
Information Systems Frontiers 5:2, 161–174, 2003
C© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Visualizing Flow Diagrams in WebSphere Studio
Using SHriMP Views

Derek Rayside∗,† and Marin Litoiu
IBM Centre for Advanced Studies, IBM Toronto Laboratory
E-mail: drayside@acm.org
E-mail: marin@ca.ibm.com

Margaret-Anne Storey, Casey Best
and Robert Lintern
Department of Computer Science, University of Victoria
E-mail: mstorey@csr.uvic.ca
E-mail: cbest@csr.uvic.ca
E-mail: rlintern@csr.uvic.ca

Abstract. This paper describes the integration of an informa-
tion visualization tool, called SHriMP Views, with IBM Web-
Sphere Studio Application Developer Integration Edition, which
was developed with Eclipse technology. Although SHriMP was
originally developed for visualizing programs, it is content-
independent. We have re-targeted SHriMP for visualizing
flow diagrams. Flow diagrams, as supported by WebSphere
Studio Application Developer Integration Edition, can be hier-
archically composed, thus leveraging the key features of SHriMP
that allow a user to easily navigate hierarchically composed in-
formation spaces. We discuss the differences between programs
and flow diagrams, in terms of their semantics and their vi-
sual representation. We also report on the main technical chal-
lenges we faced, due to the different widget sets used by SHriMP
(Swing/AWT) and Eclipse (SWT).

Key Words. integration, software engineering, software visual-
ization, system modeling, flow diagrams, MOF, XMI

1. Introduction

Leveraging industrial tool infrastructure can signifi-
cantly reduce the amount of effort required to develop
tool prototypes. At CASCON’99, Martin (1999) re-
ported that it took him only two weeks to build a
complete C++ fact extractor for Rigi (Müller and
Klashinsky, 1988) based on IBM©R VisualAge©R C++,
in contrast to the protracted effort that had been re-
quired to build the previous fact extractor (Martin,
1999). Moreover, his new fact extractor was more
robust, easier to understand, and had 75% less code

(Martin, 1999). Leveraging industrial tool infrastruc-
ture allows researchers to focus on research.

Eclipse presents some exciting opportunities for re-
searchers who build software engineering tools. At its
core, Eclipse is a platform of common tool infras-
tructure, including: an XML-based plug-in architec-
ture for interoperability; frameworks for structured text
and graphics editing; a common debugging infrastruc-
ture; and a complete JavaTM development environment.
Furthermore, because the Eclipse core is open source, it
can be modified by researchers and freely downloaded
by research tool users. Leveraging the Eclipse infras-
tructure can significantly reduce the amount of effort
required to develop research tools.

The new IBM offering, WebSphere Studio Appli-
cation Developer Integration Edition (IBM, http://
www.ibm.com/software/ad/studiointegration)—Web-
Sphere Studio for short—presents new opportunities
for researchers interested in leveraging standard
technologies. WebSphere Studio is based on open-
source technology from the Eclipse Project (www.
eclipse.org). This paper reports on the integration of
WebSphere Studio with the SHriMP (Simple Hier-
archical Multi-Perspective) information visualization

∗To whom correspondence should be addressed.
†Present address: Laboratory for Computer Science, Massachusetts
Institute of Technology, 200 Technology Square, Room 532,
Cambridge, MA, 02139-3578, USA.

161



162 Rayside et al.

tool from the University of Victoria. Specifically, we
want to use SHriMP to visualize flow diagrams.

Flow diagrams, as implemented by WebSphere
Studio Application Developer Integration Edition, are
used in an e-business project to model the dynamic
aspects of a system, such as the main activities and
the movement of information in a business process.
The main motivation for our project is to apply
SHriMP’s advanced visualization features to flow dia-
grams, which may be hierarchically composed.

SHriMP was originally developed for program vi-
sualization; therefore, some minor modifications were
required to adapt it to this new domain. One of our
research objectives is to transfer knowledge from pro-
gram understanding to flow understanding—and in the
process to see if we can gain any new insights to im-
prove program visualization.

Fig. 1 shows the architecture of our project and
the three main foci of our integration efforts. The
column on the left represents SHriMP, and the col-
umn on the right represents the flow diagram editor;
both of these tools are presented within the context of
the Eclipse infrastructure. Project-application-specific
components are shown in a darker shade of gray, and
project-independent reusable components are shown in
a lighter shade of gray. The three labeled, dashed lines
represent the points of interaction between SHriMP and
Eclipse: Line 1 represents file-based data exchange be-
tween the RSF (Rigi Standard Form) format used by
SHriMP and the XML-based format used by the flow

Fig. 1. Eclipse and SHriMP architecture.

diagram tool in Eclipse; line 2 represents API-based data
exchange between the flow diagram tool and SHriMP;
line 3 represents the control and user interface integra-
tion between the tools.

The MOF (Meta-Object Facility) frameworks for
working with XMI-encoded data, such as flow diagrams,
made the mechanics of the data integration very easy.
MOF and XMI are described in the next section. Section 3
introduces flows and flow diagrams in detail. Section 4
discusses the data and domain integration aspects of
rendering flow diagrams in SHriMP: these are largely
to do with terminals.

We faced some interesting challenges in the con-
trol integration because SHriMP and Eclipse are based
on different widget toolkits: Swing/AWT (Abstract.
Window Toolkit) and SWT (Standard Widget Toolkit),
respectively. SWT is described in more detail in
the next section. We used an experimental mecha-
nism for integrating tools based on these different
widget toolkits, and report our experience for the
research community in Section 5 (commercial develop-
ers should use the standard control integration mech-
anisms, which are also described briefly). Section 6
concludes the paper.

