
WAP: Cognitive Aspects in Unit Testing
The Hunting Game and the Hunter’s Perspective

Marllos P. Prado∗†‡, Eric Verbeek∗, Margaret-Anne Storey ∗, Auri M. R. Vincenzi§
∗University of Victoria

Victoria B.C., Canada

Email: {mprado, everbeek, mstorey}@uvic.ca
†Instituto Federal de Goiás

‡Universidade Federal de Goiás

Goiania GO, Brazil
§Universidade Federal de São Carlos

Sao Carlos SP, Brazil

Email: auri@ufscar.br

Abstract—Humans are hunters and love the chase—they hunt
for food, they hunt for bugs in software. In the last decade, testing
research has gone deeper and broader to help with the challenging
task of catching bugs. Much of the literature approaches the
problem from a theoretical-technical perspective and is often
oriented to automated solutions. Yet, there is a gap between
industry testing problems and research testing solutions. We
take a different perspective and consider the human component
as a major part of the solution for practical testing problems.
Many of these human-related issues are reported in academic
surveys of practitioners. We highlight the importance of human
factors in testing by introducing a hunting metaphor. We also
bring attention to evidence on cognitive support demands in unit
test practices. An initial framework is proposed as an effort to
bring understanding of cognitive support demands, and provides
direction for further research on unit testing tools which support
tester skill improvement.

I. INTRODUCTION

Imagine a world where automated solutions perform soft-
ware testing. Solutions that search for errors, discover promis-
ing inputs to exercise code where the humans have made mis-
takes. Better than that, imagine they can decide if the generated
output is correct or not, according to the specification written
by humans. Sounds perfect? This would be an ideal world—
this is the holy grail of testing researchers.

Now think about the real world where one of the most
remarkable testing tools, JUnit [1], is a simple framework
made by practitioners to make developers’ work lives easier. It
has strongly impacted the way tests are built, in both industry
and research. Instead of hands-on tests that are difficult to
replicate and perform “on the fly”, it allows modular and
precise tests to be run and re-run, refactored and reused. It
also incorporates the “red/green bar” feedback mechanism, a
practical solution for simplifying one’s perception of the test
suite’s state. Rather than getting the job done by itself, this
tool facilitates the tester’s skills in the task. We must also
recognize that software companies deal daily with numerous
quality issues in their products. Companies invest money and
time to leverage employee expertise, and they cannot wait for
a promissory technology to do all, or almost all of the work
needed.

We refer to “testing” as the activity of detecting failures.
This differs from “debugging”, the activity of finding and
eliminating faults responsible for failures. It is also worth
mentioning that while automation is a relevant matter for
testing, it cannot be an exclusive or self-contained solution.

We may explain this more easily with a metaphor; the
human aspect of the software testing problem can be seen
as hunting for game. Testers are the hunters, bugs are the
game animals, testing tools are the weapons and snares, and
strategies and tactics underlay both as techniques. In order
to succeed, hunters must catch as many game animals as
they can, especially the most valuable ones. A hunter relying
only on their natural strength and human abilities will not be
successful—specialized weapons and traps are needed for the
hunt. But if these tools are hard to use or not designed to
leverage hunter’s skills and abilities, they can be cumbersome,
take too long to master, and in the worst case, provide false
expectations. Replacing people with automated weapons is less
adaptable, and has weaknesses in finding some skittish and
valuable game animals.

The purpose of this paper is to address how research in soft-
ware testing has dealt with the tester’s needs, how researchers
adopting the tester perspective could help improve testing
“weapons”, and how this would ultimately serve practical
needs in “bug-hunting” activities. There is a clear intersection
here between two different fields: human-computer interaction
(HCI) and software testing. Thus, this paper considers issues
rooted in the tester’s perspective (testers’ claims, behavior,
knowledge, etc.), and proposes a conceptual framework to help
organize and understand the demands of testers as users, from
a human-cognitive point of view. The evidence we consider
focuses on the unit testing level. The proposed framework
is composed of three cognitive dimensions: Tester Artifact
Comprehension; Tester Orientation and Guidance; and Tool
Interaction Usability. Our pilot framework is neither final nor
low-level, but is proposed to promote evolution in research in
this yet immature human aspect of software testing.

