explicit view specification)

constrain the functional requirements discussed above. The remaining three recommenda-

tions (integrated tool support, provision of view model adapters and use of existing viewers

when available) are implementation specific.

1. Efficient view specification: Using declarative transformations, designers can map

data elements to view elements. For more advanced customizations, transformation

languages support an imperative syntax providing the same functionality that gen-

eral purpose programming languages do. By using declarative rules to map data to

view items, designers can quickly prototype new views for testing and evaluation

purposes. Using a declarative approach, designers are only responsible for specify-

ing “mapping” rules to describe how the data should be displayed. This is in contrast

to a general purpose programming language, with which a developer would have to

manually iterate through the data structures, select the desired elements, create the

visual artifacts and build the visual model.

8.1 MDV: A Visualization Customization Environment 135

2. Integrated tool support: Integrated tool support for the creation of highly cus-

tomized visualizations is important for MDV’s success. By implementing our frame-

work using standard tools and technologies, we are able to leverage both existing and

future model driven development tools.

While many transformation languages come with a basic suite of development

tools for text based transformations, more research is required to design effective

tool support to assist developers while modeling applications, implementing con-

straints and designing transformations. We have begun preliminary work in this area,

including the design of a graphical mapping tool. Future research will not only lead

to more advanced visualization customization environments, but to more effective

model driven engineering tools in general.

3. Familiar language or notation: The customization of data, presentation and con-

trol / behaviour are specified in languages standardized by the OMG. By leveraging

standard technologies, we propose that model driven visualization should easily fit

within existing MDE work-practices and integrate well with both current and future

modeling tools.

4. Provision of view model adapters: Using our generative programming template, an

MVC framework can be generated for any platform independent view model. The

templates generate content providers in Java, but other languages such as C] could

also be targeted.

5. Use of existing viewers when available: Model based platform specific viewers

have been created for SWT. In particular, we used SWT in order to create platform

specific instances for 10 of the 12 visualization techniques presented in Chapter 5

and Appendix A. Using the generated model adapters, viewers for other platforms

such as Java/Swing or Microsoft .NET, can be built and added to MDV with relative

ease.

6. Explicit view specification: By designing visualizations through a series of trans-

8.2 Creating Exemplar Visualizations 136

formations, the specification of the view is decoupled from the view itself. This

explicit specification provides the facilities to automatically generate documentation

and enhanced tool support, making it easier for future researchers and tool designers

to understand what customizations were performed and which parameters were used.

Currently, the specification of data and presentation can be performed using a

transformational approach. Control / behaviour can be specified using a combination

of transformation tools and activity models. MDV in its current form does not sup-

port the automatic transformation of activity diagrams to code, a possible area for

future work.

MDV provides an approach to the creation and customization of information visual-

ization that meets each of the functional requirements and design recommendations listed

above. Our current implementation helps solidify the degree to which MDV addresses

these requirements and highlights areas for future research. Table 8.1 outlines how MDV

addresses each of our requirements and what tool support is currently available.

8.2 Creating Exemplar Visualizations

The third objective set out for this research was to show how MDV can be used to create

exemplar visualizations. To meet this objective we show how two of the visualizations

studied in Chapter 4 can be replicated using MDV. The two views we replicated are: 1)

the Jambalaya member-area view, and 2) the plug-in dependency view. We chose the Jam-

balaya view because we had access to the original data, therefore we could verify that our

approach worked as expected. We also demonstrate how this view can be further extended

and customized. Finally, the plug-in dependency view was chosen because it was the most

complex view we studied.

8.2 Creating Exemplar Visualizations 137

Requirement Using MDV
MDV Tool
Support
Available

Efficient view specification

Data Customization Data processing is performed in a concise,
declarative syntax.

X

Presentation
Customization

Visual attributes are specified as mappings in
the transformation rules.

X

Control / Behaviour
Customization

Activity diagrams and OCL are used to
model interactions.

Integrated tool support The rich semantics of models more easily
facilitates the automatic generation of tools.

Familiar Language

Data Customization
ATL & QVT are standard data processing
languages for model driven software
engineers.

X

Presentation
Customization

The customizable attributes are defined
through UML selected using OCL.

X

Control / Behaviour
Customization

OCL, UML Activity diagrams and
transformation languages are used for
specifying control / behaviour.

X

Provide view model
adapters

The template in Appendix B can be used to
generate content providers for any
visualization pattern described using EMF.

X

Use existing viewers
when available

Common SWT and Eclipse RCP viewers
have been leveraged for 10 of our 12
visualization patterns.

X

Explicit view specification

Data Customization Data processing operations are explicitly
stated as transformation rules.

X

Presentation
Customization

Visual attributes are defined explicitly using
UML and specifically chosen as part of the
transformation.

X

Control / Behaviour
Customization

Interactions are explicitly stated as UML
Activity diagrams.

Table 8.1: Summary of how MDV supports the creation and customization of visualiza-
tions.

8.2 Creating Exemplar Visualizations 138

8.2.1 Jambalaya View

The first view we chose to re-design is one of Allen’s [All03] SHriMPBib views. Allen

originally used Jambalaya to create a node-link view to display the relationship between

researchers and their areas of expertise. Allen called this visualization the member-area

view.

To re-create this view, we first designed the SHriMPBib model using model driven

engineering technologies. We then mined the SHriMPBib data so we could create the

same visualizations created by Allen. With both the model and instance-data, the view

was re-created as follows. First, the node-link viewer was chosen as this was the same

technique chosen by Allen. Second, a series of transformation rules were designed in order

to generate the view (Listing 8.1). Finally, the transformation was executed to generate the

view.

We now describe the transformation rules (Listing 8.1) in terms of data, presentation

and control / behaviour.

Data Customization

Three rules are needed to customize the data for Allen’s member-area view in order to

create a node-link diagram that shows the relationships between readers and their research

area. The first rule creates a graph node for each user in the system. In addition to the

graph nodes, this rule also creates an edge from each user to the documents they read. The

second rule maps documents to graph nodes and creates an edge from each document to

the research areas it is tagged with. The final rule creates a node for each research area.

When these three rules are executed on Allen’s instance data, the initial graph is created.

Presentation Customization

Once the graph is created, the visual attributes can also be specified through declarative

transformation rules, however in this case, no new rules are needed. Instead, the label and

8.2 Creating Exemplar Visualizations 139

1 r u l e User2Node {
2 from s : s h r i m p b i b ! User
3 to t : v i zmode l ! GraphNode (
4 l a b e l <− s . n i c k
5) ,
6 edges : d i s t i n c t v i zmode l ! GraphEdge f o r e a c h (e i n s . documents) (
7 s r c <− s ,
8 d e s t <− e
9)

10 }
11 r u l e Area2Node {
12 from s : s h r i m p b i b ! Area
13 to t : v i zmode l ! GraphNode (
14 l a b e l <− s . name
15)
16 }
17 r u l e Document2Node {
18 from s : s h r i m p b i b ! Document
19 to t : v i zmode l ! GraphNode (
20 l a b e l <− s . t i t l e ,
21 expandOnMouseOver <− t r u e ,
22 h i d e T e x t <− t r u e
23) ,
24 edges : d i s t i n c t v i zmode l ! GraphEdge f o r e a c h (e i n s . a r e a) (
25 s r c <− s ,
26 d e s t <− e ,
27 c o l o u r <−#Red
28)
29 }

List of Listings 8.1: Re-creating the Member-Area View

8.2 Creating Exemplar Visualizations 140

Figure 8.1: MDV: Member Area View

colour for each node and edge are specified by adding additional attribute mappings to the

existing rules. In the case of the member-area view, the label names are hidden for the

documents as there are over 600 documents listed in the system.

Control / Behaviour

Allen did not customize any control or behaviour for her member-area view. She did specify

an initial layout algorithm, which we also specified using a single mapping rule that is

executed once (an entry point rule).

Figure 8.1 shows the results of these transformations applied to the anonymized SHriMP-

Bib instance data. Allen claims that using this style of visualization, a “user could discover

which group members have expertise in various research areas.” [All03, p.76].

8.2.2 Extending the Member-Area View

While the visualization in Figure 8.1 may help users discover which group members have

expertise in various research areas, a simpler view showing only the members and the

research areas may be more effective. To demonstrate that model driven visualization can

8.2 Creating Exemplar Visualizations 141

1 r u l e User2Node {
2 from s : s h r i m p b i b ! User
3 u s i n g {
4 u s e r a r e a s : Sequence (s h r i m p b i b ! Area) = s . documents−>
5 c o l l e c t (e | e . a r e a)−> f l a t t e n () ;
6 u n i q u e a r e a s : S e t (s h r i m p b i b ! Area) = u s e r a r e a s . a s S e t () ;
7 }
8 to t : v i zmode l ! GraphNode (
9 l a b e l <− s . n ick ,

10 c o l o u r <−#Orange
11) ,
12 edges2 : d i s t i n c t v i zmode l ! GraphEdge f o r e a c h (e i n u n i q u e a r e a s) (
13 s r c <− s ,
14 d e s t <− e ,
15 l a b e l <− u s e r a r e a s−>c o u n t (e) . t o S t r i n g ()
16)
17 }

List of Listings 8.2: Updated Member Area View Rules

Figure 8.2: Updated Member Area View

also be used as an efficient means of customizing existing views, we extended the view in

Figure 8.1 to create a view that directly links researchers to their areas of expertise.

To support this change using MDV, we only needed to change the User2Node rule.

Instead of creating an edge from each user to their documents, we created an edge from

the user to the collection of research areas in which they read papers, and removed the

Document2Node rule. Listing 8.2 shows the updated User2Node rule and Figure 8.2

shows the results.

8.2 Creating Exemplar Visualizations 142

package pdemodel

BundleDescription
+ symbolicName : String
+ location : String
+ id : long

BundleSpecification
+ resolved : boolean

+supplier

1

+requiredBundles
*

+descriptor
0..1

Figure 8.3: Plug-in Model

8.2.3 Plug-in View

The final view chosen for re-design is the plug-in dependency analysis tool, originally

discussed in Section 4.4. This view was chosen for three reasons: 1) it possesses all three

types of view customizations, 2) an abundance of data are available for testing purposes,

and 3) it is a useful view, as there are over 1,000 plug-ins listed on Eclipse Plug-in Central 1.

This view provides a good showcase for the capabilities of MDV. As with the member-area

view, we present the creation of the plug-in view in terms of how the data, presentation and

control / behaviour are customized.

Data Customization

The data customization for the plug-in view requires both data selection and the deriva-

tion of new relationships. The original data-model uses the concept of a “proxy”. That

is, if plug-in A depends on B, C and D, instead of directly linking to these, plug-in A

contains three proxies. Each of these proxies links to the actual plug-in. When the view

was designed it was decided that these proxies should not be shown, but instead, a direct

connection should be drawn between a plug-in and all dependent plug-ins. Transforming

data from this original form (Figure 8.3) to a node link view (Figure 8.4), while removing

the proxies and deriving the relationship between the plug-ins, is the first customization we

performed.
1http://www.eclipseplugincentral.com/

8.2 Creating Exemplar Visualizations 143
package nodelink

GraphViewer
+ Layout : LayoutAlgorithm[0..1]
+ bounds : Rectangle

GraphNode
+ label : Label[0..1]
+ location : Point
+ size : Dimension
+ icon : ImageURL[0..1]

GraphEdge
+ label : Label[0..1]
+ icon : ImageURL[0..1]

GraphEdgeType
+ label : Label[0..1]

GraphNodeType
+ label : Label[0..1]

+nodes
*

+viewer

+edges *

+viewer

+edgeTypes
*

+nodeTypes
*

+src

1

+outgoing

*

+nodes
*

+type
1

+incoming

*
+dest

1

+edges
*

+type
1

Figure 8.4: Node Link Model

This customization is performed by three transformation rules. The first rule (Rule1 in

Listing 8.3) matches the BundleDescription with the name INPUT PLUGIN and creates a

GraphNode. For each required bundle, a GraphEdge is created. The destination of the edge

is the BundleDescription for which it is a proxy and the source is the supplier. By matching

all plug-ins in the dependency list, a directed-acyclic dependency graph is created. While

these rules process the data to create the graph, very little will be displayed as no visual

attributes have been defined.

Presentation Customization

To address the fact that the nodes and edges have no visual attributes, colour and label

attributes are added to the two rules. The colour of the root node (the one created in

Rule1) is set to green, while all other nodes are left as “Default” and the label is set to the

bundle name. With these two changes, the graph now has labels and the nodes are coloured

appropriately.

8.2 Creating Exemplar Visualizations 144

1 r u l e Rule1 {
2 from s : pdemodel ! B u n d l e D e s c r i p t i o n (
3 s . symbolicName = INPUT PLUGIN
4)
5 to t : v i zmode l ! GraphNode (
6 o u t g o i n g <− s . r e q u i r e d B u n d l e s−>c o l l e c t (e | t h i s M o d u l e . c o n n e c t i o n (e))
7)
8 do {
9 t h i s M o d u l e . graphView . nodes <−t ;

10 }
11 }
12 l a z y r u l e c o n n e c t i o n {
13 from s : pdemodel ! B u n d l e S p e c i f i c a t i o n
14 to t : v i zmode l ! GraphEdge (
15 d e s t <− t h i s M o d u l e . Rule2 (s . d e s c r i p t o r)
16)
17 do {
18 t h i s M o d u l e . graphView . edges <−t ;
19 }
20 }
21 u n i qu e l a z y r u l e Rule2 {
22 from s : pdemodel ! B u n d l e D e s c r i p t i o n
23 to t : v i zmode l ! GraphNode (
24 o u t g o i n g <− s . r e q u i r e d B u n d l e s−>c o l l e c t (e | t h i s M o d u l e . c o n n e c t i o n (e))
25)
26 do {
27 t h i s M o d u l e . graphView . nodes <−t ;
28 }
29 }

List of Listings 8.3: Data Customization for Plug-in Visualization

8.2 Creating Exemplar Visualizations 145

Finally, the layout attribute was set to provide an initial layout algorithm for the view.

We chose the directed graph layout since this was the same one used in the PDE viewer we

coded by hand.

Control / Behaviour Customization

There are a number of actions available in the plug-in dependency view including: 1)

analysis tools to highlight nodes based on a particular criteria, 2) a “focus on node” feature

to bring a node into focus when the mouse moves over it, and 3) a screenshot tool.

Each of these behaviours can be modeled, however, behavioral models can become

very complex. To demonstrate how behaviour can be modeled, we chose to re-create the

interaction that highlights the shortest path between two nodes in the graph. In this case,

two nodes are selected and Dijkstra’s shortest path algorithm is used to compute the path

between these nodes. Finally, this path is highlighted, by updating the visual properties of

the affected nodes.

Figure 8.5 shows the activity diagram that describes this, while the transformation that

actually performs the shortest path calculation is presented in Appendix D.

8.2.4 Outcome

Using MDV, we have replicated two existing visualizations, and customized and extended

one of them. By using MDV we have isolated the configuration and customization code

into relatively short transformations. The Jambalaya view is specified using a single trans-

formation of approximately 50 lines and the plug-in view is specified using two transfor-

mations, one for customizing the data and presentation (50 line transformation) and one

for performing the shortest path analysis and the associated presentation of this path (106

line transformation). The complete ATL code for both these transformations is available in

Appendix D.

