
CloneCompass: Visualizations for Exploring
Assembly Code Clone Ecosystems
Ying Wang, Jorin Weatherston, Margaret-Anne Storey, Daniel M. German

Department of Computer Science
University of Victoria

Victoria, Canada
yingwang2@uvic.ca, jorinw@uvic.ca, mstorey@uvic.ca, dmg@uvic.ca

Abstract—Assembly code analysis is an intensive process
undertaken by security analysts and reverse engineers to dis-
cover vulnerabilities in existing software when source code is
unavailable. Kam1n0 is an efficient code clone search engine
that facilitates assembly code analysis. However, Kam1n0 search
results can contain millions of function-clone pairs, and efficiently
exploring and comprehensively understanding the resulting data
can be challenging. This paper presents a design study whereby
we collaborated with analyst stakeholders to identify require-
ments for a tool that visualizes and scales to millions of function-
clone pairs. These requirements led to the design of an interactive
visual tool, CloneCompass, consisting of novel TreeMap Matrix
and Adjacency Matrix visualizations to aid in the exploration of
assembly code clones extracted from Kam1n0. We conducted
a preliminary evaluation with the analyst stakeholders and
show how CloneCompass enables these users to visually and
interactively explore code clone data generated from software
systems with suspected vulnerabilities.

Index Terms—visualization, assembly code clone, Kam1n0,
matrix-based view, reverse engineering

I. INTRODUCTION

In software engineering, the security analysis of binaries
requires the inspection of large systems without their source
code. Instead, assembly is examined to identify security vul-
nerabilities. Analysts typically have to inspect many different
applications, and each of them can consist of millions of
assembly level instructions. Code clone detection is frequently
used to improve the productivity of assembly code analysts:
if a vulnerability is found in a code fragment, its clones are
likely vulnerable as well. Similarly, if a code fragment is safe,
its clones might be inspected for vulnerabilities with a lower
priority.

Kam1n0 is an efficient assembly code clone search engine
to support the analysis of vulnerabilities in binaries [1]. It
is capable of finding cloned functions in a single binary
and across a set of binaries. Kam1n0 uses a few different
visualizations to support clone inspection:

1) A flow graph view, a text diff view, and a clone group
view1 are used to compare the subgraphs of two functions.

This research is supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and Defence Research and Development
Canada (DRDC).

1https://github.com/McGill-DMaS/Kam1n0-Community

These views are useful for comparing the details of two
functions when analysts search for a given function.

2) A detailed view shows the similarities between a target
function and its clones.

3) A summary view shows statistics about the clones of two
binaries.

Kam1n0’s features are quite effective at helping analysts
inspect clones and assess their potential vulnerabilities. How-
ever, a large software ecosystem can contain a very large
number of clone pairs. For example, the search results of
several chromium-based software systems can contain over 90
millions clone pairs. Using the current detailed and summary
views is challenging when inspecting a large number of clones.
What is needed is a high-level view of the cloning of a set of
software binaries and the ability to navigate and inspect clones
in specific regions of the clone dataset.

In this paper, we describe a visualization environment for
assembly clone analysis called CloneCompass. CloneCompass
implements a pairing of two visualizations for very large clone
sets: a novel visualization TreeMap Matrix (see Fig. 1 (a)) and
an Adjacency Matrix (see Fig. 1 (b)). CloneCompass provides
many-to-many comparisons for large-scale datasets and en-
ables reverse engineers2 to efficiently explore clones identified
by Kam1n0. Throughout the exploration, reverse engineers
can gain insights about the software ecosystem under analysis
and more efficiently find vulnerabilities, which is critical in
security analysis. To identify Kam1n0 users’ needs and find an
efficient visual solution to address their issues, we conducted
a design study [2] with Kam1n0’s creators, researchers in the
Data Mining and Security (DMaS) Lab at McGill University3,
and Kam1n0’s end users, reverse engineers from Defence Re-
search and Development Canada (DRDC). Our contributions
include the design of a novel matrix-based TreeMap view
which coordinates with an Adjacency Matrix for clone analysis
(implemented in CloneCompass), a problem characterization
for assembly clone analysis, and an initial evaluation of
CloneCompass through which we deepened our understanding
of the requirements for assembly clone analysis. A demo

2We use the terms reverse engineer and security analyst interchangeably
throughout the paper.

3http://dmas.lab.mcgill.ca/



video of CloneCompass can be viewed at the following link
https://youtu.be/IIcefibBalI.

II. RELATED WORK

In this section, we focus on visualizations used in code clone
analysis and matrix-based visualizations for large-scale graphs.

A. Visualization for Code Clone Analysis

Visualizations such as node-link diagrams and matrix-based
views have been used for code clone analysis.

Many node-link diagrams are used during clone analysis
according to different abstraction units. The analysis of soft-
ware can be broken down along a code abstraction spectrum
based on the unit of analysis. At the low end of abstraction are
snippets, lines of code, function blocks, etc., whereas methods,
classes, files, module, versions, programs, etc. exist at the
higher end of code abstraction.

SoftGUESS [3] uses node-link trees to show evolutionary
code clone behaviors. The nodes in a node-link tree can
be snippets, methods, classes, etc., and the edges can be
dependencies, cloning relationships, etc. Although SoftGUESS
is able to show over 8,000 nodes and 30,000 edges, the search
results from Kam1n0 can contain millions of edges, so node-
link trees do not scale to these needs. ClonEvol [4] uses radial
trees to show changes across thousands of versions. However,
ClonEvol only displays higher level abstraction units, such
as projects, files, and scopes. A lower level abstraction unit
(e.g., functions) can greatly increase the size of the graph that
needs to be displayed because a file or project can contain a
large number of functions. Icicle plot graphs have also been
used to show lines of code, but only two versions of software
can be compared with this approach [5] [6]. The results from
Kam1n0 can contain multiple versions, so icicle plot graphs
are not suitable for our needs.