In Section II, the motivation for research on this topic is
presented. Section III gives a brief background about testing
activity, highlighting the importance of test cases and its
different levels. Section IV presents the evidence of cognitive

support demands in software testing. Section V organizes the
demands identified in Section IV into a framework proposal.
Finally, Section VI concludes and discusses further research.

II. HUNTERS LEFT OUT OF THE GAME

Amman and Offut noted that “[...] faults in software are
design mistakes. They do not appear spontaneously, but rather
exist as a result of some (unfortunate) decision by a human”
[2]. In this statement, they tried to characterize the extent to
which any process can hope to control software faults. But
consider that software does not only mean the software as
shipped to the end user—test suites, frameworks, and other
tools are software, too. The operation and development of
such test software can influence human decisions, and their
usefulness can, in turn, be influenced by human decisions.

So why is automation so important? Software testing is a
dynamic analysis of software, and research efforts have aimed
at developing tools to support techniques, criteria and heuris-
tics. The goal has been to transform the exhaustive testing
problem into a feasible and automatic (or semi-automatic)
solution for revealing failures. This approach seems to have
reinforced the belief that the important testing solutions will
originate from machines, to be executed by machines, while
understating or forgetting the impact that the fundamental
human-component in the middle of this loop may have. On
the other hand, studies like that of Kasurine and Taipale [3]
demonstrate that research results in automated solutions have
not been adopted in practice, showing a disconnect between
industry and research.

In a very recent paper, Orso and Rothermel [4] analyze the
state of the art in software testing, spanning the last decade
and a half. They summarized a number of research topics and
presented challenges to be investigated. Their data is from
a pair of open-ended questions collected from fifty testing
researchers. Notably, although there is a wide variety of ideas
in the “Challenges and Opportunities” section of their paper,
the authors explicitly say that they would not consider “human
factors” and “technology transfer” as research challenges, even
though they declared that these topics were among those
mentioned in their peers’ responses.

However, in the subsection devoted to “Empirical Studies
and Support for Them”, Orso and Rothermel [4] mention the
need for “users studies”, the predominance of “automation of
algorithms and heuristics” in testing research, and the concerns
about threats to validity that research results are subject to
when they fall into the “hands of engineers”. They also note
the influence that industry contributions have had on research
(a reverse transfer of technology). They mention JUnit [1], a
“straightforward [testing] framework”, as an example of this
influence. Altogether, this demonstrates the division between
research and practice, and gives us pause for concern. Omitting
human factors and technology transfer as “Challenges” seems
inconsistent with the discussion in their paper. In the following,
we consider what other researchers have to say about the role
of the tester and transfer of technology in testing.

Daka and Fraser [5] recently conducted a broad survey
of testers to investigate the current practice of unit testing.
They found that the main motivation for conducting testing
is the tester’s “Own Conviction”, which exceeds that of the

“Management Requirements” placed upon them. On the other
hand, only half of the respondents “attributes a positive feeling
to writing unit tests”. These findings are aligned with the
findings of Ng et al. [6] and the survey carried out by Lee
et al. [7]. In the former, the “difficulty of using [tools]”
was identified as the major barrier in adopting a tool, and
consequently the testing methods associated. In the latter, more
than half of the respondents answered that software testing is
performed based on personal knowledge and without guidance.
As indicated by these results, despite being unpleasant work,
resilience in the hunt for bugs can be motivated by genuine
trust in its purpose.

The work of Jia et al. [8] draws attention to human-related
problems, but gives little consideration to human participation
in testing solutions. They reviewed mutation testing literature
and discussed prospective research directions. The unresolved
problem of “barrier[s] to wide application of Mutation Testing”
is the “Equivalent Mutant Problem”. The “Human Oracle
Problem”—the checking of the original program output for
each test case generated—is also cited as another barrier.
Finally, the authors point out that “more tooling is required to
ensure widespread industrial uptake” and that “automated prac-
tical tool[s]” for test case generation could be a promising way
of creating test solutions. Throughout the paper, the authors
discussed past and future connections between automation and
mutation testing, but little mention was made of a human-in-
the-loop as part of the solution. Considering that the Equivalent
Mutant Problem is recognized as undecidable and that the test
case generation requires an as-yet non-mechanized “human
oracle”, it is difficult to suppose that automation will be a
panacea in the large spectrum of existing software development
domains.

