
Disrupting Developer Productivity One Bot at a Time

Margaret-Anne Storey
University of Victoria
Victoria, BC, Canada
mstorey@uvic.ca

Alexey Zagalsky
University of Victoria
Victoria, BC, Canada
alexeyza@uvic.ca

ABSTRACT
Bots are used to support different software development ac-
tivities, from automating repetitive tasks to bridging knowl-
edge and communication gaps in software teams. We antic-
ipate the use of Bots will increase and lead to improvements
in software quality and developer and team productivity, but
what if the disruptive effect is not what we expect? Our goal
in this paper is to provoke and inspire researchers to study
the impact (positive and negative) of Bots on software de-
velopment. We outline the modern Bot landscape and use
examples to describe the common roles Bots occupy in soft-
ware teams. We propose a preliminary cognitive support
framework that can be used to understand these roles and
to reflect on the impact of Bots in software development on
productivity. Finally, we consider challenges that Bots may
bring and propose some directions for future research.

CCS Concepts
•Human-centered computing → Interaction
paradigms; Collaborative content creation;

Keywords
Human computer interaction; computer supported collabo-
rative work; productivity; software engineering

1. INTRODUCTION
Improving the productivity and effectiveness of developers

is a key concern faced by practitioners and researchers alike.
One way to help developers be more productive and effective
is to provide them with better and smarter tools—tools that
automate or streamline the development process—so that
they can work together on larger and more complex systems
in a more efficient manner. We now see Bots—also referred
to as ChatBots or ChatOps—playing a prominent role in
many software development contexts. In general, bots are
seen as applications that automate repetitive or predefined

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FSE’16, November 13-19, 2016, Seattle, WA, USA
c© 2016 ACM. ISBN 978-1-4503-4218-6/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2950290.2983989

tasks. In software development they are used to help de-
velopers make smarter decisions and to support developers
that need to communicate and coordinate with others. The
micro-services that Bots provide are not new, but the way
they are presented to developers, through a conversational
UI embedded in developer chat channels is changing how
tools are integrated in the developer’s tool suite.

In their basic form, Bots serve as a conduit or an inter-
face between users and services, typically through a con-
versational user interface (UI)1, and are further enhanced
by adding personalization and a memory. They can be de-
signed to operate in pull mode where the user initiates the
interaction, push mode where the Bot initiates the interac-
tion, or a combination of both. Most commonly Bots are
used for automating tasks (e.g., running tests when certain
conditions are met) or for gluing tools together. Bots may
leverage AI or machine learning techniques, or they may
capture or analyze data generated by other tools and Bots.

Outside of software development, Bots and conversational
UIs are seeing mainstream adoption. Facebook, Amazon,
Microsoft, and Google2 are all investing heavily in what is
hailed by some3 as the new“Universal UI”and seen by many
as a paradigm shift for user interaction that is more natu-
ral for humans to use. Some companies use Bots for ex-
tending services to better provide for the user’s needs (e.g.,
Google’s conversational search assistant), while others, e.g.,
Facebook, aim to replace apps “one bot a time”. Bots are
seeing adoption across many different industries from retail
and ecommerce to government.4

Software engineering has already seen an adoption of Bots
at a dizzying pace. Bots reportedly help developers become
more productive by automating tedious tasks, by helping
developers stay aware of important project or community
activities, and by reducing interruptions. At the team level,
Bots smooth and improve the efficiency of every phase of the
software development life cycle, including coding, testing,
operations, and managing user relations. Team communica-
tion tools such as IRC, Slack, and HipChat offer platforms
for integrating services through Bots. Developers commu-
nicate and “listen to” these Bots in the same style as the

1http://www.wired.com/2015/06/future-ui-design-old-
school-text-messages/
2http://www.macworld.co.uk/feature/iosapps/cortana-vs-
siri-google-now-amazon-echo-alexa-what-is-best-ai-voice-
assistant-3511811/
3http://techcrunch.com/2016/02/16/on-chatbots/
4https://medium.com/botness/learnings-from-the-first-
botness-survey-dbeba3f89fbc?source=latest

http://dx.doi.org/10.1145/2950290.2983989
http://www.wired.com/2015/06/future-ui-design-old-school-text-messages/
http://www.wired.com/2015/06/future-ui-design-old-school-text-messages/
http://www.macworld.co.uk/feature/iosapps/cortana-vs-siri-google-now-amazon-echo-alexa-what-is-best-ai-voice-assistant-3511811/
http://www.macworld.co.uk/feature/iosapps/cortana-vs-siri-google-now-amazon-echo-alexa-what-is-best-ai-voice-assistant-3511811/
http://www.macworld.co.uk/feature/iosapps/cortana-vs-siri-google-now-amazon-echo-alexa-what-is-best-ai-voice-assistant-3511811/
http://techcrunch.com/2016/02/16/on-chatbots/
https://medium.com/botness/learnings-from-the-first-botness-survey-dbeba3f89fbc?source=latest
https://medium.com/botness/learnings-from-the-first-botness-survey-dbeba3f89fbc?source=latest