Because of the need to present many-to-many comparisons,
we chose to explore matrix-based views, which are commonly
used in code clone analysis. D-CCFinder [7] uses scatter plots
and color heatmaps to show frequently used code because they
produce recognizable patterns. In another study, a heatmap was
used to display the code clone coverage ratio between different
versions of the Linux kernel [8]. A matrix-based view has
also been used to compare software at multiple levels. For
instance, live scatterplots [9] were implemented to analyze
the similarities between two systems at multiple levels of data
abstraction, such as files, directories, or subsystem directories.
This prior work indicated that matrix-based views might be a
good option for our purposes.

B. Matrix Views for Large-Scale Data

As the search results from Kam1n0 can contain millions of
function-clone pairs, we consider here how matrix views may
scale for large graphs.

The Adjacency Matrix is a typical matrix-based view used
for many-to-many comparative analysis. Adjacency matrices
are a practical way to display large, undirected networks [10],
and they can scale up to 1,000 nodes and 1,000,000 edges [11].

However, the search results from Kam1n0 can consist of
millions of edges, which is where the Adjacency Matrix
falls short. Fortunately, many researchers have proposed some
approaches for large matrix-based graphs, as discussed below.

There are limits of what humans can understand and what
computers can display with current visualization techniques.
One way to tackle these issues for large-scale data is to
visualize data by showing an overview first and then pro-
viding details on demand [12] [13]. Several studies propose
a zoomable Adjacency Matrix for hierarchical data, such as
software architectures [14] [15] and phone traffic [16]. Hier-
archical data is shown at multiple levels: an overview displays
parent nodes (i.e., nodes at higher levels in the hierarchy) in
rows and columns, and the comparison of two parent nodes is
shown in the intersection of a row and a column in a zoomable
Adjacency Matrix [16]. By zooming in on a specific area, a
comparison between the child nodes (i.e., nodes at lower levels
in the hierarchy) of specified parent nodes is shown on the
screen.

For data without a hierarchical structure, aggregation tech-
niques can be applied to abstract the nodes into groups, with
each group containing multiple nodes. MatrixExplorer [17]
is one technique that shows the distribution of aggregated
nodes in an overview. The overview contains compact ordered
rectangles, with the size and color of each rectangle indicating
the number of aggregated nodes. In other approaches, the
overview uses a matrix-based structure but the nodes at rows
and columns are replaced by aggregated nodes. For instance,
Honeycomb [18] introduces an aggregation technique to col-
lapse multiple cells into one cell and uses color luminance to
show the density of the edges in that area.

ZAME [19] provides eight different glyphs used in the cells
of the Adjacency Matrix (such as color shade, average, and
histogram) to show the distribution of the comparison between
two aggregated nodes. These aggregation and zooming tech-
niques can dramatically reduce the size of the graph to be
displayed, allowing the Adjacency Matrix to show millions of
nodes and billions of edges.

III. RESEARCH METHODOLOGY

The goal of our research was to design an interactive
visual tool that could efficiently show a large number of
assembly code clones from Kam1n0 to help users better
understand the extent of clones in a software ecosystem and
find vulnerabilities. We used a design study methodology [2],
an increasingly prominent approach used in problem-driven
visualization. In a design study, researchers cooperate closely
with domain experts and gain problem insights through on-
going discussions with stakeholders. These problem insights
guide the researchers to refine and improve their design.

Over a period of eight months, we collaborated with
Kam1n0’s creators, researchers in the Data Mining and Secu-
rity (DMaS) Lab at McGill University. We also worked with
some of Kam1n0’s end users, a team of reverse engineers from
Defence Research and Development Canada (DRDC). We had
regular meetings with these stakeholders to identify their main



Fig. 1. Visualizations used in CloneCompass: (a) A Treemap Matrix overview. (b) Details in the Adjacency Matrix showing the data from selected rectangles
in the Treemap Matrix in (a)

problem points. As we exposed their issues, we developed
requirements for new visualizations that would scale to our
setting, and iteratively designed, implemented and refined our
visualization tool, CloneCompass, based on their feedback.
During this work, we initially proposed an Adjacency Matrix
to show the dataset, but it could not efficiently load the data be-
cause it did not scale to the millions of clones from Kam1n0’s
search results. The process of improving CloneCompass also
helped us develop our understanding of the problem faced by
our stakeholders, as we discuss below.

In the final stages of our study, we conducted a pre-
liminary evaluation to validate CloneCompass. During this
evaluation, we used a “think-aloud protocol” [20] to help us
understand the participants’ cognitive processes while they
used CloneCompass, and to determine the tool’s usability and
ability to assist with the analysis tasks.

IV. PROBLEM CHARACTERIZATION

Through our collaboration with Kam1n0’s designers and
end users, we identified key challenges that these people
face when browsing search results from Kam1n0. Below, we
describe the Kam1n0 tool and how it is used, and then describe
the challenges that emerged from our research.

Kam1n0 is an efficient and scalable assembly code clone
search engine [1]. It allows the user to build a clone-search
application4 and then index one or multiple binaries in this
application to generate a repository. The user can then search
for either a single assembly functions (we refer to these as a
“target function”) or multiple functions in a binary file (we
refer to this as a “target binary”), and then compare these
functions to the functions in the repository.

4https://github.com/McGill-DMaS/Kam1n0-Community

Kam1n0 allows the user to build multiple clone-search
applications and run multiple searches in each application.
Each search result contains the similarities between target
functions and the functions in the repository. Before each
search, the user can set a similarity threshold, where only
similarities larger than the threshold are shown in a search
result.

A search result for target functions and their clones in a
clone-search application are presented in three different ways.

1) A flow graph view, a text diff view, and a clone group
view4 are used to compare the subgraphs of two functions.
These views are useful for comparing the details of two
functions when the user searches for a given function. In this
paper, we focus on a higher level of abstraction (e.g., functions
and binaries) and not the function subgraphs.

