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Abstract
We propose a visualization design space for representing
unquantified uncertainty in percent composition drug check-
ing test results using pie and cake charts during the opioid
crisis. The design space generates alternatives for use in a
visual drug report design study that may improve decision-
making concerning illicit drug use. Currently, communica-
tion of drug checking test results does not capture the un-
certainty in drug checking tests, leading to poor and poten-
tially harmful decisions. The design alternatives generated
by the design space aim to empower people who use drugs
with drug sample information and facilitate harm reduction
efforts. Our visualizations may apply to other drug checking
services and to scenarios where uncertainty visualization
researchers wish to notify end users of the presence of
unquantified uncertainty in safety-critical decision-making
contexts like those found during the opioid crisis.

Author Keywords
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CCS Concepts
•Human-centered computing→ Information visualiza-
tion;
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Introduction and Background
We present a design space for representing unquantified
uncertainty in percent composition drug checking test re-
sults, where percent composition refers to the proportional
contribution of a substance to a drug sample’s makeup.
We are collaborating with a drug checking service team
in Victoria BC 1 to produce a visual drug checking test re-
sults report (visual report) that supports decision-making
by people who access the services, notably people who
use drugs. We undertook this research because people
who use drugs cannot be certain of drug composition as
the illicit drug market is an unregulated market. Opioids—
particularly fentanyl and its potent chemical analogs— have
been linked to at least 2,142 deaths between January 2019
and June 2019, of which 94% were ruled accidental2.

Figure 1: Our design study
timeline. The design space was
essential in preparing the design
feedback survey.

Currently, drug checking test results are presented to ser-
vice users during in-person conversations with harm reduc-
tion and chemical analysis staff in the service. However,
misunderstanding percent composition data, especially fen-
tanyl composition, could lead to overdose for drug users.

A global review of drug checking efforts [1] lists eight meth-
ods of communicating drug checking test results. Of the
reported methods, none we saw a) present uncertainty in
their reports, b) expose or resolve discrepancies between
tests, or c) provide fentanyl-specific indicators. These three
aspects are, however, critical to our collaborators who use
five distinct mobile chemical analysis systems to deliver
drug sample information.

The work we present in this paper is part of the larger de-
sign study research project targeted at generating a com-
prehensive visual test results report for the drug checking

1substance.uvic.ca
2https://infobase.phac-aspc.gc.ca/datalab/national-surveillance-opioid-

mortality.html

service (see Figure 1). Here we focus on the visualization
design space that was crucial in the second iteration of our
design study methodology. First we describe the type and
extent of the uncertainty being visualized and present a
subset of relevant requirements from our design study. We
then present the selected proportional charts, describe the
design space, and the resulting uncertainty enhanced chart
designs. Finally we discuss design space qualities, effec-
tiveness and future research.

Context and Related Work
In this section we describe contextual information we gath-
ered during the design study and survey of literature.

Data Format and Uncertainty Sources
The drug checking service uses five types of chemical
analyses to generate drug sample data. Percent compo-
sition drug sample data is generated by mixture analysis
from infrared absorption measurements. Infrared absorp-
tion spectra from a sample containing potentially multi-
ple active ingredients and cutting agents are compared to
spectra of pure components to determine the identity of
the components, and their approximately percent composi-
tion. Results of matches are stored as a pair: the name of
the substance, and the percent composition (when deter-
mined). There are multiple sources of unavoidable uncer-
tainty present in this data type which we show in the side-
bar. Despite the challenges faced in visualizing uncertainty,
research in uncertainty visualization highlights the risky
exclusion, and beneficial inclusion, of uncertainty in data-
driven decision making activities [13]. Correll declares that,
as ethically responsible visualization design researchers,
“We ought to visualize hidden uncertainty” [5, p.8].
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Characterizing Uncertainty
Walker and Marchau describe four levels of uncertainty
within decision support systems [17]. Level 1 and 2 are
shallow uncertainty, and medium uncertainty, wherein un-
certain alternatives are somewhat describe-able. Level
3 and 4 are deep uncertainty, and recognized ignorance,
where little to nothing is known of uncertain alternatives.

Sources of Uncertainty:
• Measurement Error: The

software bundled with
mobile IR absorption
systems has limited error
reporting abilities, and
service turnaround is
paramount.

• Manual Subtraction Pro-
cess: The chemical an-
alysts iteratively subtract
components from those
identified by the FTIR
system. Each component
subtraction produces
another list which can
cause non-determinism
in the subsequent com-
ponents identified.

