Visualizing Flow Diagrams with SHriMP

Derek Rayside and Marin Litoiu
IBM Centre for Advanced Studies
IBM Toronto Laboratory
{drayside, marin}@ca.ibm.com

1 Introduction

This workshop paper describes our work on visualizing
message-flow diagrams with SHriMP.

Message-flow diagrams are a visual formalism for de-
scribing the movement of data between information sys-
tems, and may be drawn with IBM’s MQs1 (Message
Queue Systems Integrator) product. An associated run-
time system executes these diagrams: i.e. combines,
transforms, and delivers the messages. MQSI is typi-
cally used to integrate information systems when large
corporations merge. Much of IBM’s flow related mid-
dleware is developed in Toronto.

The SHriMP (Simple Hierarchical Multi-Perspective)
visualization technique has been designed to enhance
how people browse and explore complex information
spaces. It was originally designed to enhance how pro-
grammers understand programs [2, 3]. SHriMP presents
a nested graph view of a software architecture. Program
source code and documentation are presented by em-
bedding marked up text fragments within the nodes of a
nested graph. Finer connections among these fragments
are represented by a network that is navigated using a
hypertext link-following metaphor. SHriMP combines
this hypertext metaphor with animated panning and
zooming motions over the nested graph to provide con-
tinuous orientation and contextual cues for the user.

SHriMP was originally developed for visualizing the
static structure of programs, and later was applied to
visualizing Protege knowledge bases. We are inter-
ested in using SHriMP’s advanced visualization fea-
tures, namely its smooth zooming capabilities within a
nested graph and advanced layout algorithms, to visu-
alize MQsI flow diagrams. These diagrams are basically
‘box and arrow’ pictures, with one key difference: the
nodes have terminals or ports where the arcs are at-

Submitted to the OOPSLA 2001 Software Visualiza-
tion Workshop organized by Wim de Pauw, Steven
Reiss and Gary Sevitsky.

Margaret-Anne Storey and Casey Best
Department of Computer Science
University of Victoria
{mstorey, cbest}Qcsr.uvic.ca

tached to them. These terminals have specific meaning
and are an integral part of the picture. This paper fo-
cuses on the changes that we have made to SHriMP to
accomodate these terminals.

2 Flow Visualization in MQSI

One of the important characteristics of nodes in
message-flow diagrams is that they have specific termi-
nals where arcs may be attached to them. Which termi-
nal an arc is attached to is fundamental to the meaning
of the diagram, as discussed below, and so these termi-
nals must be explicitly represented in some fashion.

A Simple Example Figure 1 shows an example of a
“filter’ node from the MQSI flow editor with its terminals
labelled. A filter node is a kind of primitive node that is
analogous to a simple conditional test in an imperative
programming language.

Figure 1 A Filter Node from MQSI

failure
TR ko

in—e| 5F 5
“—hfalse

true

Filter nodes have one input terminal and four output
terminals: failure, unknown, true and false. When
a message arrives at a filter node, its condition is eval-
uated, and a message is sent from one of the output
terminals depending on the result of the evaluation.

Other kinds of nodes may accept multiple inputs and
send multiple outputs.

Terminals Have Distinct Identity Terminals have
distinct identity: that is, they cannot be identified with
arcs as arrowheads can, nor can they be subsumed by
the nodes they are attached to. Terminals are differ-
ent than arrowheads in two ways: terminals are still
present on a node even if there are no arcs connected to



them; and multiple arcs may be connected into a single
terminal.

Terminal Arrangement MQSI has one main feature
for arranging the terminals on nodes: rotation. Figure 2
shows a filter node in the left-to-right rotation and in
the bottom-to-top rotation. The main purpose of this
feature is to facilitate drawing cycles with a minimum
of line crossings.

Figure 2 Node Rotation in MQsI

AN
i R 1]
ohid:
a

Currently, the user can (and must) specify the desired
rotation for a node: it is not computed by any of the
available layout algorithms (discussed below). When a
node is rotated, the output terminals are always oppo-
site to the input terminals.

Bend Points in Arcs The second important visual
feature in MQSI is bend points in arcs. As with node ro-
tation, bend points are mainly used to facilitate cycles.
Discussions with Grant Taylor and Evan Mamas of the
IBM MQs1 Group have informed us that bend points in
arcs are considered an essential feature by many users.
SHriMP does not currently support bend points, but
we are considering adding this functionality.