2) A detailed view shows target functions and clones, see
Fig. 2. A list of target functions are shown in Fig. 2 (a), where
the background color indicates which binaries each target
function is from. After the user clicks on a target function in
the list, a hierarchical tree in Fig. 2 (b) is shown. The first level
of the tree shows the binary of the selected target function, the
second level of the tree shows the target function itself, and
the third level of the tree displays the clones of this function
ordered by similarity (according to the user-specified threshold
as mentioned above). In Fig. 2 (c), the centre node represents
the same target function in Fig. 2 (b), and the nodes connected
to the centre node indicate the clones of the target function.
When a target binary contains a large number of functions,
the target function list shown in Fig. 2 (a) can be very long.
When a target function contains a large number of clones, the
clone list in Fig. 2 (b) can also be very long. Exploring these
long lists of target functions and/or clones can be very time



consuming.

Fig. 2. Detail view in Kam1n0: (a) Target functions list. (b) A detail view
shows a target function and its clones. (c) A node-edge graph view shows a
target function and its clones.

3) A summary view (Fig. 3) shows statistics about the
clones of a target binary and the binaries in the repository. For
example, binary A has x% clones with a similarity score more
than y% compared with binary B, where y% is the similarity
threshold set by users. The clone similarity percentage is
useful because it indicates how similar two binaries are, but
if the user wants to know which clones exist in these two
binaries, they need to use the detail view shown in Fig. 2.

Fig. 3. Summary view in Kam1n0

Through interviews and ongoing discussions with our stake-
holders, and during the refinement of our interim prototype
visualizations, we discovered that the users experienced three
key challenges when using Kam1n0’s detail and summary
views:

• Many-to-many comparisons: When using Kam1n0, the
reverse engineers can easily see the clones of one function
(one-to-many comparison), but it is impossible to com-
pare multiple functions or multiple binaries (many-to-
many comparison) because one detail view only contains
a single target function and one summary view only con-
tains a single target binary. A suitable visualization can
show such many-to-many comparisons, but scalability
must be considered.

• Scalability of clone exploration: As mentioned above, it
is difficult to efficiently explore clones because a search
result from Kam1n0 can contain a very large number of
assembly clones. The number can be even larger if the
user builds multiple clone-search applications and runs
multiple searches (potentially millions of function-clone
pairs).

• Big-picture understanding of how clones are dispersed
across many systems: When exploring clones in a
software system or across software systems, the reverse
engineers are expected to have a comprehensive under-
standing of the clones in the systems they consider. To
support their analysis, they may need to answer a number

of questions. For example, if they find a vulnerable code
fragment in a part of a software system that has not
changed in a very long time, clones of this fragment
could have been spread to many other versions of the
system and to other systems. Our stakeholders may also
need to be able to identify the smallest/biggest clone in
the system and how many code clones occur across all
versions of the software system.

In the next section, we describe the final design of
CloneCompass to hopefully address these challenges. As men-
tioned, our design work also helped us clarify the challenges
we described above.

V. APPROACH

To support the exploration of scalable many-to-many com-
parisons, the first two challenges we discussed above, we re-
viewed previous research concerning visualization techniques
for large-scale data that shows an overview first and then pro-
vides details on demand [12] [13]. Building on this research,
we propose CloneCompass, a tool with two visualizations that
each target a different level of abstraction: 1) an aggregated
TreeMap Matrix that provides an overview of the distribution
of the entire dataset of clones across one or more systems, and
2) a fine-grained Adjacency Matrix that shows further details
of data points selected by the user. The user can then switch
between these two visualizations to explore the whole dataset.

A. Design Process

As we mentioned in Section II, matrix-based views have
been used to show comparisons between different software
systems, versions, files, etc. [7] [8] [9]. Inspired by these
studies, we first tried an Adjacency Matrix to show the many-
to-many comparison of functions. However, since the results
from Kam1n0 may contain millions of function-clone pairs,
a typical Adjacency Matrix is not able to show all the data
because of its scalability limits—users might not gain useful
information when a large number of data are simultaneously
shown on the screen. Through our literature review, we found
that previous studies [18] [19] used aggregation techniques to
reduce the amount of data shown. In an attribute-based aggre-
gation technique, nodes in a graph are aggregated into groups
by an attribute, and each group is treated as an aggregated
node [21]. In our case, nodes are functions (n0, n1, ..., nm

in Fig. 4 1 ) and they can be aggregated by one of their
four attributes (i.e., binary, version, code size, and block size).
These attributes can be extracted from Kam1n0 search results
and match our stakeholder’s requirements. For the categorical
attributes (binary and version), the functions from the same
binary or version are aggregated into the same group. For
the quantitative attributes (code size and block size), after the
functions are ordered by code size or block size, a binning
process is used to divide the ordered functions into distinct
ranges, and the functions in each range are then considered as
a group. Which attribute is used for ordering and aggregation
is set by the user.



Fig. 4. The design process

After aggregation, each aggregated node is a group of
functions (N0, N1, ..., Nt in Fig. 4 2 ). If we place aggregated
nodes at the rows and columns in a matrix-based view (Fig. 4
3 ), each node in a row represents a group of target functions,

and each node in a column represents a group of clone
functions. The intersection of a row and a column indicates a
group of target functions and a group of clone functions, and
the similarities between target functions and clone functions
can be shown in the intersection (Fig. 4 4 ).

Since the similarities could range from a very low value
(two functions are different) to a very large value (two
functions are similar), splitting the similarities into distinct
ranges can help the user focus on specific similarity ranges.
We split the similarity ranges with a step of 5% and calculate
the number of function-clone pairs having similarities located
in each similarity range (Fig. 4 5 ). For example, X function-
clone pairs have similarities from 75% to 80%.

