
Using a Visual Abstract as a Lens for Communicating and Promoting
Design Science Research in Software Engineering

Margaret-Anne Storey
University of Victoria

BC, Canada
mstorey@uvic.ca

Emelie Engström
Lund University

Sweden
emelie.engstrom@cs.lth.se

Martin Höst
Lund University

Sweden
martin.host@cs.lth.se

Per Runeson
Lund University

Sweden
per.runeson@cs.lth.se

Elizabeth Bjarnason
Lund University

Sweden
elizabeth@cs.lth.se

Abstract—Much empirical software engineering research aims
at producing prescriptive knowledge that helps software engi-
neers improve their work or solve their problems. But deriving
general knowledge from real world problem solving instances
can be challenging. In this paper, we promote design science
as a paradigm to support producing and communicating
prescriptive knowledge. We propose a visual abstract template
to communicate design science contributions and to highlight
the main problem and solution constructs of their research,
as well as present validity aspects of design knowledge. Our
conceptualization of design science is derived from existing
literature and were together with the visual abstract derived
iteratively as we applied them to different examples of design
science research. We present and discuss one example applica-
tion of the visual abstract. This is work in progress and further
evaluation by practitioners and researchers is encouraged.

1. Introduction
Articulating research contributions in software engineer-

ing and highlighting their value is often a challenging en-
deavour. In part, this is due to the interdisciplinary nature
of our research which may build on and contribute to many
fields including mathematics, engineering, design, and the
social sciences. These disciplines rely on very different
research paradigms and contradictory world views on what
may be valid and reliable research across these disciplines.
As software engineering is furthermore a professional field
of practice, the relevancy of the problems researched and
the value of prescriptions to solve these problems are often
called into question by practitioners and other researchers.

Similar challenges in articulating and agreeing on re-
search contributions have been experienced in many research
disciplines and are not unique to software engineering.
Examples of such disciplines include information systems
and management science. Design Science Research has been
widely adopted in these and engineering disciplines as a
way to frame research by highlighting both the problem
addressed and the intervention proposed [1], [2], [3]. Design
science supports a researcher in conveying how they build
on and contribute to an existing knowledge base.

Despite the applied and interdisciplinary natures of our
discipline, design science is under utilized in software engi-

neering despite attempts to popularize it within our commu-
nity [4], [5]. This is unfortunate as many research contribu-
tions are not accepted due to unclear research contributions
or due to disagreements about what constitutes a valuable
“software engineering research contribution”. Furthermore,
many research contributions go unnoticed by practitioners
that could benefit from those insights.

We propose that design science is a powerful way to
frame prescriptive software engineering research and should
be promoted. We observe that many software engineer-
ing research papers do not explicitly describe the class of
problems addressed, nor do they sufficiently describe the
problem’s relevance to practitioners. They tend to focus on
problem solving instances but do not sufficiently reason
about how the knowledge can be generalized [7]. Design
science prompts researchers to uncover the relevance of the
class of problems addressed, as well as clearly surface the
knowledge of how solutions may help.

To promote adoption of design science and to commu-
nicate its benefits for empirical software engineering, we
present a visual abstract template that captures key concepts
in design science. This visual abstract is a work in progress
and was formed following a year long discussion among
the authors on how design science can be used to frame
our own and other software engineering research. We argue
that the visual abstract has two benefits. Firstly, it can be
used to capture the takeaway, the scope and process, and
the value from a study which produces design knowledge
in terms of a prescription to solve a given problem. That
is, the abstract forms a lens for describing design science
research. Secondly, based on preliminary reactions from
research and industry colleagues to the abstract, we suggest
that the visual abstract may lead to more efficient and more
accurate dissemination of research findings with industry as
well as between researchers.