conversational UI they use to collaborate and monitor other
developers on their teams! Yet little is known about the
impact these Bots have in terms of the benefits they bring
to individual or team productivity, or in improving quality.
Moreover, the challenges and risks that may arise from de-
velopers and teams using these “new virtual team members”
has barely been considered.

In this paper, we aim to shed light on the prominent role
that Bots are starting to play and encourage researchers to
study the impact (positive and negative) of Bots on software
development. We propose a cognitive support framework for
how Bots can support software development. The frame-
work first describes some of the more common Bot roles
that support different phases of the software development
life cycle as well as how Bots can help developers be more
efficient and more effective in meeting their goals. We
suggest that this framework can help in describing, design-
ing and evaluating development Bots. This is followed by a
discussion of the challenges and risks that Bots may spawn
as well as some important future research directions.

2. DEVELOPER BOT ROLES
Like the many roles software developers can fill, we see

a variety of Bots participating in every phase of the soft-
ware development process. While Slack and HipChat are
two popular services that provide a Bot habitation platform,
Bots are available through many different tools. In the fol-
lowing, we describe some of the main categories of Bots we
see in software development. Some of these categories are
inspired by Sven Peters’ talk about Bots in the Atlassian
tool ecosystem5, while other categories stem from our pre-
liminary research on this topic as well as a brief survey we
conducted with developers that use Bots integrated through
Slack [3]. Using these categories, we give examples of Bots
that fill or may soon fill these roles.

2.1 Code Bots
There are a variety of Bots that help make coding activ-

ities more efficient and effective. One challenge that devel-
opers face during development is that they often have to
synchronize tasks across two or more separate tool work-
flows. For example, committing code changes and fixing
bugs on GitHub, while also updating work items and tasks
on Trello. Doing all the required steps is tedious and de-
velopers frequently forget to update both tools, but a Bot
(e.g., Hubot) can be programmed to automate some of these
steps and offload some of the memory overhead.

BugBot is a Slack app for working with GitHub issues,
allowing users to maintain awareness and create bug reports
through Slack6. BugBot automates previously manual tasks
and integrates tools developers use. Tools like Slack can be
integrated with issue tracking systems such as GitHub and
Trac, and through these integrations, developers can gain
awareness of commits without necessarily being interrupted,
potentially improving their productivity as they can stay
in the “flow” [4]. Developers also create custom Bots for
supporting the peer review process in their team7, allowing
to automatically check GitHub Pull Requests (PRs) for peer

5https://svenpet.com/talks/rise-of-the-machines-automate-
your-development/
6http://smallwins.today/bugbot
7www.felixrieseberg.com/a-peer-review-bot-for-github/

reviews, and label and merge these PRs appropriately.
To help developers find answers to questions, Slack can

be integrated with Stack Overflow.8 It contributes to the
team’s collective knowledge by allowing developers to ask
questions in the same channels used for team communica-
tion. This can be further improved by Bots like Brisby,
a knowledge management Bot that automatically answers
questions by learning from responses to similar questions
previously discussed on the team.

Most of the Bots mentioned so far are rather rudimentary
and do only what a developer has programmed them to do.
Perhaps they don’t really make the developer any smarter or
more effective—they simply remove friction. But there are
more sophisticated Bots, such as those in the Atlassian tool
chain that watch what happens when a developer breaks
a build and then automatically create a branch from that
build. Atlassian Bots can also merge changes across differ-
ent branches and recommend reviewers based on previous
commits. In the future, one can imagine Bots that take
more sophisticated actions based on the code context [1].

2.2 Test Bots
Bots also play an integral role in testing. Many static code

analysis tools, that had their roots in research but were cum-
bersome to adopt, are now more accessible through a Bot.
In the Atlassian ecosystem, the Freud Bot automatically
runs static analysis tools such as FindBugs, CheckStyle, and
PMD. If one of these tools indicates a code quality concern,
Freud generates a Pull Request with the corresponding sug-
gested code change. This not only saves on code review time
but also provides constructive suggestions for improving the
code. Another Atlassian Bot, Dr. Code, keeps an eye on
“technical debt” by tracking and visualizing project health
over time. Atlassian also has a Compare Bot that notices
changes in screenshot images, indicating potential user in-
terface bugs. When a new version of a UI is approved, the
Compare Bot uses this new version as its oracle.