Next, we focus on what visual representation can be used
to show the similarities of the functions from two aggregated
nodes. After trying several visual representations, we decided
to use the TreeMap as it performs well, both in expressiveness
and effectiveness, and it saves space. As shown in Fig. 4
6 , a TreeMap is composed of a set of rectangles. In inner

rectangles, the color luminance shows similarity ranges (i.e.,
a darker rectangle implies a higher similarity range), and the
size of an inner rectangle represents the count of function-
clone pairs having similarities within a similarity range (i.e., a
larger rectangle indicates a higher count). In an outer rectangle
of a TreeMap, the number on the top shows the total number
of function-clone pairs of the entire TreeMap.

B. TreeMap Matrix

By placing the TreeMap at each intersection of a row and
a column in Fig. 4 3 , a TreeMap Matrix is formed. From
the TreeMap Matrix, users can see how the similarities of
functions are distributed in the whole dataset. When the user

hovers over an outer or inner rectangle in a TreeMap, a blue
border indicates which rectangle is being inspected, and a
tooltip next to the rectangle shows how many function-clone
pairs this rectangle contains.

If functions are ordered and aggregated by a quantitative
attribute (code size or block size), the left and top nodes
represent functions with smaller code size or block size.
Each TreeMap shows the similarities of both clone and target
functions with a code/block size within a certain range. For
example, in Fig. 5 (a), the TreeMap with the blue border shows
the similarity distribution of target functions with a code size
of 52 to 119, and clone functions with a code size of 20 to
51. When hovering over the outer rectangle of the TreeMap,
a tooltip shows 1,106 function-clone similarities in the range
of 75% to 100%. Similarly, if functions are aggregated by
a categorical attribute (binary and version), each TreeMap
shows the similarities of functions from two binaries or two
versions. For example, in Fig. 5 (b), four versions of a binary
are shown in the TreeMap Matrix, and each TreeMap shows
the similarities between two versions. In each TreeMap, the
rectangles show the similarities within a specified range. For
example, in Fig. 5 (b), when hovering over the rectangle with
the blue border, a tooltip shows the rectangle contains 1,491
similarities in the range of 95% to 100%. The Treemap Matrix
provides the following two design features to assist the user.

1) The use of pagination: To maintain readability when
working with a large number of TreeMaps, pagination is used
(on the right and at the bottom of the TreeMap Matrix, shown
in Fig. 6). Because Kam1n0 can produce a large number
of results, the number of TreeMaps that can be shown is
limited, especially when working with smaller displays. For
example, we calculated the Kam1n0 search results of several
browsers, which included more than one hundred aggregated
nodes. This means that the number of TreeMaps could exceed
ten thousand. In this case, showing all the TreeMaps at once
is not feasible because they would be too small to read—



Fig. 5. TreeMap Matrix: (a) ordered and aggregated by code size, while
hovering over a TreeMap; (b) aggregated by version, while hovering over a
rectangle

pagination overcomes the screen size limitations and ensures
all TreeMaps are readable.

Fig. 6. TreeMap Matrix with pagination

2) Multiple selections: The TreeMap Matrix shows an
overview, but it does not provide detailed information such
as the comparison between two specific functions. To pro-
vide details, previous studies [14] [15] [16] used zooming
techniques to switch between overview and detailed views.
However, zooming forces the user to focus on the data in a
limited area of the screen—only the data from this area can
be shown in a detailed view and details of data displayed
in another part of the screen cannot be inspected at the same
time. In our case, when the user wants to see all data with high
similarities (which are shown as dark rectangles in TreeMaps),
zooming falls short because the dark rectangles are dispersed
across the screen and it is not possible to zoom into these
dispersed areas at the same time. Similarly, if functions are
ordered and aggregated by code size, zooming does not allow

the user to observe clones of functions with a large code size
because the corresponding TreeMaps are distributed across the
bottom of the screen. Therefore, instead of zooming, we use
multiple selections to allow users to see the detail view of the
data from any area: the user can select multiple outer and inner
rectangles for a given Treemap (see Fig. 7). By clicking an
outer rectangle, all functions from the two aggregated nodes of
the TreeMap can be selected. By clicking an inner rectangle,
the functions from the two aggregated nodes of the TreeMap
with a specified similarity range can be selected.

Fig. 7. Multiple selections of inner and outer rectangles in the TreeMap
Matrix

C. Adjacency Matrix

After rectangles are selected in the TreeMap Matrix, a
comparison of functions from these rectangles is shown in
an Adjacency Matrix view. In the Adjacency Matrix, the row
and column are target and clone functions ordered by the same
attribute used to aggregate the TreeMap Matrix (i.e., code size,
block size, binary, or version). The intersection of a row and a
column represents the similarity between two functions. The
Adjacency Matrix provides the following design features to
assist the user.

1) Zooming and panning: The number of function-clone
pairs shown in the Adjacency Matrix varies by the selected
rectangles. To ensure that the user can still see details in
this view when the number of function-clone pairs is large,
they can zoom in, zoom out, and pan the visualization. The
Adjacency Matrix before and after zooming/panning is shown
in Fig. 8. When the square is big enough, the names of target
and clone functions are rendered on the bottom and right side
of the view. When hovering over a square, a tooltip shows
the function names and similarity, and a “Hovered Function-
Clone Pair” section next to the Adjacency Matrix shows more
detailed information including what binaries the functions are
from.

2) Glyphs and color schemes: Different types of glyphs and
color schemes are provided to ensure the Adjacency Matrix
can adapt to various quantities of function-clone pairs. Users
can select various sized datasets and choose appropriate or
preferred glyphs and colors.