• Sensitivity: The limit
of detection for IR ab-
sorption depends on the
absorption coefficient
of individual molecules
in the mixture but is
generally around 3% of
weight. Opioids can be
dangerous below 3%.

• Incomplete Component
Library: The libraries the
FTIR depends upon may
not possess important
chemical signatures of
new opioid analoques,
limiting the ability to
identify them.

Potter et al. [11] describe two categories of uncertainty;
aleatoric uncertainty and epistemic uncertainty. Aleatoric
uncertainties are unknowns that arise from statistical varia-
tions in measurements. Epistemic uncertainties represents
unmitigated unknowns that arise from practical knowledge
or measurement limitations. The IR absorption data from
our service contains both aleatoric and epistemic uncer-
tainty sources, the combination of which produces level 4
uncertainty, which we name unquantified uncertainty.
Despite the uncertainty in the data being unquantified, pro-
viding uncertainty information in drug checking test results
is critical in satisfying our safety and ethical requirements.

Visualizing Uncertainty
Beard and MacKaness’s [2, p.40] describe three levels of vi-
sual data quality assessments for decision-makers: notifica-
tion, identification, and quantification. Notification indicates
the potential of data problems, identification categorizes the
nature of the data quality issue, and quantification shows
both the nature and extent of the data problem. In this re-
search we attempt to notify service users of a data problem,
as opposed to quantifying a data problem.

During our design study we carefully selected charts to
present percent composition data to suit the context and
design requirements. Of the charts explored, pie charts
display percent composition data effectively and are famil-
iar charts [7]. However, given the controversy of pie charts
[15], we also included a complementary alternative chart for

stakeholders to choose from during design feedback ses-
sions: the cake chart [3], which is essentially a linearized
pie chart. Figure 2 illustrates these two types of charts.

Olston and Mackinlay [10] introduce a technique called am-
biguation we adapt to displaying unquantified uncertainty
in proportional charts. Combining ambiguation and the ap-
plication of Bertin’s visual variables [4] (and extensions) to
uncertainty visualization [9] we conducted design iterations
to identify which visual variables we can manipulate to con-
vey unquantified uncertainty to our stakeholders.

Requirements Analysis
We used an iterative requirements gathering process to
generate and evaluate designs with stakeholders as shown
in Figure 1. At each iteration we generated what Hevner [6]
calls requirements and acceptance criteria: requirements
criteria are design cycle inputs used to generate design al-
ternatives, whereas acceptance criteria are design cycle in-
puts used to measure the effectiveness of the design within
the application domain. We kept consolidating these criteria
in subsequent design iterations.

The non-functional requirements related to our design
goal are a) accessibility to all demographics, b) empow-
erment of service users with access to underlying data,
c) readability of reports with and without service staff, d)
transparency of result uncertainty, and, e) usability of the
visual report within the harm-reduction conversation and in
safety-critical decision-making.

The functional requirements related to our design goal are
a) to use only black and white in report design to enable
reliable paper copy printing of visual report, b) to show the
presence of proportional error despite lack of error quan-
tification, and, c) not to add marks or legends in addition to
proportional chart designs.
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These requirements describe desirable qualities of valid
designs for visualizing the unquantified uncertainty drug
testing results data.

An Unquantified Uncertainty Design Space

Figure 2: The proportional charts.

For clarity, our use of the design space term is to indicate
a dimensionally described space of design possibilities. To
lay out the design space of unquantified uncertainty in pie
charts and cake charts, we followed the four steps summa-
rized in the sidebar and that we describe in this section.

The four steps for creating our
design space for unquantified
uncertainty:

1. Decomposition: Break-
down baseline charts.

2. Dimensions: Outline de-
sign space dimensions.

3. Exploration: Explore
design space abilities.

4. Application: Apply de-
sign space to problem.

5. Evaluation: Evaluate
resulting designs.

1.0 Chart Decomposition
To visually encode uncertainty in pie and cake charts, we
decomposed the charts into six visual marks and their vi-
sual variables. We identify six visual marks that both charts
share which we show in Figure 3.

• Boundary Edge Marks: The edge between chart
segments perpendicular to the percent axis.

• Magnitude Edge Marks: The edge indicating seg-
ment size parallel to the percent axis.

• Label Marks: The textual segment labels.
• Areas Marks: The space contained within the bound-

ary and magnitude edge marks.
• Axis Marks: The regularly spaced markings and text

parallel to magnitude edge marks used to make seg-
ment size comparisons. Ignored in exploration and
application stages as they don’t present data points.