2. WebSphere Studio

In this paper we use the term WebSphere Studio
to refer to WebSphere Studio Application Developer



Visualizing Flow Diagrams 163

Integration Edition. IBM markets a number of Web-
Sphere Studio products, most of which are based on
the open-source Eclipse technology. This section de-
scribes some of the core functionality of Eclipse, as
well as some of the extra technology in WebSphere
Studio Application Developer Integration Edition that
we used for this project.

2.1. Eclipse
The core of Eclipse is an infrastructure for building
integrated development tools. The main integration
mechanism is an XML-based mechanism for defining
plug-ins. Plug-ins contribute functionality by hooking
into extension points defined by other plug-ins, and may
also define new extension points. The Eclipse core pro-
vides all of the infrastructure necessary for the dynamic
discovery, linking, and execution of plug-ins.

Eclipse also includes infrastructure for resource
management, version control, and debugging. One of
the other useful frameworks included in Eclipse is SEF

(source editing framework). SEF can be used to build
customized editors for various forms of structured text,
such as Java programs and XML documents.

Eclipse comes with three standard sets of plug-ins:
Java development tools, Web development tools, and
plug-in development tools. Each set is built with the
Eclipse core infrastructure, and interoperates with the
other sets. The Java development tools in Eclipse
will eventually supersede the VisualAge for Java
functionality (IBM, http://www7.software.ibm.com/
vad.nsf/data/document2020).

2.1.1. Standard Widget Toolkit (SWT). Standard
Widget Toolkit (SWT) is the operating-system-
independent GUI widget toolkit used by the Eclipse plat-
form. SWT is analogous to Swing/AWT: the difference
is in the implementation strategy. SWT uses native wid-
gets wherever possible for three main advantages: per-
formance, look-and-feel, and debugging. If no native
widget is available on a particular platform, then a Java
version is implemented for that platform. For example,
Microsoft©R Windows©R contains a native tree widget
and Motif does not: on a Windows platform, SWT uses
the native widget, and a Java equivalent is provided in
the Motif environment. This is, of course, all transpar-
ent to the Java application programmer.

Consequently, SWT-based applications always look,
feel and perform like native applications, and any prob-
lems with the widgets can be directly replicated in
C code (which makes debugging easier for the SWT

implementor). Another benefit of using native wid-
gets is that SWT-based applications can interact with
platform-specific features, such as ActiveX controls in
Windows.

AWT follows a ‘lowest common denominator’ strat-
egy: it provides only those widgets that are available on
all platforms. Swing compensates for this by building
higher-level Java widgets on top of AWT’s lowest com-
mon denominator. So, there is only one implementation
of Swing that works across all Java-supported window-
ing environments. However, these Swing widgets will
always look and feel distinct from their native counter-
parts and perform differently.

The Eclipse Web site contains white papers on SWT

(Northover, 2001), integrating with ActiveX and OLE

on Windows (Irvine, 2001), and creating new widgets
with SWT (Northover and MacLeod, 2001).

While SWT provides Eclipse with superior per-
formance and look-and-feel, it presents an integra-
tion challenge to us because SHriMP is based on
Swing/AWT. Ideally, we would have the resources
to rewrite SHriMP in SWT, but this is not feasible
given SHriMP’s advanced visual nature and the limited
resources of university research. Consequently, we
experimented with an undocumented mechanism for
integrating Swing-based progrma with SWT-based pro-
grams, as discussed in Section 5. Commercial tool
developers, and those starting from scratch, should
use one of the other options, also discussed in
Section 5.

2.2. WebSphere studio
On top of Eclipse plug-ins and architecture, WebSphere
Studio Application Developer Integration Edition adds
more plug-ins and frameworks, such as:

� MOF and XML Tools
� GEF: Graphical Editor Framework
� Web services tools
� Flow diagram editors

2.2.1. Meta-Object Facility (MOF). The Meta-
Object Facility (MOF) (OMG, 2000) is an Object Man-
agement Group (OMG) standard for describing meta-
models, models, and instance data. XMI (OMG, 2000)
is an associated OMG standard for serializing MOF in
XML.

Flow diagrams can be modelled with MOF and seri-
alized in XMI, as previously reported by Litoiu, Starkey,
and Schmidt (2001). We leverage the WebSphere



164 Rayside et al.

Fig. 2. The relation between MOF, UML, and XMI.

Studio Application Developer Integration Edition
infrastructure for working with MOF to take advantage
of their results.

Fig. 2 shows the correlation among the expressions
of model information in UML, MOF, and XMI. The first
level of meta-modeling is M3 of MOF-core. MOF-core
is a subset of UML and contains definitions of Class,
Attribute, Association, and so on Booch, Rumbaugh,
and Jacobson (1999), OMG (2000). The second level of
meta-modeling is M2—the application domain model.
This is the level on which most people operate when
they build ordinary class diagrams. Any M2 model
is an instance of an M3 level, being constructed
with instances of Class, Attribute, Association, and
so on.

As an example, Author and Book may be consid-
ered as M2 instances of Class, and name and title may
be considered as instances of Attribute. Author and
Book are related to each other by a relationship called
Aggregation that is an instance of M3 Association. A
meta-model from the M2 level can have many instances
in the M1 level. For example, Plato and Shakespeare
are instances of Author; The Republic and As You
Like It are instances of Book.

The instance-of relation distinguishes the three lev-
els in MOF: each level instantiates the level above it
and, conversely, is instantiated by the level below it.
One of the main advantages, for integration, of having
an explicit meta-model is that an API written for the
meta-model can be used to work with any model that
instantiates that meta-model and any data that instan-
tiates those models.