Layout Algorithms MQSI currently features two
simple layout algorithms: left-to-right and top-down.
SHriMP currently features Sugiyama and Spring. None
of these algorithms are particularly well suited to the
cyclic nature of flow diagrams, and so we intend to in-
vestigate other layout algorithms.

3 Terminals

There are a number of issues to consider with regard
to the arrangement of terminals; we have named some
of these: posture, grouping, orientation, and placement.
Each is discussed below with an explanatory diagram.

Posture Posture refers to the placement of the output
terminals with respect to the input terminals. There are
two main alternatives: fized and flexible, as pictured
in Figure 3. Fixed means that the output terminals
are always opposite the input terminals, as is currently
done in MQSI. Flexible means that the terminals may

be positioned on any side, as long as each side contains
either only input terminals or only output terminals.

Figure 3 Posture: Fixed vs Flexible

6 1 s

[1I7] [TI=:

YE
&} &}

We intend to use the flexible posture in SHriMP al-
though SHriMP currently supports only the fixed pos-
ture (and does not currently support rotation either).

Grouping Grouping refers to whether the input ter-
minals are all on one side and the output terminals all
on another. Figure 4 shows terminals grouped on the
left and not grouped on the right. MQSI currently groups
terminals. SHriMP also currently groups arcs: all arcs
go from the centre of the bottom of the source node to
the centre of the top of the target node.

Figure 4 Grouping: Together vs Independent

6]
S 4 | 7 o
¢

v

We will not group terminals in SHriMP as this will allow
the user or a layout algorithm to minimize superfluous
line crossings in the drawings.

Orientation Orientation refers to the angle of the
terminal: it may be orthogonal to the edge of the node,
or it may be angled to be in line with the arc connected
to it. Figure 5 shows an orthogonal terminal on the left
and an angled terminal on the right.

Figure 5 Orientation: Orthogonal vs Angled
. [

Angled terminals appear more like arrowheads, which
has some intuitive appeal. However, as can be seen
in Figure 5, angling tends to involve an unacceptable
level of distortion when the terminals are represented as
images. Moreover, angling only makes sense if there is
only one arc connected to the terminal. Since it is very
likely that there may be more than one arc connected
to a terminal, we will use orthogonal terminals.

Placement Placement refers to the placement of the
terminal along the node’s edge: is it the default place-



ment (probably the centre of the side), or is it the closest
placement (i.e. the placement that would put the ter-
minal as close as possible to the node at the other end
of the arc). The default placement is depicted on the
left of Figure 6, and the closest placement is depicted
on the right.

Figure 6 Placement: Default vs Closest
e 4 .

Both SHriMP and MQsI currently support only default
placement (and SHriMP is limited to the top and bot-
tom sides). Closest placement may reduce line cross-
ings, especially if there are multiple terminals placed
along one side. One complication of closest placement
algorithm is that it is based on the assumption that
there is a single target to be closest to, and this may
not be the case if multiple arcs are connected to the
same terminal. We intend to use closest placement and
to devise some heuristics to deal with this complication.

Visually Differentiated Terminals MQSI cur-
rently groups terminals in the default placement, and
this consistency of placement assists the user in knowing
which terminal is which: for example ‘the bottom termi-
nal is always the true-output terminal’. The more flexi-
ble terminal arrangements described above require some
other way for the user to identify nodes. Mike Beltzner
of IBM’s uCD group has suggested simply using differ-
ent icons for each kind of terminal. Figure 7 shows a
filter node (as in Figure 1), with the output terminals
each indicated with a different icon: ‘1’ indicates true;
‘0’ indicates false; ‘?” indicates unknown/undefined re-
sult; and ‘X’ indicates failure in computation.

Figure 7 Visually Differentiated Terminals

@ failure
II l [? > unknown
@ falze
|I> true

Of course there are other ways in which terminals
may be visually differentiated from each other besides
iconography: e.g. colour, shape, etc.

4 \Visualizing Flows in SHriMP

Figure 8 depicts how arcs are currently connected to
nodes in SHriMP. Figure 8 shows a SHriMP node with

three incoming arcs and two outgoing arcs. Arc direc-
tion is distinguished by where the arc connects to the
node: incoming arcs connect to the top and outgoing
arcs connect to the bottom. This convention sometimes
causes arcs to be drawn over the nodes they are con-
nected to, as is the case with one of the outgoing arcs in
Figure 8. Arcs crossing over nodes in this way could be
avoided if the arcs were not attached to fixed positions
on the nodes.