In terms of saving time, Atlassian uses a bot to detect
flaky tests—tests that fail on occasion and make developers
consume valuable resources trying to figure out the reasons.
This bot quarantines flaky tests and allows the build to con-
tinue, but creates an issue so that the quarantined test can
be investigated by developers at a later time. Another Atlas-
sian Bot, Hallelujah, saves time during testing by balancing
tests across machines. For the NPM ecosystem, the Green-
keeper.io Bot generates a pull request if a new dependency
update for a library or API requires a test to be updated.

2.3 DevOps Bots
DevOps Bots (often called ChatOps because of the inte-

gration in Chat) are used to speed up code deployment or
address slow feedback loops between developers, infrastruc-
ture and operations personnel. For instance, PagerDuty is
a tool that automatically creates an issue when a service
fails, notifying the right people and reducing “alert noise”
and communication overload (as the correct personnel are
specified in the description of the service). Pagerbot9, a bot
developed at Stripe, allows team members to easily man-
age and coordinate their PagerDuty on-call schedules and
incident response efforts. In another example, Jason Hand

8https://github.com/karan/slack-overflow
9https://stripe.com/blog/pagerbot

https://svenpet.com/talks/rise-of-the-machines-automate-your-development/
https://svenpet.com/talks/rise-of-the-machines-automate-your-development/
http://smallwins.today/bugbot
http://www.felixrieseberg.com/a-peer-review-bot-for-github/
https://github.com/karan/slack-overflow
https://stripe.com/blog/pagerbot

discusses how MTTR (mean time to repair) can be reduced
through the use of feedback loops mediated by Bots10.

Teams also use Bots (e.g., DeployBot11) to build, man-
age, deploy, and monitor their build deployments directly
from their chosen communication tool (e.g., Slack, Campfire,
Hipchat). “Chatting with your infrastructure might seem
strange at first but it’s easy to see the benefits. A time-
line of who’s deploying what and deployments that are so
easy anyone can trigger them.” 12 Allowing any stakeholder
to deploy helps reduce the feedback loop and bridges the
technical-knowledge gap for many stakeholders on the team.

2.4 Support Bots
Support Bots help bridge the communication gap that of-

ten exists between users and developers. One key challenge
for developers is dealing with messages or reports from an ex-
tensive user base. Bots can automate interactions with users
and customers by answering frequently asked questions by
consulting (and updating) a knowledge base.

Customer support services like ZenDesk, Intercom, and
Smooch all have integrations (a basic version of Bots) with
tools like Slack, allowing for and assisting with direct com-
munication with users, capturing customer feedback, and
in some cases, automatically providing suggested answers.
Over time, Bots might reduce team communication over-
load (e.g., filtering non-helpful reviews, assigning the right
people, or suggesting solutions without involving humans at
all), while providing better support and a much improved
user experience. Similar Bots are used in other domains.
For example, with MOOCs in the education space, Bots can
be used to mimic the role of a teaching assistant to answer
frequently asked student questions.13

2.5 Documenting Bots
Documentation authorship is always a challenge for devel-

opers. For example, authoring release notes for a new ver-
sion can be quite tedious. In the Atlassian ecosystem, Bots
author release notes by aggregating information from code
commits and issue comments. A side benefit is that develop-
ers are likely to write better messages knowing that they will
be used for release notes. Documentation could also be au-
tomatically generated in different languages through the use
of Translation Bots.14 We also suspect that future Bots will
automate the generation of documentation from resources
such as Stack Overflow, or generate reports and dashboards
by integrating analytics and visualization services.

3. HOW BOTS CAN IMPROVE DEVEL-
OPER PRODUCTIVITY

The categorization of Bots by Role is useful in understand-
ing the landscape of Bots for supporting software develop-
ment, but it does not help one reflect on how Bots benefit
developer productivity and project quality. Recently, Meyer
et al. studied developers’ perceptions of productivity [4],
and found that individual developers have very different

10www.jasonhand.com/infrastructure-as-conversation/
11https://deploybot.com/
12https://skillsmatter.com/skillscasts/7629-devops-for-
slackers-deploying-code-with-a-chat-bot

13http://www.wsj.com/articles/if-your-teacher-sounds-like-
a-robot-you-might-be-on-to-something-1462546621

14http://botsfortelegram.com/project/translate-bot/

views on productivity but completing tasks and having clear
goals, reducing interruptions and distractions, and holding
fewer meetings are factors that make developers feel more
productive. Their recommendations are that: individuals
should avoid interruptions and set clear goals; teams should
use toolchains that support flow; and organizations should
streamline their communication. Interestingly, Bots can be
used to meet many of these recommendations.