Our paper is organized as follows. In the next section
(Section 2), we present our view of design science, building
and aggregating but rejecting some concepts from other
conceptualizations of design science. This view of design
science helps set the stage for the next section in the paper
(Section 3) where we present a visual template for design
science research. We also provide guidelines for applying
the template to design science research. In Section 4, we

demonstrate and discuss the visual abstract in action by
applying it to a previously published paper. Finally, in
Section 5, we discuss how we arrived at this particular visual
abstract template for design science and share our experi-
ences using and iterating on the template and its associated
guidelines. We also list limitations of when design science
and in turn how our abstract may be applied. Finally, in
Section 6, we conclude with future work.

2. A brief conceptualization of design science

Software engineering research should ultimately produce
knowledge that helps software engineering professionals
design solutions to their problems. This implies that the
knowledge produced is prescriptive, i.e. it provides advice
on how to act in various situations. Such knowledge is
by necessity context dependent and relative to a defined
setting [4]. It shares characteristics with what is referred
to as design knowledge or the product of design science re-
search, in other disciplines such as management research [2].
Although the conceptualization varies between fields and
design science researchers, these researchers share the view
of knowledge as being holistic and heuristic, and justified
by in-context evaluations. We build on this basis and select
concepts and terminology from several sources on design
science, as defined below.

The term holistic is used by van Aken [2] and refers
to the “magic” aspect of design knowledge where we may
partly understand why a certain solution works in a specific
context, but never fully. Various context factors impact the
effect of a solution and some of them may be better un-
derstood than others. However, there will always be hidden
context factors having an effect on an instance of a problem-
solution pair [6]. Similarly, we can never prove the effect
of a heuristic prescription conclusively, but have to rely on
in-context evaluations. By evaluating multiple instances of
problem-solution pairs matching a given prescription, our
understanding about that prescription increases.

Such holistic and heuristic prescriptions are, in de-
sign science research, expressed in terms of technological
rules [2]. A technological rule captures general knowledge
about the mapping between a problem and a proposed
solution. Furthermore it frames the research product in terms
of desired effects and interventions, rather than in terms
of a solution to a problem. The term “technological rule”
originates from Bunge [8] and corresponds to “methods” in
Gregor’s and Hevner’s work [9].

While adhering to the paradigm of design sciences puts
the focus on how to produce and assess design knowledge
(i.e., technological rules) our visual abstract template is
designed to support researchers in effectively communi-
cating design knowledge as well as important aspects of
its justification (e.g., which instantiations of the rule have
been studied, how were they evaluated, how was problem
understanding achieved and what are the foundations for the
proposed solution?)

In line with van Aken [2], we emphasize, in our visual
abstract template, the technological rule as the main take

away of software engineering design science research. A
technological rule can be expressed in the form: to achieve
<Effect > in <Situation > apply <Intervention>. Here,
a class of software engineering problems is generalized to
an envisioned stakeholder’s desired effect of a potential
intervention in a specified situation. Making this problem
generalization explicit helps the researcher identify and
communicate the different value-creating aspects of a re-
search study or program.

A design science research study creates new know-
ledge by investigating one or more instances of solutions
in context [4], through action research (i.e. within one
context) [10], or through multiple case studies (across con-
texts) [2] or through design cycles [9]. This new knowledge
is coupled with a technological rule and should be communi-
cated and assessed from that perspective. The technological
rule may either be a new proposal or an existing one which
is refined or validated by the current study.

Due to the holistic nature of the technological rule, each
such instantiation (i.e., in a case study or an iteration of
action research) constitutes a unit of analysis in relation to
that rule. This means that to add new empirical knowledge
to a general technological rule, the rule must be instantiated
(i.e. an instance of the technological rule must be applied
to solve a real problem or improve a real situation) and
reflected on as whole. In the visual abstract template the
researcher is encouraged to reflect on how the current study
adds new knowledge to the general technological rule and,
to be aware of the relationship between the general rule
and its instantiation, articulating both. In our visual abstract,
the scope of study constitutes the main body and captures
this instantiation in terms of a description of the problem
instance(s) and the solution instance(s). Furthermore, refine-
ments or validation of the technological rule may be derived
from any one of the three processes of problem understand-
ing, solution design or solution evaluation, applied in each
instantiation and is therefore also part of this main body.
Note that the scope of study is not the same as the scope
to which generalizability is claimed which should rather be
captured in the articulation of the technological rule.

