
SHriMP Views: An Interactive Environment for Exploring Java Programs

Margaret-Anne Storey Casey Best Jeff Michaud
Department of Computer Science

University of Victoria, Victoria BC
email: (mstorey,cbest,jmichaud) @csr.uvic.ca

Abstract

This paper describes a demonstration of the SHriMP
visualization tool. SHriMP provides a flexible and
customizable environment for exploring sofware
programs. It supports the embedding of multiple views,
both graphical and textual within a nested graph display
of a program’s software architecture. SHriMP has
recently been redesigned and reimplemented using Java
Bean components. These APIs allow SHriMP to be easily
integrated with other software understanding tools. In
this demonstration, SHriMP is used for exploring and
browsing Java programs.

1. Introduction

There are many visualization tools that have been
developed to help in understanding software. Some are
powerful at solving a variety of software maintenance
tasks, but their closed environments make it difficult to
create a customized toolset to meet particular end users’
requirements. To remedy some of the problems with
existing tools, we have developed SHriMP (Simple
Hierarchical Multi-Perspective) views, a Java program for
software visualization. The latest prototype, described
more thoroughly in [11, utilizes knowledge gleaned from
previous prototypes [2,3] and empirical evaluations [4,5].

The Java Bean technology [6] provides an effective
component-based approach for designing an extensible
tool. Different views and features in SHriMP have been
developed using Java Beans. Thus, a variety of Java
components can be composed into customized
applications by other tool designers. Moreover, this
approach allows other researchers to integrate single
components from SHriMP within their own
environments.

The primary view in SHriMP uses a zoom interface to
explore hierarchical software structures. The zoom
interface provides advanced features to combine a
hypertext-browsing metaphor and animated zooming
motions over nested graphs [2]. Filtering, abstraction and
graph layout algorithms are used to reveal complex
structures in the software system under analysis.

The next section in this short paper describes how
SHriMP may be used for browsing Java programs.

2. Exploring Java Programs

SHriMP uses nested graphs to represent software
hierarchies. For example, a Java program’s architecture
can be visualized using its package and class structure. A
package may contain other packages, classes, and
interfaces. Classes and interfaces may contain attributes
and operations. This hierarchical structure is represented
using a nested graph with the parent-child relationship
showing subsystem containment (see Fig. 1). However,
other relationships, such as inheritance could alternatively
be used for the parent-child relationships and is fully
configurable by the end user. For example, parent nodes
would represent superclasses, with their embedded children
nodes representing subclasses.

Additional relationships are visualized using arcs
layered over the nested graph. In Fig. 1, coloured arcs are
used to represent relationships such as extends (when one
class extends another class using inheritance), implements
(when a class implements an interface) and hastype (when
a class uses an object of a type). In SHriMP, composite
arcs are higher level abstractions of arcs attached to nodes
at lower levels. A composite arc can be expanded to show
the constituent arcs it represents.

SHriMP employs a fully zoomable interface for
exploring software. This interface supports three zooming
approaches: geometric, semantic and fisheye zooming [5] .
A user browsing a software hierarchy may combine these
approaches to magnify nodes of interest. Geometric
zooming is the simplest type of zooming. A part of the
nested view is simply scaled around a specific point in the
view. Geometric zooming elides information in the rest
of the system. Fisheye zooming allows the user to zoom
on a particular piece of the software, while preserving
contextual information.

SHriMP also provides a semantic zooming method.
When magnified, a selected node will display a particular
view depending on the task at hand. For example, when
zooming on a node representing a Java package, the node
may display its children (packages, classes, and
interfaces). Alternatively, it may show its Javadoc, if it

111
0-7695-1 131-7/01 $10.00 0 2001 IEEE

exists. Other possible views may include annotation
information, code editors or other graphical displays. A
node representing a class or interface may be display its
children (attributes and operations) or it may display the
corresponding source code. SHriMP determines which
view to show according to the action that initiated the
zoom action. For example, if a user clicks on a link
within a Javadoc view, SHriMP will zoom to the
appropriate node and display Javadoc within that node
(see Fig. 1).

Figure 1. A SHriMP view of a Java program. Three of
the displayed nodes (top left, bottom two) show packages
in the program. The top left and bottom right nodes are
opened to show the classes and interfaces in these
packages. The bottom left node shows the Javadoc for
that package. The top right node shows the source code
for that dass. ’

Searching is a critical activity for programmers trying
to build mental models of a program’s source code.
Searching is used for tracing data accesses and method
calls. Although users are able to browse source code
and documentation via embedded hypertext links in
SHriMP, a powerful searching tool is also provided to
allow programmers to find software artifacts and symbols
quickly and verify hypotheses easily. The searching tool
in SHriMP supports three searching strategies: General
Search, Artifact Search and Relation Search [SI.
Regardless of the specified search category, all the search
results are organized into a selectable list according to node
names. For every selected result, a user can press a
“Browse” button to magnify the corresponding node in the
primary SHriMP view.

I .

2 .

3.

4.

5.

6.

7.

By embedding code and documentation views within
graphical architecture level views, a user is allowed to
examine both the software architectural views and source
code or documentation simultaneously.

3. Current Research

This proposal describes the latest prototype of
SHriMP. We are applying SHriMP to SHriMP’s source
code during its own development as a type of
introspective case study. We intend to use SHriMP to
document and capture the evolutionary design process
that we are following. In addition, further user studies to
evaluate the latest prototype are planned for Spring 200 1.

There are many reverse engineering and reengineering
tools in development. Closer collaborations between
research groups will lead to better tools in shorter periods
of time. To this end, we have reimplemented SHriMP
using a component-based technology, thereby allowing
other researchers to use one or more of the SHriMP views
in their own tools. In addition, we can import other views
and display them inside SHriMP’s nodes as shown in Fig.
1. Part of SHriMP has already been successfully added to
the ProtBgB-2000 tool [7] as a plug-in component for
visualizing various ontologies in the health domain.
Further details about the SHriMP projects are available at
http://www.csr.uvic.cdshrimpviews.

References

J. Michaud, M.-A. Storey and H. Muller. Integrating
Information Sources for Visualizing Java Programs.
Submitted to the IEEE Conference on SofWare
Maintenance, 200 1.
M.-A. Storey, H. Muller and K. Wong. Manipulating and
Documenting Software Structures. In Software
Visualitation, pages 244-263. World Scientific Publishing
Co., 1996.
J. Wu and M.-A. Storey. A Multi-Perspective Software
Visualization Environment.. In Proc. of CASCON2000,
November 2000.
M.-A. Storey et al. On Designing an Experiment to Evaluate
a Reverse Engineering Tool. In Proc. of WCRE’96, pages 31-
40, Monterey, USA, Nov 1996.
M.-A. Storey, K. Wong and H. Muller. How Do Program
Understanding Tools Affect How Programmers Understand
Programs? In Proc. of WCRE’97, pages 12-21, Amsterdam,
October 1997.
Sun Microsystems. JavaBeans API specijlcafion, Version 1.01,
ht~u:~;iaua.sun.com/heans, 1997.
W. Grosso, H. Eriksson, R. Fergerson, J. Gennari, S. Tu and
M. Musen. Knowledge Modeling at the Millenium (The
Design and Evolution of Protkgk-2000), Stanford University.

112

http://www.csr.uvic.cdshrimpviews