Use of MOF in our project. Fig. 1 illustrates
the role that MOF and XMI play in our project.
FlowMetaModel.xmi represents our application do-
main metamodel (taken from Litoiu, Starkey, and
Schmidt, 2001). The WebSphere Studio Application
Developer Integration Edition infrastructure can auto-
matically derive a Java API for working with models
that instantiate this meta-model. This API is named.
Flow Domain Model in Fig. 1, and can be used to work
with flow diagrams encoded in XMI. We can use this
automatically generated API without knowledge of the
particular details of the XML encoding.

3. Flow Diagrams

There are many specific kinds of technical flow dia-
grams, such as: Petri nets, data flow diagrams (Ross,
1977), statecharts (Harel and Gery, 1997), process de-
pendency diagrams (Martin, 1989; Martin and Odell,
1992), UML activity diagrams (Booch, 1999), and work-
flows (Leyman and Roller, 1997; Casatti et al., 2000).
IBM produces a number of middleware products that
also have specific kinds of flow diagrams associated
with them. In these products, the programmer, business
analyst or system integrator, draws flow diagrams that
are executed by associated runtime environments. The
flows in these products are classified as nano-flows,
micro-flows and macro-flows (also known as work-
flows) (Litoiu, Starkey, and Schmidt, 2001).

Macro-flows use large-scale granular activities and
are deployed by large-scale software components such



Visualizing Flow Diagrams 165

as applications. Workflow products that model and im-
plement business processes are examples of macro-
flows. Nano-flows are flows of data and control that
take place inside an object or object method. In IBM
products, nano-flows model and implement the wiring
of Java classes into programs that access legacy ap-
plications. Nano-flow, micro-flow, and macro-flow di-
agrams can be modeled with an extension of MOF,
called Flow Composition Model (FCM), as was previ-
ously reported by Litoiu, Starkey, and Schmidt (2001).
FCM is in the process of becoming an OMG standard
(Object Management Group). MOF and FCM are typi-
cally serialized in the XML-based XMI format (OMG,
2000). As was discussed in the previous section, and
shown in Fig. 1, WebSphere Studio Application De-
veloper Integration Edition provides substantial in-
frastructure for working with MOF models encoded in
XMI.

The WebSphereMQ Integrator©R (IBM, http://www-
3.ibm.com/software/ts/mqseries/integrator/.) product
(formerly known as Message Queue System
Integrator©R , or MQIntegrator©R ) provides the an-
alyst with tools to draw message-flow diagrams that
describe the movement of data between information
systems. The associated runtime environment executes
these diagrams: that is, combines, transforms, and
delivers the messages. WebSphere MQIntegrator is
typically used to integrate information systems when
large corporations merge. Much of IBM’s flow-related
middleware is developed in Toronto.

3.1. An example flow diagram
Fig. 4 describes a (simplified) business process
for processing a credit request, involving activities
such as Risk:Assess, Risk:Reassess and, eventually,
Send:Money or Send:Rejection.

Fig. 4(c) shows the main Credit Approval pro-
cess, which is composed of two sub-processes: Risk
(Fig. 4(a)) and Send (Fig. 4(b)). Fig. 5 shows the
credit approval section (i.e., Fig. 4(c)) as it looks
in WebSphere MQIntegrator’s Flow Composition
Builder. Notice that the two sub-flows (i.e., Fig. 4(a)
and (b)) are not immediately evident: the user must
open up separate editor tabs for each sub-flow. This ob-
fuscates the hierarchical composition of the flows, and
makes it more difficult for the user to understand the
diagrams. We want to use SHriMP’s advanced features
for visualizing these kinds of hierarchical composition
relationships.

Fig. 3. A filter node from Message-Queue system integrator.

3.2. Terminals
One of the important characteristics of nodes in flow
diagrams is that they have specific terminals on which
ares may be attached to them. Which terminal an arc
is attached to is fundamental to the meaning of the
diagram, as discussed below, and so these terminals
must be explicitly represented in some fashion.

A simple example. Fig. 3 shows an example of
a ‘filter’ node from the MQIntegrator (IBM, http://
www-4.ibm.com/software/ts/mqseries/) flow editor
with its terminals labeled. A filter node is a kind of
primitive node that is analogous to a simple condi-
tional test in an imperative programming language.
Filter nodes have one input terminal and four output
terminals: failure, unknown, true and false. When a
message arrives at a filter node, its condition is eval-
uated, and a message is sent from one of the output
terminals according to the result of the evaluation.

Other kinds of nodes may accept multiple inputs and
send multiple outputs.

Terminals have distinct identity. Terminals have dis-
tinct identity: that is, they cannot be identified with arcs
as arrowheads can, nor can they be subsumed by the
nodes they are attached to. Terminals are different from
arrowheads in two ways: terminals are still present on
a node even if there are no arcs connected to them; and
multiple arcs may be connected to a single terminal.

3.3. Flows and programs
The relationship between flows and programs has been
approached from many angles. Researchers in program
analysis, compilers and reverse engineering often use
controlflow graphs and data-flow graphs to describe
certain aspects of programs. Böhm and Jacopini (1966)
consider the relation of flow diagrams to the fundamen-
tal notion of computation in their classic paper Flow
Diagrams, Turing Machines and Languages with only
Two Formation Rules.

Litoiu, Starkey, and Schmidt (2001) consider that
there is an analogy between flows and classes (in the
object-oriented programming sense of the word) when
modeling flows with MOF. From their perspective, the



166 Rayside et al.

Fig. 4. Expanded flow diagram of a credit approval process.

Risk:Assess and Risk:Reassess boxes in Fig. 4(c) rep-
resent instances of the flow Risk shown in Fig. 4(a).

We are interested in the relationship between flows
and programs because SHriMP was originally devel-
oped for program visualization and we are now using
it for flow visualization.