These are just a few examples of how the software testing
research community has dealt with personal and practical
human aspects of testing. The common threads among them
demonstrate that the omission of both human factors and the
transfer of technology that we see in Orso and Rothermel’s
work [4] is by no means an isolated occurrence. Thus, it is the
research community in software testing as a whole that must
claim mea culpa. Are we attacking the problems considering
the primary stakeholders, those who deal with testing the most?
We are researching powerful weapons, but are they satisfying
the hunt? In order to leverage testers’ skills and make their
critical role in testing easier, how should we tailor their tools
in an effective and ergonomic fashion?

III. TEST CASES AND THE QUALITY OF THE SHOTS

The quality of a hunter’s shot determines if the target is
hit or not. In this sense, a good shot can be classified as
intentional, planned and capable of reaching the target. In order
to be a good hunter, one must improve their skills at producing
a good shot. A correspondence can be established with test
cases in software testing: a test case embodies and enacts the
intention of the tester. It is planned following a strategy and
catches errors depending on whether assertions are passed or
not. This way, focusing on the quality of the test case means
enabling the tester to hone in on the failure.

A. Techniques and Exploration in the Field

The classical paradigm to apply software testing (some-
times called the test-case based approach) has its process
organized in four steps: test case planning; test case design;
test case execution; and test evaluation [9], [10], [11]. In this
paradigm, test cases are generated and evaluated using testing
techniques. A testing technique is classified in terms of the
type of source used to derive the test cases. Testing techniques
can be classified into three main categories: Functional or
Black-box (based on specification information); Structural or
White-box (based on the structure of the software under test);
and Fault-based (based on common mistakes committed by
developers). Such techniques are composed of testing criteria.
A criterion defines which are the properties of the artifact under
test (test requirements) that should be exercised, in order to
evaluate the quality of test cases [12].

Exploratory testing (E.T.) is another paradigm to perform
software testing. It relies on elements such as the knowledge
of the tester, scenarios, and experience of the user domain to
guide the activity. In this sense, it differs from the classical
approach by being less formal. Within it, learning, design,
execution, and modification of the tests can be parallel ac-
tivities [13]. It does not imply that testing needs to be random
or ad-hoc, since it can be governed by a strategy (such as the
tourist metaphor explained in [14]). As mentioned by Kaner
et al. [15], E.T. can be particularly useful in situations where
the planned tests cases quickly become outdated, making
automation impractical. This way, the idea of E.T. does not
exclude the classical approach, but is actually complementary.
To focus testing activities on the tester, it seems reasonable
to start by understanding how testers think. The kind of study
performed by Itkonen et al. [13] looks like a promising way
to understand how practitioners think and act in E.T. in the
real world. However, the same kinds of questions should also
be investigated with the classical testing approach; this is the
fundamental form of software testing used in both the literature
and in tester training. Once we have scientific confidence about
tester knowledge in these two main testing paradigms, the task
of creating and adapting testing solutions to their practical
needs will be possible.

B. Adjusting Shots for the Scale in the Sights

Considering the granularity of the system to be addressed
when looking for failures, three main categories are commonly
considered in the literature: unit testing, integration testing and
system testing. The unit level is employed to find faults in
the smallest cohesive working modules of the artifact being
considered (usually the method, class, procedure etc.), depend-
ing on the paradigm and author interpretation; the integration
level looks for faults particular to the interaction between these
modules (method or procedural calls for example); the system
level looks for errors resulting from the behavior emanating
from all the units working together and the integration of the
software with its environment (e.g. OS, databases, services).
This way, different levels of testing demand different kinds of
analysis from the tester.

In practice, integration and system level tests differ from
unit level testing in who is assigned responsibility for gen-
erating tests. Since unit testing is a fine-grained test and

requires fine grained knowledge, it can become inefficient and
expensive for a test team to perform. Besides the great number
of units to test, the test cycle could be long: (i) the developer
implements a unit; (ii) the tester receives and understands
the unit, implements test cases and finds the error; and (iii)
the tester delivers it to the developer for resolution. Instead,
developers are often assigned the responsibility for developing
and testing units—or to test and then develop, in the test driven
development (TDD) paradigm [16]. This way, the test team is
free to concentrate on integration or system level problems,
while developers leverage their fine grained knowledge in
performing unit tests. On one hand, the transfer of unit testing
to the developer is advantageous to testers and management,
but on the other hand, it risks diverting the developer’s mental
resources away from development, their primary responsibility.

