
Integrating SHriMP with the

IBM WebSphere Studio Workbench∗

Derek Rayside and Marin Litoiu
IBM Centre for Advanced Studies

IBM Toronto Laboratory
{drayside, marin}@ca.ibm.com

Margaret-Anne Storey and Casey Best
Department of Computer Science

University of Victoria
{mstorey, cbest}@csr.uvic.ca

Abstract

This paper provides an experience report for
researchers who are interested in integrating
their tools with the new IBM WebSphere Stu-
dio Workbench. The Workbench (open source
at www.eclipse.org) provides an open frame-
work for building integrated development en-
vironments. We report on our experience
integrating an information visualization tool
(called SHriMP Views) with the IBM Work-
bench. Although SHriMP was originally de-
veloped for visualizing programs, it is content
independent. We have re-targeted SHriMP for
visualizing flow diagrams. Flow diagrams can
be hierarchically composed, thus leveraging the
key features of SHriMP that allow a user to eas-
ily navigate hierarchically composed informa-
tion spaces. We discuss the differences between
programs and flow diagrams both in terms of
their semantics and in their visual representa-
tion. Terminals, which are a first-class entity
that mediate between nodes and arcs in flow
diagrams, presented the main challenges here.
We also report on the main technical challenges
we faced, due to the different widgets sets used
by SHriMP (Swing/awt) and the Workbench
(swt).

Keywords: integration, software engineer-
ing, software visualization, system modeling,
flow diagrams, mof, xmi

∗WebSphere Studio Workbench is an IBM product
based upon technology from the Eclipse Project. For
the purposes of this paper, the reader may consider
these terms as logically, but not legally, synonymous.

1 Introduction

Leveraging industrial tool infrastructure can
significantly reduce the amount of effort re-
quired to develop tool prototypes. At CAS-
CON’99, Martin reported that it took him only
two weeks to build a complete C++ fact extrac-
tor for Rigi [23] based on IBM’s VisualAge
C++, in contrast to the protracted effort that
had been required to build the previous fact
extractor [22]. Moreover, his new fact extrac-
tor was more robust, easier to understand, and
75% less code [22]. Leveraging industrial tool
infrastructure allows researchers to focus on re-
search.

IBM’s new WebSphere Studio Workbench
(based on open source technology from the
Eclipse Project) presents some exciting oppor-
tunities for researchers who build software en-
gineering tools. Eclipse is a platform of com-
mon tool infrastructure, including: an xml-
based plug-in architecture for interoperabil-
ity; frameworks for structured text and graph-
ics editing; a common debugging infrastruc-
ture; and a complete Java development envi-
ronment. Furthermore, because the Eclipse
core is open source, it can be modified by re-
searchers and freely downloaded by research
tool users. Leveraging the Eclipse infrastruc-
ture can significantly reduce the amount of ef-
fort required to develop research tools.

This paper reports our experience integrat-
ing a pre-release version of Eclipse with the
SHriMP information visualization tool from
the University of Victoria [26]. Specifically, we
want to use SHriMP to visualize flow diagrams.

1



Figure 1 Eclipse and SHriMP Architecture

Flow diagrams are used in an eBusiness
project to model the dynamic aspects of a
system, such as the main activities and the
movement of information in a business process.
The main motivation for our project is to ap-
ply SHriMP’s advanced visualization features
to flow diagrams, which may be hierarchically
composed.

SHriMP was originally developed for pro-
gram visualization; therefore some minor mod-
ifications were required to adapt it to this new
domain. One of our research objectives is to
transfer knowledge from program understand-
ing to flow understanding — and in the pro-
cess to see if we can gain any new insights to
improve program visualization.

Figure 1 shows the architecture of our
project and the three main foci of our integra-
tion efforts. The column on the left represents
SHriMP, and the column on the right repre-
sents the flow diagram editor; both of these
tools are presented within the context of the
Eclipse infrastructure. Project application spe-
cific components are shown in a darker shade of
grey, and project independent re-usable compo-
nents are shown in a lighter shade of grey. The
three labeled, dashed lines represent the points
of interaction between SHriMP and Eclipse:

1. represents file-based data exchange between
the rsf format used by SHriMP and the xml-
based format used by the flow diagram tool in
Eclipse; 2. represents api-based data exchange
between the flow diagram tool and SHriMP;
3. represents the control and user interface in-
tegration between the tools.

The mof frameworks for working with xmi-
encoded data, such as flow diagrams, made the
mechanics of the data integration very easy.
mof and xmi are described in the next sec-
tion, Overview of Eclipse. Section 3 introduces
flows and flow diagrams in detail. Section 4
discusses the data and domain integration as-
pects of rendering flow diagrams in SHriMP:
these are largely connected with terminals.

We faced some interesting challenges in
the control integration because SHriMP and
Eclipse are based on different widget toolkits:
Swing/awt and swt, respectively. swt is
described in more detail in the next section.
We used an experimental mechanism for inte-
grating tools based on these different widget
toolkits, and report our experience for the re-
search community in §5 (commercial develop-
ers should use the standard control integration
mechanisms, which are also described briefly).

Section 6 concludes the paper.

2



2 Overview of Eclipse

The core of IBM WebSphere Studio Workbench
is an infrastructure for building integrated de-
velopment tools. The main integration mech-
anism is an xml-based mechanism for defin-
ing plug-ins. Plug-in’s contribute functional-
ity by hooking into extension points defined by
other plug-ins, and may also define new exten-
sion points. The Workbench core provides all
of the infrastructure necessary for the dynamic
discovery, linking, and execution of plug-ins.