Finally our visual abstract template also comprises the
assessment of the produced design knowledge. This is to
support the recipient of the research, i.e., the industry prac-
titioner or peer researcher, to effectively assess the value
of a technological rule in relation to his or her own sit-
uation. Drawing from design science literature, we select
three criteria for research evaluation: relevance, rigor, and
novelty. However, although they are commonly accepted
research assessment criteria in most research communities,
the interpretation of these criteria tends to vary. We dis-
cuss these criteria further in the next section where we
also propose a visual abstract template for communicating
research in software engineering that is congruent with the
conceptualization of design science we just described.

Figure 1. A visual abstract template for design science research. The
researcher should fill this in using the guidelines provided. Part A denotes
the technological rule. Part B shows the problem instance(s), solution(s)
proposed and the empirical and research steps followed. Part C shows three
design knowledge assessment criteria.

3. A Visual Abstract for Design Science

Our proposed visual abstract (see Fig. 1) relies on the
concepts described above. It captures three main aspects of
design science contributions: A) the general take away in
terms of a technological rule; B) the research scope and
process, in terms of one or more instances of problem-
solution pair(s) and corresponding design and evaluation
cycle(s); and C) assessment of the value of the produced
knowledge, in terms of relevance, rigor and novelty. We pro-
vide guidelines for creating a visual abstract of a particular
instance of design science research in software engineering
based on this template. The italics text in the template
should be replaced with text pertinent to the research being
communicated through the template. Later, we show the
visual abstract in action with a specific research example.

3.1. Take Away: The Proposed Technological Rule

We see the technological rule as the crucial part of the
visual abstract because it captures the main contribution or
take away from the study in a single logical phrase (see
Fig. 1, part A). A technological rule has three key constructs:
(1) the effect that is desired in (2) a given situation along
with (3) a proposed intervention to achieve the desired
effect in a given situation.

Taking care to formulate a technological rule forces the
researcher to reflect on the knowledge contribution, which
in turn helps to articulate the problem that they address in
their research accordingly. By crisply describing a potential
generalization of the problem–solution pair under investiga-
tion, they take a step back from the current case to look at
the research from an envisioned recipient’s point of view,
which helps to extract information relevant to them.

3.2. Research Scope and Process

The main body of the abstract focuses on scope and
process of the current study or research program and is
composed of five constructs (once again see Fig. 1, Part B):
1) the problem instance(s) addressed; 2) the corresponding
solution(s) proposed; 3) the empirical and research work
conducted to understand the problem; 4) the empirical or de-
sign work to arrive at the proposed solutions from alternative
options; and 5) the empirical work conducted or proposed
to evaluate the proposed solution(s) when applied to one
or more problem instances. Although we present these five
constructs in a particular order, this order does not imply
how the research steps were conducted. It may even be that
the researcher doesn’t start with a problem in mind, but may
start with a tool or technique and then search for a problem
instance to apply a hypothesized solution.

The problem instance box captures which instances of
the problem and how the scope of the studied problem are
considered in the reported research. The description in this
box should be an instantiation of the general problem as
captured by the technological rule. The researcher should
check that the technological rule and the problem instance
are consistent with each other. Similarily, the solution(s)
proposed should be described in terms of how the general
intervention was applied to address the problem in the
specific case. However, it should only be briefly described
in the solution box, as the reader can refer to the paper for
more details. Which details to include here will depend on
the intended audience. A researcher, practitioner or manager
will have different information needs.

The problem understanding approach should support
the reader in assessing the relevance of the rule in relation
to their own context. It may be that problem understanding
is based on existing literature or real world knowledge, or
it may be that new descriptive knowledge arises through
empirical means to understand more about the nature of
the problem instance(s) addressed. Note that insights on the
problem(s) may also come from the solution evaluation.