IV. READY, AIM, FIRE AND ENJOY - UNDER THE STORM

Cognition is an interdisciplinary topic and its study is
generally found within “cognitive science”. Many definitions
of cognition can be found in the literature, as in Neisser [17],
Norman [18] and APA [19]. A common idea among them is
that a mental process is applied to build and use knowledge.
In this section, we summarize the literature we gathered,
which contains evidence of cognitive problems in testing. We
group the identified demands into three proposed dimensions:
Tester Artifact Comprehension Problems, Tester Orientation
and Guidance Problems, and Tool Interaction Usability Prob-
lems.

A. Tester Artifact Comprehension Problems

Daka and Fraser [5] reported the results of a survey on
unit testing conducted with software developers from different
countries. The purpose of the study was to align the current
research with existing common practices and identify research
opportunities coming from the industry. The results of their
second research question (RQ2) demonstrated that developers
tend to treat failing tests as defects in the test cases themselves
more often than defects in the code. They also reported (RQ4)
that the top two developer uses of automated test generation
are: (i) automation as a complement to manual testing, and
(ii) discovery of failures of the “crash” type. These results
indicate that both manual and automated testing are current
and non-exclusive practices. Also, manual testing is probably
dominant in areas with less obvious errors (i.e. “non-crash”
types). As mentioned by Leitner [20], although automated test
generation is effortless, it cannot substitute for manual testing
because developers are experts on defining complex input data,
and thus, defining effective test cases.

Nowadays, it is widely accepted that xUnit test frameworks
are dominant in unit test activity. A notable example is
JUnit. Besides wide adoption of JUnit in industry, it is also
an example of reverse transfer of technology, as subsequent
adoption in academia influenced and aided software testing
research [4]. However, as observed by Atkison et al. [21], tools
like JUnit still require tests to be written as programs, which
is beneficial for their natural integration with the code base.
Unfortunately, it also creates dependencies between details of
the program code and language, and the strategy to test logic,
test data, and later test results. The work of Lappalainen et
al. [22] is concerned with similar issues in the educational

field. Based on identified difficulties of novice developers who
are concurrently learning unit testing and TDD, their work
proposes a tool to make test cases more readable and easier to
write. We see similar observations in the study of Daka and
Fraser [5]. They asked “how could unit testing be improved”
(RQ5), in particular “what makes it difficult to fix a failing
unit test”. The results of interest are that: “the code under
test is difficult to understand”, “the test [itself] is difficult to
understand”, and “the test reflects unrealistic behavior”.

B. Tester Orientation and Guidance Problems

Runeson [23] reported a survey to characterize unit testing
as it occurs in practice. The survey included one round of
focus group discussions with subjects and another with their
respective companies. One of the results revealed that there
was no consensus in what constitutes a unit under test. Despite
the confidence exhibited by the companies’ questionnaire
responses in this matter, the focus group round revealed that
it wasn’t uncommon to consider a unit as a group of cohesive
linked units instead of an individual one. Almost a decade
after, Daka and Fraser [5] revealed that two of the most
difficult aspects related to writing new tests correspond to (i)
the identification of which code to test and (ii) the isolation of
the unit under test. Similarly, the results of Runeson [23] and
Daka and Fraser [5] revealed difficulties in the evaluation of
unit testing. The former study indicated a need for clear and
measurable test quality criteria, and the second revealed “what
to check in a test” as a common difficulty in writing new tests.

Such concerns in the surveys of Runeson [23] and Daka
and Fraser [5] are related to the uncertainty about what
and how to perform the activity. They can be influenced
by many causes, such as the lack of adequate training, the
lack of strict standardization in the activity, different rigor
demanded between projects and team backgrounds. The fact
is that, independent of the reason, unit testing may still be
underestimated by testers due its apparent simplicity compared
to other levels of test. In this sense, some guidance could
contribute to mitigate such problems.

Even when testers know how to create a test and what
to test, they often lack clues of reference to rely on. Lee
et al. [7] surveyed current testing practices and found that
50% of respondents “perform their software testing based
on individual’s know-how or personal knowledge without
standardized guidance”. This closely matches what Daka and
Fraser [5] found in their third research question, which ad-
dressed how unit tests are written by developers. According to
them, “developers claim to write unit tests systematically and
to measure code coverage, but do not have a clear priority of
what makes an individual test good”. Runeson [23] reported
that due to the lack of strategies at companies, test cases were
defined using the personal judgment of developers, “leading to
varying practices”.