Libraries Because the Workbench is specifi-
cally intended for building integrated develop-
ment tools, instead of just integration in gen-
eral, it also includes infrastructure for resource
management, version control, and debugging.
The Workbench core also includes a number of
useful libraries:

• mof & xml Tools
• sef: Source Editing Framework
• gef: Graphics Editing Framework
• JFace: high level user interface constructs
• swt: Standard Widget Toolkit

mof and swt are discussed in more detail
later in this section. sef is a framework for
building editors of structured text, such as Java
programs. gef is a framework for building ed-
itors of structured graphics, such as flow dia-
grams. JFace is a library of high level user
interface constructs, such as wizards, etc.

Standard Plug-ins The Workbench also
comes with three standard sets of plug-ins:
Java development tools, web development
tools, and plug-in development tools. Each of
these are built with the Workbench core infras-
tructure, and each interoperates with the oth-
ers. The Java development tools in Workbench
will supersede the VisualAge for Java function-
ality [14].

Flow Diagrams in XML Flow diagrams
can be modelled with mof and serialized in
xmi, as previously reported by (Litoiu, Starkey
& Schmidt [19]). We intend to leverage the
Workbench infrastructure for working with
mof to take advantage of Litoiu et al’s results.

2.1 Overview of MOF

mof [27] is an omg standard for describ-
ing meta-models, models, and instance data.
xmi [28] is an associated omg standard for se-
rializing mof in xml.

Figure 2 shows the correlation between ex-
pressing model information in uml, mof, and
xmi. The first level of meta-modeling is m3 or
mof-core. mof-core is a subset of uml and
contains definitions of Class, Attribute, Asso-
ciation and so on [6, 27]. The second level of
meta-modeling is m2 — the application domain
model. This is the level on which most peo-
ple operate when they build ordinary class di-
agrams. Any m2 model is an instance of an m3

level, being constructed with instances of Class,
Attribute, Association, and so on.

As an example, Author and Book may be
considered as m2 instances of Class, and name
and title may be considered as instances of At-
tribute. Author and Book are related to each
other by a relationship called Aggregation that
is an instance of m3 Association. A meta-model
from the m2 level can have many instances in
the m1 level. For example, Plato and Shake-
speare are instances of Author; The Repub-
lic and As You Like It are instances of Book.

The instance-of relation differentiates the
three levels in mof: each level instantiates the
level above it, and conversely is instantiated
by the level below it. One of the main ad-
vantages, for integration, of having an explicit
meta-model is that an api written for the meta-
model can be used to work with any model that
instantiates that meta-model and any data that
instantiates those models.

Use of MOF in Our Project Figure 1 il-
lustrates the role that mof and xmi play in
our project. FlowMetaModel.xmi represents
our application domain meta-model (taken
from [19]). The Workbench infrastructure can
automatically derive a Java api for working
with models that instantiate this meta-model.
This api is named Flow Domain Model in
Figure 1, and can be used to work with flow
diagrams encoded in xmi. We can use this au-
tomatically generated api without knowledge
of the particular details of the xml encoding.

3



Figure 2 The relation between mof, uml, and xmi

UML MOF XMI

m3: Level 3
(mof-Core)

<mof:Class ...

<mof:Attribute ...

</mof:Class ...

<mof:Association ...

m2: Level 2
(Application
Model)

<mof:Class id="Author" ...

<Association id="publishes" ...

</mof:Class>

m1: Level 1
(Application In-
stance Model)

<Author name="Plato">

<Author.Publishes>

<Book title="The Republic"/>

</Author.Publishes>

</Author>

2.2 Overview of SWT

Standard Widget Toolkit (swt) is the software
component that delivers native widget func-
tionality for the Eclipse platform in an operat-
ing system independent manner. swt is analo-
gous to Swing/awt in Java: the difference is in
the implementation strategy. swt uses native
widgets wherever possible for three main ad-
vantages: performance, look-and-feel, and de-
bugging. swt-based applications always look
and perform like native applications, and any
problems with the widgets can be directly repli-
cated in C code. Another benefit of using na-
tive widgets is that swt-based applications can
interact with platform specific features, such as
ActiveX controls in Windows.

awt follows a ‘least common denominator’
strategy: it provides only those widgets that
are available on all platforms. Swing com-
pensates for this by building higher-level, Java
widgets on top of awt’s least common denom-
inator. So, there is only one implementation of
Swing that works across all platforms.

swt takes a different approach: it uses na-
tive widgets wherever possible, and only im-
plements a widget in Java if there is no na-
tive version available (for example, Windows
contains a native tree widget and Motif does
not). swt exposes the same public api to ap-
plications on all platforms, but provides differ-

ent implementations for each platform. Part of
this implementation is a shared library (e.g. a
dll on Windows), that exposes part of the op-
erating system widget api to swt through the
Java native interface (jni).

The Eclipse website contains white papers
on swt [24], integrating with ActiveX and
ole on Windows [16], and creating new widgets
with swt [25].

Challenges for Our Project While swt
provides Eclipse with superior performance
and look-and-feel, it presents an integration
challenge to us because SHriMP is based on
Swing/awt. We describe our experience using
an experimental mechanism to integrate awt-
based and swt-based applications in §6.