The evaluation approach should describe how a re-
searcher applies their solution(s) to the problem instances
to evaluate the solution but also to bring further insights
on the problem. The knowledge that is gathered from the
solution evaluation (and other evaluations of other problem
solving instances) is essential in validating the technological
rule. Here, we encourage the researcher to include the main
elements of the evaluation steps that have been followed, or
to mention if the solution evaluation remains future work.

Finally, the design approach provides an opportunity
for the researcher to describe which empirical steps they
have followed during the design of their solution, before
they evaluate their solution using the problem instance.

3.3. Design Knowledge Assessment

Discerning researchers and practitioners will have many
questions concerning the design knowledge captured by the
technological rule. They will want to know if the class of

problems addressed has real world relevance, or whether
the problem understanding or solution design and evaluation
approaches can be trusted, or whether the design knowledge
reported is sufficiently novel and/or mature to warrant at-
tention. We refer the reader to Part C of the visual abstract
template shown in Fig. 1. Deciding what text to place in
these three boxes may be quite challenging and may lead
the researcher to consider uncomfortable questions about
their research, while at the same time providing them with
a way to showcase what they have done in their research to
demonstrate relevance, rigor and novelty. We provide more
guidance on these three boxes next.

3.3.1. Problem relevance. For this part of the abstract, the
researcher should discuss relevance in terms of the class
of problems and solutions captured by the technological
rule, and how those problem-solution pairs are relevant
to a broader set of professional software engineers. This
may help the recipient to generalize from the case context
presented to their own potential needs and assess whether
the contribution is relevant to them. Arguing relevance at the
general level can be harder to do than arguing relevance for
the stakeholders involved in a specific study. The relevance
box helps a researcher convince their target stakeholders that
the problem being addressed is relevant for them, and that
the proposed interventions are actionable in their context.

3.3.2. Scientific rigor. When it comes to filling out this part,
rigor could be considered at the level of the technological
rule as well as at the level of the problem solving instance.
This may not seem natural to many software engineering
researchers as it is more usual to focus on rigor for specific
evaluation steps. For this more general perspective, rigor of
the technological rule may be discussed in terms of maturity
or saturation of the rule [2], [9] (i.e., a summary of both
current and previous empirical contributions related to the
general rule). The researcher filling out the template may
consider and share what other problem instances have been
considered and whether other solution alternatives were con-
sidered. They may also consider if side effects of applying
the prescription were considered and if not, highlight future
work opportunities in this box.

3.3.3. Novel contributions. Novelty of the presented design
science research may be assessed with respect to the novelty
of the problem insights provided, the solution suggested
or how the mapping of an existing solution to a known
solution is new and has been shown to bring value. We
think this latter point is particularly important, because
many researchers assert that when both the solution and
problem are well known, that applying the solution to the
problem is merely “routine design” We disagree with this
view, and stress that if the solution is shown to address the
given problem instance(s), this knowledge can be used to
build, reinforce or to refine an existing technological rule.
Furthermore, novel contributions can arise in terms of a
refinement or further validation of an existing technological
rule (as we will discuss later in Section 4). In sum, novelty

should be assessed in terms of the entire technological rule
rather than how novel the problems or solutions are in
isolation.

Next, we show these guidelines in action and show how
the template can be used to communicate the research in a
previously published paper. We discuss the decisions made
and tradeoffs faced while filling out this template.

4. Design Science Visual Abstract in Action

During our iterative process of designing the visual
abstract, we have applied different variants of our abstract
to examples of software engineering research (four studies
we were involved in and seven studies where we had no
involvement) but can only share one example in this short
paper. We chose an example where we could share insights
as an author of the work (Per Runeson) and we could also
share feedback from other co-authors that have experience
in research and industry.

Our demonstration example (see Fig. 2) addresses a
problem, identified by several observational studies, that
manual assignment of bugs to teams for repair is labor-
intensive and error-prone [11]. The solution is to use es-
tablished Machine Learning (ML) techniques (ensemble
learners, Stack Generalization) to dispatch issues to the right
team. The solution is evaluated with real, large data sets
from two industry domains.