Two glyphs, square (Fig. 8) and FatFont [22](Fig. 9), are
applied to represent the similarity in each cell of the Adja-
cency Matrix. An experiment was conducted to compare the



Fig. 8. Adjacency Matrix before and after zooming/panning

effectiveness of different glyph usage in Adjacency Matrices
with weighted edges [23]. The authors showed that square
and FatFont are good choices for both detailed and overview
tasks: FatFont can directly show the similarity value, but can
be too small to be seen with too many simultaneous datapoints
shown in the Adjacency Matrix, which is when square glyphs
are more useful. When using square glyphs, different color

Fig. 9. FatFont in the Adjacency Matrix

schemes (see Fig. 10 (a)) can be selected. The default scheme
is greyscale, in which both glyph luminance and size represent
similarity, e.g., a large dark square represents high similarity.
However, after we applied the Adjacency Matrix to large-scale
datasets, we found that squares are not obvious when the sim-
ilarity is low because squares become too light and small to be
seen. Therefore, two other color schemes are provided without
changing glyph size: a diverging color scheme, BrBG5, and a
categorical color scheme, Viridis5.

Different color schemes are useful in different situations:
high similarities are obvious with greyscale, BrBG is useful
when the user wants to see both low and high similarities, and
Viridis distinguishes similarities via different colors.

3) Filters: Functions in the Adjacency Matrix are ordered
by the aggregation attribute set by the user. Filtering allows
a user to take other attributes rather than the aggregation
attribute into account. By using filters (shown in Fig. 10 (b)),
users can see multiple function-clone pairs constrained by
differing conditions. For example, when function-clones pairs
with large code size and high similarities are shown in the
Adjacency Matrix, functions from specific binaries can be
shown by adding a binary filter.

5https://github.com/d3/d3-scale-chromatic

Fig. 10. Color scheme choices and filters in the Adjacency Matrix

D. Workflow

CloneCompass was implemented on a visualization devel-
opment platform we created, Lodestone6, that allows users to
assemble multiple panels of information. In each panel, the
user can first build a TreeMap Matrix, and then switch between
the TreeMap Matrix and an Adjacency Matrix. The workflow
of CloneCompass is described as follows:

1) Preprocess data: The user inputs Kam1n0 search re-
sults into a preprocess script to calculate the data needed in
CloneCompass.

2) Load dataset: The user then inputs preprocessed results
into CloneCompass.

3) Create panel: The user creates a new visualization panel
in CloneCompass.

4) User configuration: In the newly created panel, a
similarity threshold and an ordering attribute are configured by
the user. In a TreeMap Matrix and an Adjacency Matrix, only
function-clone pairs with a similarity larger than the similarity
threshold are included. The ordering attribute indicates the
aggregation attribute used in the TreeMap Matrix and the
ordering of functions shown in the Adjacency Matrix.

5) Exploration: After the configuration is set, a TreeMap
Matrix is shown. By selecting multiple rectangles and clicking
a switch button, the user can switch to an Adjacency Matrix
that shows the functions from selected rectangles. After ob-
serving comparisons between functions, the user can return to
the TreeMap Matrix. The user can explore the entire dataset
by switching between these two matrix-based views.

VI. PRELIMINARY EVALUATION

As part of our design study, we conducted a preliminary
evaluation with our stakeholders using CloneCompass. Our
approach was to ask them to use CloneCompass to explore
the clones in two given datasets: 1) a collection of zlib
libraries compiled with different optimization techniques, in
which Kam1n0 found 532,730 function-clone pairs; and 2) a
larger dataset consisting of a collection of browser binaries
(including Chromium, Opera, Firefox, SRWare Iron, Comodo
Dragon) and two other binaries (a libpng and a zlib library),
in which Kam1n0 found 94,082,393 function-clone pairs. The
first dataset with a collection of zlib libraries was generated

6https://thechiselgroup.org/lodestone/



based on search results of demo binaries from Kam1n0’s
GitHub repository7. The second dataset was provided to us
by our stakeholders and helped us demonstrate the scalability
of our approach. These different datasets are each interesting
to explore in terms of clones and potential vulnerabilities.
Additionally, we encouraged the users to load their own
datasets.

The evaluation was performed by two of Kam1n0’s cre-
ators. One participant used the two datasets we provided, and
the other participant used their own dataset of binaries that
contained known vulnerabilities.

As our participants explored clones within and across these
software systems, we asked them to use a “think-aloud proto-
col” [20] where the participants were encouraged to verbalize
their thoughts while using CloneCompass.

Rather than specifying user tasks for this evaluation, we
asked the participants to list questions they may pose about
clones and vulnerabilities before using CloneCompass. This
enabled us to 1) refine the challenges we captured previously
(described in Section IV), and 2) identify potential challenges
we had not identified earlier in our work.

A. Procedure

Tool exploration was remotely observed and recorded via
screen sharing and video conference, with participants talking
through their thought and exploration processes, and asking
questions whenever they arose. The steps of the evaluation
were as follows:

• Preparation:
1) For the participant that used their own data (search

results from Kam1n0), this participant ran a data
pre-processing script before the interview. This
script populated an SQLite3 database with consum-
able results usable within CloneCompass. For the
participant that used their own demo data, this step
was skipped as we sent them the SQLite3 database.

2) Participants listed questions they expected to answer
before using CloneCompass. For example, how to
find clones and vulnerabilities from multiple bina-
ries, how to identify vulnerability clusters, and what
is the relationship between similarities and function
attributes.

• Remote observation (1 hour):
1) We conducted a simple overview training session

to familiarize the participants with the layout of
CloneCompass and its essential features.

2) The participants explored CloneCompass, verbaliz-
ing their thought processes and asking questions
when necessary. We interfered minimally and as-
sisted if progress halted or if questions were asked.

• We conducted a feedback session where we asked par-
ticipants questions about CloneCompass: e.g., what in-
formation can and cannot be found in the two matrix-
based views, and what problems can and cannot be solved

7https://github.com/McGill-DMaS/Kam1n0-Community

by using CloneCompass. We also asked user experience
questions: e.g., are the two matrix-based views easy to
read and use, and is CloneCompass user friendly.