3 Flow Diagram Overview

There are many specific kinds of technical flow
diagrams, such as: Petri nets, data flow di-
agrams [30], statecharts [12], process depen-
dency diagrams [20, 21], uml activity dia-
grams [6], and workflows [18, 7]. IBM pro-
duces a number of middle-ware products [15]
that also have specific kinds of flow diagrams
associated with them. In these products, the
programmer, business analyst or system inte-
grator, draws flow diagrams that are executed

4



Figure 3 An example flow diagram

by associated runtime environments. The
flows in these products are classified as nano-
flow, micro-flow and macro-flow (also known as
work-flow) [19].

An example of micro-flow is the mqsi (Mes-
sage Queue System Integrator) product, that
allows the programmer to draw message-flow
diagrams that describe the movement of data
between information systems. The associated
runtime environment executes these diagrams:
i.e. combines, transforms, and delivers the mes-
sages. mqsi is typically used to integrate infor-
mation systems when large corporations merge
with former competitors. Much of IBM’s flow
related middle-ware is developed in Toronto.
Macro-flows use large-scale granular activities
and are deployed by large-scale software com-
ponents such as applications. Workflows prod-
ucts that model and implement business pro-
cesses are examples of macro-flows. Nano-flows
are flows of data and control that take place
inside an object or object method. In IBM
products, nano-flows model and implement the
wiring of Java classes into programs that ac-
cess legacy applications. Nano-flow, micro-
flow, and macro-flow diagrams can be modelled
with an extenstion of mof,called Flow Compo-
sition Model (fcm), as was previously reported
by Litoiu et al [19]. fcm is in the process of be-
coming an omg standard [11]. mof and fcm
are typically serialized in the xml-based xmi
format [28]. As was discussed in the previ-

ous section, and shown in Figure 1, the Eclipse
platform provides substantial infrastructure for
working with mof models encoded in xmi.

3.1 An Example Flow Diagram

Business processes, or work-flows, are a kind
of flow diagram that may be more familiar
to the business analyst. Figure 3 describes
a (simplified) business process for processing
a credit request, involving activities such as
Risk:Assess, Risk:Reassess and, eventually,
Send:Money or Send:Rejection.

Figure 3c shows the main Credit Ap-
proval process, which is composed of two sub-
processes: Risk (Figure 3a) and Send (Fig-
ure 3b). We want to use SHriMP’s advanced
features for visualizing these kinds of compo-
sition relations. For the simplicity of the pre-
sentation, the remainder of the paper will use
MQSI to illustrate flow diagrams.

3.2 Flows and Programs

The relationship between flows and pro-
grams has been approached from many an-
gles. Researchers in program analysis, compil-
ers and reverse engineering often use control-
flow graphs and data-flow graphs to describe
certain aspects of programs. Böhm and Ja-
copini consider the relation of flow diagrams
to the fundamental notion of computation in

5



their classic paper Flow Diagrams, Turing Ma-
chines and Languages with only Two Forma-
tion Rules [5].

Litoiu, Starkey & Schmidt consider that
there is an analogy between flows and classes
(in the object-oriented programming sense of
the word) when modeling flows with mof [19].
From their perspective, the Risk:Assess and
Risk:Reassess boxes in Figure 3c represent
instances of the flow Risk shown in Figure 3a.

We are interested in the relation between
flows and programs because SHriMP was orig-
inally developed for program visualization and
we are now using it for flow visualization.

3.3 Visual Presentation of Flows

One of the important characteristics of nodes
in flow diagrams is that they have specific ter-
minals where arcs may be attached to them.
Which terminal an arc is attached to is fun-
damental to the meaning of the diagram, as
discussed below, and so these terminals must
be explicitly represented in some fashion.

A Simple Example Figure 4 shows an ex-
ample of a ‘filter’ node from the mqsi [15] flow
editor with its terminals labelled. A filter node
is a kind of primitive node that is analogous
to a simple conditional test in an imperative
programming language.

Figure 4 A Filter Node from mqsi

Filter nodes have one input terminal and four
output terminals: failure, unknown, true
and false. When a message arrives at a fil-
ter node, its condition is evaluated, and a mes-
sage is sent from one of the output terminals
depending on the result of the evaluation.

Other kinds of nodes may accept multiple
inputs and send multiple outputs.

Terminals Have Distinct Identity Ter-
minals have distinct identity: that is, they can-
not be identified with arcs as arrowheads can,

nor can they be subsumed by the nodes they
are attached to. Terminals are different than
arrowheads in two ways: terminals are still
present on a node even if there are no arcs con-
nected to them; and multiple arcs may be con-
nected into a single terminal.

4 Integration with Flows

This project also involved a fair amount of data
and domain integration, as well as the control
integration discussed in the next section. The
terminals on nodes posed the main challenge
for both data and domain integration. Since it
is easier to understand some of the issues by
first seeing the ‘whole picture’, so to speak, we
will first show screen-captures of our working
prototype and then discuss the details. But
first, a brief background on SHriMP.

SHriMP The SHriMP (Simple Hierarchical
Multi-Perspective) visualization technique was
designed to enhance how people browse and
explore complex information spaces. It was
originally designed to enhance how program-
mers understand programs [31, 33]. SHriMP
presents a nested graph view of a software ar-
chitecture. Program source code and docu-
mentation are presented by embedding marked
up text fragments within the nodes of a
nested graph. Finer connections among these
fragments are represented by a network that
is navigated using a hypertext link-following
metaphor. SHriMP combines this hypertext
metaphor with animated panning and zoom-
ing motions over the nested graph to provide
continuous orientation and contextual cues for
the user.