4. Visualizing Flow Diagrams
with SHriMP

This section describes how SHriMP’s advanced visu-
alization features are useful for flow diagrams, de-
scribes some of the detailed visual characteristics of
flow diagrams, and outlines how we added terminals
to SHriMP (the main change required for visualizing
flow diagrams). Fig. 7 shows how SHriMP renders the
credit approval example that was used in Figs. 4 and 5.
We will discuss SHriMP’s features with respect to this
example.

SHriMP. The SHriMP (Simple Hierarchical Multi-
Perspective) visualization technique was designed to
enhance how people browse and explore complex in-
formation spaces. It was originally designed to en-
hance how programmers understand programs (Storey,
Müller, and Wong, 1996; Wu and Storey, 2000).
SHriMP presents a nested graph view of a software
architecture. Program source code and documentation
are presented by embedding marked up text fragments
within the nodes of a nested graph. Finer connec-
tions among these fragments are represented by a net-
work that is navigated using a hypertext-link-following
metaphor. SHriMP combines this hypertext metaphor

with animated panning and zooming motions over the
nested graph to provide continuous orientation and
contextual cues for the user.

Smooth zooming. SHriMP’s most visually striking
feature is its smooth zooming, which enables the ana-
lyst to ‘zoom-in’ to the detail, or ‘zoom-out’ to the big
picture in an easy and intuitive manner. Fig. 6 attempts
to convey this dynamic nature with a simple example
diagram: the top-left portion shows the high-level flow
diagram; the bottom-left portion opens up the sub-flow
that it is composed of; and the right side zooms into the
sub-flow. SHriMP’s zooming feature is based on the
JAZZ zooming library from the University of Maryland
(www.cs.umd.edu/hcil/jazz.)

By contrast, if using the Flow Composition Builder
pictured in Fig. 5, the user would have to open up a sep-
arate window to view the sub-flow, and its relationship
to the super-flow would thereby be obfuscated.

Nested interchangeable views. One of the key fea-
tures of SHriMP is its ability to show nested inter-
changeable views. This feature means that there are
different views possible for nodes at different levels
in the hierarchy. This feature is illustrated in Fig. 7,
which shows nodes in three different views; open (i.e.,
showing their subnodes), closed (i.e., showing their
own icon), and property sheet. The open and closed
views are common across all domains. Other domains
may also have other views: for example, when visualiz-
ing Java programs SHriMP supports both source code
and Java-doc views. The user can change the currently
displayed view of each node on an individual basis.



Visualizing Flow Diagrams 167

Fig. 5. CreditApproval.fcb in flow composition builder inside WebSphere studio.

Fig. 6. SHriMP zooming in on a hierarchically composed flow diagram.



168 Rayside et al.

Fig. 7. CreditApproval.fcb in SHriMP inside WebSphere studio.

Hierarchy view. The left side of Fig. 7 shows a hi-
erarchical overview (vertical slice) of the nested graph
layout of the flow diagram shown on the right side.
This view serves purposes. It provides a “gestalt” pic-
ture of the depth of the hierarchy in the flow diagram
and the approximate number of instances it contains.
In addition, it acts as a powerful navigation aid by in-
creasing the size of the node that is currently being
visited (in other words it provides a “you are here”
map). Furthermore, since the user can search for nodes
in a flow diagram, the hierarchical overview can be
used to highlight the results from a search query (thus
providing important clues on the location of the results
in the overall flow diagram). Also, it can be used to
show which nodes have been filtered. The user can ei-
ther manually filter selected nodes, or filter nodes of a
certain type. The user can use the filtered hierarchical
overview to “unfilter” nodes using direct manipulation.
The user can pan, zoom or select any node in this view
and zoom to it in the main SHriMP view.

Filmstrip. The bottom of Fig. 7 shows a “filmstrip”
of saved “snapshots” or “bookmarks” that capture in-
teresting views to be reloaded by the user as desired.
Each snapshot records all of the layout and filter in-
formation as well as which node was zoomed in the
view. The thumbnail sized images provide an impor-
tant recognition aid for users as they explore a hierar-
chical flow diagram. The user can (and indeed should)
annotate each of the snapshots. A tooltip reveals each
of the annotations as the user moves the mouse over
snapshots in the filmstrip.

4.1. Adding terminals to SHriMP
There were two main aspects to adding terminals to
SHriMP: the visual aspects and the data-modeling
concerns.

4.1.1. Visual aspects. The main visual aspects of
terminals are:



Visualizing Flow Diagrams 169

� Arcs are connected to terminals.
� Terminals ‘belong to’ nodes.
� Some terminals have no arcs attached.
� Some terminals have >1 arc attached.
� Terminals are placed to reduce arc length.
� Terminals are represented by images.
� Terminals are colour-coded.

Some of these aspects are illustrated in Fig. 6. In the
old Message Queue System Integrator flow diagram
editor, terminals are all visually identical, and so they
are identified by their position with respect to the node.
This limits the layout possibilities, and so in SHriMP
we have decided to visually distinguish the terminals
such that the arcs can be drawn according to a shortest-
path heuristic.

4.1.2. Data-modeling concerns. SHriMP uses a
graph-based data model, similar to the one embodied
by RSF (Rigi Standard Form, Müller and Klashinsky,
1988) or GXL (Graph Exchange Language, Holt et al.,
2000) (the two exchange formats that SHriMP uses).
This kind of data model is not particularly well suited
to the concept of terminals, because terminals are a new
kind of first-class entity that mediates between arcs and
nodes.

We considered two main possibilities for represent-
ing terminals within SHriMP’s existing data model: as
distinct nodes, or as attributes on existing nodes and
arcs. In either approach, the view (in the sense of MVC

(Model-View-Controller), see below) must be modi-
fied to recognize and render the terminal information.
We tried both approaches and found that the attribute
approach was better.