• Chart Legend: The legend containing pairs of area
mark colour and segment information. Also ignored
as visually redundant in our colorless application.

2.0 Design Space Dimensions
Together visual marks and their visual variables make up
the dimensions of the design space. The visual variables
control the visual appearance of visual marks, e.g., color,

Figure 3: Decomposition of pie and cake chart into visual marks.

width and texture [4]. Visual variables also possess meta-
variables. A meta-variable we explore later is the extent of
manipulation we are applying to the visual variable. The
number of dimensions in this design space is the multipli-
cation: visual marks × visual variables = D. A point in the
design space is therefore a D-length-tuple populated with
design choices for each of the design dimensions. To nav-
igate through the design space, one can do so by manipu-
lating the visual variables of each of the visual marks by a
chosen degree.

3.0 Exploring Design Concepts
In this step we freely explored and reflected on the design
space’s abilities without consideration to contextual require-
ments using the five design sheets methodology [12]. We
used visual variables such as color, length, width and pat-
tern to encode uncertainty on each of the visual marks to
characterize the balance between encoding uncertainty on
separate visual marks and maintaining baseline chart func-
tionality. We show example results of changing the extent of
modifications to individual visual variables in Figure 4, with
some design concepts working better than others.
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Figure 4: A systematic exploration of the design space to identify which visual marks and visual variables are best suited to notifying service
users of the presence of a data problem in the proportional charts. We explore changes to one visual mark in small, medium, and large extents
at a time to understand the balance between baseline chart functionality and introducing unquantified uncertainty.
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4.0 Application
We then applied the design space to solve our design chal-
lenge of notifying service users of the presence of problems
in percent composition data proportions while satisfying our
contextual requirements. Notably relevant requirements are
using only black and white, not depending on quantified un-
certainty values, public accessibility, and readability without
service staff assistance.

Figure 5: We show examples of
produced design alternatives. A
green star shows the voted chart.

Though detailing the origin of these requirements is be-
yond the scope of this paper, they are derived from our
stakeholders, context and literature. Unsurprisingly, our
collaborators found visual marks well-suited to conveying
proportions more intuitive at indicating proportional uncer-
tainty. This concept aligns closely with the “ambiguation"
concept introduced by Olston and Mackinlay [10]. We used
Skau and Kosara’s work [7, 16, 8] indicating that central an-
gles of pie charts are less important than arc lengths and
areas in conveying proportion sizes to identify unquanti-
fied variations to the line style and width visual variables
to the boundary edge visual mark as our best design con-
cept as shown in Figure 5. We translated these pie chart
ideas to the cake chart dimensions and conducted a design
feedback survey with our service collaborators to finalize
design decisions. Our ten collaborators range from 22 to 47
years old and are equally split between men and women.
The most popular design was the unquantified uncertainty
zig-zag cake chart highlighted with a green star in Figure 5
based on design comments and vote count.

Discussion, Future Work and Conclusion
Schulz et al. [14] propose to discuss design spaces in
terms of completeness and consistency. The completeness
of a design space is described by its ability to sufficiently
populate its problem space with design solutions [14]. The
completeness of our design space is satisfactory as it gen-

erates designs that fill all problem spaces we encountered
and are accepted as design solutions for our context by
our stakeholders. The consistency of a design pace is de-
termined by the frequency of design space points which
produce invalid designs (i.e. design instances that violate
a basic requirement of the design space) [14]. The con-
sistency of our design space is also satisfactory as widely
varying design manipulations along single and multiple si-
multaneous dimensions generated numerous valid design
concepts for use in our design feedback survey.

We agree that pie chart angles are poor indications of seg-
ment size [16] because of our stakeholders perceiving a
limited reduction in baseline functionality of the pie chart
with modified boundary edges. However we would like to
reinforce this perception with empirical explorations of effec-
tive unquantified uncertainty visualizations. We also agree
with literature indicating some signification concepts more
closely represent uncertainty within data than others [9].

As visualization researchers working within drug check-
ing contexts, we must consider ethical and safety concerns
if we are to empower people who use drugs to make in-
formed decisions about their drug use. We hope effective
unquantified uncertainty designs generated out of this de-
sign space will transfer between drug checking services as
parts of visual reports, and to non-drug checking decision-
support scenarios dealing with unquantified uncertainty.

Our future work involves further iterations in our design
study, implementing and deploying selected designs into
the visual drug checking test result reports software, and
evaluating alternatives in lab and field settings. We would
also like to further explore the ethical ramifications of safety-
critical decision-making uncertainty visualization.
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