SHriMP’s advanced visualization features,
namely its smooth zooming capabilities within
a nested graph and advanced layout algo-
rithms, provide us with an opportunity to re-
examine some of the visual conventions used in
the current flow diagram browser/editor.

4.1 Rendering Flows in SHriMP

The top picture of Figure 5 shows
SHriMP rendering the simple flow dia-
gram multi1.messageflow inside the Eclipse

6



Workbench (multi1.messageflow is encoded
in xmi using the mof frameworks discussed
previously). The diagram has three nodes:
Input (top-left), Output (top-right) and
DataUpdate (bottom-centre). The Input
node has one output terminal (green); the
Output has one input terminal (blue); the
DataUpdate node has three terminals: input
(blue), regular output (green), and error
output (red). Some of the important visual
features of the flow diagram rendered in the
top picture of Figure 5 are:

• nodes are represented by images

• terminals are represented by images

• terminals are colour-coded

• arcs are connected to terminals

• some terminals have no arcs attached

• some terminals have > 1 arc attached

• terminals are placed to reduce arc length

All of these visual features have had some im-
pact on the data and domain integration effort.
Some of these features differ from how flow di-
agrams are rendered in mqsi: for example, vi-
sually differentiated terminals (colour-coding)
and terminals automatically placed to reduce
arc length.

Nested Interchangeable Views One of the
key features of SHriMP is its ability to show
nested interchangeable views. This feature
means that there are different views possible for
nodes at different levels in the hierarchy. This
feature is illustrated in Figures 5 and 6. Fig-
ure 5 simulates the user ‘opening’ up and zoom-
ing in on the DataUpdate node, which shows
an html table of the node’s property/value
pairs. Similarly, in Figure 6, the SubFlow
node can be viewed as closed, or it can be
opened so that the user can interact with and
explore the subflow. The nested interchange-
able view mechanism more easily allows users
to explore information at the required levels of
detail to suit different needs and tasks.

Hierarchical Composition Figure 6 illus-
trates the main motivation for our project:
to visualize hierarchically composed flow dia-
grams. The main flow diagram has three nodes:

Input, Output and SubFlow. Figure 6 sim-
ulates the user opening up the SubFlow node
and zooming in to see that it is also composed
of three nodes: Input, Output and Filter.

4.2 Data Integration

Our project had two data integration aspects of
note: reading the flow diagrams from the xmi-
based format and representing flow diagrams
within SHriMP’s data-model. The former task
was fairly straightforward given the mof frame-
works in WebSphere Studio Workbench; the
latter task required substantially more work.

SHriMP uses a graph-based data-model, sim-
ilar to the one embodied by rsf [23] or gxl [13].
This kind of data-model is not particularly well
suited to the concept of terminals, because ter-
minals are a new kind of first-class entity that
mediate between arcs and nodes.

It would be possible to create a new data-
model that explicitly incorporates the notion
of terminals. However, such an approach would
have required a substantial programming effort
given SHriMP’s existing code-base, as we would
have had to completely replace its data-model.
We think that this approach would be worth
investigating if one was writing a program to
deal with flow diagrams from scratch.

There are two main possibilities for rep-
resenting terminals within SHriMP’s existing
data-model: as distinct nodes, or as attributes
on existing nodes and arcs. We tried both ap-
proaches, and our experience was that the lat-
ter required less overall effort.

Representing terminals as attributes on ex-
isting nodes and arcs requires adding two at-
tributes to every arc (source terminal and tar-
get terminal), as well as n attributes to every
node, where n is the number of terminals on
that node. The attributes on nodes are nec-
essary to ensure that terminals with no arcs
attached to them are represented. In practice
we used 2n attributes on every node: the sec-
ond attribute indicates the image to use for the
terminal.

Model-View-Controller (mvc) SHriMP
may be considered from the standpoint of the
well-known model-view-controller architecture.
The discussion above describes the changes we

7



Figure 5 Screen-capture of SHriMP rendering a flow diagram inside Eclipse

8



Figure 6 SHriMP zooming in on a hierarchically composed flow diagram

made to the model. However, to render the
diagram properly the view has to interpret
the attributes pertaining to terminals in a
special fashion. Note that other attributes are
simply regarded as arbitrary strings associated
with the nodes or arcs, and have no special
implications for the view. While it was not
difficult to change the view to interpret the
terminal-related attributes, it obviously re-
quired introducing special cases, which always
complicates code over the long-term. This
is one of the reasons that designing a new
data-model to explicitly incorporate terminals
is an idea worth investigating.

Two Views Typically the view, in the mvc
sense of the word, consists of the set of objects
manipulated by the gui. SHriMP’s advanced
zooming features, however, require that it have
two views in order to render an image on the
screen: one for Swing (i.e. the ‘normal’ view),
and one for the zooming library Jazz (i.e. the
‘extra’ view). In other words, both Swing and
Jazz maintain their own set of objects repre-
senting the visual elements on the screen.

The distinction between these two views is
important for a variety of reasons; in our par-
ticular context, each view deals with terminals
differently. In the Swing view, terminals are

first-class entities: that is, there is a Swing
object associated with every terminal. This
Swing object is necessary to render the ter-
minal. However, terminals are not represented
in the Jazz view because they zoom with the
nodes that they are attached to.

Terminals are the only things that are
treated differently by the Swing and Jazz
views: nodes and arcs are explicitly represented
in both views. This subtle issue was one of the
most important things in actually getting the
terminals to display and zoom properly.