Due to the sensitivity to specific data sets in ML [12], the
quantitative results in the evaluation can only be assessed in
the local context, while the more generic knowledge related
to the solution is considered more general. The insights
gained from applying the solution to these two problem
instances, have thus been generalized to the presented tech-
nological rule in Fig.2.

The work presented in our example paper addresses the
relevant challenge of bug assignment in industrial projects,
such as Eclipse, as shown by Anvik et al. [?] and others. It
builds on existing research that proposes that machine learn-
ing is a useful approach for bug assignment [?]. However,
this previous work did not demonstrate that this approach
scales to large scale projects. The visual abstract communi-
cates that the contribution of the work is in the application of
known techniques to a known problem, while it has not been
demonstrated to work on this industrial scale before and so is
novel. The problem understanding and evaluation have been
conducted in a large scale industrial context, which adds to
the rigor of the solution. This validation adds credibility to
the technological rule we present in this abstract.

Runeson defined the visual abstract for this work, and
asked the co-authors, both from industry and academia, to
assess the presentation. One industry perspective was that
the cost/benefit aspect was not sufficiently clear in this
abstract. The level of detail at which the solution should
be presented in the abstract was also raised. From the
industry perspective, the novelty lies in that the precision
of automated assignment is on par with the manual pro-
cess. But from an academic perspective, the specifics of
the classifiers and their performance were considered more

Related work
quantifies the
scale of the
problem in real
projects

To achieve more effective assignment of bugs to teams in large scale industrial
contexts use ensemble-based machine learning to automate bug assignment

Problem
Labour-intensive and error-
prone bug assignment in
two companies from the
telecom and the automation
domain respectively

Solution
Stacked generalization
(SG), combining several
classifiers, automates bug
assignment

Application of
solution to bug data.

Applied
state-of-the
art ensemble
learner

Problem observed in real projects: Eclipse Platform (Anvik and Murphy 2011), the Mozilla foundation (Bhattacharya et al.
2012), and at Ericsson (Jonsson et al. 2012). Evaluated on data from Telecom and Automation domains.

Evaluated in 5 real projects across 2 companies/domains, on 50 k bug reports, using K-fold cross-validation and
sliding window validation.

Precision in automated bug assignment on par with manual (50-89%), which makes it useful in practice, saving cost
and time. SG consistently outperforms individual classifiers. When training SG, aim for at least 2,000 bug reports in the
training set. Relying only on K-fold cross-validation is not enough to evaluate automated bug assignment.

Figure 2. Visual abstract for the paper on automated bug assignment [11].

significant contributions. We see the industry goal captured
more clearly with the overall technological rule, while more
detailed contributions that researchers may care about are
presented as a solution. We discuss the points raised by this
example and other insights next.

5. Discussion

Our proposed visual abstract for design science culmi-
nates from a year long study of how design science has been
used in software engineering, while also trying to understand
why it has not been adopted. During that time, we (all the
authors) met regularly to discuss different papers on design
science and to arrive at a shared conceptualization of design
science (as discussed in Section 2).

Our view is similar to the view of design science pro-
posed by Wierenga et al. [4] but we place more emphasis
on the technological rule construct that is also stressed by
van Aken et al. [2]. What we have noticed in much of the
software engineering research that is of a prescriptive nature,
is that the proposed intervention is often well described in
terms of a method, an algorithm, a set of guidelines or a tool,
while the problem addressed (at instance level) or the gen-
eral technological rule is left as implicit or assumed. Even
when many details are given on the problem instance(s), the
scope of the study may not be well defined and there may
be a mismatch between the description of the problem and
what is actually evaluated or targeted in the solution design.
Articulating a technological rule, we believe, may improve
how such research findings are communicated.