Table 8.2 summarizes the differences (in number of statements) between the transfor-

8.2 Creating Exemplar Visualizations 146

Activity

onSelection

getSelect()

GraphNode: currentSelection

getRootNode()

GraphNode: rootNode

computeShortestPath(rootNode, currentNode)

highlightNodes()

Figure 8.5: Highlight Shortest Path Activity Diagram

MDV Based Solution Hand Coded Solution
Member Area View 15 29
Updated Member Area View 12 26
PDEViz 14 21

Table 8.2: MDV Based vs. Hand Coded Solution, Comparison of Statements

8.3 Validating the Goals of Model Driven Engineering 147

1 r u l e Rule1 {
2 from s : pdemodel ! B u n d l e D e s c r i p t i o n (
3 s . symbolicName . s t a r t s W i t h (’ GUI ’)
4)
5 to t : v i zmode l ! GraphNode
6 }

List of Listings 8.4: Declarative Transformation

mation based implementation of the views, and the ones developed using Java.

By recreating existing visualizations, and customizing one of them, we demonstrated

that MDV is a practical approach for the creation and customization of information visu-

alizations. To demonstrate that MDV offers an MDE approach to view creation, we next

evaluate MDV from the perspective of model driven engineering.

8.3 Validating the Goals of Model Driven Engineering

The final objective of MDV is to support view creation in a manner compatible with the

goals of model driven engineering. As Selic explains, a good model embodies the following

five characteristics [Sel03]: 1) abstraction, 2) understandability, 3) accuracy, 4) predictive-

ness, and 5) inexpensiveness. We discuss how MDV fits within each of these subjective

dimensions.

Abstraction: Abstraction refers to a model’s ability to reduce the details of the system

it represents. The declarative nature of a transformation language makes understanding

mappings much easier than it would be in a high level programming language. To illustrate

this, let us compare the declarative transformation code in Listing 8.4 to the same func-

tionality written in a high-level programming language (Listing 8.5). In Listing 8.5, the

developer is responsible for iterating through all the model elements, filtering and selecting

objects, and explicitly creating and attaching the view model elements. Using a declarative

transformation language (Listing 8.4) this can be expressed much more concisely, as an

engineer needs only to specify the from and to targets.

Understandability: Using MDV, the design and customization of a view has been com-

8.3 Validating the Goals of Model Driven Engineering 148

1 PDEModel model = getModel () ;
2
3 GraphModel graphModel = getGraphModel () ;
4 L i s t d e s c r i p t i o n s = model . g e t B u n d l e D e s c r i p t i o n s () ;
5 I t e r a t o r d e s c r i p t i o n I t e r a t o r = d e s c r i p t i o n s . i t e r a t o r () ;
6
7 whi le (d e s c r i p t i o n I t e r a t o r . hasNext ()) {
8 B u n d l e D e s c r i p t i o n d e s c r i p t i o n = d e s c r i p t i o n I t e r a t o r . n e x t () ;
9 i f (d e s c r i p t i o n . getSymbolicName () . s t a r t s W i t h (’GUI’)) {

10 GraphNode node = new GraphNode () ;
11 graphModel . addNodeToModel (node) ;
12 }
13 }

List of Listings 8.5: Transformation Written in Java

pletely decoupled from the data and viewer specification. By separating these components,

the view specifications is not littered with unnecessary complexities and the designer can

see (often from a class diagram or a few transformation rules) how the view is designed.

Accuracy: The models provide more accuracy and make the views easier to reproduce

than if the views were designed using a traditional approach. This is achieved as the model

explicitly states how a visualization is created, which attributes are selected and how edge

cases are handled. Instead of describing a view through a screenshot and ambiguous prose,

MDV makes the design decisions explicit.

Predictiveness: Since models explicitly describe the semantics, they are easier to vali-

date. For example, constraints such as the number of nodes that can be realistically rendered

in a node link diagram, or the number of bars that can be effectively displayed in a chart,

can be specified on the model. Once specified, these constraints can be tested before the

view is designed. This is similar to the types of testing which physical models are subjected

to in traditional engineering disciplines.

Inexpensiveness: Analyzing the “cost” of a model is highly subjective, however, it is

clear that when a formal model that represents a visualization is used, designers are able to

more easily experiment with ideas and quickly make changes. In our own experience, we

have been able to construct views in a matter of minutes, that before, would have taken a day

or two to complete. Also, by sharing models and transformation rules, designers can begin

to mix and match components in order to design a completely customized visualization.

8.4 Modeling in Practice 149

8.4 Modeling in Practice

As software systems continue to evolve, and more complex, interconnected systems are

sought, managing the planning, development and maintenance of these systems will con-

tinue to challenge software engineers. While software development is an inherently com-

plicated process [FPB87], a model driven approach can help alleviate some of the accident

complexity.

Model driven engineering techniques have successfully been applied in some of the

world’s most challenging domains. Motorola has claimed that “Model-driven engineering

has dramatically increased both the quality and reliability of software developed in our

organization, as well as the productivity of our software engineers [WW06]”. In contrast

to conventional software development, Motorola believes that the formalisms enabled by

MDE, mitigates ambiguities during requirements engineering, removes the highly error-

prone process of manually translating design documents into code, and maintains better

synchronization between the code and the design documents [WW06].

The UK National Health Service Information Authority (NHSIA) leverages modeling

technologies because of the platform independent capabilities of MDE. Due to the volatile

nature of health care requirements, it was important that the NHSIA maintain a single

specification. This specification was then used to drive a number of different technologies

and architectures [Rai05].

The areospace industry has also made heavy use of modeling in many mission criti-

cal software systems. Some of the reasons cited for the use of modeling include, lower

maintenance costs, improved stakeholder insight, requirements traceability, rapid proto-

type development and better component reuse [IS05]. While the areospace industry is very

careful about publishing internal practices, they have claimed to have successfully applied

model driven engineering techniques in projects ranging from less than 10 team members,

to projects with over 100 members working with 1000’s objects [IS05].

Many businesses are reluctant to publish their successes with model driven engineer-

8.5 Limitations 150

ing technologies as they often view their use of MDE as a competitive advantage [Sel06].

However, with industrial track sessions at many popular conferences, and many quality

open source modeling projects, the MDE advantage is starting to become known. More

engineers are turning to software modeling for reasons such as, a more streamlined devel-

opment process, component reuse, and a better separation between the technical solution

and the specification. MDV will assist these engineers with a highly integrated and relevant

approach to the design and customization of information visualizations.

8.5 Limitations

Even though we have designed several visualizations using this approach, model driven

visualization is not a silver bullet for view design. There are a few limitations which must

be considered before using models to design views.

The first limitation of our approach is that everything must be modeled. That is, a

formal model must exist for all views one wishes to create and one must have a model

for one’s data. Our intended audience is software engineers who are already making use

of MDE for their applications, so the data models should already exist. As for the view

models, we have provided a small collection of view models that we or others may expand

on in the future.

When a view model does not exist, the engineers should consider whether or not the

cost of constructing these view models will ever be recovered. Roberts and Johnson argue

that before a framework is designed, three instances should first be created [RJ97]. This is

likely a good rule of thumb for creating view models.

The second limitation of MDV is that declarative transformation languages are quite

different from traditional high level programming languages. Designing solutions through

a series of transformations is unlikely something that all software engineers will feel com-

fortable doing. Again, we would expect that at least one person on a development team

would have experience designing software through model transformations.

8.5 Limitations 151

The third limitation of our work, and MDE in general, is the lack of tool support.

Software development is a challenging activity, and while modeling can help alleviate some

of this difficultly, there is still not a good selection of tools that provides cognitive support

to software modelers.

Finally, as discussed in Chapter 8, modeling the control / behavioural aspects of a view

is still an understudied area. This will be the primary focus of our future work.

152

CHAPTER 9

Conclusions

WITH open-membership organizations such as the OMG defining modeling stan-

dards, and open-source implementations of those standards emerging, model driven engi-

neering is becoming a viable option for any software engineer. To ensure that modeling can

benefit all aspects of software, researchers have studied ways to apply model driven engi-

neering techniques across the different components of a software system. To further the

advancements of model driven technology, we have demonstrated the power and feasibility

of a model based customization environment for information visualizations. A number of

benefits of model driven visualization have been discussed, including better documentation,

automatic generation of model adapters, improved tool support enabled through richer se-

mantics, and a concise format for specifying simple views with the power of an imperative

language for more complex interactions.

We have successfully applied model driven visualization to construct a number of new

views. In addition, we have replicated existing visualizations that were originally designed

9. Conclusions 153

using high-level programming languages and specialized tools. Using our approach, not

only are the view customizations more concise, they have been explicitly stated and suc-

cessfully decoupled from the implementation details. This decoupling improves design,

maintenance and evolution for the following reasons:

1. Formally specified views: All of the customization options and design choices are

now formally specified, making it easier for tool designers and future researchers to

reproduce successful visualizations. Specifying views in this manner will allow the

view to more easily evolve as requirements are refined.

2. Centralized view specification: The ways in which data, presentation and control /

behaviour are customized is now stated explicitly. This will make it easier for those

maintaining the software to modify or extend existing visualizations.

3. Better documentation: Formal view models provide precise documentation about

the types of elements and attributes that can be configured for a particular view. This

is in contrast to complex frameworks in which the configurable attributes often be-

come hidden as there is no standard way to present customizable options. By explic-

itly stating the configurable attributes, software engineers can more easily understand

how a visualization technique can be customized.

4. Lowers a barrier to adoption: Many visualization techniques are first designed

for a single purpose. By describing a view in terms of its components and visual

attributes, other designers are able to hypothesize about how the view may fit their

data model. Then by writing mapping rules, designers can generate a prototype and

test their hypothesis. This means that software engineers can rapidly prototype and

test their tools, tightening the feedback loop in user-centered design.

9.1 Future Work 154

9.1 Future Work

While we have successfully created a number of interactive visualizations using a model

driven engineering approach, this work only scratches the surface of possibilities. Our work

has focused on the static data structures that constitute the specification of a view model,

but languages, such as UML, support a much broader scope of modeling options. For

example, the use of interaction diagrams could potentially play a key role in the definition

and customization of view control and behaviour.

As is often the case, this research poses more questions then it answers. We will present

some of the avenues that future researchers can focus on, and offer guidance to those build-

ing on this work.

9.1.1 Study the evaluation of API design for a graphing toolkit

One of the goals of Zest is to define an easy to use graphing Application Programmer

Interface (API). We attempted to reach this goal by mimicking the SWT API, the toolkit

for which Zest is intended. However, in our work we did not evaluate our success in this

area, and our only measure is the kind words we receive from users of our toolkit. An

important area for future research is a better evaluation of the design of a graphing API.

Much work has been done evaluating the ease of use of a user interface, but little work has

actually focused on the ease of use of an API.

9.1.2 MDE Tool Support

An important part of any framework is the tool support available. Effective tool support can

greatly improve productivity and software engineers are beginning to demand high quality

tools. In order to help create and customize visualizations, we need to provide more than

a modeling process, we also must supply tools that provide cognitive assistance to the

engineers. Some examples include: better mapping tools for designing transformations,

better tools for selecting models, and tools to evaluate the model mappings.

9.1 Future Work 155

9.1.3 Generating Interactivity Through UML Activity Diagrams

While we have modeled the interactivity of a visualization using UML activity diagrams,

this has only been performed for documentation purposes. Determining the feasibility of

using existing code generation technologies to generate these interactions remains a future

research topic.

9.1.4 Other ways to integrate multiple views

In addition to improving the modeling of interactivity, we intend to explore other ways

in which multiple views can be integrated. In Chapter 7, we showed how multiple views

can be “snapped” together, but there are a number of user interaction techniques such as

brushing and linking, filtering, and overview + detail, which MDV could also support.

Finding an approach that supports the modeling of different interaction techniques that

make use of multiple views, would be a useful addition to this work.

9.1.5 Finer Granularity for View Models

Another limitation of this work is that the view models must be specified before a visu-

alization can be generated, and the upfront cost of developing these models may never be

recovered. However, many of the view models we specified have a number of common

components that can likely be abstracted. If properly abstracted, the view designer could

use these components to first assemble a platform independent view model, and then use

this model to create a platform specific instance.

One possibility for specifying the relationships between components is through the use

of feature models [CHE05]. “Feature modeling is a notation and an approach for modeling

commonality and variability in product families [CW07].” Feature models could be used

to specify the mandatory / optional features, groups of features, and implies and excludes

relationships for the collection of elements that make up a visualization. Using these feature

models, a designer could quickly combine the elements in a meaningful way, and if the

9.2 Contributions 156

propositional formula generated from the feature maps holds true, a platform independent

view model could be generated.

9.1.6 Improved MDE Education

Finally, we believe we can leverage our experience with model driven visualization to pro-

vide better education for software modeling at the university level. Many industry leaders,

including IBM and Microsoft, are embracing MDE as an approach to software develop-

ment. If this trend continues, it will be important that software engineering curriculums

contain a model based component. This curriculum should include course work on gen-

erative programming, model transformations, model constraints, model based data design,

model based UI design and of course, model driven visualization.

9.2 Contributions

Several contributions have emerged as a result of this work. These results impact both

the information visualization and model driven engineering communities. In addition, this

research directly contributes to the software engineering community as a whole.

9.2.1 Contributions to the Information Visualization Community

Model driven visualization has made a number of important contributions to the field of

information visualization. First, the taxonomy and collection of view models provides a

framework in which other view designers can place their work, making information visual-

ization techniques and tools available to a wide variety of domains. By separating the view

from the data it displays, and documenting the techniques as a set of patterns, software

engineers working in a variety of domains can make use of these techniques.

Secondly, the use of formal models within the specification of a visualization provides

future designers, and those who customize visualizations, a powerful language they can use

9.2 Contributions 157

to share their results. Recreating views, even with access to the original developers, proved

to be a challenge for a number of reasons: 1) the customization options were often hidden

in source code, 2) the visualization tools were not available, leaving only ambiguous prose

and a single screen-shot, and 3) the design decisions, including failed attempts to create the

view, were never documented. Using a formal specification for view customization means

that visualizations can be more easily evolved and the views re-created.

Finally, a general purpose graph based visualization toolkit has been designed for

Eclipse. While other toolkits do exist for Java based applications, we believe that by pro-

viding a toolkit that uses the same design patterns, and a familiar API, should help improve

the adoption of more interactive visualizations. Furthermore, including our visualization

toolkit as part of the yearly Eclipse release means that Zest is not just a research prototype,

but a toolkit readily available to all Eclipse users.

9.2.2 Contributions to the Model Driven Engineering Community

In addition to the information visualization community, this work contributes to model

driven engineers. Model driven visualization presents another example of how MDE can

be leveraged in the design and implementation of an important aspect of today’s software,

interactive visualizations. Model driven engineers are designing models for different as-

pects of software systems, but until now, models of interactive visualizations have been

largely ignored.

In particular, formal, platform independent view models, help validate the power of

modeling as these models demonstrate that formalisms can be applied to the design of

information visualizations. UML class diagrams and OCL constraints provide a concise

way to describe the types of data, and the customizable properties of a view model.

In addition to helping validate the power of modeling, this work has helped drive re-

quirements, helped identify defects, and provided several tests cases for a number of MDE

related areas. In particular, this research has directly contributed code to the Atlas Trans-

formation Language (ATL), the Eclipse Modeling Framework (EMF) and Eclipse’s imple-

9.2 Contributions 158

mentation of the Object Constraint Language (OCL).

Finally, this work presents a code generation technique for automatic creation of an

MVC framework and set of model adapters. As more models are designed, developers

are constantly faced with the integration and synchronization of multiple models. While

transformation languages help define these integration points, the reality is that not all

systems have a properly defined model in a language such as UML, Ecore or MOF. Our

generative approach helps software engineers adapt their existing Java classes to work with

a formal model.

9.2.3 Contributions to the Software Engineering Community

Finally, model driven visualization contributes to the software engineering community as a

whole. In particular, MDV underscores the importance of separating concerns in a software

system. The separation of concerns is not only an effective way to help software maintain-

ers, it also defines sound component boundaries in which researchers and developers can

work.