5 Integration with Eclipse

The Eclipse platform is designed to facilitate
tool integration, both between a tool and the
Workbench, and between tools. The details of
integration are specified in a plugin.xml file,
which describes how one tool ‘plugs-in’ to the
extension points of another tool, and what li-
braries it depends on, etc. The entire Work-
bench is built using this plug-in architecture.

Since this plug-in architecture is one of the
main features of Eclipse, it is well documented
in the technical documentation as well as in
a number of introductory articles on Eclipse,
such as [2]. The focus of this paper is to report

9



aspects of our experience that are not docu-
mented elsewhere. We have used an experimen-
tal, undocumented mechanism for seamless in-
terface integration of Swing-based tools with
the Workbench, and the majority of this sec-
tion discusses our experience with this mecha-
nism. First a summary of different mechanisms
of integration in Eclipse is provided.

5.1 Control & UI Integration

Control and user interface integration of tools
such as SHriMP with the Workbench can be
pursued independently of other aspects of inte-
gration, such as data integration. The reason
is that both SHriMP and the Workbench are
fairly content independent: each tool can be
used for a wide variety of data. In our project,
we actually worked on the control and user in-
terface integration before working on the data
integration.

The Workbench can integrate with tools
based on four different user interface technolo-
gies [1]: swt, Swing, ole, and other (i.e.
launching an external tool in a separate win-
dow and process). swt is the tightest interface
integration and arbitrary external tool integra-
tion is the loosest form of integration. More
details on the various integration mechanisms
are given below.

SWT-Based Tools Java tools based on the
swt can run in-place within the Workbench:
that is, they are visually indistinguishable from
the built in tools. These tools also run in-
process: that is, within the same vm and class
libraries as the Workbench itself. These tools
can achieve seamless functional integration if
the Workbench api’s are used.

In-place Java tools can also use ActiveX
controls (on Windows only). Eclipse provides
a mechanism for using ActiveX controls from
within the Java code [16].

This is the tightest and most seamless form
of interface integration.

External Tools Any tool written in any lan-
guage can be launched from the Workbench
with its own separate process. These tools open
as separate windows and are not visually in-
tegrated with the Workbench. The platform

provides automatic launching of external edi-
tors based on file type associations provided to
the Workbench or obtained from the underly-
ing operating system.

This is the loosest form of integration.

OLE-based Tools On the Windows plat-
form, ole-based tools can be run in-place.
These tools appear to be tightly integrated
with the Workbench, but functionally they are
the same as any external-launch tool: all they
do is open on an artifact, edit it, and save it.

Swing-based Tools Swing-based tools can
be integrated with the Workbench interface
in two ways: in a separate window or within
the Workbench. If the Swing-based tool is
launched in a separate window, it appears to
the user much the same as any external tool
would. One important technical difference is
that arbitrary external tools launch in a sep-
arate process, whereas Swing-based tools can
run within the same vm and class libraries as
the Workbench.

There is an experimental mechanism for run-
ning Swing-based tools in-place within the
Workbench, but its use is not officially sup-
ported at this time. We have experimented
with this mechanism and report on our expe-
rience here for the research community. Com-
mercial tool developers, or anyone else requir-
ing officially supported functionality, should
run Swing-based tools in a separate window.

The main restrictions on this experimental
mechanism are [17]:

• It only works on Windows.

• The keyboard doesn’t work for all widgets.

• There may be possible deadlock problems.

• The api is internal and subject to change.

The experimental mechanism is basically
just the new Panel method in the class:
org.eclipse.swt.internal.awt.win32.SWT AWT.
The new Panel method has one parameter, an
swt Composite object, and it returns an awt
Panel object. The awt Panel is contained
within the swt Composite, and is constructed
using a WEmbeddedFrame (from Sun’s internal
package sun.awt.windows).

10



5.2 Our Experience with Swing/
SWT Interaction

We have experienced three main problems
with this rudimentary Swing/swt integration
mechanism: keyboard events do not work for
certain widgets, some complicated repaint op-
erations do not work reliably, and there are
some issues in the interaction of the Swing
and swt event queues. The keyboard prob-
lem is known to the Eclipse developers, and we
are currently waiting for more information from
them.

The repaint problems that we have expe-
rienced are related to SHriMP’s ‘hot-box’ or
‘control-box’ feature. The control-box is a user
interface feature similar to context sensitive
right mouse-button menus. There are two dif-
ferences: the control-box is a group of wid-
gets that is not limited to a menu, and it is
requested by holding down the control key in-
stead of pressing the right mouse button. (In
SHriMP, the right mouse button is used to
control the animated zooming feature.) The
problem is that the control-box is drawn over
top of the main window (rather than in it),
and so sometimes one (or part of one) gets
painted rather than the other. SHriMP issues
repaint events for the control-box as long as the
user has the control key pressed, so the display
changes with time as well as with mouse move-
ment. We are investigating the Swing mecha-
nism that SHriMP uses to display the control-
box, and hope to find out how to work around
this problem.

We have successfully resolved some of the
issues involved in working with two interface
event dispatching queues (Swing and swt).
The execution of any widget toolkit is con-
trolled by an event queue: the operating system
adds events to the queue as the user manipu-
lates the machine (i.e. moves the mouse, presses
a key, etc); the dispatching loop pops events
off the front of the queue and executes them.
Sometimes it is important to ensure that cer-
tain events happen in a certain order, or that
some computation is performed before or after
certain interface events. For example, an in-
cremental progress bar requires that the user
interface is periodically updated while a com-
putation proceeds.