Another point of confusion around design science con-
cerns Action Research [10]. With Action Research the main
goal is to make a change for a particular real world problem

instance, whereas with Design Science the main goal is to
arrive at knowledge that can be applied in broader settings.
Such knowledge is captured through the technological rule,
generalizing the prescription beyond specific problem or
solution instances considered.

We recognized early on that simply arguing for broader
acceptance of design science may not be sufficient and that
we needed a way to demonstrate how design science can
bring benefits to researchers and practitioners. Our approach
to help popularize design science in software engineering is
to propose a visual abstract, tailored for presenting design
science findings that may otherwise be buried.

Structured abstract formats1 address the same challenge
of buried findings but they are textual and are more suited
for experiments or studies that are best presented in a linear
format. Blogs (such as http://neverworkintheory.org) and
evidence briefings [13] have also been proposed, but they
also present the results through text in a linear fashion.
Feedback from our industry partners suggest that visual pre-
sentations may help disseminate research in today’s highly
visual world. Thus we turned to a visual abstract template2

to highlight the key points and findings contained in a
scientific abstract. The visual abstract, when used by the
Annals of Surgery and many other medical journals, is not
meant to replace reading of an article but to draw attention
to the study and the findings with the goal of improving
patient care.

The visual abstract we propose was designed by itera-
tively trying it out on different research papers, discussing
and refining the template with other researchers and prac-

1. See https://www.nlm.nih.gov/bsd/policy/structured abstracts.html
2. Popularized by Andrew M. Ibrahim, a surgeon whose main goal is to

improve surgical carehttps://www.surgeryredesign.com/

http://neverworkintheory.org
https://www.nlm.nih.gov/bsd/policy/structured_abstracts.html
https://www.surgeryredesign.com/

titioners. We started with diagrams used in design science
methodology papers (notably by Hevner et al., and Wierenga
et al.,) but we found the diagrams they provided were
more useful in describing the research process followed
rather than communicating and highlighting the research
contributions. The factors we included in the template in the
end were evaluated by their ability to communicate the most
important aspects of design science research. Of course, as
we evaluate it further (in ongoing work), the abstract may
change but it stabilized in our latest attempts to apply it.

It is important to stress that our visual abstract is a lens
through which we can highlight research that is congruent
with a design science view. For example, we have found that
it isn’t that useful to present research that is of a mainly
descriptive nature (although for some papers it helped to
highlight that fact!), nor is it that useful for presenting
research where a technological rule has yet to be developed
(again highlighting the immaturity of the work). For exam-
ple, we tried to use it to describe the work contained in this
paper, but quickly realized that our work is too preliminary
to suggest a technological rule that visual abstracts should
be used for more rapidly communicating design science
research in software engineering. We also asked a colleague
to use the visual abstract to describe a 10 year research
project – he failed after a couple of hours and felt the
abstract was more suited to more contained studies (such
as in a single paper). He did say that with more time he
could perhaps use it to present his career long research
and that it could be a useful exercise. Finally, the visual
abstract relies on the skills of the researcher to decide what
to include and what to leave out (just as writing relies on
such skills). Consideration for who the recipient (industry
versus academia, for example) is paramount at arriving at a
compelling abstract.

6. Conclusions and Future Work

Our contributions from this paper are twofold. Firstly, we
provide a brief conceptualization of design science research
and provide an argument of the benefits of using design
science as a research paradigm in software engineering. Sec-
ondly, we present a visual abstract template and guidelines
for how to apply it to research that is of a prescriptive
design nature. Software engineering research often involves
interdisciplinary perspectives—the design science view we
provide helps to tie together diverse empirical steps and
relate them according to an overall research goal. The tem-
plate also helps to surface the contributions in a visual and
less linear manner, and also helps the researcher to reason
about and assess their contributions. We also believe that
the design science visual abstract helps emphasize the main
takeaway, that is the technological rule, that is sometimes
left implicit or even missing from many research papers.