B. Findings

Our findings are based on participant descriptions during the
exploration of CloneCompass and the feedback they provided.

1) Challenge 1: Many-to-many comparisons: We found
that both the TreeMap Matrix and the Adjacency Matrix
performed well for many-to-many comparisons. For example,
participants first used the TreeMap Matrix to see many-to-
many comparisons between versions, and then chose two
versions to perform a detailed comparison. With many-to-
many comparisons in the Adjacency Matrix, participants
were able to compare multiple functions and see clusters of
clones. For example, by loading multiple vulnerable binaries
in CloneCompass, a participant identified clusters of vulner-
abilities. By exploring these clusters, the participant could
then identify potentially undiscovered vulnerabilities that were
grouped alongside known vulnerabilities.

2) Challenge 2: Scalability of clone exploration: We origi-
nally proposed the TreeMap Matrix view to overcome the scal-
ability limit of Adjacency Matrices. Based on our observations,
a user can efficiently explore a dataset with over 90 million
function-clone pairs by switching between the TreeMap Matrix
and the Adjacency Matrix. This is beneficial when doing large
clone analyses. However, there is a limit to the number of
TreeMaps that can be presented. For example, one participant’s
dataset contained 762 binaries and 4,000 function-clone pairs.
When attempting to show functions aggregated by binaries,
the TreeMap Matrix did not load. Although the number of
function-clone pairs was quite low in this dataset, the number
of TreeMaps was 762*762, which is far higher than the
number of TreeMaps aggregated by code size (108*108) in
the dataset with 90 million function-clone pairs.

3) Challenge 3: Big-picture understanding of how clones
are dispersed across many systems: For this challenge, we
found that the participants obtained useful information to help
them understand the analyzed systems. By using a TreeMap
Matrix, one participant said they could observe “the distribu-
tion of the clones with respect to certain factors such as block
size, code size, versions, etc”. Also, CloneCompass could help
the user find “the small/large clones of large functions” and
“compare functions with large block size to functions with
relatively small block size to check if there are any surprises”.
A participant suggested that CloneCompass could help users
“get an overview and have a general feeling of what the
binaries and malware do”, and it was suitable for users who
“do not have enough knowledge of the binaries in hand”.

4) Refining user requirements: In our evaluation, the par-
ticipants found that challenges 1 and 2 were satisfied by our
solution. Our interpretation of the third challenge was correct
because the participants expected to see the distribution of
clones. However, the questions we identified and prioritized,
such as finding smallest/biggest clones, were not the partic-



ipants’ focus. Instead they concentrated on target and clone
functions with similar code sizes or block sizes.

We also discovered a new question that was not previously
identified by us but that the participants found answers to by
using CloneCompass. One participant created two panels and
placed them side by side. One panel showed the TreeMap
Matrix aggregated by code size and other one showed the
TreeMap Matrix aggregated by block size. By comparing the
two panels, the participant found many dark rectangles (i.e.,
clones with high similarities) in the TreeMaps aligned on the
diagonal in the TreeMap Matrix aggregated by block size.
However, in the TreeMap Matrix aggregated by code size, the
TreeMaps along the diagonal contained more light rectangles
(i.e., clones with low similarities). The participant concluded
that highly similar clones shared similar block sizes rather
than similar code sizes in this dataset—in other words, clones
tended to have similar block sizes.

In addition, one participant suggested that a user-defined
aggregation attribute could be introduced in CloneCompass to
compare the clones based on this new attribute. Specifically,
during preprocessing, this would let the user write a regular
expression defining how to extract an attribute from the
dataset. For example, compiler names are sometimes included
in the binary names, and a regular expression could extract
compiler names enabling the TreeMap Matrix to compare
clones from different compilers. Also, efficient interactions
between Kam1n0 and CloneCompass could be useful for our
stakeholder’s workflows. For example, when a user clicks a
square in the Adjacency Matrix, CloneCompass could jump
to a location in the code within Kam1n0. This might help the
user perform more detailed and exploratory analyses of clones.

5) User experience: The user experience was validated
through our observations of the participants using CloneCom-
pass and the questions asked in the interviews. In general,
CloneCompass was seen as “user friendly” and participants
did not have many difficulties using it (according to their
feedback). However, since the visualizations contained a lot
of information, it is possible that “for the first time users,
they may not get it right away. They may need time to explore
around and understand the meaning behind, but if you see a
demo that would be sufficient”. We summarize the pros and
cons about user experience below.

a) TreeMap Matrix: The participants reported that the
TreeMap Matrix was easy to read and understand. One par-
ticipant stated that the initial understanding of the number
on the top of each TreeMap could benefit from the provided
tooltip. One participant particularly liked the multiple selection
functionality. However, we also found a major limitation with
the pagination feature: one participant thought it was hard to
use because “I do not know which combination of pages I
should try”.

b) Adjacency Matrix: The participants reported that the
Adjacency Matrix was easy to read and understand. However,
the information in the tooltip of a cell only includes func-
tion names and similarities, which, according to participants’
feedback, was not detailed enough—it would be better if

other information was added, such as parent binary. Also, we
received feedback on the glyphs used in our Adjacency Matrix:
one participant remarked that “FatFont is easy to use because
you can see the actual value”.

c) Interacting across two matrix-based views: CloneCom-
pass allows users to switch between two matrix-based views,
through which one can explore the whole dataset. However,
when switching between the two views, one participant was
concerned because they forgot what had already been selected
in the TreeMap Matrix. This is a meaningful insight: an
annotation technique or browsing history would help users
remember what data was selected in the TreeMap Matrix.
Since the similarity range of an Adjacency Matrix is changed
by the selected rectangles in a TreeMap Matrix, to differentiate
the low and high similarities in an Adjacency Matrix, the
square color is scaled by the similarity range. However, one
participant suggested the use of a consistent color to represent
a similarity, which indicates that giving the user options to
scale the colors used might be necessary.