Swing provides two methods in the
SwingUtilities class for the program-
mer to specify such temporal ordering:
invokeLater() and invokeAndWait(). Both
methods take a parameter of type Runnable
that contains the code to be executed in the
event dispatching thread. invokeLater()
places the Runnable at the end of the event
queue and returns immediately (i.e., it makes
an asynchronous request). invokeAndWait()
is a synchronous request: it blocks the re-
questing thread until the Runnable has been
executed in the event dispatching thread.
swt provides two equivalent methods in the
Display class: asyncExec() and syncExec().

The first thing that SHriMP does when it
opens a graph is to focus on a specific node
(usually the root). Focusing on a node entails
panning and zooming the display: i.e. program-
matic manipulation of the interface. This pro-
grammatic manipulation of the graph display
cannot occur until the graph is actually dis-
played because all of the visual elements need
to have positions and sizes before those at-
tributes can be manipulated. When executing
SHriMP within its own vm, the programmatic
manipulation is deferred until after the graph
is displayed using the invokeLater() method
as shown by the code snippet in Figure 7.

Figure 7 Defer focus event (Swing)
SwingUtilities.invokeLater(

new FocusOnRoots(_shrimpView)

);

However, when running SHriMP inside the
Workbench, the initial rendering of the graph
does not occur until the swt Composite that
contains SHriMP is initialized. This whole pro-
cess is triggered by an SWT.Resize event that
gives the Composite its initial size; which, in
turn, resizes the awt Panel it contains; this
causes the SHriMP graph to be displayed for
the first time. So, for things to work properly
the order of events must be: SWT.Resize, ini-
tial rendering of SHriMP graph, focus on initial
node (the programmatic manipulation of the
graph). Both the swt method asyncExec()
and the Swing method invokeLater() must
be used to accomplish this order, as detailed by

11



Figure 8 Defer focus event (Swing in swt)
Display display = Display.getCurrent();

display.asyncExec(new Runnable() {

public void run() {

SwingUtilities.invokeLater(

new FocusOnRoots(_shrimpView));

}

});

the code snippet in Figure 8.
The code in Figure 8 essentially says the

following: after all swt interface events have
been processed (i.e. including the SWT.Resize),
place a FocusOnRoots event at the end of the
Swing event queue.

Blocking the SWT UI from a Swing Di-
alog Box Another event queue interaction
work-around has been described on the Eclipse
Corner Newsgroup [32]; we report it here as it
may be of interest to the reader, although we
haven’t had to use this technique as of yet.

The objective is to launch a Swing dialog
box from within an swt based application, and
to block the swt execution until the user dis-
misses the Swing dialog box. The solution
given in [32] is to use a boolean object to com-
municate between the swt application thread
and the Swing dialog box thread. A code snip-
pet detailing this solution is given in Figure 9.

6 Discussion

This paper documents our experience inte-
grating SHriMP, an information visualization
tool, with IBM’s WebSphere Studio Work-
bench, which is based on open source technol-
ogy from the Eclipse Project. Our work in-
volved control, data, and domain integration.

Control Integration From the control per-
spective, we integrated SHriMP with Eclipse
by transforming SHriMP into an Eclipse plug-
in. The creation of a plugin is straight-forward:
Eclipse provides full support for developing,
testing and debugging.

One of the main technical challenges was
integrating Swing/awt-based SHriMP with

Figure 9 Swing Dialog blocking swt ui
import javax.swing.JOptionPane;

import org.eclipse.swt.widgets.Display;

// flag for inter-thread communication

final boolean[] done = new boolean[1];

// create new thread for Swing dialog box

new Thread() {

public void run() {

JOptionPane.showMessageDialog(

null, "alert", "alert",

JOptionPane.ERROR_MESSAGE);

done[0] = true;

}

}.start();

// wait for the Swing thread to finish task

while (!done[0]) {

Display display = Display.getCurrent();

if (!display.readAndDispatch())

display.sleep();

}

swt-based Eclipse. We reported our experi-
ence using an experimental mechanism for in-
tegrating programs written in these different
gui frameworks, including some problems with
repaint events, keyboard events, and thread in-
teraction. Researchers and other prototype de-
velopers with existing Swing-based code may
be interested in trying this experimental mech-
anism, despite its limitations. Commercial tool
developers should use the standard, supported
mechanisms for better performance and more
consistent look-and-feel.

Data and Domain Integration Terminals
were the main challenge for the data and
domain integration aspects of our project.
Throughout the paper we discussed terminals
in the context of mqsi-style message-flow dia-
grams, but the issues generalize to other kinds
of flow diagrams.

SHriMP’s data-model is very similar to
rsf [23] and gxl [13], all of which are based on
the idea of a graph composed of nodes and arcs.
These data-models are not designed to deal
with terminals, which are another kind of first-
class entity that mediates between nodes and
arcs. We tried two approaches for expressing
terminals within SHriMP’s data-model, and
reported the implications that this had for
SHriMP’s model-view-controller (mvc) archi-

12



tecture. The easiest part of the data inte-
gration was reading the xmi-encoded flow di-
agrams with the mof frameworks.

SHriMP’s advanced visualization features
prompted us to render flow diagrams differently
in SHriMP than is done mqsi. We discussed
these changes with ucd and flow composition
specialists at IBM.