We don’t claim the visual abstract is unique to software
engineering, in fact we believe it would be useful for other
domains. That said, we derived it only on consideration
of 11 software engineering research papers and feedback
from software practitioners and researchers. Our future work

involves applying it to many more papers and asking other
researchers to apply it. We hope that our work will lead
to the increased adoption of design science in software
engineering and that the visual abstract template will assist
in more rapid communication of research contributions in
our community.

Acknowledgments. We thank Greg Wilson for suggesting
the visual abstract approach and Cassandra Petrachenko for
editing support. We also thank Bjorn Regnell, Sigrid Eldh,
Leif Jonsson, Kristian Sandahl and Markus Borg providing
feedback on various versions of the visual abstract.

References

[1] A. Hevner and S. Chatterjee, Design Research in Information Sys-
tems: Theory and Practice, 2010th ed. Springer.

[2] J. E. v. Aken, “Management research based on the paradigm of the
design sciences: The quest for field-tested and grounded technological
rules,” vol. 41, no. 2, pp. 219–246.

[3] S. Gregor, “The nature of theory in information systems,” MIS
Quarterly, vol. 30, no. 3, pp. 611–642, 2006.

[4] R. J. Wieringa, “What is design science?” in Design Science
Methodology for Information Systems and Software Engineering.
Springer Berlin Heidelberg, pp. 3–11. [Online]. Available: http:
//link.springer.com/chapter/10.1007/978-3-662-43839-8 1

[5] C. Wohlin, “Empirical software engineering research with industry:
Top 10 challenges,” in 2013 1st International Workshop on Conduct-
ing Empirical Studies in Industry (CESI), pp. 43–46.

[6] T. Dyb{\textbackslash}a a, D. I. K. Sjberg, and D. S. Cruzes, “What
works for whom, where, when, and why? on the role of context in
empirical software engineering,” in Proceedings of the 2012 ACM-
IEEE International Symposium on Empirical Software Engineering
and Measurement, pp. 19–28.

[7] J. Siegmund, N. Siegmund, and S. Apel, “Views on internal and
external validity in empirical software engineering,” in Software Engi-
neering (ICSE), 2015 IEEE/ACM 37th IEEE International Conference
on, vol. 1. IEEE, 2015, pp. 9–19.

[8] M. Bunge, Philosophy of Science: Volume 2, From Explanation to
Justification, 1st ed. Routledge.

[9] S. Gregor and A. R. Hevner, “Positioning and presenting design
science research for maximum impact,” vol. 37, no. 2, pp. 337–
356. [Online]. Available: http://dl.acm.org/citation.cfm?id=2535658.
2535660

[10] R. Wieringa and A. Moral, “Technical action research as a validation
method in information systems design science,” in Design Science
Research in Information Systems. Advances in Theory and Practice.
Springer, Berlin, Heidelberg, pp. 220–238. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-29863-9 17

[11] L. Jonsson, M. Borg, D. Broman, K. Sandahl, S. Eldh, and P. Rune-
son, “Automated bug assignment: Ensemble-based machine learning
in large scale industrial contexts,” vol. 21, no. 4, pp. 1579–1585.

[12] M. Borg and P. Runeson, “IR in software traceability: From a bird’s
eye view,” in In Proceedings Empirical Software Engineering and
Measurements, pp. 243–246.

[13] B. Cartaxo, G. Pinto, E. Vieira, and S. Soares, “Evidence briefings:
Towards a medium to transfer knowledge from systematic reviews to
practitioners,” in Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
ser. ESEM ’16. ACM, pp. 57:1–57:10. [Online]. Available:
http://doi.acm.org/10.1145/2961111.2962603

http://link.springer.com/chapter/10.1007/978-3-662-43839-8_1
http://link.springer.com/chapter/10.1007/978-3-662-43839-8_1
http://dl.acm.org/citation.cfm?id=2535658.2535660
http://dl.acm.org/citation.cfm?id=2535658.2535660
https://link.springer.com/chapter/10.1007/978-3-642-29863-9_17
http://doi.acm.org/10.1145/2961111.2962603