Representing terminals as attributes on existing
nodes and arcs requires adding two attributes to ev-
ery arc (source terminal and target terminal), as well
as k attributes to every node, where k is the number of
terminals on that node. The attributes on nodes are nec-
essary to ensure that terminals with no arcs attached to
them are represented. In practice we used 2k attributes
on every node: the second attribute indicates the image
to use for the terminal.

Another possibility, which we did not try, would
be to create an entirely new data model for SHriMP
that explicitly incorporated the notion of terminals.
SHriMP’s architecture does provide a generic data
model that can be specialized for each new do-
main. However, this would have involved signif-
icantly more effort. Integration with SHriMP is

further discussed in Best, Storey, and Michaud
(2002).

Model-view-controller. SHriMP is designed around
the well-known model-view-controller (MVC) architec-
ture. The discussion above describes the changes we
made to the model. However, to render the diagram
properly the view has to interpret the attributes pertain-
ing to terminals in a special fashion. Note that other
attributes are simply regarded as arbitrary strings asso-
ciated with the nodes or arcs, and have no special impli-
cations for the view. While it was not difficult to change
the view to interpret the terminal-related attributes, it
obviously required introducing special cases, which al-
ways complicates code over the long-term. This is one
of the reasons that designing a new data model to ex-
plicitly incorporate terminals is an approach that we
will likely follow in the future.

Two views. Typically, the view, in the MVC sense of
the word, consists of the set of objects manipulated by
the GUI. SHriMP’s advanced zooming features, how-
ever, require that it have two views: one for Swing (i.e.,
the ‘normal’ view), and one for the zooming library
JAZZ (i.e., the ‘extra’ view). In other words, both Swing
and JAZZ maintain their own sets of objects represent-
ing the visual elements on the screen.

The distinction between these two views is impor-
tant for a variety of reasons; in our particular con-
text, each view deals with terminals differently. In the
Swing view, terminals are first-class entities: that is,
there is a Swing object associated with every termi-
nal. This Swing object is necessary to render the termi-
nal. However, terminals are not represented in the JAZZ

view because they zoom with the nodes that they are
attached to.

Terminals are the only things that are treated differ-
ently by the Swing and JAZZ views: nodes and arcs are
explicitly represented in both views. This subtle issue
was one of the most important factors that enabled us
to get the terminals to display and zoom properly.

5. Control and User Interface Integration

The Eclipse platform is designed around a ‘plug-in’
architecture in order to achieve tight control and user
interface integration between tools. All of the standard
tools that come with Eclipse, such as the Java develop-
ment environment, are plug-ins. The core of the Eclipse
platform is a mechanism for discovering, registering



170 Rayside et al.

and integrating plug-ins. The details of integration are
specified in a plugin.xml file, which describes how
one tool ‘plugs-in’ to the extension points of another
tool, and what libraries it depends on, and so forth.
How to build new plug-ins is well documented (see,
for example, Amsden, 2001).

The most seamless user-interface integration is
achieved for plug-ins that are written with SWT: these
plug-ins seamlessly merge with the Eclipse UI in the
same way that the standard plug-ins do. Such plug-ins
also run in the same VM (virtual machine) that Eclipse
does, and can take advantage of platform-specific fea-
tures, such as using ActiveX controls on Windows
(Irvine, 2001) (of course, this limits the portability of
the plug-in).

SHriMP, however, is written with Swing and JAZZ

(a third-party visual zooming library, www.cs.umd.
edu/hcil/jazz/). Ideally, we would rewrite SHriMP with
SWT, but this is not feasible at the present given
SHriMP’s sophisticated visual nature and the limited
resources of university research. So, we experimented
with an undocumented mechanism for integrating
Swing applications into Eclipse: this approach is ac-
ceptable for our research prototyping purposes, but is
not recommended for commercial tool builders, or for
researchers starting from scratch.

We were able to pursue the user interface integration
aspect of the project independently of the data integra-
tion aspect because both SHriMP and Eclipse are fairly
content-independent.

5.1. Options for integrating with SWT
Eclipse can be integrated with tools that are based
on four different user interface technologies (Adams,
2001): SWT, Swing, OLE (object linking and embed-
ding), and ‘other’ (i.e., launching an external tool in
a separate window and process). SWT is the tightest
interface integration while arbitrary external tool in-
tegration is the loosest form of integration. More de-
tails on the various integration mechanisms are given
below.

SWT-based tools. Java tools based on the SWT can
run in-place within Eclipse: that is, they are visually
indistinguishable from the built-in tools. These tools
also run in-process: that is, within the same VM and
class libraries as Eclipse itself. These tools can achieve
seamless functional integration if the Eclipse API’s are
used. This is the tightest and most seamless form of
interface integration.

In-place Java tools can also use ActiveX controls (on
Windows platforms only). Eclipse provides a mecha-
nism for using ActiveX controls from within the Java
code (Irvine, 2001).

External tools. Any tool written in any language can
be launched from Eclipse with its own separate pro-
cess. These tools open as separate windows and are
not visually integrated with Eclipse. The platform pro-
vides automatic launching of external editors based on
file type associations, which may be obtained from the
underlying operating system or specified by the user.
This is the loosest form of integration.

OLE-based tools. On the Windows platform, OLE-
based tools can be run in-place. These tools appear to
be tightly integrated with Eclipse, but functionally they
are the same as any external-launch tool. For example,
the Eclipse help system on Windows uses Microsoft
Internet Explorer in this way.

Swing-based tools. Swing-based tools can be inte-
grated with the Eclipse user interface in two ways: in a
separate window or within Eclipse. If the Swing-based
tool is launched in a separate window, it appears to the
user much the same as any external tool would. One
important technical difference is that arbitrary exter-
nal tools are launched in a separate process, whereas
Swing-based tools can run within the same VM and
class libraries as Eclipse does.