6.1 Conclusions

We have drawn three main conclusions from
our experience:

First, we confirm Martin’s findings [22] that
leveraging industrial tool infrastructure can
significantly reduce the amount of effort re-
quired to develop tool prototypes. In our
case, the mof frameworks essentially elimi-
nated most of the mechanics of the data in-
tegration work, and let us focus on more inter-
esting problems.

Second, tight ui integration between Swing-
based tools and swt-based Eclipse seems pos-
sible, but there are some important limitations.
Loose ui integration with Swing-based tools is
fully supported, as is tight ui integration with
swt-based tools. SHriMP’s advanced visual-
ization features made this part of the project
more difficult than it might be for other tools.

Third, terminals seem to be a very useful and
natural concept, and they should be better sup-
ported by exchange formats such as gxl [13].

6.2 Future Work

Our anticipated future work involves adapting
SHriMP to new data domains within Eclipse,
and applying the idea of terminals to program
visualization.

New Domains The two domains that we
are most interested in are mof and Java. Flow
diagrams are one example of data that may be
modeled in mof (using the fcm framework).
However, mof can be used for modeling in
many other domains. We hope to generalize
the work presented in this paper to visualize
any mof-based models.

Eclipse also includes a full Java development
environment, and we would like to integrate
SHriMP into this environment for visualizing

Java programs. SHriMP has already been used
to visualize Java programs, but we would like to
build a new fact extractor that performs some
static analysis of polymorphic method invoca-
tions (such as Class Hierarchy Analysis [9, 10]
and Rapid Type Analysis [3, 4]). Determining
the targets of polymorphic method invocations
is one of the most important tasks in under-
standing object-oriented programs, and there
is relatively little support for it in most pro-
gram understanding tools.

Using Terminals for Program Visualiza-
tion We think that the idea of terminals
presents an opportunity to add extra visual
semantics to the standard box-and-arrow di-
agrams used by many program visualization
tools (such as SHriMP). We are not aware of
any current program understanding tool that
uses terminals.

One simple possibility is to use terminals to
categorize arcs: e.g. there could be a terminal
for data related arcs and another for control re-
lated arcs. In flow diagrams terminals have se-
mantics that are independent of the kind of arcs
connected to them. One way to use terminals
and retain this independence in program visu-
alization is to have terminals representing nor-
mal and exceptional exit paths, as is done with
filter nodes in flow diagrams (see Figure 4).

Acknowledgements

We thank Grant Taylor, Mike Beltzner, and
Evan Mamas at the IBM Toronto Laboratory
for their time and assistance. Participants
on the Eclipse Corner Newsgroup have also
been helpful, especially: Greg Adams, Veronika
Irvine, Jeff McAffer, David Whiteman, and
Mike Wilson.

About the Authors

Derek Rayside: Derek has just completed
his MASc (Master of Applied Science) in Elec-
trical & Computer Engineering at the Univer-
sity of Waterloo under the supervision of Pro-
fessor Kostas Kontogiannis. Derek’s BASc is
also from the University of Waterloo, in Sys-
tems Design Engineering. This year Derek is

13



pursuing an MA at the University of Toronto’s
Institute for the History and Philosophy of Sci-
ence and Technology. He expects to earn a PhD
in computer science after the MA.

Derek also intends to leverage Eclipse
to build a prototype of a Java program
browser designed for understanding polymor-
phic method invocations [29].

Marin Litoiu: Marin is a Research Asso-
ciate at the IBM Centre for Advanced Stud-
ies in the IBM Toronto Laboratory. Marin
holds two PhD degrees: Systems and Com-
puter Engineering (Carleton University, 1999);
and Control Systems (University Politechnica
of Bucharest, 1995). He has been with IBM
since 1997, where he held leading roles in the
design of middleware tools for technologies such
as rmi, iiop and MQSeries. Prior to joining
IBM, he was a faculty with the Department
of Computers and Control Systems of the upb
and held research visiting positions with Poly-
technic of Turin, Italy and Polytechnic Univer-
sity of Catalunia (Spain), European Centre for
Parallelism.

Margaret-Anne Storey: Dr. Margaret-
Anne (Peggy) Storey is currently a visiting
professor at the Department of Aeronautics
and Astronautics at MIT, on leave from the
Department of Computer Science at the Uni-
versity of Victoria. She is a fellow of the
British Columbia Advanced Systems Institute
(asi) and collaborates with IBM on Human-
Computer Interaction and eBusiness. She is
one of the investigators for cser (Centre for
Software Engineering Research) developing and
evaluating software migration technology and
an adjunct research scientist at the New Media
Innovation Centre in Vancouver, BC. Her re-
search interests include experimental software
engineering, program understanding, human-
computer interaction, information visualiza-
tion, eCommerce and graph drawing.

Casey Best: Casey is a MSc student with
Professor Margaret-Anne Storey at the Univer-
sity of Victoria. Casey is currently the chief
programmer on the SHriMP project.

References

[1] Greg Adams. External tool interoperabil-
ity. Eclipse Corner Newsgroup, June 2001.

[2] Jim Amsden. Your First Plug-In. Eclipse
Corner Article, June 2001.

[3] David F. Bacon. Fast and Effective
Optimization of Statically Typed Object-
Oriented Languages. PhD thesis, Uni-
versity of California at Berkeley, Decem-
ber 1997. Supervised by Susan Graham.
UCB/CSD-98-1017.