Lee et al. [7] found that the usage of testing methods and
tools in unit testing is especially weak, compared to other
levels of testing. In fact, unit testing frameworks do not impose
the application of any particular strategy or criterion. In this
sense, they are like a blank slate where developers may define
test cases in their own way. Moreover, Garousi and Zhi [24]
and Ng et al. [6] agree that functional testing is a more

popular approach than structural techniques in software testing
as a whole. Considering that functional approaches rely on
specifications to derive and evaluate the testing requirements,
functional testing is more prone to interpretation and subjectiv-
ity than other techniques. Furthermore, functional end-to-end
testing via a Graphical User Interface (GUI) requires a lot of
script maintenance, demanding subsequent improvements of
the underlying unit tests [25]. Thus, it is reasonable to question
if the lack of restrictiveness of the aleatory combination
between functional testing and unit testing could be leading
to unproductive practices, such as the generation of a high
number of low efficacy test cases.

C. Tool Interaction Usability Problems

Two last opportunities of investigation regarding cognitive
support for testing are the apparent lack of enjoyability and
ease-of-use of unit testing tools. Runeson [23] acknowledged
the difficulty motivating developers as one of the weaknesses
of unit testing. Daka and Fraser [5] corroborate this idea,
revealing that only half of the developers they surveyed,
attribute a positive feeling to writing unit testing. They also
indicate that tool improvement is a path to address such
problems. Kasurinen [26] revealed in his study—dedicated to
understanding the problems of software testing in practice—
that the usability and applicability of testing tools was iden-
tified by the companies surveyed as one of the factors that
affect the efficiency of testing activity. In particular, large
companies investigated in the study reported that false positives
generated by the use of complicated or defective tools add
additional overhead. Wiklund et al. [27] pointed to difficulties
related to the configuration and use of the Integrated Develop-
ment Environments (IDE)— Eclipse in particular—as a barrier
commonly faced by testers when creating their test code in
automated testing environments. In addition, Lee et al [7] claim
that the relationship between software testing tools and their
corresponding activities should be made more clear.

Delahaye and Bousquet [28] defined guidelines for com-
paring and selecting software engineering tools. They chose
mutation testing as their case of study. Their usability cri-
teria were segregated into four categories: compatibility, in-
terface, documentation and surviving mutant management. In
the “interface” category, they highlight the difficulty faced
when operating these tools. Among the eight mutation tools
they investigated, only two present a proper Graphical User
Interface (GUI). Additionally, most of them do not integrate
with popular IDEs. In “documentation” they looked for clear
descriptions of the operations and processes executed by the
tools. Only three out of the eight tools analyzed are ranked as
having “very good” documentation, whereas five are ranked
at the lowest level for the inferior quality of the “surviving
mutant report” generated.

V. SYNTHESIZING THE HUNTER NEEDS INTO A

“RESEARCH COMPASS”

Cognitive support for testing could ameliorate the primary
difficulties found in unit testing. Cognitive support can be
understood as the aid a tool provides to the user in her mental
effort of thinking, reasoning, and creating [29]. The coloring
of a covered path in a control-flow graph of a structural testing
tool is a simple example of existing cognitive support. It helps

the tester to keep focus on what remains to be covered in
the code, and helps them to remember what part was already
covered. The “green/red bar” of JUnit is another example of
cognitive support that helps one avoid tracking if the test
cases have changed their assertive state, between different
testing executions. The unit testing problems discussed in Sec-
tion IV indicate that non-trivial mental effort is required of the
tester, despite any assistance from existing automated testing
solutions. Based on this evidence, we propose a framework
(Figure 1) combining the three cognitive dimensions discussed.
The framework indicates initial directions of investigation, for
the evolution of unit testing tools.

Fig. 1. Cognitive framework containing three dimensions of cognitive
demands to be met by unit testing tools

• Tester Artifact Comprehension: Testers must reason
about test cases, units under test, and test reports.
They spend effort in comprehending these artifacts
both individually and as collections. Different ways
of reformulating artifact information could offload this
cost. Since these problems center around comprehen-
sion of either testing code or program code, one way to
address them is by using the contributions provided by
programming psychology literature. It includes analy-
sis of models of how human reads code and theories
about how knowledge is built and used [30].