Model driven visualization makes these boundaries precise for the domain of infor-

mation visualization. Using MDV, and solid software engineering principles, researchers

can now conduct research as to the effectiveness of individual view models, and document

their findings as formal constraints. By formally capturing knowledge about visualizations

in a platform independent manner, the power of information visualization will more easily

stand the test of time.

159

References

[Ada06] Eytan Adar. GUESS: A Language and Interface for Graph Exploration. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 791–800, Montreal, Quebec, Canada, 2006. 42

[AI04] Freddy Allilaire and Tarik Idrissi. ADT: Eclipse Development Tools for

ATL. In Proceedings of the Second European Workshop on Model Driven

Architecture (MDA) with an Emphasis on Methodologies and Transforma-

tions (EWMDA-2), pages 171–178, Canterbury, England, 2004. 127

[AIwMJ+77] Christopher Alexander, Sara Ishikawa, Murray Silverstein with Max Jacob-

son, Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern Language: Towns,

Buildings, Construction. Oxford, 1977. 81

[AK03] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Meta-

modeling Foundation. IEEE Software, 20(5):36–41, October 2003. 20

[Ala03] Harith Alani. TGVizTab: An Ontology Visualization Extension for Protege.

In Proceedings of Knowledge Capture 2003 - Workshop on Visualizing In-

formation in Knowledge Engineering, Sanibel Island, FL, 2003. 32

REFERENCES 160

[Alf] Alfred Inselberg. Home of parallel coordinates.

http://www.math.tau.ac.il/ aiisreal/. 203

[All03] Mary Margaret Allen. Empirical evaluation of a visualization tool for knowl-

edge engineering. Master’s thesis, University of Victoria, 2003. 54, 138, 140

[All08] OSGi Alliance, 2008. http://osgi.org. 70

[AS94] Christopher Ahlberg and Ben Shneiderman. Visual information seeking:

tight coupling of dynamic query filters with starfield displays. In Proceed-

ings of the SIGCHI Conference on Human factors in Computing Systems

(CHI’94), pages 313–317, New York, NY, USA, 1994. 199

[AWT] AWT Abstract Widget Toolkit. website.

http://java.sun.com/products/jdk/awt/. 34

[Bal81] Robert Balzer. Transformational implementation: An example. IEEE Trans-

actions on Software Engineering, SE-7(1):3–14, January 1981. 11

[BBS04] R. Ian Bull, Casey Best, and Margaret-Anne Storey. Advanced Widgets for

Eclipse. In Proceedings of the 2nd Eclipse Technology eXchange (ETX’04),

pages 6–11, 2004. 70, 114

[BC87] Richard A. Becker and William S. Cleveland. Brushing Scatterplots. Tech-

nometrics, 29(2):127–142, May 1987. 204

[BCT05] Alan W. Brown, Jim Conallen, and Dave Tropeano. Introduction: Models,

Modeling, and Model-Driven Architecture (MDA). In Model-Driven Soft-

ware Development, pages 1–16. Springer Berlin Heidelberg, 2005. 15, 112

[Bec99] Kent Beck. eXtreme Programming eXplained. Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA, 1999. 18

REFERENCES 161

[Ben01] Ben Shneiderman and Martin Wattenberg. Ordered Treemap Layouts. In

Proceedings of the IEEE Symposium on Information Visualization 2001 (In-

foViz’01), pages 73–78, 2001. 93

[Ber81] Jacques Bertin. Graphics and Graphic Information Processing. Walter de

Gruyter, 1981. 32, 37, 200

[BETT94] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis.

Algorithms for drawing graphs: an annotated bibliography. Computational

Geometry: Theory and Applications, 4:235–282, 1994. 90, 108

[Béz01] Jean Bézivin. From Object Composition to Model Transformation with the

MDA. In Proceedings of the 39th International Conference and Exhibi-

tion on Technology of Object-Oriented Languages and Systems (TOOLS39),

pages 350–354, 2001. 20

[Béz05] Jean Bézivin. On the Unification Power of Models. Software and Systems

Modeling, 4(2):171–188, 2005. 1, 17

[BGH00] Ivan T. Bowman, Michael W. Godfrey, and Richard C. Holt. Connecting

Architecture Reconstruction Frameworks. Information and Software Tech-

nology, 42(2):91–102, 2000. 61

[BGH+05] Sven Burmester, Holger Giese, Martin Hirsch, Daniela Schilling, and

Matthias Tichy. The Fujaba Real-Time Tool Suite: Model-Driven Devel-

opment of Safety-Critical, Real-Time Systems. In Proceedings of the 27th

International Conference on Software Engineering (ICSE’05), pages 670–

671, May 2005. 31

[BH02] Luciano Baresi and Reiko Heckel. Tutorial Introduction to Graph Transfor-

mation: A Software Engineering Perspective. In Proceedings of the First

International Conference on Graph Transformation, pages 402–429, 2002.

25

REFERENCES 162

[BHB99] Ivan T. Bowman, Richard C. Holt, and Neil V. Brewster. Linux as a Case

Study: Its Extracted Software Architecture. In Proceedings of the 21st Inter-

national Conference on Software Engineering (ICSE’99), pages 555–563,

Los Angeles, CA, May 1999. 60

[BHLV94] Francois Bodart, Anne-Marie Hennebert, Jean-Marie Leheureux, and Jean

Vanderdonckt. A Model-based Approach to Presentation: A Continuum

from Task Analysis to Prototype. In Proceedings of Interactive Systems: De-

sign, Specification, and Verification (DSV-IS’94), pages 25–39. Eurograph-

ics, June 1994. 29

[BHvW00] M. Bruls, K. Huizing, and J. van Wijk. Squarified Treemaps. In Proceed-

ings of Joint Eurographics and IEEE TCVG Symposium on Visualization

(TCVG’00), pages 33–42, 2000. 93

[BIR] The Business Integration and Reporting Toolkit. http://www.eclipse.org/birt.

36, 46, 51

[BMG00] Benjamin B. Bederson, Jon Meyer, and Lance Good. Jazz: An Extensible

Zoomable User Interface Graphics Toolkit in Java. In UIST, pages 171–180,

2000. 35

[BMS+08] Christopher Bennett, Del Myers, Margaret-Anne Storey, Daniel M. German,

David Ouellet, Martin Salois, and Phillipe Charland. A survey and evalu-

ation of tool features for understanding reverse engineered sequence dia-

grams. To appear in Wiley’s Journal of Software Maintenance and Evolution

(PCoda Special Issue), 2008. 109

[Böc05] Günter Böckle. Introduction to Software Product Line Engineering. In Soft-

ware Product Line Engineering, pages 3–18. Springer Berlin Heidelberg,

2005. 12

REFERENCES 163

[Boe88] B. W. Boehm. A Spiral Model of Software Development and Enhancement.

Computer, 21(5):61–72, May 1988. 17

[BSFL06] R. Ian Bull, Margaret-Anne Storey, Jean-Marie Favre, and Marin Litoiu.

An Architecture to Support Model Driven Software Visualization. In Pro-

ceedings of the 14th International Conference on Program Comprehension

(ICPC’06), pages 100–106, June 2006. 114

[BSM02] Casey Best, Margaret-Anne Storey, and Jeff Michaud. Designing a

component-based framework for visualization in software engineering and

knowledge engineering. In Proceedings of the 14th International Confer-

ence on Software Engineering and Knowledge Engineering, pages 323–326,

2002. 36, 41, 97, 103, 107

[BSM+03] Frank Budinsky, David Steinberg, Ed Merks, Raymond Ellersick, and Tim-

othy J. Grose. Eclipse Modeling Framework. Addison Wesley, 2003. 14, 81,

112

[BSW02] Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg. Ordered

and Quantum Treemaps: Making Effective Use of 2D Space to Display Hi-

erarchies. ACM Transactions on Graphics, 21(4):833–854, October 2002.

93

[Bul] R. Ian Bull. Eclipse Project: PDE Dependency Visualization. retrieved

January 2008 from http://www.eclipse.org/pde/incubator/dependency-

visualization/index.php. 68

[Bul02] R. Ian Bull. Abstraction Patterns for Reverse Engineering. Master’s thesis,

University of Waterloo, 2002. 119

[Bul06] R. Ian Bull. Integrating Dynamic Views Using Model Driven Development.

In Proceedings of the 2006 Conference of the Center for Advanced Studies

on Collaborative Research (CASCON’06), page 17, 2006. 123

REFERENCES 164

[Cas85] Albert F. Case. Computer-Aided Software Engineering (CASE): Tech-

nology For Improving Software Development Productivity. ACM SIGMIS

Database, 17(1):35–43, 1985. 11

[CDMS01] James R. Cordy, Thomas R. Dean, Andrew J. Malton, and Kevin A. Schnei-

der. Software Engineering by Source Transformation - Experience with

TXL. In Proceedings of First IEEE International Workshop on Source Code

Analysis and Manipulation (SCAM’01), 2001, pages 168–178, 2001. 24

[CE00] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Meth-

ods, Tools, and Applications. Addison-Wesley, 2000. 116

[CE04] Brendan Cleary and Chris Exton. CHIVE – A Program Source Visualisation

Framework. In Proceedings of the 12th IEEE International Workshop on

Program Comprehension (IWPC’04), 2004. 42

[CFKW95] Yih-Farn R. Chen, Glenn S. Fowler, Eleftherios Koutsofios, and Ryan S.

Wallach. Ciao: A graphical navigator for software and document reposi-

tories. In Proceedings of International Conference Software Maintenance,

ICSM’95, pages 66–75. IEEE Computer Society, 1995. 60

[CH03] Krzysztof Czarnecki and Simon Helsen. Classification of Model Transfor-

mation Approaches. In Proceedings of OOPSLA’03 Workshop on Generative

Techniques in the Context of Model-Driven Architecture, 2003. 26

[CH06] K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transformation

Approaches. IBM Systems Journal, 45(3):621–645, 2006. 25, 26

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing

Cardinality-Based Feature Models and their Specialization. Software Pro-

cess: Improvement and Practice, 10(1):7–29, 2005. 155

REFERENCES 165

[Chi00] Ed H. Chi. A Taxonomy of Visualization Techniques using the Data State

Reference Model. In Proceedings of the IEEE Symposium on Information

Vizualization 2000, pages 69–75, 2000. 38

[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and Design

Recovery: A Taxonomy. In IEEE Software, volume 7, pages 13–17, Jan.

1990. 60

[CM97] Stuart K. Card and Jock Mackinlay. The Structure of the Information Vi-

sualization Design Space. In Proceedings of the 1997 IEEE Symposium on

Information Visualization (InfoVis ’97), pages 92–99, 1997. 38

[CMR92] Mariano Consens, Alberto Mendelzon, and Arthur Ryman. Visualizing and

Querying Software Structures. In Proceedings of International Conference

on Software Engineering (ICSE’92), pages 138–156, 1992. 41, 42

[CMS99] Stuart K. Card, Jock D. Mackinlay, and B. Shneiderman. Readings in Infor-

mation Visualization. Morgan Kaufmann Publishers, 1999. 3, 32, 33, 34, 39,

40, 49, 73

[CW07] Krzysztof Czarnecki and Andrzej Wasowski. Feature Diagrams and Logics:

There and Back Again. In Software Product Line Conference, 2007. SPLC

2007. 11th International, pages 23–34, 10-14 Sept. 2007. 155

[DFAB97] Alan Dix, Janet Finlay, Gregory Abowd, and Russell Beale. Human-

Computer Interaction, second edition. Prentice Hall, 1997. 35, 77

[Die07] Stephan Diehl. Software Visualization. Springer, 2007. 38, 74

[Dij59] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nu-

mensche Mathematik, 1:269–271, 1959. 72

[ECL] Eclipse. http://www.eclipse.org. 7, 46

REFERENCES 166

[ERG02] Peter Eklund, Nataliya Roberts, and Steve Green. OntoRama: Browsing

RDF Ontologies using a Hyperbolic-style Browser. In Proceedings of the

First International Symposium on Cyber Worlds, pages 405–411, 2002. 32

[Fav01] Jean-Marie Favre. Gsee: a generic software exploration environment. In

Proceedings of 9th International Workshop on Program Comprehension

(IWPC’01), pages 233–244, Toronto, ON, May 2001. 42

[Fav04a] Jean-Marie Favre. Towards a Basic Theory to Model Model Driven Engi-

neering. In Workshop on Software Model Engineering (WiSME’04), page

N/A, 2004. 100

[Fav04b] Jean-Marie Favre. CacOphoNy: Metamodel-Driven Software Architecture

Reconstruction. In Proceedings of 11th Working Conference on Reverse En-

gineering (WCRE’04), pages 204–213, November 2004. 1, 6

[FB95] George W. Furnas and Benjamin B. Bederson. Space-Scaled Diagrams: Un-

derstanding Multiscale Interfaces. In Proceedings of Human Factors in Com-

puting Systems (CHI’95), pages 234–241, Denver, Colorado, 1995. 2, 36

[FC01] Liliana Favre and Silvia Clérici. A Systematic Approach to Transform UML

Static Models to Object-Oriented Code. In Unified Modeling Language: Sys-

tems Analysis, Design and Development Issues. IGI Global, April 2001. 22

[FES03] J. Favre, Jacky Estublier, and Remy Sanlaville. Tool adoption issues in very

large software company. In Proceedings of 3rd Workshop on Adoption Cen-

tric Software Engineering (ACSE’03), 2003. 74

[FGDTS06] Robert B. France, Sudipto Ghosh, Trung Dinh-Trong, and Arnor Sol-

berg. Model-Driven Development Using UML 2.0: Promises and Pitfalls.

39(2):59–66, February 2006. 30

[FHK+97] Pat Finnigan, Richard C. Holt, Ivan Kalas, Scott Kerr, Kostas Kontogiannis,

Hausi A. Müller, John Mylopoulos, Stephen Perelgut, Martin Stanley, and

REFERENCES 167

Kenny. Wong. The Software Bookshelf. IBM Systems Journal, 36(4):564–

593, November 1997. 21, 46, 60, 63

[FKO98] L. Feijs, R. Krikhaar, and R. Van Ommering. A Relational Approach to

Support Software Architecture Analysis. Software-Practice and Experience,

28(4):371–400, 1998. 62

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Code. Read-

ing, MA: Addison-Wesley, 1999. 18

[FP02] J. Fekete and C. Plaisant. Interactive Information Visualization of a Mil-

lion Items. In Proceedings of IEEE Symposium on Information Visualization,

pages 117–124, October 2002. 36, 92

[FPB87] Jr. Frederick P. Brooks. No Silver Bullet Essence and Accidents of Software

Engineering. Computer, 20(4):10–19, 1987. 1, 149

[FS07] Sean M. Falconer and Margaret-Anne D. Storey. A cognitive support frame-

work for ontology mapping. In ISWC/ASWC, pages 114–127, 2007. 128

[GB03] Erich Gamma and Kent Beck. JFace – User Interface Frameworks. In Con-

tributing to Eclipse Principles, Patterns and Plug-Ins, page 335. Addison

Wesley, 2003. 105

[GEF] Graphical Editor Framework. Website. http://www.eclipse.org/gef. 35, 103,

107

[GGL05] Lars Grunske, Leif Geiger, and Michael Lawley. A Graphical Specification

of Model Transformations with Triple Graph Grammars. Lecture Notes in

Computer Science, Springer Berlin / Heidelberg, 3748:284–298, 2005. 26

[GGZ+05] Lars Grunske, Leif Geiger, Albert Zndorf, Niels Van Eetvelde, Pieter Van

Gorp, and Daniel Varro. Using Graph Transformation for Practical Model-

REFERENCES 168

Driven Software Engineering. In Model-Driven Software Development,

pages 91–117. Springer Berlin Heidelberg, 2005. 16

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns Elements of Reusable Object-Oriented Software. Addison-Wesley,

1995. 71, 81

[GK07] Joel Greenyer and Ekkart Kindler. Reconciling TGGs with QVT. In Model

Driven Engineering Languages and Systems, pages 16–30. Springer Berlin

Heidelberg, 2007. 27

[GL00] Michael W. Godfrey and Eric H. S. Lee. Secrets from the Monster: Extract-

ing Mozilla’s Software Architecture. In Proceedings of Second Symposium

on Constructing Software Engineering Tools (CoSET’00), page N/A, Limer-

ick, Ireland, June 2000. 63

[GMF] The Graphical Modeling Framework. http://www.eclipse.org/gmf. 29

[Gre06] Jack Greenfield. Bare-Naked Languages or What Not to Model.