There is an experimental mechanism for running
Swing-based tools in-place within Eclipse on Windows
platforms, but its use is not officially supported at this
time. We have experimented with this mechanism and
report on our experience here for the research com-
munity. Commercial tool developers, or anyone else
requiring officially supported functionality, should run
Swing-based tools in a separate window (or, better yet,
rewrite the interface in SWT). The main restrictions on
this experimental mechanism are (Irvine, 2001):

� It only works on Windows.
� It does not work with JDK 1.4.
� The API is internal and subject to change.
� There may be possible deadlock problems.

The experimental mechanism is basically
just the new Panel method in the class: org.
eclipse.swt.internal.awt.win32.SWT AWT.
The new Panel method has one parameter, an SWT

Composite object, and it returns an AWT Panel
object. The AWT Panel is contained within the
SWT Composite, and is constructed using a



Visualizing Flow Diagrams 171

WEmbeddedFrame from Sun’s internal package
sun.awt.windows. Sun has changed this internal
code in JDK 1.4, and so this undocumented Eclipse
mechanism does not work with that version.

5.2. Swing/SWT interaction
The main problem that we had with Swing/SWT in-
teraction is with the interaction of the event queues—
which we resolved, as described below. We previously
reported (Rayside et al., 2001) some problems with
keyboard events and complicated repaint operations
with earlier versions of Eclipse, but these have since
been resolved by the Eclipse team. We sometimes ex-
perience freezes, and suspect that this is due to some
threading problem between the two GUI systems.

The execution of any widget toolkit is controlled by
an event queue: the operating system adds events to
the queue as the user manipulates the machine (such as
moves the mouse or presses a key, etc.); the dispatching
loop pops events off the front of the queue and executes
them. Sometimes it is important to ensure that certain
events happen in a certain order, or that some com-
putation is performed before or after certain interface
events. For example, an incremental progress bar re-
quires that the user interface is periodically updated
while a computation proceeds.

Swing provides two methods in the
SwingUtilities class for the programmer to
specify such temporal ordering: invokeLater()
and invokeAndWait(). Both methods take a
parameter of type Runnable that contains the
code to be executed in the event dispatching thread.
invokeLater() places the Runnable at the end of
the event queue and returns immediately (i.e., it makes
an asynchronous request). invokeAndWait() is a
synchronous request: it blocks the requesting thread
until the Runnable has been executed in the event
dispatching thread. SWT provides two equivalent
methods in the Display class: asyncExec() and
syncExec().

The first thing that SHriMP does when it opens a
graph is to focus on a specific node (usually the root).
Focusing on a node entails panning and zooming the
display: that is, programmatic manipulation of the in-
terface. This programmatic manipulation of the graph
display cannot occur until the graph is actually dis-
played because all of the visual elements need to have
positions and sizes before those attributes can be ma-
nipulated. When executing SHriMP within its own VM,
the programmatic manipulation is deferred until after

Fig. 8. Defer focus event (Swing).

the graph is displayed using the invokeLater()
method, as shown by the code snippet in Fig. 8.

However, when running SHriMP inside Eclipse, the
initial rendering of the graph does not occur until the
SWT Composite that contains SHriMP is initialized.
This whole process is triggered by an SWT.Resize
event that gives the Composite its initial size; when,
in turn, resizes the AWT Panel it contains; this causes
the SHriMP graph to be displayed for the first time. So,
for things to work properly the order of events must
be: SWT.Resize, initial rendering of SHriMP graph,
focus on initial node (the programmatic manipulation
of the graph). Both the SWT method asyncExec()
and the Swing methodinvokeLater()must be used
to accomplish this order, as detailed by the code snippet
in Fig. 9.

The code in Fig. 9 essentially says the follow-
ing: after all pending SWT interface events have
been processed (including the SWT.Resize), place
a FocusOnRoots event at the end of the Swing event
queue. Then, after all of the pending Swing events have
been processed (including SHriMP initialization), the
FocusOnRoots event can programmatically manip-
ulate the SHriMP display to focus on the root of the
graph.

Blocking the SWT UI from a swing dialog box. An-
other event queue interaction work-around has been
described on the Eclipse Corner Newsgroup (Wilson,
2001); we report it here as it may be of interest to
the reader, although we have not yet had to use this
technique.

The objective is to launch a Swing dialog box from
within an SWT-based application, and to block the SWT

Fig. 9. Defer focus event (Swing in SWT).



172 Rayside et al.

Fig. 10. Swing dialog blocking SWT UI.

execution until the user dismisses the Swing dialog box.
The solution given in Wilson (2001) is to use a Boolean
object to communicate between the SWT application
thread and the Swing dialog box thread. A code snippet
detailing this solution is given in Fig. 10.

6. Discussion

This paper documents our experience integrating
SHriMP, an information visualization tool, with IBM
WebSphere Studio Application Developer Integration
Edition, which is based on open source technology
from the Eclipse Project. Our work involved control,
data, and domain integration.

Control integration. From the control perspective,
we integrated SHriMP with WebSphere Studio Appli-
cation Developer Integration Edition by transforming
SHriMP into an Eclipse plug-in. The creation of a plug-
in is straightforward: Eclipse provides full support for
developing, testing and debugging.

One of the main technical challenges was integrating
Swing/AWT-based SHriMP with SWT-based Eclipse.
We reported our experience using an experimental
mechanism for integrating programs written in these

different GUI frameworks, including our solution to the
thread interaction problem we discovered. Researchers
and other prototype developers with existing Swing-
based code may be interested in trying this experi-
mental mechanism, despite its limitations. Commer-
cial tool developers should use the standard, supported
mechanisms for better performance and more consis-
tent look-and-feel. For the tightest interface integration,
one should write plug-ins using SWT.