In this preliminary evaluation, we found that CloneCompass
helped participants address the three challenges characterized
in Section IV. We also discovered questions CloneCompass
could answer that had not previously been recognized, and
were able to refine user requirements and better understand
the user experience through participant feedback. In the next
section, we focus on the implementation and performance
measurements of CloneCompass.

VII. IMPLEMENTATION AND PERFORMANCE
MEASUREMENTS

As mentioned in Section V, CloneCompass was imple-
mented on a visualization development platform, Lodestone8,
which is built in Typescript9 and uses React.js10, Pixi.js11 and
D3.js12. SQLite313 is used to save preprocessing results as it
is a file-based dataset engine that is easily transferred to users.
In Lodestone, we deployed CloneCompass to participants as
an Electron14 app along with our SQLite3 database.

The performance of CloneCompass was measured on an
Intel Core i7 CPU @ 3.40 GHz computer with 16GB of
RAM and an NVIDIA Quadro 600 graphics card. Two datasets
were used in the measurement: 1) a small dataset containing a
collection of zlib libraries compiled with different optimization
techniques; 2) and a large dataset containing a collection
of browser binaries, including Chromium, Opera, Firefox,
SRWare Iron, Comodo Dragon, and two other binaries (a
libpng and a zlib library).

The small dataset included 532,730 function-clone pairs
and 899 functions. The pre-processing took less than one
minute,and there was no noticeable latency for loading and
interactions.

8https://thechiselgroup.org/lodestone/
9https://www.typescriptlang.org/
10https://reactjs.org/
11http://www.pixijs.com/
12https://d3js.org/
13https://www.sqlite.org/index.html
14https://electronjs.org/



The large dataset included 94,082,393 function-clone pairs
and 873,626 functions. The pre-processing step took about
2.5 hours. The loading time of a TreeMap Matrix aggregated
by code size, block size, or binaries was about 8 seconds.
However, the loading time of an Adjacency Matrix depends
on the number of function-clone pairs selected in the TreeMap
Matrix. For example, it took less than 3 seconds to load 7,486
function-clone pairs and 6 seconds to load 20,212 function-
clone pairs in the Adjacency Matrix.

VIII. DISCUSSION

CloneCompass uses a novel TreeMap Matrix view to show
a large graph of comparisons between aggregated node pairs.
Compared with other matrix-based views [14] [15] [16] [18]
[19], a TreeMap Matrix has three strengths. Firstly, in con-
trast with the visual representations (e.g., color shade) of
comparisons between aggregated node pairs, TreeMaps are
two-dimensional views containing rich information. Secondly,
compared with other two-dimensional visual data represen-
tations (e.g., histograms), a TreeMap saves space on a size-
limited display: a TreeMap uses almost all the space in a cell
and is highly readable. Thirdly, the use of across-TreeMap
multiple selections in the TreeMap Matrix allows users to
select data from any area in the TreeMap Matrix and then
inspect selected data in a detailed view. Compared with multi-
ple selections, the zooming techniques used in existing studies
can only allow the user to see the data from a limited area in
a detailed view. The use of multiple selections addresses the
space limitation and allows the user to choose and zoom in
on any area.

In our study, we found that a user can efficiently ex-
plore datasets and gain insights into code cloning by using
CloneCompass, which includes both a TreeMap Matrix and
an Adjacency Matrix. The combination of the two matrix-
based views enables users to explore any and all clones in a
dataset, even if the dataset contains over 90 million function-
clone pairs. By using CloneCompass, users can gain a variety
of insights, which include but are not limited to: 1) finding
clones based on code size or block size; 2) identifying clusters
of high, low, or relatively different similarities; 3) discovering
new instances of cloning; 4) identifying clones that are static
across long time periods; and 5) comparing clones of multiple
binaries or versions. Such insights help users understand how
clones are dispersed across many systems and accomplish
goals like identifying potential vulnerabilities.

The main limitation of this study is that the participants of
the evaluation are Kam1n0’s creators, not security analysts or
reverse engineers. Even though they know their work quite
well, a bias could exist in their evaluation as they may be
inclined to be positive about CloneCompass. However, we
encouraged them throughout the process to give us honest
feedback about our solution, which they did to earlier iterations
of our design. Unfortunately, because security analysts are
busy and often work on secret projects, we could not find other
participants for our study, although some people indicated
wanting to use CloneCompass to support their work.

In our study, the users identified some improvements to
the visualizations that would help them achieve their goals.
Users tend to forget what they have visited after several
switches between the TreeMap Matrix and the Adjacency
Matrix. An annotation technique or browsing history would
help users remember what they have visited. As well, when
the number of pages shown in the TreeMap Matrix is too
large, it is not easy to find a suitable combination of two
pages at the bottom and on the right of the TreeMap Matrix.
Also, CloneCompass has scalability limits in both the TreeMap
Matrix and Adjacency Matrix. There is a maximum number of
TreeMaps that a TreeMap Matrix can load in CloneCompass,
and currently we do not know the maximum it can handle
because of our limited access to larger datasets. As a result,
it is possible that a TreeMap Matrix aggregated by binaries
could not be loaded when the number of binaries is too
large. Besides, since the Adjacency Matrix shows a subset
of function-clone pairs from a TreeMap Matrix, when the
selected rectangles in the TreeMap Matrix contains a large
number of function-clone pairs, the Adjacency Matrix could
take a very long time to display. The scalability limits of the
TreeMap Matrix and Adjacency Matrix can be improved by
optimizing CloneCompass’ code performance.

IX. CONCLUSION AND FUTURE WORK

In this paper, we report on a design study to support
assembly code clone analysis. We characterized the challenges
experienced when users explore large-scale search results from
Kam1n0, an assembly code clone search engine. We then
iteratively designed and refined a novel interactive visual tool,
CloneCompass, and then conducted a preliminary evaluation
as part of our design study.