October 2006. Available at: http://msdn2.microsoft.com/en-

us/library/bb245772.aspx. 30

[Gru95] Thomas R. Gruber. Toward Principles for the Design of Ontologies used

for Knowledge Sharing. International Journal of Human-Computer Studies,

43(5-6):907–928, November 1995. 54

[GS93] David Garlan and Mary Shaw. An Introduction to Software Architecture.

In V. Ambriola and G. Tortora, editors, Advances in Software Engineering

and Knowledge Engineering, pages 1–39, Singapore, 1993. World Scientfic

Publishing Company. 60

[GSCK04] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent. Software Fac-

tories: Assembling Applications with Patterns, Models, Frameworks and

Tools. John Wiley Publishing Inc., 2004. 10

REFERENCES 169

[GTK] GTK+ The GIMP Toolkit. website. http://www.gtk.org/. 34

[GXL] GXL The GXL Homepage. Website. http://www.gupro.de/GXL. 21, 64

[Har88] David Harel. On Visual Formalisms. Communications of the ACM,

31(5):514–530, May 1988. 36

[HCL05] Jeffrey Heer, Stuart K. Card, and James A. Landay. Prefuse: A Toolkit for

Interactive Information Visualization. In Proceedings of the SIGCHI confer-

ence on Human factors in Computing Systems, pages 421–430, 2005. 103

[HH02] Ahmed E. Hassan and Richard C. Holt. Architecture Recovery of Web Ap-

plications. In In Proceedings of 24th International Conference on Software

Engineering (ICSE’02), pages 349–359, 2002. 63

[HMM00] Ivan Herman, Guy Melançon, and M. Scott Marshall. Graph Visualization

and Navigation in Information Visualization: A Survey. IEEE Transactions

on Visualization and Computer Graphics, 6:24–43, 2000. 6, 32

[Hol] GROK Richard C. Holt. The Grok Programming Language.

http://plg.uwaterloo.ca/ holt/papers/grok-intro.html. 60, 62

[Hol97] Richard C. Holt. An introduction to TA:

The Tuple-Attribute Language. Available at

http://plg.uwaterloo.ca/˜holt/papers/ta.html, 1997.

21, 60, 64

[Hol99] Richard C. Holt. Software Architecture Abstraction and Aggregation as Al-

gebraic Manipulations. In Proceedings of the 1999 Conference of the Center

for Advanced Studies on Collaborative Research (CASCON’99), page 210,

1999. 41

REFERENCES 170

[HS05] Brian Henderson-Sellers. UML the Good, the Bad or the Ugly? Perspec-

tives from a panel of experts. Software and Systems Modeling, 4(1):4–13,

February 2005. 30

[HSW00] Ric Holt, Andy Schürr, and Andreas Winter. GXL: Towards a Standard Ex-

change Format. In Proceedings of 2000 Working Conference on Reverse

Engineering (WCRE-00), pages 162–171, Brisbane, Australia, November

2000. 64

[Hud] Randy Hudson. Eclipse bug (130386): Almost impossible to browse

problems using plug-in validation. Retrieved January 2008 from

http://bugs.eclipse.org/130386. 68

[Ins85] Alfred Inselberg. The plane with parallel coordinates. The Visual Computer,

1(4):69–91, December 1985. 203

[IS05] Robert G. Pettit IV and Julie A. Street. Lessons Learned Applying UML

in the Design of Mission Critical Software. UML 2004 Satellite Activities,

Lecture Notes in Computer Science, 3297:129–137, 2005. 149

[JBK06] Frédéric Jouault, Jean Bézivin, and Ivan Kurtev. TCS: a DSL for the Speci-

fication of Textual Concrete Syntaxes in Model Engineering. In Proceedings

of the fifth international conference on Generative programming and Com-

ponent Engineering, pages 249–254, 2006. 24

[JFr] JFreeChart. website. available at http://www.jfree.org/. 35

[JGr] JGraph. website. http://www.jgraph.com. 35, 103

[JK06] Frédéric Jouault and Ivan Kurtev. Transforming Models with ATL. Lecture

Notes in Computer Science, Springer Berlin / Heidelberg, 3844:128–138,

2006. 25, 27, 116, 118

REFERENCES 171

[JS91] Brian Johnson and Ben Shneiderman. Treemaps: A Space-Filling Approach

to the Visualization of Hierarchical Information Structures. In Proceedings

of IEEE Conference on Visualization, pages 284–291, 1991. 36, 57, 58, 92

[JUN] JUNG. Java Universal Network/Graph Framework. available at

http://jung.sourceforge.net/. 103, 107

[KC98] Rick Kazman and S. Jeromy Carrière. Playing detective: Reconstructing

software architecture from the available evidence. Automated Software En-

gineering, 6:107–138, 1998. 60, 63

[Ken96] Kenny Wong. Rigi User’s Manual: Version 5.4.3, November 1996. 21

[Ken02] Stuart Kent. Model Driven Engineering. In Proceedings of 3rd international

Conference on Integrated Formal Methods, pages 286–298, 2002. 11

[Kie06] Holger Michael Kienle. Building Reverse Engineering Tools with Software

Components. PhD thesis, University of Victoria, 2006. 74

[KLM04] Holger M. Kienle, Marin Litoiu, and Hausi A. Müller. Using Components

to Build Software Engineering Tools. In Proceedings of the Fourth Interna-

tional Workshop on Adoption-Centric Software Engineering (ACSE 2004),

pages 36–42, Edinburgh, Scotland, 2004. 74

[Kon] Konqueror - Web Browser, File Manager - and more! website.

http://www.konqueror.org/. 94

[Kön05] Alexander Königs. Model Transformation with Triple Graph Grammars. In

Proceedings of Model Transformations in Practice Satellite Workshop of

MODELS 2005, 2005. 26

[Kos03] Rainer Koschke. Software visualization in software maintenance, reverse en-

gineering, and re-engineering: a research survey. Journal of Software Main-

REFERENCES 172

tenance and Evolution: Research and Practice, 15(2):87 – 109, April 2003.

6

[Kov98] Srdjan Kovecevic. Uml and user interface modeling. In Lecture Notes in

Computer Science, volume 1681, pages 253–266. Springer-Verlag Berlin

Heidelberg, 1998. 1, 29

[KR03] Vinay Kulkarni and Sreedhar Reddy. Separation of Concerns in Model-

Driven Development. IEEE Software, 20(5):64–69, 2003. 1, 2

[LMSW03] Rob Lintern, Jeff Michaud, Margaret-Anne Storey, and Xiaomin Wu.

Plugging-in visualization: experiences integrating a visualization tool with

Eclipse. In Proceedings of the 2003 ACM Symposium on Software visualiza-

tion, pages 47–58, San Diego, 2003. 46, 103

[LSW01] Carola Lange, Harry M. Sneed, and Andreas Winter. Comparing graph-

based program comprehension tools to relational database-based tools. In

Proceedings of 9th International Workshop on Program Comprehension

(IWPC’01), pages 209–218, May 2001. 41

[Mac86] Jock Mackinlay. Automating the Design of Graphical Presentations of Re-

lational Information. ACM Transactions on Graphics, 5(2):110–141, April

1986. 42

[MDH01] Andrew J. Malton, Tom R. Dean, and Richard C. Holt. Union Schemas as

a Basis for a C++ Extractor. In Proceedings of 8th Working Conference on

Reverse Engineering (WCRE’01), pages 59–67, 2001. 60

[Met05] Andreas Metzger. A Systematic Look at Model Transformations. In Model-

Driven Software Development, pages 19–33. Springer Berlin Heidelberg,

2005. 16, 26, 133

REFERENCES 173

[MG03] Paul Mutton and Jennifer Golbeck. Visualization of Semantic Metadata and

Ontologies. In Proceedings of Seventh International Conference on Infor-

mation Visualization (InfoViz’03), pages 300–305, 2003. 32

[Mic03] Jeffrey William Michaud. A Software Customization Framework. Master’s

thesis, University of Victoria, 2003. 11, 12, 13, 39

[MJ82] Daniel D. McCracken and Michael A. Jackson. Life Cycle Concept Consid-

ered Harmful. 7(2):29–32, April 1982. 30

[MK88] Hausi A. Müller and Karl Klashinsy. Rigi: A system for programming-in-

the-large. In Proceedings of the 10th International Conference on Software

Engineering (ICSE’88), pages 80–86, Singapore, April 1988. 21, 60, 63, 64

[MK93] Lil Mohan and R. L. Kashyap. A Visual Query Language for Graphical Inter-

action with Schema-Intensive Databases. In IEEE Transactions on Knowl-

edge and Data Engineering, volume 5, pages 843–858, 1993. 42

[MMC02] Jonathan I. Maletic, Andrian Marcus, and Michael L. Collard. A Task Ori-

ented View of Software Visualization. In Proceedings of the First Interna-

tional Workshop on Visualizing Software for Understanding and Analysis

(VISSOFT’02), pages 32–41, 2002. 44

[MNS01] Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion mod-

els: bridging the gap between design and implementation. IEEE Transac-

tions on Software Engineering, 27(4):364–380, 2001. 60

[MS95] Alberto Mendelzon and Johannes Sametinger. Reverse Engineering by Vi-

sualizing and Querying. Software – Concepts and Tools, 16:170–182, 1995.

42

[MU90] Hausi A. Müller and James S. Uhl. Composing Subsystem Structures using

(k,2)-partite Graphs. In Proceedings of International Conference on Soft-

REFERENCES 174

ware Maintenance (ICSM’90), pages 26–29, San Diego, California, Novem-

ber 1990. 119

[Mye89] Brad A. Myers. User-Interface Tools: Introduction and Survey. IEEE Soft-

ware, 6(1):15–23, 1989. 29

[NCS02] Chris North, Nathan Conklin, and Varun Saini. Visualization Schemas for

Flexible Information Visualization. In Proceedings of the 2002 Symposium

on Information Visualization, pages 15–22, 2002. 41

[NFM] N. F. Noy, R. W. Fergerson, and M. A. Musen. The knowledge model of

Protege-2000: Combining interoperability and flexibility. In Proceedings of

2nd International Conference on Knowledge Engineering and Knowledge

Management (EKAW’00), pages 17–32, Juan-les-Pins, France, 2000. 46, 54

[Nor98] Donald A. Norman. The Design of Everyday Things. New York: Basic

Books, 1998. 40

[NS00] Chris North and Ben Shneiderman. Snap-together visualization: A user in-

terface for coodinating visualizations via relational schemata. In Advanced

Visual Interfaces, pages 128–135, 2000. 41, 121

[NW04] Steve Northover and Mike Wilson. SWT: The Standard Widget Toolkit, Vol-

ume 1 (The Eclipse Series). Addison Wesley, 2004. 34, 103, 107

[OMG06a] OMG/MOF. Mof core specification, v2.0, (formal/2006-01-01), 2006. avail-

able at http://www.omg.org. 17, 20

[OMG06b] OMG/OCL. OCL Specification, v2.0, (Formal/2006-05-01), 2006. available

at http://www.omg.org. 22

[OMG07a] OMG/QVT. MOF – Query / View / Transformation (QVT), 2007. available

at http://www.omg.org. 27, 118

REFERENCES 175

[OMG07b] OMG/UML. Unified Modeling Language (UML), version 2.1.1,

(Formal/2007-02-03), 2007. available at http://www.omg.org. 17, 19

[PBS93] B.A. Price, R.M Baecker, and I.S. Small. A Principled Taxonomy of Soft-

ware Visualization. Journal of Visual Languages and Computing, 4(3):211–

266, 1993. 32, 38

[PE00] Magnus Penker and Hans-Erik Eriksson. Business Modeling With UML:

Business Patterns at Work. John Wiley, 2000. 1

[Pen93] David Allan Penny. The Software Landscape: A Visual Formalism for

Programming-In-The-Large. PhD thesis, University of Toronto, 1993. 60,

97

[PGB02] C. Plaisant, J. Grosjean, and B.B. Bederson. Spacetree: Supporting explo-

ration in large node link tree, design evolution and empirical evaluation. In

Proceedings of IEEE Symposium on Information Visualization, 2002 (In-

foViz’02), pages 57–64, Boston, October 2002. 36

[PHP03] Darius Pfitzner, Vaughan Hobbs, and David Powers. A unified taxonomic

framework for information visualization. In Proceedings of the Asia-Pacific

symposium on Information visualization - Volume 24, pages 57 – 66, 2003.

38

[Pop04] Remko Popma. Jet tutorial (write code that writes code), 2004. available at

http://www.eclipse.org. 116, 209

[PP01] Tim Pattison and Matthew Phillips. View coordination architecture for in-

formation visualisation. In Peter Eades and Tim Pattison, editors, Australian

Symposium on Information Visualisation, (invis.au 2001), Sydney, Australia,

2001. ACS. 121

REFERENCES 176

[Pra71] Terrence W. Pratt. Pair Grammars, Graph Languages and String-to-Graph

Translations. Journal of Computer and Systems Sciences, 5:560–595, 1971.

26

[Rai05] Chris Raistrick. Applying MDA and UML in the Development of a Health-

care System. UML 2004 Satellite Activities, Lecture Notes in Computer Sci-

ence 3297, pages 203–218, 2005. 149

[RC94] Ramana Rao and Stuart K. Card. The table lens: merging graphical and sym-

bolic representations in an interactive focus + context visualization for tab-

ular information. In Proceedings of Conference on Human Factors in Com-

puting Systems, pages 318–322, Boston, Massachusetts, United States, 1994.

36

[Rei01] Steven P. Reiss. An Overview of Bloom. In Proceedings of the 2001 ACM

Workshop on Program Analysis for Software Tools and Engineering, pages

2–5, 2001. 42

[Rei02] Steven P. Reiss. A Visual Query Language for Software Visualization. In

Proceedings of the IEEE 2002 Symposia on Human Centric Computing Lan-

guages and Environments (HCC’02), pages 80–82, 2002. 42

[RJ97] Don Roberts and Ralph E. Johnson. Evolving Frameworks: A Pattern Lan-

guage for Developing Object-Oriented Frameworks. In Pattern Languages

of Program Design 3. Addison Wesley, 1997. 150

[RLS+03] Derek Rayside, Marin Litoiu, Margaret-Anne Storey, Casey Best, and

Robert Lintern. Visualizing flow diagrams in websphere studio using shrimp

views. Information Systems Frontiers, 5:161–174, 2003. 2, 32

[RMC91] George G. Robertson, Jock D. Mackinlay, and Stuart K. Card. Cone Trees:

animated 3D visualizations of hierarchical information. In Proceedings

REFERENCES 177

of the Conference on Human Factors in Computing Systems: Reaching

Through Technology, pages 189–104, 1991. 36

[Rob05] Naomi B. Robbins. Creating More Effective Graphs. John Wiley, 2005. 191,

192

[Roy70] W. W. Royce. Managing the Development of Large Software Systems: Con-

cepts and Techniques. In Proceedings of IEEE Computer Society Press

WESTCON (Chapter 4), 1970. 17

[Sch] A. Schurr. Specification of graph translators with triple graph grammars. In

In Proceedings of the 20 International Workshop on Graph-Theoretic Con-

cepts in Computer Science, Herrsching, Germany, June 1994. Springer Ver-

lag. 26

[Sch06] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering.