Figure 8 SHriMP Node (current presentation)

~

Mode

Figure 9 illustrates the desired presentation of a
SHriMP node with terminals, according to the require-
ments discussed in the previous section. The terminals
are independent from one another (not grouped), or-
thogonal (rather than angled), the posture is flexible
(instead of fixed), and they are placed in the closest
position to connected nodes (therefore minimizing the
length of the arc). The two requirements that are not
shown in Figure 9 are visually differentiated terminals
and node icons. Notice that this more flexible position-
ing of terminals may prevent arcs from crossing over the
nodes and the terminals that they are connected to.

Figure 9 SHriMP Node (desired presentation)

Y/

Mode

o

To accommodate these requirements for flow diagrams,
three changes were made to arc drawing in SHriMP:
flexible arc endpoint positioning on nodes, calculation
of minimal arc lengths between nodes, and arrowheads.
Arrowheads are not strictly necessary for visualizing
flow diagrams because the terminal images also indicate
direction. However, the arrowheads are necessary to in-
dicate direction when using flexible arc endpoints and
visualizing data from other domains (e.g. programs).
These three changes have not degraded performance in
a noticeable way.

Figure 10 shows how these three changes result in



e T = oo
a) arc direction indicated by con-
nection position (top=incoming, bot-
tom=outgoing)

b) arc direction indicated with arrow-
heads; allows for flexible arc endpoint po-
sitions and shortest path arcs

clearer SHriMP views: all line crossings have been elim-
inated. Notice that both Figure 10a and Figure 10b
have exactly the same nodes in exactly the same loca-
tions and exactly the same arcs: all that differs is where
the arcs are connected to the nodes. Notice also that
the graph displayed in Figure 10 is obviously planar, so
no line crossings are necessary from a graph theoretic
perspective. However, all arcs except one cross over
the nodes they connect to when direction is indicated
by where the arc is connected to the node (Figure 10a).
Both SHriMP and RiaI [1] were originally designed with
the convention illustrated in Figure 10a.

Our current implementation of these changes to the arc
rendering in SHriMP does not deal with the case when
multiple arcs are connected to a single terminal. Solv-
ing this problem will require developing some heuristic
to determine where to place these terminals to mini-
mize arcs crossing over the nodes they are connected
to. One possibility is to assign weights to nodes based
on proximity or interest to the user. Regardless of the
heuristic chosen, in some cases arcs will cross over the
nodes they are connected to (e.g. if the graph is not
planar). This inevitability can be compensated for by
allowing the user to manually reposition terminals ac-
cording to individual preference.

5 Conclusion

Visualizing MQsT message flow diagrams in SHriMP has
proven to be a very interesting challenge that has caused
us to improve SHriMP. Specifically, we have added the
possibility of having terminals on nodes, since these are
required to visualize flow diagrams. Terminals are a vi-
sual feature that communicate extra information about

nodes and the relations between them. We have also
improved the way SHriMP connects arcs to nodes in
diagrams that do not use terminals (see Figure 10).

Although the concepts of terminals have not been used
extensively in program visualization, after our experi-
ence with flow diagrams we think that they hold some
promise. One simple idea is to use terminals to catego-
rize arcs: e.g. there could be a terminal for data related
arcs and another for control related arcs. In flow di-
agrams terminals have semantics that are independent
of the kind of arcs connected to them. One way to
use terminals and retain this independence in program
visualization is to have terminals representing normal
and exceptional exit paths, as is done with filter nodes
in flow diagrams (see Figure 1). We intend to explore
the use of terminals for program visualization in future
work.

References

[1] H.A. Miiller and K. Klashinsky. Rigi — A system for
programming-in-the-large. In ICSE’88, pages 80-86,
Raffles City, Singapore, April 1988.

[2] M.-A. Storey, H.A. Miiller, and K. Wong. Manipu-
lating and Documenting Software Structures, pages
244-263. World Scientific Publishing Co., November
1996. Volume 7 of the Series on Software Engineer-
ing and Knowledge Engineering.

[3] J. Wu and M.-A. Storey. A multi-perspective soft-
ware visualization environment. In CASCON’00,
pages 41-50, Toronto, November 2000.



	Introduction
	Flow Visualization in MQSI
	Terminals
	Visualizing Flows in SHriMP
	Conclusion
	References