Productivity is a concept of interest in other domains15

and in general it is important to distinguish effectiveness
(completing tasks related to meaningful goals) from effi-
ciency (completing tasks more quickly). Here we suggest a
number of ways that Bots can provide cognitive support for
improving efficiency and effectiveness of developers through
a set of concrete design elements (shown in bold) that
are clustered according to the user goals that they satisfy
(shown in italics).

3.1 Efficiency (do things faster)

Automate tasks:
Many Bots are used to automate tedious tasks (e.g., com-
paring different user interface screens after a change), or
to automate repetitive tasks (such as merging changes
across different branches), or Bots can make tasks redun-
dant (e.g., by automatically answering user questions).

Help developers stay in flow:
It is important for developers to maintain a state of “flow”
especially when programming. One way is to reduce inter-
ruptions and distractions whereby Bots can be aware of
the developer’s context and defer interruptions and notifica-
tions until a more suitable time [1]. Some interruptions are
unavoidable, but Bots should provide support for con-
text switching. For example, a Bot could save the devel-
oper’s state. Another way to help developers stay in flow is
to integrate tools reducing friction from tool switching or
by gathering information that was formerly scattered across
various tools.

3.2 Effectiveness (towards meaningful goals)

Improve decision making:
In addition to supporting faster completion of tasks, Bots
can help in decision making by capturing and analyzing
data relevant to decisions. For example, capturing in-
formation about user requirements and insights on suitable
reviewers can improve design and code reviewing activities.
Just as it is important to capture data, it is also important
to share knowledge with other members, and Bots can
help with information dissemination (e.g., documentation
generation from release notes).

Support team cognition:
Mary Poppendieck [6] discusses how the “team with the
most situational awareness wins”, thus Bots that provide
situational awareness will help teams be more effective.
Many Bots already help team members know when commits
were made, which tests and services failed, and when other
services or builds are deployed. But Bots are also needed
to support team communication, either by initiating it
when it is needed, or by making it unnecessary.

15http://www.productiveflourishing.com/
a-general-theory-of-productivity/

http://www.jasonhand.com/infrastructure-as-conversation/
https://deploybot.com/
https://skillsmatter.com/skillscasts/7629-devops-for-slackers-deploying-code-with-a-chat-bot
https://skillsmatter.com/skillscasts/7629-devops-for-slackers-deploying-code-with-a-chat-bot
http://www.wsj.com/articles/if-your-teacher-sounds-like-a-robot-you-might-be-on-to-something-1462546621
http://www.wsj.com/articles/if-your-teacher-sounds-like-a-robot-you-might-be-on-to-something-1462546621
http://botsfortelegram.com/project/translate-bot/
http://www.productiveflourishing.com/a-general-theory-of-productivity/
http://www.productiveflourishing.com/a-general-theory-of-productivity/

Regulate individual and team tasks and goals:
Productive and effective developers and teams will care-
fully regulate their goals and tasks, and monitor and vi-
sualize their own and team activities [2]. Bots can initi-
ate and track reminders, as well support coordination
across tasks, help to monitor and visualize progress
and team culture, and then even possibly adapt when
things are not as expected.

4. DISCUSSION AND FUTURE WORK
Developers use many different Bots and with fully pro-

grammable Bots like Hubot and Lita, and frameworks such
as BeepBoop and Microsoft’s Bot Framework, developers
can customize and build Bots that fit their needs. We al-
ready see that some of the challenges developers face when
using social and communication channels are reduced by the
use of Bots (e.g., communication overload, information frag-
mentation, maintaining team awareness) [8].

Some may correctly point out that the technical support
offered by Bots is not new. Plugins, scripts, and architec-
tures that support micro-services have been around for some
time. But what is new, as Sean Regan from Atlassian men-
tions, is that the integration of micro-services in a conver-
sational UI leads to a “collaboration model that connects de-
velopers, tools, processes and automation into a transparent
workflow”. And as the role of conversational UIs is further
combined with powerful AI techniques, access to big data,
and natural language processing, the use of Bots is likely
to increase. The usage scenarios presented in this paper are
probably only the tip of the iceberg. The anticipation is that
Bots will lead to an improvement in software quality and de-
veloper and team productivity. But will this positive impact
address only what Fred Brooks calls “accidental complexi-
ties” rather than the “essential complexities”? And if Bots
do disrupt developer productivity, what if that disruption
has negative consequences in addition to certain benefits?