• Tester Orientation and Guidance: Testers can ex-
perience confusion or disorientation, at the cost of
time and morale, which can decrease efficiency and
commitment to testing. Tools should offer assistance
to the testers by: providing direction for the testers in
their personal cognitive work-flow (guidance); help-
ing them make decisions under uncertainty or with
ambiguous problems (reference); and adjusting the
scope of tasks to bring focus to the task goals (restric-
tiveness). Examples include but are not restricted to:
electing, ranking, identifying and summarizing testing
tasks and artifacts. This involves first understanding
what strategies humans apply in such tasks, making
decision-making theories [31] a natural choice.

• Tool Interaction Usability: Testers may face interface
and other usability challenges in setup and operation.
This contributes to the unpleasantness of testing [5],
[23]. Some examples include: availability of a tool’s
self installation and configuration; visibility of tool
operations; clear visual feedback; alternative interface
operations; and detailed and up-to-date documenta-
tion. Several guidelines and principles are available
in the HCI literature to approach such problems, as
presented by Stone et al. [32] and Norman [33].

A tool can assist in more than one dimension simultane-
ously and according to the testing context (Tester and Testing
Technique). Distinct testing techniques may require different
precedence of cognitive support, within each cognitive dimen-
sion. For example, the support for comprehension of test cases
differences within a test suite may be priority in mutation
testing but secondary in functional testing. Also, the amount
of cognitive support needed may be dependent on the tester
expertise. One example is the use of external memory support,
more frequent among experts than novices [34].

Norman [35] classified cognition in two different types:
experiential and reflective. Experiential cognition is the type
of mental effort spent during automatic tasks such as talking,
riding a bicycle, cooking the every-day meal etc. Reflective
cognition requires much more concentration and is related to
decision making, creativity, and reasoning. The framework’s
cognitive dimensions can be experiential or reflective. We
consider Tester Orientation and Guidance and Tester Artifact
Comprehension dimensions to be reflective cognition. In this
sense, they are dimensions related to the intermediate steps
and results produced during testing tasks; that is, they support
conscious and creative activities of the tester. The Tool In-
teraction Usability dimension, on the other hand, is closer to
experiential cognition. Thus, it involves auxiliary or aesthetic
aspects, giving more importance to how the features contribute
to a more practical and comfortable experience.

VI. CONCLUSIONS AND FUTURE WORK

This paper calls attention to how software testing re-
searchers have not sufficiently emphasized the tester’s per-
spective when formulating research problems. By ignoring or
minimizing the tester’s influence, we may be missing valid
and helpful solutions that meet the demands of practitioners.
With our background in both HCI and software testing, we are
especially confident that the intersection of both research fields
is valuable to forming solutions for the presented problems.
The former deals with the humanistic aspects, and the latter
looks to the theory and current practice of testing activities.

The unit tester’s needs, summarized from the literature and
described in Section IV, consist of cognitive demands that
need to be supported by tools. We condensed these cognitive
demands into a framework composed of three cognitive dimen-
sions: Tester Artifact Comprehension, Tester Orientation and
Guidance, and Tool Interaction Usability. In order to establish a
foundation for the framework, a connection is made between
the cognitive dimensions of the framework and the types of
cognition as characterized by Norman [35].

This paper makes two main contributions. First, as the
starting point for investigating the improvement of unit testing

tools, it moves the primary focus away from automation and
looks at the tester’s cognitive needs, a change from the current
literature. The second contribution is the proposal of a con-
ceptual framework for unit testing, which characterizes newly
identified cognitive problems. In this sense, the framework
indicates new research directions to be investigated in each
cognitive dimension.

This is a work in progress that characterizes newly defined
problems in practice. The validation of the proposed frame-
work should involve multiple testing contexts, and should be
conducted over multiple research efforts. We are particularly
interested in exploring the functional and fault-based tech-
niques as our next steps of investigation, including validation
through both prototypes and experiments with users. With
further refinement, the framework will indicate with greater
precision how unit testing tools should support each cogni-
tive dimension in different testing contexts. As a “wild and
provocative” idea, we conclude this paper with a statement that
supports our introduction: testers are hunters because they are
human. The implication is that new opportunities of research
are open, and their investigation should help make the bug-
hunting game less arduous for the hunters in their practice.

ACKNOWLEDGMENT

This work was partially supported by FAPESP under grant
number 201415514-2. We thank CNPq for the financial support
and Cassandra Petrachenko for the feedback on our paper.