IEEE Computer, 39(2):25–31, 2006. 14, 15

[SDBP98] John Stasko, John Dominque, Marc H. Brown, and Blaine A. Price, editors.

Software Visualization: Programming as a Multimedia Experience. Mas-

sachusetts Institute of Technology, 1998. 74

[Sei03] Ed Seidewitz. What Models Mean. IEEE Software, 20:26–32, October 2003.

19

[Sel03] Bran Selic. The Pragmatics of Model-Driven Development. IEEE Software,

20(5):19–25, 2003. 1, 4, 11, 112, 147

[Sel06] Bran Selic. Model-Driven Development: Its Essence and Opportunities.

In Proceedings of the Ninth IEEE International Symposium on Object

and Component-Oriented Real-Time Distributed Computing (ISORC), pages

313–319, 2006. 11, 150

REFERENCES 178

[SFM99] Margaret-Anne D. Storey, F. David Fracchia, and Hausi A. Müller. Cus-

tomizing a Fisheye View Algorithm to Preserve the Mental Map. Journal of

Visual Languages & Computing, 10(3):245–267, June 1999. 97

[Shn96] Ben Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for

Information Visualizations. In IEEE Visual Languages, number UMCP-CSD

CS-TR-3665, pages 336–343, College Park, Maryland 20742, U.S.A., 1996.

38, 81

[SHNM05] Matthew Scarpino, Stephen Holder, Stanford Ng, and Laurent Mihalkovic.

SWT/JFace In Action. Manning Publications Co., 2005. 102, 105

[Sii00] Harri Siirtola. Direct manipulation of parallel coordinates. In Proceedings of

IEEE International Conference on Information Visualization (InfoViz’00),

pages 373–378, 2000. 205

[SK02] Shane Sendall and Wojtek Kozaczynski. Model Transformation the Heart

and Soul of Model-Driven Software Development. Technical report, Ecole

Polytechnique Fédérale de Lausanne, 2002. 17, 24, 111, 112

[SKBS97] Danny Soroker, Michael Karasick, John Barton, and David Streeter. Ex-

tension Mechanisms in Montana. In Proceedings of the 8th Israeli Confer-

ence on Computer-Based Systems and Software Engineering, pages 119–

128, 1997. 74

[SLVA97] Janice Singer, Timothy C. Lethbridge, N. Vinson, and Nicolas Anquetil. An

examination of software engineering work practices. In Proceedings of the

1997 Conference of the Center for Advanced Studies on Collaborative re-

search (CASCON’97), pages 209–223, 1997. 74

[SM96] M.-A. D. Storey and H. A. Müller. Graph Layout Adjustment Strategies. In

Lecture Notes in Computer Science, volume 1027, pages 487–499. Springer

Verlag, 1996. 91

REFERENCES 179

[SMS+01] Margaret-Anne Storey, Mark Musen, John Silva, Casey Best, Neil Ernst,

Ray Fergerson, and Natasha Noy. Jambalaya: Interactive visualization to en-

hance ontology authoring and knowledge acquisition in protege. In Proceed-

ings of Workshop on Interactive Tools for Knowledge Capture, K-Cap-2001,

Victoria, BC, 2001. 32, 46, 103

[Sne07] Harry M. Sneed. The Drawbacks of Model-Driven Software Evolu-

tion. IEEE CSMR 07 - Workshop on Model Driven Software Evolution

(MoDSE2007), March 2007. 30

[Som04] Ian Sommerville. Software Engineering 7. Pearson Education Limited, 2004.

15, 77

[Ste46] S. S. Stevens. On the Theory of Scales of Measurement. Science, 103(2684),

1946. 82

[Sto98] Margaret-Anne D. Storey. A Cognitive Framework for Describing and Eval-

uating Software Exploration Tools. PhD thesis, Simon Fraser University,

1998. 44

[SWFM97] M.-A.D. Storey, K. Wong, F.D. Fracchia, and H.A. Müller. On integrating

visualization techniques for effective software exploration. In Proceedings

of IEEE Symposium on Information Visualization (InfoVis’97), pages 38–45,

Phoenix, AZ, October 1997. 32, 119

[SwJBHH06] Tomas Stahl, Markus Völter with Jorn Bettin, Arno Hasse, and Simon

Helsen. Model-Driven Software Development. John Wiley and Sons Ltd.,

2006. 17

[TH96] Vassilios Tzerpos and R.C. Holt. A Hybrid Process for Recovering Software

Architecture. In Proceedings of the 1996 Conference of the Center for Ad-

vanced Studies on Collaborative research (CASCON’96), page 38, 1996. 63

REFERENCES 180

[TM04] Melanie Tory and Torsten Möller. Rethinking visualization: A high-level

taxonomy. In Proceedings IEEE Symposium on Information Visualization,

2004. INFOVIS 2004, pages 151 – 158, 2004. 38

[TMWW93] Scott R. Tilley, Hausi A. Müller, Michael J. Whitney, and Kenny Wong.

Domain-Retargetable Reverse Engineering. In Proceedings of Conference

on Software Maintenance (ICSM’93), pages 142–151, 1993. 13

[Tuk77] John W. Tukey. Exploratory Data Analysis. Addison Wesley Publishing

Company, 1977. 42

[Twe97] Lisa Tweedie. Characterizing Interactive Externalizations. In Proceedings

of the SIGCHI conference on Human Factors in Computing Systems, 1997,

pages 375–382, 1997. 38

[TWSM94] Scott R. Tilley, Kenny Wong, Margaret-Anne D. Storey, and Hausi A.

Müller. Programmable Reverse Engineering. Journal of Software Engineer-

ing and Knowledge Engineering, 4(4):501–520, 1994. 13, 41

[vDKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Languages:

An Annotated Bibliography. ACM SIGPLAN Notes, pages 26–36, 2000. 1,

24

[VK06] Markus Völter and Bernd Kolb. Best Practices for Model-to-Text Transfor-

mations. In In Eclipse Summit Europe, Modeling Symposium, 2006., 2006.

27

[Voe] Markus Voelter. open Architecture Ware.

http://www.openarchitectureware.org/. 14, 24, 116, 128

[VWvH+07] Fernanda B. Viégas, Martin Wattenberg, Frank van Ham, Jesse Kriss, and

Matt McKeon. Many Eyes: A Site for Visualization at Internet Scale. IEEE

Transactions on Visualization and Computer Graphics, 13(6):1121–1128,

2007. 36, 46, 49

REFERENCES 181

[W3C99] W3C. XSL Transformations (XSLT) Version 1.0, 1999. available at

http://www.w3c.org. 26

[W3C04] W3C. XML Schema (XSD) Version 1.1, 2004. available at

http://www.w3.org/XML/Schema. 17, 116

[War04] Colin Ware. Information Visualization: Perception for Design. Morgan

Kaufmann Publishers, 2004. 32

[Was90] Anthony I. Wasserman. Tool integration in software engineering environ-

ments. In Proceedings of the International Workshop on Environments on

Software Engineering Environments, pages 137 – 149, Chinon, France,

1990. Springer-Verlag New York. 11, 12, 39

[Wat98] Martin Wattenberg. Map of the market, 1998. SmartMoney.com,

http://smartmoney.com/marketmap. 94

[Wat99] Martin Wattenberg. Visualizing the stock market. In Proceedings of ACM

CHI 99, Extended Abstracts, pages 188–189, 1999. 32, 94

[Weg02] Hans Wegener. Agility in Model-Driven Software Development? Implica-

tions for Organization, Process and Architecture. OOPSLA 2002 Workshop

on Generative Techniques in the Context of Model-Driven Architecture,

November 2002. 15, 30

[WMSL04] Xiaomin Wu, Adam Murray, Margaret-Anne Storey, and Rob Lintern. A

reverse engineering approach to support software maintenance: version con-

trol knowledge extraction. In Proceedings 11th Working Conference on Re-

verse Engineering, pages 90–99, November 2004. 94

[Won00] Kenny Wong. The Reverse Engineering Notebook. PhD thesis, University of

Victoria, 2000. 75

REFERENCES 182

[Wu03] Xiaomin Wu. Visualization of version control information. Master’s thesis,

University of Victoria, 2003. 64

[WW06] Thomas Weigert and Frank Weil. Practical Experiences in Using Model-

Driven Engineering to Develop Trustworthy Computing Systems. In Pro-

ceedings of the IEEE International Conference on Sensor Networks, Ubiq-

uitous, and Trustworthy Computing (SUTC’06), pages 208–217, 2006. 149

[Xul07] Xulin Zhao and Ying Zou and Jen Hawkins and Bhadri Madapusi. A

Business-Process-Driven Approach for Generating E-Commerce User Inter-

faces. Model Driven Engineering Languages and Systems, LNCS, Springer

Berlin / Heidelberg, 4735:256–270, 2007. 29

[ytdc] yWorks: the diagramming company. yfiles. available at

http://www.yworks.com. 103

[Zha03] Kang Zhang. Software Visualization: From Theory to Practice. Kluwer Aca-

demic Publishers, 2003. 74

183

APPENDIX A

Visualization Patterns

IN Chapter 5, we introduced four visualization patterns. In this appendix we expand on

our catalog and introduce another eight. Included in this appendix are visualization patterns

for: 1) a list, 2) a line chart, 3) a pie chart, 4) a map, 5) a heat-map, 6) a table, 7) parallel

coordinates, and 8) a tree.

Appendix A 184

List

Intent

A list viewer is ideal for representing a single collection of items. For a small number of

elements (< 20) lists can show all the elements on the screen. For more elements, scrolling

or fisheye views could be used. Lists can also be sorted to indicate rank or to improve

navigation.

Motivation

One of the most basic information visualizations is the list viewer. This viewer displays

each element sequentially in a scrollable view, with an optional filtering mechanism and the

elements can be sorted based on some criteria. Many instances of this viewer also support

both a label and an icon for each element in the view. The view usually scales remarkably

well and it has been used to represent many thousands of elements.

While many implementations of the list viewer scale remarkably well, lists rarely sup-

port lazy loading. If they do support lazy loading, then this is available at the cost of quickly

navigating the entire view.

Lists are one of the most utilized views in computer interfaces and they are often used

in conjunction with other views to support overview+detail.

Formal Model

Figure A.1 presents the formal model for this viewer. This model defines two classes, the

ListViewer itself and the ListItems. Each item can have a label and icon and is parented

to the list viewer through an ordered list.

Appendix A 185

package listview

ListViewer
+ sorter : Sorter[0..1]
+ filter : Filter[0..1]

ListItem
+ label : Nominal[0..1]
+ icon : ImageURL[0..1]

+items { ordered, unique }*

Figure A.1: List Viewer – Formal Model

Configurable Attributes

The text and icon for each of the list items can be customized to provide context or represent

information about the element. In addition to the name and icon, the elements can be

ordered based on some criteria. The elements can either be sorted to indicate rank, in which

case the elements would be ordered by a property, or to improve navigation, in which case

the elements may be ordered alphabetically.

Configurable User Interactions

In order to support navigation, four techniques are commonly used: scrolling, distortion-

oriented views, quick search and filtering. Scrolling is usually available in list views with-

out modification. Distortion-oriented views, such as a fisheye lenes, work by showing the

entire set of elements and magnifying part of the display. Quick search is often activated

as a user beings to type. In this case, the first element to match the character typed is high-

lighted. Finally, filtering can be achieved in a number of ways. One of the more common

ways is to include a filter box, and as a user enters characters, only the elements which

match the expression typed are retained in the view.

Appendix A 186

Known Uses

List views are often used as the overview in “Overview+Detail” displays. This implies that

the list view is often the users first interaction with a system and once an element (or set of

elements) is selected, another detailed view is brought into focus.

Appendix A 187

Line Chart

Intent

Like the bar chart, line charts are commonly available in charting packages and are used

both for a single collection of items or groups of items. Unlike bar charts, line charts are

more appropriate when the elements have both an interval value and an ordinal label. This

way, the items can be ordered in a meaningful way.

Motivation

When faced with a set of ordinal tuples, especially if the tuples can be sorted by one of

the values such that the tuples are step-wise increaseing, a line chart may be an appropriate

means of representation. In Table A.1, the Age column could be sorted such that the values

were step-wise increasing and Player 1 and Player 2 could each be considered a category.

Figure A.2 shows how this data would appear when rendered using a line chart.

Age Player 1’s Player 2’s
Goals Goals

19 51 43
20 55 48
21 92 54
22 71 70
23 87 85
24 73 45
25 52 19
26 62 44
27 40 69
28 54 17
29 40 69

Table A.1: Goals vs. Age

Appendix A 188

Figure A.2: Age vs. Goals Example

A bar chart could also be used to represent this information, but since all attributes are

ordinal values and the tuples are ordered such that one of the values (age) is steap-wise

increasing, a line chart better represents the connection between the values.

Formal Model

A line chart can be used to represent items or a group of items. We only documented the

categorized line chart, however, a simple line chart would be very similar to the simple bar

chart on page 85. Like the bar chart, the categorized line chart consists of the viewer class,

the category, the item and the values. The only difference is that the line chart uses ordinal

data for its label (or X-Axis).

The constraints specified on the categorized line chart are similar to those on the cate-

gorized bar chart. Each category must have a value for each item and each item must have

a value for each category.

Appendix A 189package linechart

CategorizedLineChartViewer
+ minYValue : Interval[0..1]
+ maxYValue : Interval[0..1]
+ chartTitle : Label
+ yAxisTitle : Label
+ xAxisTitle : Label
+ showDepth : Binary

LineCategory
+ name : Nominal
+ showLabels : Binary

LineValue
+ value : Interval

LineItem
+ label : Interval

{values->isUnique(category)} {category <> null}

{values->isUnique(item)}

{values->size() = chart.items->size()

+categories { ordered, unique }*
+items { ordered, unique }*

+category1

+values { ordered, unique }

*

+values { ordered, unique }

*

Figure A.3: Line Chart Viewer – Formal Model

Configurable Attributes

Colour and order are the two most common configurable attributes for a line chart. Colour

can be used to distinguish between items and it can also be used to highlight items bringing

them to the user’s attention. The order of the elements should be determined by the items

label data, however, a custom sorter could be used instead.

Configurable User Interactions

Interactive charting engines support operations such as mouse over or selection. Through

scripts these interactions can be configured to highlight elements or perform some other

user defined operation.

Appendix A 190

Known Uses

Line charts are commonly available in business and scientific charting tools like Excel.

Google also supports an API for creating line charts for the web 1.

1http://code.google.com/apis/chart/

Appendix A 191

Pie Chart

Intent

Pie charts are useful for presenting ratios between a collection of items. If a group of items

have an attribute that represent ratios between one another, a pie chart may be ideal.

Motivation

When studying the ratios between a set of ordinal data points, it may be desirable to present

the proportions graphically. For example, in the case of program test cases, which can

complete in 1 of four ways, success, warning, failure and exception, a table of results is

often hard to interpret, especially if the number of test cases is large. On the other hand,

a pie chart could be used to summarize the four categories. In this view a pie slice would

show the number of tests that completed within a given category.

It should be pointed out however, that humans have a relatively hard time distinguishing

between small discrepancies in the size of a pie slice, and if this is important, other views

should be considered [Rob05]. If a pie chart must be used, ensure that the segments are

ordered by size (largest to smallest) in a clockwise direction. Another option is to label

each pie slice with its size.