Indeed, there are many possible negative conse-
quences. Bots may cause team members to spend less time
together, reducing the chances for serendipitous learning and
discovery. Another potential issue revolves around acquired
culture— some Bots can acquire and embody company cul-
ture, but what happens when that culture changes? Will the
sentiment analysis that Bots use be sensitive to culture and
personal nuances? Bots are also often used to avoid interrup-
tions or distractions, but they may bring other interruptions
or distractions that are not as obvious initially. Also, auto-
matically generating documentation or release notes may be
desirable, but if a programmer knows they are generated,
will they be as likely to read and trust them? [5] If some
Bots are not obviously “machines”, are there ethical issues
that should be considered? In sum, it is not clear how Bots
should be designed. There are guides on how to program
Bots that suggest best practices16 and discuss why personal-
ity matters17 but these best practices do not address ethical,
social, or long-term impacts of Bot usage.

How to study Bots is furthermore unclear. Through
our suggested preliminary framework, we categorized Bots
according to their role, but as Reinhardt discusses there are

16https://medium.com/slack-developer-blog/slack-bot-
onboarding-3b4c979de374#.wzlfz6jr9

17http://venturebeat.com/2016/07/07/bots-need-a-
personality-not-a-brain-like-a-vending-machine/

other knowledge worker roles [7] such as Controller, Linker,
Organizer and Sharer, that Bots may play a role in filling.
Our framework also suggests cognitive support design ele-
ments for enhancing developer and team productivity. But
productivity may not be the only goal. Keeping developers
happy may be critical in terms of retention. Interestingly,
there are Bots, such as Oskar18, that can track user happi-
ness. Perhaps, in the future Bots can be used to study the
impact of Bots and then self adapt to avoid negative con-
sequences. But first we need to be able to anticipate and
recognize the benefits and possible negative consequences if
Bots are to satisfy our intended human based goals.

5. ACKNOWLEDGMENTS
We thank Chris Parnin for his feedback and insightful

comments that contributed to this work.

6. REFERENCES
[1] M. P. Acharya, C. Parnin, N. A. Kraft, A. Dagnino,

and X. Qu. Code drones. In Proceedings of the 38th
International Conference on Software Engineering
Companion, ICSE ’16, pages 785–788, New York, NY,
USA, 2016. ACM.

[2] M. Arciniegas-Mendez, A. Zagalsky, M.-A. Storey, and
A. F. Hadwin. Using the model of regulation to
understand software development collaboration
practices and tool support. In Proceedings of the 20th
ACM Conference on Computer Supported Cooperative
Work & Social Computing (to appear). ACM, 2017.

[3] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik.
Why developers are slacking off: Understanding how
software teams use slack. In Proceedings of the 19th
ACM Conference on Computer Supported Cooperative
Work and Social Computing Companion, pages
333–336. ACM, 2016.

[4] A. N. Meyer, T. Fritz, G. C. Murphy, and
T. Zimmermann. Software developers’ perceptions of
productivity. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of
Software Engineering, pages 19–29. ACM, 2014.

[5] A. Murgia, D. Janssens, S. Demeyer, and B. Vasilescu.
Among the machines: Human-bot interaction on social
q&a websites. In CHI Conference on Human Factors in
Computing Systems, CHI Extended Abstracts, pages
1272–1279. ACM, 2016.

[6] M. Poppendieck and T. Poppendieck. Lean Software
Development: An Agile Toolkit: An Agile Toolkit.
Addison-Wesley, 2003.

[7] W. Reinhardt, B. Schmidt, P. Sloep, and H. Drachsler.
Knowledge worker roles and actions – results of two
empirical studies. Knowledge and Process Management,
18(3):150–174, 2011.

[8] M.-A. Storey, A. Zagalsky, F. Figueira Filho, L. Singer,
and D. M. German. How social and communication
channels shape and challenge a participatory culture in
software development. In IEEE Transactions on
Software Engineering (to appear). IEEE, 2016.

18http://oskar.hanno.co/

https://medium.com/slack-developer-blog/slack-bot-onboarding-3b4c979de374#.wzlfz6jr9
https://medium.com/slack-developer-blog/slack-bot-onboarding-3b4c979de374#.wzlfz6jr9
http://venturebeat.com/2016/07/07/bots-need-a-personality-not-a-brain-like-a-vending-machine/
http://venturebeat.com/2016/07/07/bots-need-a-personality-not-a-brain-like-a-vending-machine/
http://oskar.hanno.co/