[4] David F. Bacon and Peter F. Sweeney.
Fast static analysis of C++ virtual func-
tion calls. In Coplien [8], pages 324 – 341.

[5] C. Böhm and G. Jacopini. Flow diagrams,
turing machines and languages with only
two formation rules. CACM, 9(5):366–371,
May 1966. Reprinted in [34].

[6] G. Booch, J. Rumbaugh, and I. Jacobson.
The Unified Modeling Language — User
Guide. Addison-Wesley, 1999.

[7] F. Casatti, S. Ceri, B. Pernici, and
G. Pozzi. Conceptual modeling of work-
flows. In Advances in Object-Oriented
Data Modeling. MIT Press, 2000.

[8] James Coplien, editor. Proceedings of
ACM/SIGPLAN Conference on Object-
Oriented Systems, Languages and Appli-
cations (OOPSLA), San Jose, California,
October 1996.

[9] Jeffrey Dean, David Grove, and Craig
Chambers. Optimization of object-
oriented programs using static class hi-
erarchy analysis. In W. Olthoff, edi-
tor, ECOOP’95, Århus, Denmark, August
1995. Springer-Verlag. LNCS 952.

[10] Amer Diwan, J. Eliot B. Moss, and
Kathryn S. McKinley. Simple and effective
analysis of statically-typed object-oriented
programs. In Coplien [8], pages 292–305.

[11] Object Managment Group. Flow composi-
tion model. ftp://ftp.omg.org/pub/docs/
ad/01-06-09.pdf.

14



[12] D. Harel and E. Gery. Executable object
modeling with statecharts. IEEE Com-
puter, 30(7):31–42, 1997.

[13] R. Holt, A. Winter, A. Schrr, and S. Sim.
GXL: Towards a Standard Exchange For-
mat. In Cristina Cifuentes, Kostas Kon-
togiannis, and Françoise Balmas, editors,
WCRE’00, Brisbane, Australia, November
2000.

[14] IBM. FAQ about IBM’s new tooling
strategy and the future of VisualAge for
Java. http://www7.software.ibm.com/
vad.nsf/data/document2020.

[15] IBM. MQSI: Message Queue System Inte-
grator. http://www-4.ibm.com/software/
ts/mqseries/.

[16] Veronika Irvine. ActiveX Support in
SWT. Eclipse Corner Article, March 2001.

[17] Veronika Irvine. Limitations of
Swing/SWT experimental integration
mechansim. Eclipse Corner Newsgroup,
July 2001.

[18] F. Leyman and D. Roller. Work-flow
based applications. IBM Systems Journal,
36(1):102–122, 1997.

[19] M. Litoiu, M. Starkey, and M.T. Schmidt.
Flow composition modeling with mof. In
Proceedings of ICEIS’01, Setubal, July
2001.

[20] J. Martin. Information Engineering Book
III: Design and Construction. Prentice-
Hall, 1989.

[21] J. Martin and J. Odell. Object-Oriented
Analysis and Design. Prentice-Hall, 1992.

[22] Johannes Martin. Leveraging IBM Vi-
sualAge for C++ for Reverse Engineer-
ing Tasks. In Stephen A. MacKay and
J. Howard Johnson, editors, CASCON’99,
pages 83–95, Toronto, November 1999.

[23] H.A. Müller and K. Klashinsky. Rigi — A
system for programming-in-the-large. In
ICSE’88, pages 80–86, Raffles City, Singa-
pore, April 1988.

[24] Steve Northover. SWT: The Standard
Widget Toolkit. Eclipse Corner Article,
March 2001.

[25] Steve Northover and Carolyn MacLeod.
Creating Your Own Widgets using SWT.
Eclipse Corner Article, March 2001.

[26] University of Victoria. Shrimp views visu-
alization tool.

[27] Object Managment Group (OMG). Meta
object facility, 2000. http://www.omg.org.

[28] Object Managment Group (OMG).
Xml metadata interchange (xmi), 2000.
http://www.omg.org.

[29] Derek Rayside and Kostas Kontogiannis.
On the Syllogistic Structure of Object-
Oriented Programming. In Hausi Müller,
Mary-Jean Harrold, and Willhelm Shäfer,
editors, ICSE’01, pages 113–122, Toronto,
Canada, May 2001.

[30] D. Ross. Structured Analysis (SA): A
language for communicating ideas. IEEE
Transactions on Software Engineering,
3(1):16–36, 1977.

[31] M.-A. Storey, H.A. Müller, and K. Wong.
Manipulating and Documenting Software
Structures, pages 244–263. World Scien-
tific Publishing Co., November 1996. Vol-
ume 7 of the Series on Software Engineer-
ing and Knowledge Engineering.

[32] Mike Wilson. Blocking SWT from a Swing
dialog box. Eclipse Corner Newsgroup,
July 2001.

[33] J. Wu and M.-A. Storey. A multi-
perspective software visualization environ-
ment. In CASCON’00, pages 41–50,
Toronto, November 2000.

[34] Edward Nash Yourdon, editor. Classics
in Software Engineering. Yourdon Press,
1979.

15


	Abstract
	Introduction
	Overview of Eclipse
	Flow Diagram Overview
	An Example Flow Diagram
	Flows and Programs
	Visual Presentation of Flows

	Integration with Flows
	Rendering Flows in SHriMP
	Data Integration

	Integration with Eclipse
	Control & UI Integration
	Our Experience with Swing/ SWT Interaction

	Discussion
	Conclusions
	Future Work

	Acknowledgements
	About the Authors
	References