Data and domain integration. Terminals were the
main challenge for the data and domain integration as-
pects of our project. Throughout the paper we discussed
terminals in the context of Message Queue System In-
tegrator style message-flow diagrams, but the issues
extrapolate to other kinds of flow diagrams.

SHriMP’s data model is very similar to RSF (Rigi
Standard Form, Müller and Klashinsky, 1988) and GXL

(Graph Exchange Language, Holt et al., 2000), both
of which are also based on the idea of a graph com-
posed of nodes and arcs. These data models are not de-
signed to deal with terminals, which are another kind
of first-class entity that mediates between nodes and
arcs. We tried two approaches for expressing termi-
nals within SHriMP’s data model, and reported the
implications that this had for SHriMP’s model-view-
controller (MVC) architecture. The easiest part of the
data integration was reading the XML-encoded flow di-
agrams with the MOF frameworks.

SHriMP’s advanced visualization features
prompted us to render flow diagrams in a differ-
ent way in SHriMP from that used in MQIntegrator.
We discussed these changes with UCD and flow
composition specialists at IBM.

6.1. Conclusions
We have drawn three main conclusions from our
experience:

First, we confirm Martin’s findings (Martin, 1999)
that leveraging industrial tool infrastructure can signif-
icantly reduce the amount of effort required to develop
tool prototypes. In our case, the MOF frameworks es-
sentially eliminated most of the mechanics of the data
integration work, and let us focus on more interesting
problems.

Second, tight UI integration between Swing-based
tools and SWT-based Eclipse seems possible, but there
are some important limitations. Loose UI integration
with Swing-based tools is fully supported, as is tight UI

integration with SWT-based tools. SHriMP’s advanced



Visualizing Flow Diagrams 173

visualization features made this part of the project more
challenging than it might be for other tools.

Third, terminals seem to be a very useful and nat-
ural concept, and they should be better supported by
exchange formats such as GXL (Holt et al., 2000).

6.2. Future work
Our anticipated future work involves adapting SHriMP
to new data domains within Eclipse, and applying the
idea of terminals to program visualization.

New domains. The two domains that we are most in-
terested in are MOF and Java. Flow diagrams are one
example of data that may be modeled in MOF (using
the FCM framework). However, MOF can be used for
modeling in many other domains. We hope to gener-
alize the work presented in this paper to visualize any
MOF-based models.

Eclipse also includes a full Java development en-
vironment, and we would like to integrate SHriMP
into this environment for visualizing Java programs.
SHriMP has already been used to visualize Java pro-
grams, but we would like to build a new fact extrac-
tor that performs some static analysis of polymorphic
method invocations (such as Class Hierarchy Analysis
Dean, Grove, and Chambers, 1995; Diwan et al., 1996)
and Rapid Type Analysis (Bacon, 1997; Bacon and
Sweeney, 1996). Determining the targets of polymor-
phic method invocations is one of the most important
tasks in understanding object-oriented programs, and
there is relatively little support for it in most program-
understanding tools.

Using terminals for program visualization. We
think that the idea of terminals presents an opportunity
to add extra visual semantics to the standard box-and-
arrow diagrams used by many program visualization
tools (such as SHriMP). We are not aware of any cur-
rent program-understanding tool that uses terminals.

One simple possibility is to use terminals to cate-
gorize arcs: for example, there could be a terminal for
data-related arcs and another for control-related arcs.
In flow diagrams, terminals have semantics that are in-
dependent of the kind of arcs connected to them. One
way to use terminals and retain this independence in
program visualization is to have terminals represent-
ing normal and exceptional exit paths, as is done with
filter nodes in flow diagrams (see Fig. 3).

Using terminals for software architecture. The new
ArchJava (Aldrich, Chambers, and Notkin, 2002a,
2002b) architectural description language from the

University of Washington includes terminals, and we
are discussing the possibility of using SHriMP to
visualize ArchJava architectures with them.

Acknowledgments

We thank Grant Taylor, Mike Beltzner, and Evan
Mamas at the IBM Toronto Laboratory for their time
and assistance. Discussions with Mike Beltzner con-
tributed directly to our decision to visually distinguish
the terminals such that the arcs can be drawn according
to a shortest-path heuristic. Randy Giffen and Veronika
Irvine from OTI also gave us useful comments on
an earlier version of this paper. Participants on the
Eclipse Newsgroup have also been helpful, especially:
Greg Adams, Veronika Irvine, Jeff McAffer, David
Whiteman, and Mike Wilson. Finally, Anne R. James
proof-read the article.

This work was funded by the IBM Centre for
Advanced Studies at the IBM Toronto Laboratory.

IBM, WebSphere, MQIntegrator, and VisualAge
are registered trademarks of International Business
Machines Corporation in the United States, other
countries, or both. Microsoft, Windows, and Windows
NT are trademarks of Microsoft Corporation in
the United States, other countries, or both. Java
and all Java-based trademarks are trademarks of
Sun Microsystems, Inc., in the United States, other
countries, or both.

References

Adams G. External tool interoperability. Eclipse Newsgroups, June
2001. Available on http://www.eclipse.org/newsgroups/.

Aldrich J, Chambers C, Notkin D. Architectural reasoning in
ArchJava. In: ECOOP’02, 2002a, to appear.

Aldrich J, Chambers C, Notkin D. ArchJava: Connecting software
architecture to implementation. In: ICSE’02, 2002b, to appear.

Amsden J. Your first plug-in. Eclipse Article, June 2001. Available
at http://www.eclipse.org/articles/.

Bacon DF. Fast and Effective Optimization of Statically Typed
Object-Oriented Languages. PhD Thesis, UCB/CSD-98-1017,
University of California at Berkeley, December 1997.