Given a percentage of the pie chart, the size of the slice can be calculated by the fol-

lowing formula:

angle = percentage÷ 100× 360◦ (A.1)

Appendix A 192

Formal Model

Since pie charts are not commonly used to represent categories (or series) of data, their

formal model is fairly straight forward. The pie chart model contains two classes, the

PieChartViewer and the PieItem. Each item has a value and a label. Many rendering

engines support a 3D look, as well as the option to show labels and a chart title. Figure A.4

shows the formal model as a UML class diagram.

package piechart

PieChartViewer
+ chartTitle : Label
+ showLabels : Binary
+ showDepth : Binary

PieItem
+ label : Nominal
+ value : Interval

+items { ordered, unique }*

+chart1

Figure A.4: Pie Chart Viewer – Formal Model

Configurable Attributes

The colour and position of each slice can be configured in a pie chart, although, it has

been suggested that pie slices be ordered from largest to smallest in a clockwise direc-

tion [Rob05]. If the slices represent unique categories, distinct colours should be chosen.

If, on the other hand, the slices represent related categories, then changing the colour value

(the amount of white displayed) helps reenforce he connection.

Appendix A 193

Known Uses

Pie charts, despite the fact that they are often hard to interpret, are commonly used. They

are most commonly used to reinforce large discrepancies.

Appendix A 194

Map

Intent

By mapping markers onto a map, humans can perceive proximity as well as geographical

positioning. The map viewer is intended for data which is inherently location based.

Motivation

Figure A.5: Map of Paris

Understanding the relative distance between locations while considering natural barri-

ers is difficult, especially to someone who is not familiar with the geography of the area.

Victoria and Vancouver are only about 80 Kilometers apart, but the Strait of Georgia sepa-

rating them severely impedes the travel time.

A map view helps users understand the distances between points, receive directions

and better understand the locations of places by viewing them relative to known reference

points. A first time traveler to Paris may not know where the Champs-Élysées is, but by

viewing it relative to the Eiffel Tower or the Arc de Triomphe may provide the needed

Appendix A 195

context.

The Map Viewer is intended for use whenever a set of points (longitude and latitude)

are available. A high quality map viewer implementation should support both an overview

of the region (world, continent, country, province, city, etc..) and provide the needed facil-

ities to zoom in for more detail. Many mapping applications show both an abstract view

(showing streets, parks, water, etc...) and a satellite view (showing actual images of the

area).

Formal Model

The map viewer model (Figure A.6) is comprised of two classes, the MapViewer and the

Marker. Each marker must provide coordinates for both the longitude and latitude and

optionally can provide a label or icon for each marker. The map viewer itself supports a

centering point and default zoom level.

package googlemap

MapViewer
+ centreLat : Latitude
+ centreLng : Longitude
+ zoomLevel : Ordinal

Marker
+ lat : Latitude
+ lng : Longitude
+ label : Label[0..1]
+ imageURL : ImageURL[0..1]

+markers { ordered, unique }*

Figure A.6: Map Viewer – Formal Model

Appendix A 196

Configurable Attributes

Depending on the underlying rendering engine, a number of visual attributes can be config-

ured. Both the label and icon for each marker can be customized, along with tools such as

an overview window and scale. Additionally, a map may support a title and initial position.

Configurable User Interactions

User interactions such as panning and zooming help users keep context when using a large

map. If the zoom level is too fine, a user may not know exactly what they are looking at,

but by zooming out a broader view is presented. Other interactions such as selection can

often be used to give more detail about a particular location.

Known Uses

A number of freely available on-line mapping applications exist. This includes Google and

Yahoo Maps, MapQuest and Microsoft Live Maps. Google also has a rich client mapping

tool called Google Earth.

Appendix A 197

Heat-Map

Intent

Since computer screens are inherently two-dimensional, using them to represent more that

two dimensions always results in a compromise. Heat-maps use an X- and Y-axis for the

first two dimensions, and colour value for the third.

Motivation

Figure A.7: Presentation of Trivariate Data

Understanding the relationships between trivariate data, such as price of a home, dis-

tance from work and number of bedrooms may seem like a relatively simple task. After all,

we do live in a three dimensional world. While there are some three dimensional virtual

reality displays available, these are often quite expensive and not readily available to the

average application developer.

Appendix A 198

A heat-map may be an appropriate visualization, especially if data is unique among two

dimensions. If the data is not uniquely defined but its first two dimensions a combing func-

tion must be used to calculate the colour. For example, in the case of 45 houses represented

in figure A.7, if multiple houses had the exact same price and distance, then we choose the

colour based on the maximum number of bedroom among all intersecting elements.

Using this display, we are able to see that it is possible to find a house relatively close

to work without paying a fortune although none of these houses had “lots” of bedrooms.

Formal Model
package heatmap

HeatMapViewer

HeatItem
+ XValue : Interval
+ YValue : Interval
+ label : Label
+ combiningFunction : CombiningFunction

ZValue
+ zValue : Interval

{zValues > 1 =
combiningFunction <> null}

+items { ordered, unique }*

+heatMap { ordered }

+zValues { ordered, unique }1..*

+item { ordered }

Figure A.8: Heat-Map Viewer – Formal Model

The formal model for this view contains three classes, the HeatMapViewer, HeatItem

and the ZValue (Figure A.8). The viewer contains a number of heat items, or locations on

the heat-map. Each of these items can have 1 or more ZValues. Each item can also have an

optional icon or label. The most interesting thing about this model is the CombingFunc-

tion which is mandatory if the item has more than 1 ZValue.

Appendix A 199

Configurable Attributes

Labels and colours are configurable attributes for a heat-map. However, while colours can

be chosen the colour value, the amount of white, is usually reserved for the result of the

combing function.

Unless each heat item has one and only one zValue, a combining function must be

configured. In the case of our house distance / price comparison, the colour value may be

chosen to represent the maximum number of bedrooms. Other combining functions may

include minimum or average value.

Configurable User Interactions

Interactions can be added to a heat-map in the form of selection listeners or mouse-overs,

so that when a user selects a data-point, more information is displayed. Interaction can also

be used to help users distinguish multiple zValues from a given item on the map.

Filtering can be used as an effective mechanism to hide elements which do not meet a

given criteria. This is similar to the approach used in the film finder application [AS94].

Known Uses

Heat maps are often used in conjunction with geographical maps to show the value of a

particular variable for that region. Housing prices by province, city or region is one such

example.

Appendix A 200

Table

Intent

While the use tables to visualize information has existing long before computer, the inter-

activity supported by a computer has made these user interface elements one of the most

widely used mechanisms for rendering multi-dimensional data. Using a table, each column

represents a dimension, while each row represents a unique N-Tuple. In addition to be-

ing extremely versatile, the table widget is often a standard component in a graphical user

interface toolkit.

Motivation

No single approach works well for all multi-dimensional data. Understanding how 4 or

more variables are related across a list of elements and using that data to make decisions

is highly domain dependent. Tables provide a “best effort” general means of visualizing

multi-variant data. The table is ideal for showing a variety of dimensions for a set of items,

and through row / column reordering and sorting, tables can assist users throughout the

decision making process [Ber81].

A table can support multi-variant data by representing each elements as a row (or col-

umn) and all the attributes as cells in that row (or column). Sorting and rearranging rows

and columns can help users compare attributes. According to Bertin, reordering rows and

columns in a table can greatly approve information comprehension [Ber81].

Formal Model

Tables can be seen as a list of rows, each with a list of cells, or a list of columns each

with a list of cells. Both representations are valid and the choice depends on the internal

Appendix A 201

representation that works best. For the purpose of this work, we have designed the formal

model after the former, that is, a list of rows each with a list of cells. Figure A.9 shows the

formal model for the table view.

package tableview

TableViewer

TableBody

TableRow

TableCell
+ label : Label[0..1]
+ icon : ImageURL[0..1]

TableHeader

HeaderCell
+ label : Label[0..1]
+ icon : ImageURL[0..1]
+ sorter : Sorter[0..1]

cells->size() =
tableBody.table.tableHeader.headerCells->size()

+tableBody { ordered }0..1

+table

1

+tableHeader { ordered }0..1

+rows { ordered, unique }*

+tableBody1

+cells { ordered, unique }*

+headerCells { ordered, unique }*

+header1

Figure A.9: Table Viewer – Formal Model

The table viewer model contains 6 classes. The TableViewer is the root of the model,

and it contains both a TableBody and TableHeader. The TableHeader contains a number

of elements each representing a column header.

The TableBody contains 0 or more rows, each with a number of cells. Each cell may

contain an icon or label and the column header can have an optional sorter, which sorts all

rows by the values in that column.

The only constraints specified on the this model is that each row much have the same

number of cells as all other rows. In a sparse table, some of these elements can be left

blank, that is, no label or icon would be assigned.

Configurable Attributes

The label and image for each cell in a table can be customized and in some systems, table

cells can even contain rich user interface controls. Early internet applications even used

Appendix A 202

tables nested within tables to render complex layouts.

In addition to the visual attributes, table row and column ordering can also be cus-

tomized.

Configurable User Interactions

Many interactive tables support column sorters by “clicking” on the column you wish to

sort. Some libraries allow users to reorder entire rows or columns by dragging the headers

around. These types of interactions make it much easier to compare variables, by reorga-

nizing a table to better suite the data.

Tables also routinely support tool-tips, mouse hovers and selection events (both single

cell selection and group selection), making tables a good interface control for overview in

overview+detail interfaces.

Known Uses

Tables are natively supported by almost all mainstream user interface toolkits. Tables are

also widely used on the web, as they have been part of the HTML standard since version

1.0. In addition to this, tables are the primary control for spreadsheet applications.

Appendix A 203

Parallel Coordinates

Intent

While tables can present multi-variant data, it is hard to see the results and comprehend

the data. This is because a table presents all the data, and do not use any visual cues to

distinguish or group elements.

Parallel coordinates [Ins85] is a two-dimensional techniques to visualize multidimen-

sional data. It works by plotting an n-dimensional tuple across a set of parallel axis.

Motivation

The idea of parallel coordinates was originally conceived by a PhD student working study-

ing multi-dimensional geometry. Frustrated with the fact that multi-dimensional geometry

did not support the same visual representation that two and three dimensional geometry

did, Inselberg designed the parallel coordinate system [Alf, Ins85]. Using parallel coordi-

nates, an attributes are mapped to a single vertical axis. Then each element is plotted with

respect to each of these attributes.

The parrel coordinate visualization can help spot anomalies and indicate trends among

variables.

Formal Model

Our parallel coordinate formal model consists of four classes. The ParallelCoordinate-

Viewer, the Item, the Attribute and the Value. The viewer contains a number of items

and a number of attributes. Each item has a single value for each attribute.

There are two constraints that together state that each item must be mapped to exactly

1 attribute and each attribute must have a value for each item.

Appendix A 204

package parallelcoordinateview

ParallelCoordinateViewer

ParallelCoordinateItem
+ label : Nominal

ParallelCoordinateValue
+ value : Interval

ParallelCoordinateAttribute
+ label : Nominal

{values->size() =
parallelCoordinateViewer.attributes->size()}

{values->isUnique(attribute)}

+items { ordered, unique }*

+parallelCoordinateViewer { ordered }

+attributes { ordered, unique }*

+values { ordered, unique }

*

+values { ordered, unique }

*

+attribute { ordered }1

Figure A.10: Parallel Coordinate Viewer – Formal Model

Configurable Attributes

Each dimension and each elements (lines) can be configured with a label and colour. Line

thickness and other visual cues can be used to bring attention to an item or dimension. As

well, the axis for each dimension can be configured with a max, min, scale origin value.

Configurable User Interactions

The user interactions supported by the parallel coordinate system can greatly improve the

understandability of the data. A common technique is attribute and/or item filtering. By

filtering items based on some criteria, or a brushing technique [BC87], the view can be

tailored to only show the relevant data.

One of the problems with the parallel coordinate view is the difficulty users have re-

lating attributes when they are not situated next to one another. To assist users with this

problem, the parallel coordinate view should support attribute reordering.

Appendix A 205

Known Uses

Parallel coordinates where first designed to study properties of multi-dimensional geom-

etry, but the ideas have since been applied to domain of information visualization. One

example of how parallel coordinates have been applied to interactive information visual-

ization is the design of a tool to help consumers compare features of automobiles [Sii00].

The parallel coordinate system was used to plot 406 makes of automobiles across 9 dimen-

sions.

Appendix A 206

Tree

Intent

Like the list and table viewer, the tree viewer is usually a standard component in most user

interface libraries, making it a very common visualization technique in today’s software

systems. Interactive trees are also popular because they support lazy loading, that is, items

are not loaded into the view until explicitly requested. This is why a file system explorer

can handle up to one million files or more without incurring a performance penalty.

Motivation

The tree viewer organizes data in a hierarchical manner, directly attaching child nodes to

their parents, and showing / hiding these child nodes through interactions with the parent

element. Through lazy loading, trees have successfully represented data structured of over

a million nodes while still providing an effective interface for data navigation. While trees

are prevalent in many software systems, they only work well if a user remembers the path to

the data. That is, if a user cannot remember what system the left ventricle is in, navigating

becomes difficult.

Some tree viewers support a filtering mechanism, however, the lazy loading is often sac-

rificed when this is enabled since the entire structure must be loaded if it is to be searched.

Tree viewers also support selection, mouse overs and the ability to expand / collapse

children. Because the tree viewer is such a common component in almost all widget toolk-

its, users have become familiar with them and the interactions they support.

Appendix A 207

package treeview

TreeViewer
+ filter : Filter[0..1]

TreeItem
+ label : Label[0..1]
+ icon : ImageURL[0..1]
+ sorter : Sorter[0..1]

+roots { ordered, unique }*

+viewer1

+children { ordered, unique }

*

+parentItem

1

Figure A.11: Tree Viewer – Formal Model

Formal Model

The formal model for the tree viewer contains two classes, the viewer itself (TreeViewer)

and the TreeItem. Each item can be configured with a label and an icon, and each item can

contain zero or more children. A sorter can be placed on each item to configure how the

child item are sorted. The viewer contains an optional filtering mechanism.

Configurable Attributes

Most tree viewers do not support a wide variety of configurations. Usually labels and icons

can be customized for each element in the tree, along with font style and colour. While it

may seem limiting, one of the advantages of the tree viewer is how consistent it looks and

behaves across platforms.

Configurable User Interactions

Some of the more common configurable user interactions supported by a tree viewer are

selection, mouse over and expand / collapse. A “collapse all” action is also a common

to help restore the initial state of the view. Some tree viewers even support an expand

all operation to show all the descendants, however, designers should be cautious when

providing this functionality since many graphical interfaces will not be able to handle the

Appendix A 208

load if there are too many items to display.

Known Uses

The tree viewer is available in almost all widget toolkits and used in countless systems

including directory listings, file browsers and integrated development environments.

209

APPENDIX B

Java Emitting Templates

THE following templates are used to generate model adapters for view models. Using

these templates, future modelers can extend our collection of view models and generate

adapters for their clients. These particular templates were designed to run on the Java

Emitting Template (JET) tool [Pop04].