CloneCompass pairs a TreeMap Matrix view with an Ad-
jacency Matrix view to show and support the exploration and
inspection of a large number of assembly code clones from
the search results of Kam1n0. The evaluation results show
that users can gain useful insights while using CloneCompass
during their exploration of assembly code clones. User in-
sights include understanding the software ecosystem’s clones
and finding further software vulnerabilities. A video demo
of CloneCompass has been uploaded to the following link
https://youtu.be/IIcefibBalI.

In future research, we intend to concentrate on optimizing
CloneCompass using our evaluation results. More work will
be needed to verify CloneCompass’ usability in reverse en-
gineering. Further research into the application of our novel
TreeMap Matrix paired with an Adjacency Matrix for non-
assembly clone analysis is also desirable.

ACKNOWLEDGMENTS

We would like to thank Martin Salois, Steven H.H. Ding,
and Benjamin C.M. Fung for their great advice and support.
We would also like to thank Matthieu Foucault who provided
insight and expertise that greatly assisted the research. We also
thank Cassandra Petrachenko for comments that improved the
manuscript.



REFERENCES

[1] S. H. Ding, B. Fung, and P. Charland, “Kam1n0: Mapreduce-based
assembly clone search for reverse engineering,” in Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining. ACM, 2016, pp. 461–470.

[2] M. Sedlmair, M. Meyer, and T. Munzner, “Design study methodology:
Reflections from the trenches and the stacks,” IEEE transactions on
visualization and computer graphics, vol. 18, no. 12, pp. 2431–2440,
2012.

[3] E. Adar and M. Kim, “Softguess: Visualization and exploration of
code clones in context,” in 29th International Conference on Software
Engineering (ICSE’07). IEEE, 2007, pp. 762–766.

[4] A. Hanjalić, “Clonevol: Visualizing software evolution with code
clones,” in 2013 First IEEE Working Conference on Software Visual-
ization (VISSOFT). IEEE, 2013, pp. 1–4.

[5] A. Telea and D. Auber, “Code flows: Visualizing structural evolution
of source code,” in Computer Graphics Forum, vol. 27, no. 3. Wiley
Online Library, 2008, pp. 831–838.

[6] F. Chevalier, D. Auber, and A. Telea, “Structural analysis and visualiza-
tion of c++ code evolution using syntax trees,” in Ninth international
workshop on Principles of software evolution: in conjunction with the
6th ESEC/FSE joint meeting. ACM, 2007, pp. 90–97.

[7] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-large scale
code clone analysis and visualization of open source programs using
distributed ccfinder: D-ccfinder,” in 29th International Conference on
Software Engineering (ICSE’07). IEEE, 2007, pp. 106–115.

[8] S. Livieri, Y. Higo, M. Matsushita, and K. Inoue, “Analysis of the linux
kernel evolution using code clone coverage,” in Fourth International
Workshop on Mining Software Repositories (MSR’07: ICSE Workshops
2007). IEEE, 2007, pp. 22–22.

[9] J. R. Cordy, “Exploring large-scale system similarity using incremental
clone detection and live scatterplots,” in 2011 IEEE 19th International
Conference on Program Comprehension. IEEE, 2011, pp. 151–160.

[10] N. Gehlenborg and B. Wong, “Points of view: networks,” 2012.
[11] T. Munzner, Visualization analysis and design. AK Peters/CRC Press,

2014.
[12] B. Shneiderman, “The eyes have it: A task by data type taxonomy for

information visualizations,” in The craft of information visualization.
Elsevier, 2003, pp. 364–371.

[13] L. Wang, G. Wang, and C. A. Alexander, “Big data and visualization:
methods, challenges and technology progress,” Digital Technologies,
vol. 1, no. 1, pp. 33–38, 2015.

[14] F. Van Ham, “Using multilevel call matrices in large software projects,”
in IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.
03TH8714). IEEE, 2003, pp. 227–232.

[15] F. Beck and S. Diehl, “Visual comparison of software architectures,”
Information Visualization, vol. 12, no. 2, pp. 178–199, 2013.

[16] J. Abello and F. Van Ham, “Matrix zoom: A visual interface to semi-
external graphs,” in IEEE symposium on information visualization.
IEEE, 2004, pp. 183–190.

[17] N. Henry and J.-D. Fekete, “Matrixexplorer: a dual-representation sys-
tem to explore social networks,” IEEE transactions on visualization and
computer graphics, vol. 12, no. 5, pp. 677–684, 2006.

[18] F. Van Ham, H.-J. Schulz, and J. M. Dimicco, “Honeycomb: Visual
analysis of large scale social networks,” in IFIP Conference on Human-
Computer Interaction. Springer, 2009, pp. 429–442.

[19] N. Elmqvist, T.-N. Do, H. Goodell, N. Henry, and J.-D. Fekete, “Zame:
Interactive large-scale graph visualization,” in 2008 IEEE Pacific visu-
alization symposium. IEEE, 2008, pp. 215–222.

[20] A. H. JØRGENSEN, “Thinking-aloud in user interface design: a method
promoting cognitive ergonomics,” Ergonomics, vol. 33, no. 4, pp. 501–
507, 1990.

[21] Z. Liu, S. B. Navathe, and J. T. Stasko, “Network-based visual analysis
of tabular data,” in 2011 IEEE Conference on Visual Analytics Science
and Technology (VAST). IEEE, 2011, pp. 41–50.

[22] M. Nacenta, U. Hinrichs, and S. Carpendale, “Fatfonts: combining
the symbolic and visual aspects of numbers,” in Proceedings of the
international working conference on advanced visual interfaces. ACM,
2012, pp. 407–414.

[23] C. Chang, B. Bach, T. Dwyer, and K. Marriott, “Evaluating perceptually
complementary views for network exploration tasks,” in Proceedings of
the 2017 CHI Conference on Human Factors in Computing Systems.
ACM, 2017, pp. 1397–1407.