Bacon DF, Sweeney PF. Fast static analysis of C++ virtual function
calls. In: Coplien J, ed. Proceedings of ACM/SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), San Jose, CA, 1996:324–341.

Best C, Storey M-A, Michaud J. Designing a component-based
framework for visualization in software engineering and knowl-
edge engineering. In: Ferrucci F, Vitiello G, eds. Proceedings



174 Rayside et al.

of the 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE), Ischia, Italy, July 2002,
submitted.

Böhm C, Jacopini G. Flow diagrams, turing machines and languages
with only two formation rules. CACM 1966;9(5):366–371. Also
Reprinted in Yourdon EN, ed. Classics in Software Engineering.
Yourdon Press, 1979.

Booch G, Rumbaugh J, Jacobson I. The Unified Modeling
Language—User Guide. Reading, MA: Addison-Wesley, 1999.

Casatti F, Ceri S, Pernici B, Pozzi G. Conceptual modeling of
workflows. In: Advances in Object-Oriented Data Modeling.
Cambridge, MA: MIT Press, 2000.

Coplien J (ed.). In: Proceedings of ACM/SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Appli-
cations (OOPSLA), San Jose, CA, October 1996.

Dean J, Grove D, Chambers C. Optimization of object-oriented
programs using static class hierarchy analysis. In: Olthoff W,
ed. Proceedings of European Conference on Object-Oriented
Programming (ECOOP), Århus, Denmark, LNCS 952. Berlin:
Springer-Verlag, 1995.

Diwan A, Eliot J, Moss B, McKinley KS. Simple and effective analy-
sis of statically-typed object-oriented programs. In: Coplien J, ed.
Proceedings of ACM/SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA),
San Jose, CA, 1996:292–305.

Harel D, Gery E. Executable object modeling with statecharts. IEEE
Computer 1997;30(7):31–42.

Holt R, Winter A, Schürr A, Sim S. GXL: Towards a standard ex-
change format. In: Cifuentes C, Kontogiannis K, Balmas F, eds.
WCRE’00, Brisbane, Australia, November 2000.

IBM. FAQ about IBM’s new tooling strategy and the future of
VisualAge for Java. Available at http://www7.software.ibm.com/
vad.nsf/data/document2020.

IBM. MQSI: Message queue system integrator. Available at
http://www-4.ibm.com/software/ts/mqseries/.

IBM. WebSphere MQ integrator. Available at http://www-3.ibm.
com/software/ts/mqseries/integrator/.

IBM. WebSphere studio application developer integration edition.
Available at http://www.ibm.com/software/ad/studiointegration.

Irvine V. ActiveX support in SWT. Eclipse Article, March 2001.
Available at http://www.eclipse.org/articles/.

Irvine V. Limitations of Swing/SWT experimental integration
mechansim. Eclipse Newsgroups, July 2001. Available at
http://www.eclipse.org/newsgroups/.

Leyman F, Roller D. Work-flow based applications. IBM Systems
Journal 1997;36(1):102–122.

Litoiu M, Starkey M, Schmidt MT. Flow composition modeling with
MOF. In: Proceedings of ICEIS’01, Setubal, July 2001.

Martin J. Information Engineering Book III: Design and Construc-
tion. Englewood Cliffs, NJ: Prentice-Hall, 1989.

Martin J. Leveraging IBM VisualAge for C++ for reverse engi-
neering tasks. In: MacKay SA, Howard Johnson J, eds. Proceed-
ings of the 9th NRC/IBM Centre for Advanced Studies Conference
(CASCON), Toronto, 1999:83–95.

Martin J, Odell J. Object-Oriented Analysis and Design. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

Müller HA, Klashinsky K. Rigi—A System for Programming-in-the-
large. In: Proceedings of the 10th ACM/IEEE International Con-
ference on Software Engineering (ICSE), Raffles City, Singapore,
1988:80–86.

Northover S. SWT: The standard widget toolkit. Eclipse Article,
March 2001. Available on http://www.eclipse.org/articles/.

Northover S, MacLeod C. Creating your own widgets using SWT.
Eclipse Article, March 2001. Available on http://www.eclipse.
org/articles/.

Object Management Group. Flow composition model. Available at
ftp://ftp.omg.org/pub/docs/ad/01-06-09.pdf.

Object Management Group (OMG). Meta object facility, 2000.
Available on http://www.omg.org.

Object Management Group (OMG). XML metadata interchange
(XMI), 2000. Available on http://www.omg.org.

Rayside D, Litoiu M, Storey M-A, Best C. Integrating SHriMP
with the IBM WebSphere studio workbench. In: Howard Johnson
J, Stewart DA, eds. Proceedings of the 11th NRC/IBM Centre
for Advanced Studies Conference (CASCON), Toronto, 2001:79–
93.

Ross D. Structured analysis (SA): A language for communicating
ideas. IEEE Transactions on Software Engineering 1977;3(1):16–
36.

Storey M-A, Müller HA, Wong K. Manipulating and Document-
ing Software Structures, Singapore: World Scientific, 1996:244–
263. Vol. 7 of the Series on Software Engineering and Knowledge
Engineering.

University of Maryland Human Computer Interaction Laboratory.
JAZZ Zooming Library. Available on www.cs.umd.edu/hcil/
jazz/.

University of Victoria. SHriMP Views Visualization Tool.
Wilson M. Blocking SWT from a Swing dialog box. Eclipse

Newsgroups, July 2001. Available on http://www.eclipse.org/
newsgroups/.

Wu J, Storey M-A. A multi-perspective software visualization en-
vironment. In: Proceedings of the 10th NRC/IBM Centre for
Advanced Studies Conference (CASCON), Toronto, 2000:41–
50.

Yourdon EN (ed.) Classics in Software Engineering. Yourdon Press,
1979.