Appendix B 210

1 <%@ j e t

2 package =” org . v i z m o d e l s . g e n e r a t o r . j e t . gen ”

3 c l a s s =” G e n C o n t e n t P r o v i d e r ”

4 i m p o r t s =” j a v a . u t i l .∗

5 org . e c l i p s e . emf . e c o r e . EClass

6 org . v i z m o d e l s . g e n e r a t o r . j e t . gen . A d a p t e r G e n e r a t o r

7 org . e c l i p s e . emf . e c o r e . ERefe rence

8 org . e c l i p s e . emf . e c o r e . E A t t r i b u t e ”

9

10 %>

11 <% GenContext c o n t e x t = (GenContext) a rgument ; %>

12 <% c o n t e x t . beg inNewFi le () ; %>

13 <% EClass r o o t C l a s s = c o n t e x t . ge tV iewer () ; %>

14 <% S t r i n g name = r o o t C l a s s . getName () ; %>

15 <% S t r i n g className = c o n t e x t . c r e a t e C o n t e n t P r o v i d e r C l a s s N a m e (r o o t C l a s s) ; %>

16 package <%= c o n t e x t . c rea tePackageName (r o o t C l a s s) %>;

17

18 i m p o r t o rg . e c l i p s e . j f a c e . v i e w e r s . I C o n t e n t P r o v i d e r ;

19 <% c o n t e x t . m a r k I m p o r t L o c a t i o n (s t r i n g B u f f e r) ; %>

20

21 /∗∗

22 ∗ <%= className %> i s t h e model a d a p t e r f o r t h e <%= name %>.

23 ∗

24 ∗ By i m p l e m e n t i n g t h i s i n t e r f a c e , you can a d a p t your model to <%= name %>.

25 ∗ /

26 p u b l i c i n t e r f a c e <%= className %> e x t e n d s I C o n t e n t P r o v i d e r {

27 /∗∗∗ S t r u c t u r a l C o n t e n t ∗∗∗ /

28 <% Set<EClass> c l a s s e s = c o n t e x t . g e t C l a s s e s (r o o t C l a s s) ; %>

29 <% f o r (EClass e C l a s s : c l a s s e s) { %>

30 <% L i s t <EReference> r e f e r e n c e s = c o n t e x t . g e t C o n t a i n m e n t R e f e r e n c e s (e C l a s s) ; %>

31 <% f o r (ERefe rence r e f e r e n c e : r e f e r e n c e s) { %>

32 <% i f (c o n t e x t . g e t C a r d i n a l i t y (r e f e r e n c e) == GenContext . CARDINALITY MANY) { %>

33 p u b l i c O b j e c t [] <%= c o n t e x t . createMethodName (r e f e r e n c e) %> (O b j e c t <%=c o n t e x t .

createParamName (r e f e r e n c e)%>) ;

34 <% } e l s e { %>

35 p u b l i c O b j e c t <%= c o n t e x t . createMethodName (r e f e r e n c e) %> (O b j e c t <%=c o n t e x t .

createParamName (r e f e r e n c e)%>) ;

36 <% } %>

37 <% } %>

38 <% } %>

39

40 /∗∗∗ Non−S t r u c t u r a l C o n t e n t ∗∗∗ /

Appendix B 211

41 <% f o r (EClass e C l a s s : c l a s s e s) { %>

42 <% L i s t <EReference> r e f e r e n c e s = c o n t e x t . g e t N o n C o n t a i n m e n t R e f e r e n c e s (e C l a s s) ; %>

43 <% f o r (ERefe rence r e f e r e n c e : r e f e r e n c e s) { %>

44 <% i f (c o n t e x t . g e t C a r d i n a l i t y (r e f e r e n c e) == GenContext . CARDINALITY MANY) { %>

45 p u b l i c O b j e c t [] <%= c o n t e x t . createMethodName (r e f e r e n c e) %> (O b j e c t <%=c o n t e x t .

createParamName (r e f e r e n c e)%>) ;

46 <% } e l s e { %>

47 p u b l i c O b j e c t <%= c o n t e x t . createMethodName (r e f e r e n c e) %> (O b j e c t <%=c o n t e x t .

createParamName (r e f e r e n c e)%>) ;

48 <% } %>

49 <% } %>

50 <% } %>

51

52 /∗∗∗ L a b e l s and Data C o n t e n t ∗∗∗ /

53 <% f o r (EClass e C l a s s : c l a s s e s) { %>

54 <% L i s t <E A t t r i b u t e > a t t r i b u t e s = c o n t e x t . g e t A t t r i b u t e s (e C l a s s) ; %>

55 <% f o r (E A t t r i b u t e a t t r i b u t e : a t t r i b u t e s) { %>

56 <% i f (c o n t e x t . g e t C a r d i n a l i t y (a t t r i b u t e) == GenContext . CARDINALITY MANY) { %>

57 p u b l i c <%= c o n t e x t . g e t R e t u r n T y p e N o n B u i l t I n (a t t r i b u t e) %>[] <%= c o n t e x t . createMethodName

(a t t r i b u t e) %> (O b j e c t <%=c o n t e x t . crea teParamName (a t t r i b u t e)%>) ;

58 <% } e l s e { %>

59 p u b l i c <%= c o n t e x t . g e t R e t u r n T y p e N o n B u i l t I n (a t t r i b u t e)%> <%= c o n t e x t . createMethodName (

a t t r i b u t e) %> (O b j e c t <%=c o n t e x t . crea teParamName (a t t r i b u t e)%>) ;

60 <% } %>

61 <% } %>

62 <% } %>

63 }

64

65 <% c o n t e x t . e m i t S o r t e d I m p o r t s () ; %>

List of Listings B.1: Jet Transformation for generating Content Providers)

Appendix B 212

1

2 <%@ j e t

3 package =” org . v i z m o d e l s . g e n e r a t o r . j e t . gen ”

4 c l a s s =” G e n C o n t e n t P r o v i d e r ”

5 i m p o r t s =” j a v a . u t i l .∗

6 org . e c l i p s e . emf . e c o r e . EClass

7 org . v i z m o d e l s . g e n e r a t o r . j e t . gen . A d a p t e r G e n e r a t o r

8 org . e c l i p s e . emf . e c o r e . ERefe rence

9 org . e c l i p s e . emf . e c o r e . E A t t r i b u t e ”

10

11 %>

12 <% GenContext c o n t e x t = (GenContext) a rgument ; %>

13 <% c o n t e x t . beg inNewFi le () ; %>

14 <% EClass r o o t C l a s s = c o n t e x t . ge tV iewer () ; %>

15 <% S t r i n g name = r o o t C l a s s . getName () ; %>

16 <% S t r i n g className = c o n t e x t . c r e a t e C o n t e n t P r o v i d e r C l a s s N a m e (r o o t C l a s s) ; %>

17 package <%= c o n t e x t . c rea tePackageName (r o o t C l a s s) %>;

18

19 i m p o r t o rg . e c l i p s e . j f a c e . v i e w e r s . I C o n t e n t P r o v i d e r ;

20 <% c o n t e x t . m a r k I m p o r t L o c a t i o n (s t r i n g B u f f e r) ; %>

21

22 /∗∗

23 ∗ <%= className %> i s t h e model a d a p t e r f o r t h e <%= name %>.

24 ∗

25 ∗ By i m p l e m e n t i n g t h i s i n t e r f a c e , you can a d a p t your model to <%= name %>.

26 ∗ /

27 p u b l i c i n t e r f a c e <%= className %> e x t e n d s I C o n t e n t P r o v i d e r {

28 /∗∗∗ S t r u c t u r a l C o n t e n t ∗∗∗ /

29 <% Set<EClass> c l a s s e s = c o n t e x t . g e t C l a s s e s (r o o t C l a s s) ; %>

30 <% f o r (EClass e C l a s s : c l a s s e s) { %>

31 <% L i s t <EReference> r e f e r e n c e s = c o n t e x t . g e t C o n t a i n m e n t R e f e r e n c e s (e C l a s s) ; %>

32 <% f o r (ERefe rence r e f e r e n c e : r e f e r e n c e s) { %>

33 <% i f (c o n t e x t . g e t C a r d i n a l i t y (r e f e r e n c e) == GenContext . CARDINALITY MANY) { %>

34 p u b l i c O b j e c t [] <%= c o n t e x t . createMethodName (r e f e r e n c e) %> (O b j e c t <%=c o n t e x t .

createParamName (r e f e r e n c e)%>) ;

35 <% } e l s e { %>

36 p u b l i c O b j e c t <%= c o n t e x t . createMethodName (r e f e r e n c e) %> (O b j e c t <%=c o n t e x t .

createParamName (r e f e r e n c e)%>) ;

37 <% } %>

38 <% } %>

39 <% } %>

40

Appendix B 213

41 /∗∗∗ Non−S t r u c t u r a l C o n t e n t ∗∗∗ /

42 <% f o r (EClass e C l a s s : c l a s s e s) { %>

43 <% L i s t <EReference> r e f e r e n c e s = c o n t e x t . g e t N o n C o n t a i n m e n t R e f e r e n c e s (e C l a s s) ; %>

44 <% f o r (ERefe rence r e f e r e n c e : r e f e r e n c e s) { %>

45 <% i f (c o n t e x t . g e t C a r d i n a l i t y (r e f e r e n c e) == GenContext . CARDINALITY MANY) { %>

46 p u b l i c O b j e c t [] <%= c o n t e x t . createMethodName (r e f e r e n c e) %> (O b j e c t <%=c o n t e x t .

createParamName (r e f e r e n c e)%>) ;

47 <% } e l s e { %>

48 p u b l i c O b j e c t <%= c o n t e x t . createMethodName (r e f e r e n c e) %> (O b j e c t <%=c o n t e x t .

createParamName (r e f e r e n c e)%>) ;

49 <% } %>

50 <% } %>

51 <% } %>

52

53 /∗∗∗ L a b e l s and Data C o n t e n t ∗∗∗ /

54 <% f o r (EClass e C l a s s : c l a s s e s) { %>

55 <% L i s t <E A t t r i b u t e > a t t r i b u t e s = c o n t e x t . g e t A t t r i b u t e s (e C l a s s) ; %>

56 <% f o r (E A t t r i b u t e a t t r i b u t e : a t t r i b u t e s) { %>

57 <% i f (c o n t e x t . g e t C a r d i n a l i t y (a t t r i b u t e) == GenContext . CARDINALITY MANY) { %>

58 p u b l i c <%= c o n t e x t . g e t R e t u r n T y p e N o n B u i l t I n (a t t r i b u t e) %>[] <%= c o n t e x t . createMethodName

(a t t r i b u t e) %> (O b j e c t <%=c o n t e x t . crea teParamName (a t t r i b u t e)%>) ;

59 <% } e l s e { %>

60 p u b l i c <%= c o n t e x t . g e t R e t u r n T y p e N o n B u i l t I n (a t t r i b u t e)%> <%= c o n t e x t . createMethodName (

a t t r i b u t e) %> (O b j e c t <%=c o n t e x t . crea teParamName (a t t r i b u t e)%>) ;

61 <% } %>

62 <% } %>

63 <% } %>

64 }

65

66 <% c o n t e x t . e m i t S o r t e d I m p o r t s () ; %>

List of Listings B.2: Jet Transformation for Synchronizing Content Providers)

214

APPENDIX C

ATL Transformations

WHILE all the ATL transformations presented in this dissertation are accurate, oc-

casionally name spaces were truncated, or uninteresting rules removed for readability. The

transformations listed below are the complete ATL transformations used to produce the all

of our interactive visualizations.

Appendix C 215

1 module HOCKEY2View ; −− Module Templa te
2 c r e a t e Outpu t : VizModel from I n p u t : Hockey ;
3
4 r u l e r1 {
5 from s : Hockey ! P l a y e r (
6 s . name = ’Wayne Gretzky ’
7)
8 to t : VizModel ! S impleBarChar tViewer (
9 c h a r t T i t l e <− ’Wayne Gre t zky \ ’ s Goals by Year ’ ,

10 x A x i s T i t l e <− ’ Goals ’ ,
11 y A x i s T i t l e <− ’ Years ’ ,
12 showDepth <− t r u e
13)
14 do {
15 t . i t e m s <− s . y e a r l y S t a t s−>c o l l e c t (e | t h i s M o d u l e . I t em (e)) ;
16 t ;
17 }
18 }
19
20 r u l e I t em (s : Hockey ! P l a y e r Y e a r l y S t a t s) {
21 to t : VizModel ! S imple I t em (
22 l a b e l <− s . y e a r . year ,
23 v a l u e <− s . g o a l s
24)
25 do {
26 t ;
27 }
28 }

List of Listings C.1: ATL Transformation: Hockey Model to Bar Chart (from Section 7.4)

Appendix C 216

1 module hockey2 t reemap ; −− Module Templa te
2 c r e a t e Outpu t : VizModel from I n p u t : Hockey ;
3
4 h e l p e r d e f : t reemapView : OclAny = OclUndef ined ;
5
6 e n t r y p o i n t r u l e s t a r t () {
7 to t : VizModel ! TreeMapViewer
8 do {
9 t h i s M o d u l e . t reemapView <− t ;

10 }
11 }
12
13 r u l e r1 {
14 from s : Hockey ! Year
15 to t : VizModel ! TreeMapItem (
16 l a b e l <− s . year ,
17 v a l u e <− s . p l a y e r s S t a t s−>c o l l e c t (e | e . g o a l s)−>sum () + 0 . 0 ,
18 c h i l d r e n <− s . p l a y e r s S t a t s
19)
20 do {
21 t h i s M o d u l e . t reemapView . c h i l d r e n <− t ;
22 t ;
23 }
24 }
25
26 r u l e r2 {
27 from s : Hockey ! P l a y e r Y e a r l y S t a t s (
28 s . g o a l s > 0
29)
30 to t : VizModel ! TreeMapItem (
31 l a b e l <− s . name ,
32 v a l u e <− s . g o a l s +0 .0
33)
34 }

List of Listings C.2: ATL Transformation: Hockey Model to TreeMap (from
Section 7.4.1)

Appendix C 217

1 module s n a p T e s t ; −− Module Templa te
2 c r e a t e Outpu t : VizModel from I n p u t : Hockey ;
3
4 h e l p e r d e f : l i s t V i e w : OclAny = OclUndef ined ;
5
6 e n t r y p o i n t r u l e s t a r t () {
7 to t : VizModel ! L i s t V i e w e r
8 do {
9 t h i s M o d u l e . l i s t V i e w <− t ;

10 }
11 }
12 r u l e r1 {
13 from s : Hockey ! P l a y e r
14 to t : VizModel ! L i s t I t e m (
15 l a b e l <− s . name
16) ,
17 b : VizModel ! S impleBarChar tViewer (
18 i t e m s <− s . y e a r l y S t a t s ,
19 c h a r t T i t l e <− s . name + ’\ ’ s P o i n t s ’
20) ,
21 m : VizModel ! MapViewer (
22 marke r s <− s . y e a r l y S t a t s−>c o l l e c t (e | e . teams)−> f l a t t e n ()−>a s S e t ()−>

c o l l e c t (f | t h i s M o d u l e . Marker (f))
23)
24
25 do {
26 t h i s M o d u l e . l i s t V i e w . i t e m s <−t ;
27 t . s n a p P o i n t <− t h i s M o d u l e . Snap (
28 Tuple{ r e f e r e n c e =b ,
29 s e l e c t i o n = OclUndef ined }) ;
30 t . s n a p P o i n t <− t h i s M o d u l e . Snap (Tuple{ r e f e r e n c e = m, s e l e c t i o n =

OclUndef ined}) ;
31
32 }
33 }
34
35 l a z y r u l e Marker {
36 from s : Hockey ! Team
37 to t : VizModel ! Marker (
38 l a b e l <− s . name
39)
40 }
41
42 r u l e BarI tem {
43 from s : Hockey ! P l a y e r Y e a r l y S t a t s
44 to t : VizModel ! S imple I t em (
45 l a b e l <− s . y e a r . year ,
46 v a l u e <− s . g o a l s + s . a s s i s t s
47)
48 }
49
50 l a z y r u l e Snap {
51 from a : TupleType (r e f e r e n c e :MOF! EObject , s e l e c t i o n :MOF! EObjec t)
52 to s : VizModel ! Snap (
53 snapTo<−a . r e f e r e n c e
54)
55 }

List of Listings C.3: ATL Transformation: SnapPoint Transformatoin (from Section 7.5)

218

APPENDIX D

Evaluation Transformations

IN this appendix, we present all the ATL transformations used in our evaluation (Chap-

ter 8). This includes transformations for:

• Transformation for creating the plug-in dependency view (Listing D.1);

• Transformation for highlighting the shortest path between two nodes (Listing D.2);

• Transformation for generating the member-area view (Listing D.3); and

• Transformation for extending the member-area view (Listing D.4)

Appendix D 219

1 module PDEView ; −− C r e a t e P l u g i n View

2 c r e a t e OUTPUT : v izmode l from INPUT : pdemodel ;

3 h e l p e r d e f : graphView : OclAny = OclUndef ined ;

4

5 r u l e r1 {

6 from s : pdemodel ! Root

7 to t : v i zmode l ! GraphViewer

8 do {

9 t h i s M o d u l e . graphView <− t ;

10 }

11 }

12

13 r u l e r2 {

14 from s : pdemodel ! B u n d l e D e s c r i p t i o n (

15 s . symbolicName = INPUT PLUGIN

16)

17 to t : v i zmode l ! GraphNode (

18 l a b e l <− s . symbolicName ,

19 c o l o u r <− # Green ,

20 o u t g o i n g <− s . r e q u i r e d B u n d l e s−>c o l l e c t (e | t h i s M o d u l e . c o n n e c t i o n (e))

21)

22

23 do {

24 t h i s M o d u l e . graphView . nodes <−t ;

25 }

26 }

27

28 l a z y r u l e c o n n e c t i o n {

29 from s : pdemodel ! B u n d l e S p e c i f i c a t i o n

30 to t : v i zmode l ! GraphEdge (

31 d e s t <− t h i s M o d u l e . r3 (s . d e s c r i p t o r)

32)

33

34 do {

35 t h i s M o d u l e . graphView . edges <−t ;

36 }

37 }

38

39 u n i qu e l a z y r u l e r3 {

40 from s : pdemodel ! B u n d l e D e s c r i p t i o n

41 to t : v i zmode l ! GraphNode (

42 l a b e l <− s . symbolicName ,

Appendix D 220

43 o u t g o i n g <− s . r e q u i r e d B u n d l e s−>c o l l e c t (e | t h i s M o d u l e . c o n n e c t i o n (e))

44)

45 do {

46 t h i s M o d u l e . graphView . nodes <−t ;

47 }

48 }

List of Listings D.1: ATL Transformation: Create Plug-in Dependency View

Appendix D 221

1 module S h o r t e s t P a t h ; −− Module Templa te

2 c r e a t e OUTPUT : v izmode l from INPUT : v izmode l ;

3

4

5 h e l p e r d e f : c o m p u t e P r e v i o u s P a t h (p r e v i o u s : Map(v izmode l ! GraphNode , I n t e g e r) , d e s t :

v i zmode l ! GraphNode) :

6 Sequence (v izmode l ! GraphNode) =

7 i f p r e v i o u s . g e t (d e s t) = OclUndef ined t h e n

8 Sequence{ d e s t }

9 e l s e

10 t h i s M o d u l e . c o m p u t e P r e v i o u s P a t h (p r e v i o u s , p r e v i o u s . g e t (d e s t))−>un ion (

Sequence{ d e s t })

11 e n d i f ;

12

13

14 r u l e s h o r t e s t P a t h (nodes : v i zmode l ! GraphNode , s r c : v i zmode l ! GraphNode , d e s t : v i zmode l !

GraphNode) {

15 u s i n g {

16 dValues : Map (v izmode l ! GraphNode , I n t e g e r) = Map{} ;

17 p r e v i o u s : Map (v izmode l ! GraphNode , I n t e g e r) = Map{} ;

18 }

19 do {

20 f o r (n i n nodes) {

21 i f (n = s r c) {

22 dValues <− dValues . un ion (Map{ (n , 0) }) ;

23 }

24 e l s e {

25 dValues <− dValues . un ion (Map{ (n , 100000) }) ;

26 }

27 }

28 f o r (head i n nodes) {

29 f o r (edge i n head . incoming) {

30 i f (dValues . g e t (head) + 1 < dValues . g e t (edge . s r c)) {

31 p r e v i o u s <− p r e v i o u s . un ion (Map{ (edge . s r c , head) }) ;

32 dValues <− dValues . un ion (Map{ (edge . s r c , dValues .

g e t (head) + 1) }) ;

33 }

34 }

35 }

36 t h i s M o d u l e . c o m p u t e P r e v i o u s P a t h (p r e v i o u s , d e s t) ;

37 }

38 }

Appendix D 222

39

40 h e l p e r d e f : c r e a t e Q u e u e (s r c : v i zmode l ! GraphNode , d e s t : v i zmode l ! GraphNode) :

41 O r d e r e d S e t (v i zmode l ! GraphNode) =

42 l e t

43 s u b P a t h : O r d e r e d S e t (v i zmode l ! GraphNode) = s r c . incoming−> i t e r a t e (

edge ; e l e m e n t s : O r d e r e d S e t (v i zmode l ! GraphNode) = O r d e r e d S e t

{} |

44 e l emen t s−>un ion (t h i s M o d u l e . c r e a t e Q u e u e (edge . s r c ,

d e s t))

45)

46 i n

47 i f s r c = d e s t

48 t h e n

49 O r d e r e d S e t { d e s t }

50 e l s e

51 i f subPa th−>s i z e () > 0

52 t h e n

53 (O r d e r e d S e t { s r c })−>un ion (s u b P a t h)

54 e l s e

55 O r d e r e d S e t {}

56 e n d i f

57 e n d i f ;

58

59 h e l p e r d e f : getNode (s : S e t (v i zmode l ! GraphNode) , name : S t r i n g) :

60 v izmode l ! GraphNode =

61 s−>s e l e c t (p | p . l a b e l = name)−> f i r s t () ;

62

63 h e l p e r d e f : h i g h l i g h t : S e t (v i zmode l ! GraphNode) = S e t {} ;

64

65 r u l e r1 {

66 from s : v i zmode l ! GraphViewer

67 u s i n g {

68 d e s t : v i zmode l ! GraphNode = t h i s M o d u l e . getNode (v izmode l ! GraphNode .

a l l I n s t a n c e s () , ’ o rg . e c l i p s e . mylyn . pde . u i ’) ;

69 s r c : v i zmode l ! GraphNode = t h i s M o d u l e . getNode (v izmode l ! GraphNode .

a l l I n s t a n c e s () , ’ o rg . e c l i p s e . t e x t ’) ;

70 }

71 to t : v i zmode l ! GraphViewer (

72 nodes <− s . nodes ,

73 edges <− s . edges

74)

75 do {

Appendix D 223

76 t h i s M o d u l e . h i g h l i g h t <− t h i s M o d u l e . s h o r t e s t P a t h (t h i s M o d u l e . c r e a t e Q u e u e (s r c

, d e s t)−>asSequence () , s r c , d e s t) ;

77 }

78 }

79

80 r u l e r2 {

81 from s : v i zmode l ! GraphNode

82 to t : v i zmode l ! GraphNode (

83 l a b e l <− s . l a b e l ,

84 c o l o u r <− i f t h i s M o d u l e . h i g h l i g h t−>i n c l u d e s (s)

85 t h e n

86 #Red

87 e l s e

88 # D e f a u l t

89 e n d i f

90)

91 }

92

93 r u l e r3 {

94 from s : v i zmode l ! GraphEdge

95 to t : v i zmode l ! GraphEdge (

96 s r c <− s . s r c ,

97 d e s t <− s . d e s t ,

98 c o l o u r <− i f t h i s M o d u l e . h i g h l i g h t−>i n c l u d e s (s . s r c) and t h i s M o d u l e .

h i g h l i g h t−>i n c l u d e s (s . d e s t)

99 t h e n

100 #Red

101 e l s e

102 # D e f a u l t

103 e n d i f

104

105)

106 }

List of Listings D.2: ATL Transformation: Shortest Path Transformation

Appendix D 224

1 module MemberAreaView ; −− Member Area View

2 c r e a t e OUTPUT : v izmode l from INPUT : s h r i m p b i b ;

3

4 h e l p e r d e f : graphView : OclAny = OclUndef ined ;

5

6 r u l e r1 {

7 from s : s h r i m p b i b ! User

8 to t : v i zmode l ! GraphNode (

9 l a b e l <− s . n i c k

10) ,

11 edges : d i s t i n c t v i zmode l ! GraphEdge f o r e a c h (e i n s . documents) (

12 s r c <− s ,

13 d e s t <− e

14)

15 do {

16 t h i s M o d u l e . graphView . nodes <− t ;

17 t h i s M o d u l e . graphView . edges <− edges ;

18 }

19 }

20

21 r u l e a r e a {

22 from s : s h r i m p b i b ! Area

23 to t : v i zmode l ! GraphNode (

24 l a b e l <− s . name

25)

26 do {

27 t h i s M o d u l e . graphView . nodes <− t ;

28 }

29 }

30

31 r u l e r2 {

32 from s : s h r i m p b i b ! Document

33 to t : v i zmode l ! GraphNode (

34 l a b e l <− s . t i t l e ,

35 f i s h e y e N o d e <− t r u e ,

36 h i d e T e x t <− t r u e

37) ,

38 edges : d i s t i n c t v i zmode l ! GraphEdge f o r e a c h (e i n s . a r e a) (

39 s r c <− s ,

40 d e s t <− e ,

41 c o l o u r <−#Red

42)

Appendix D 225

43 do {

44 t h i s M o d u l e . graphView . nodes <− t ;

45 t h i s M o d u l e . graphView . edges <− edges ;

46 }

47 }

48

49 e n t r y p o i n t r u l e r2 () {

50 to t : v i zmode l ! GraphViewer

51 do {

52 t h i s M o d u l e . graphView <− t ;

53 }

54 }

List of Listings D.3: ATL Transformation: SHriMPBib Member Area View

Appendix D 226

1 module MemberAreaView2 ; −− Member Area View 2

2 c r e a t e OUTPUT : v izmode l from INPUT : s h r i m p b i b ;

3

4 h e l p e r d e f : graphView : OclAny = OclUndef ined ;

5

6 r u l e r1 {

7 from s : s h r i m p b i b ! User

8 u s i n g {

9 u s e r a r e a s : Sequence (s h r i m p b i b ! Area) = s . documents−>c o l l e c t (e | e . a r e a)−>

f l a t t e n () ;

10 u n i q u e a r e a s : S e t (s h r i m p b i b ! Area) = u s e r a r e a s . a s S e t () ;

11 }

12 to t : v i zmode l ! GraphNode (

13 l a b e l <− s . n ick ,

14 c o l o u r <−#Orange

15)

16 edges2 : d i s t i n c t v i zmode l ! GraphEdge f o r e a c h (e i n u n i q u e a r e a s) (

17 s r c <− s ,

18 d e s t <− e ,

19 l a b e l <− u s e r a r e a s−>c o u n t (e) . t o S t r i n g ()

20)

21 do {

22 t h i s M o d u l e . graphView . nodes <− t ;

23 t h i s M o d u l e . graphView . edges <− edges2 ;

24 }

25 }

26

27 r u l e a r e a {

28 from s : s h r i m p b i b ! Area

29 to t : v i zmode l ! GraphNode (

30 l a b e l <− s . name

31

32)

33 do {

34 t h i s M o d u l e . graphView . nodes <− t ;

35 }

36 }

37

38 e n t r y p o i n t r u l e r2 () {

39 to t : v i zmode l ! GraphViewer

40 do {

41 t h i s M o d u l e . graphView <− t ;

Appendix D 227

42 }

43 }

List of Listings D.4: ATL Transformation: SHriMPBib Member Area View 2

	Supervisory Committee
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	List of Abbreviations
	Acknowledgement
	I The Problem
	Introduction
	 Motivation
	 The Problem
	 Goals and Objectives
	 Approach
	 Scope
	 Evaluation
	 Contributions
	 Organization of Thesis

	Model Driven Engineering
	 Software Customization
	 An Introduction to Software Modeling
	 Example System

	 Models
	 Model Constraints
	 Object Constraint Language

	 Model Transformations
	 Text to Model Transformations
	 Model to Text Transformations
	 Model to Model Transformations

	 Model Driven User Interfaces
	 Drawbacks of MDE
	 Summary

	Designing and Customizing Information Visualizations
	 Information Visualization
	 Enabling Visualizations Through Technology
	 Information Visualization Taxonomies
	 Customizations of Visualizations
	 Data Customization
	 Presentation Customization
	 Control / Behaviour Customization
	 Current Approaches to Visualization Customization
	 Discussion

	A Study of how Visualizations are Created
	 Case Study Overview
	 Generic Visualization Tools
	 Many Eyes
	 Many Eyes Model
	 Many Eyes Views
	 Many Eyes View Creation
	 Many Eyes Presentation Customization
	 Many Eyes Control / Behaviour Customization
	 Many Eyes: Lessons Learned

	 Business Intelligent and Reporting Tool
	 BIRT Model
	 BIRT Views
	 BIRT View Creation
	 BIRT Presentation Customization
	 BIRT Control / Behaviour Customization
	 BIRT: Lessons Learned

	 Domain Specific Visualizations
	 Jambalaya
	 Jambalaya Model
	 Jambalaya Views
	 Jambalaya View Creation
	 Jambalaya Presentation Customization
	 Jambalaya Control / Behaviour Customization
	 Jambalaya: Lessons Learned

	 Portable Bookshelf (PBS)
	 PBS Model
	 PBS Views
	 PBS View Creation
	 PBS Presentation Customization
	 PBS Control / Behaviour Customization
	 PBS: Lessons Learned

	 Creole: Software Visualization
	 Creole Model
	 Creole Views
	 Creole View Creation
	 Creole Presentation Customization
	 Creole Control / Behaviour Customization
	 Creole: Lessons Learned

	 Task Specific Visualizations
	 The Plug-in Model
	 The Plug-in View
	 Customizing the View
	 Configuring the Presentation
	 Configuring the Control / Behaviour
	 Custom Visualization: Lessons Learned

	 Discussion
	 Functional Requirements
	 Design Recommendations
	 Summary

	II The Solution
	A Catalog of Platform Independent View Models
	 Types of Data
	 Pattern Language
	 Catalog of Patterns
	 Future Work
	 Summary and Limitations

	Zest: A Visualization Toolkit for Eclipse
	 Modularizing Graph Based Visualizations
	 Why Design this Framework?
	 MVC Framework
	 The Architecture of Zest
	 Additional Zest Views
	 Discussion

	Model Driven Visualization
	 NHL Statistics: A Running Example
	 MDV: An Overview
	 Generating the Models
	 Running Example: Generating the Map Viewer

	 Formalizing View Creation
	 Running Example: Specifying the View

	 Integrating Multiple Views: Snap Points
	 Running Example: Linking Multiple Views

	 Tool Support
	 Discussion

	III The Evaluation
	Evaluation
	 MDV: A Visualization Customization Environment
	 Functional Requirements
	 Design Recommendations

	 Creating Exemplar Visualizations
	 Jambalaya View
	 Extending the Member-Area View
	 Plug-in View
	 Outcome

	 Validating the Goals of Model Driven Engineering
	 Modeling in Practice
	 Limitations

	Conclusions
	 Future Work
	 Study the evaluation of API design for a graphing toolkit
	 MDE Tool Support
	 Generating Interactivity Through UML Activity Diagrams
	 Other ways to integrate multiple views
	 Finer Granularity for View Models
	 Improved MDE Education

	 Contributions
	 Contributions to the Information Visualization Community
	 Contributions to the Model Driven Engineering Community
	 Contributions to the Software Engineering Community

	References
	Appendix Visualization Patterns
	Appendix Java Emitting Templates
	Appendix ATL Transformations
	Appendix Evaluation Transformations