REFERENCES

[1] K. Beck, JUnit Pocket Guide. Beijing ; Sebastopol, Calif: O’Reilly
Media, 1 edition ed., Oct. 2004.

[2] P. Ammann and J. Offutt, Introduction to Software Testing. New York:
Cambridge University Press, 1 edition ed., Jan. 2008.

[3] J. Kasurinen, O. Taipale, and K. Smolander, “Software Test Automation
in Practice: Empirical Observations,” Adv. Soft. Eng., vol. 2010, pp. 4:1–
4:13, Jan. 2010.

[4] A. Orso and G. Rothermel, “Software Testing: A Research Travelogue,”
in Proceedings of the on Future of Software Engineering, FOSE 2014,
(New York, NY, USA), pp. 117–132, ACM, 2014.

[5] E. Daka and G. Fraser, “A Survey on Unit Testing Practices and
Problems,” in 2014 IEEE 25th International Symposium on Software
Reliability Engineering (ISSRE), pp. 201–211, Nov. 2014.

[6] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen, “A preliminary sur-
vey on software testing practices in Australia,” in Software Engineering
Conference, 2004. Proceedings. Australian, pp. 116–125, 2004.

[7] J. Lee, S. Kang, and D. Lee, “Survey on software testing practices,”
IET Software, vol. 6, pp. 275–282, June 2012.

[8] Y. Jia and M. Harman, “An Analysis and Survey of the Development of
Mutation Testing,” IEEE Transactions on Software Engineering, vol. 37,
pp. 649–678, Sept. 2011.

[9] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing.
John Wiley & Sons, Sept. 2011.

[10] B. Beizer, Software Testing Techniques (2Nd Ed.). New York, NY, USA:
Van Nostrand Reinhold Co., 1990.

[11] R. S. Pressman and B. Maxim, Software Engineering: A Practitioner’s
Approach. New York, NY: McGraw-Hill Science/Engineering/Math, 8th
revised edition edition ed., Jan. 2014.

[12] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software Unit Test Coverage
and Adequacy,” ACM Comput. Surv., vol. 29, pp. 366–427, Dec. 1997.

[13] J. Itkonen, M. Mantyla, and C. Lassenius, “The Role of the Tester’s
Knowledge in Exploratory Software Testing,” IEEE Transactions on
Software Engineering, vol. 39, pp. 707–724, May 2013.

[14] J. A. Whittaker, Exploratory Software Testing: Tips, Tricks, Tours, and
Techniques to Guide Test Design. Upper Saddle River, NJ u.a.: Addison-
Wesley Professional, 1 edition ed., Aug. 2009.

[15] C. Kaner, J. Falk, and H. Q. Nguyen, Testing Computer Software, 2nd
Edition. New York: Wiley, 2 edition ed., Apr. 1999.

[16] K. Beck, Test Driven Development: By Example. Boston: Addison-
Wesley Professional, 1 edition ed., Nov. 2002.

[17] U. Neisser, Cognitive Psychology. New York, NY: Appleton-Century
1967, first edition ed., 1967.

[18] D. Norman, “Emotion & Design: Attractive Things Work Better,”
interactions, vol. 9, pp. 36–42, July 2002.

[19] APA - American Psychological Association, “Glos-
sary of Psychological Terms.” [Online]. Available:
http://www.apa.org/research/action/glossary.aspx. [Accessed: Aug.
14, 2015].

[20] A. Leitner, I. Ciupa, B. Meyer, and M. Howard, “Reconciling Manual
and Automated Testing: The AutoTest Experience,” in 40th Annual
Hawaii International Conference on System Sciences, 2007. HICSS
2007, pp. 261a–261a, Jan. 2007.

[21] C. Atkinson, F. Barth, and D. Brenner, “Software Testing Using Test
Sheets,” in 2010 Third International Conference on Software Testing,
Verification, and Validation Workshops (ICSTW), pp. 454–459, Apr.
2010.

[22] V. Lappalainen, J. Itkonen, V. Isomttnen, and S. Kollanus, “ComTest: A
Tool to Impart TDD and Unit Testing to Introductory Level Program-
ming,” in Proceedings of the Fifteenth Annual Conference on Innovation
and Technology in Computer Science Education, ITiCSE ’10, (New
York, NY, USA), pp. 63–67, ACM, 2010.

[23] P. Runeson, “A survey of unit testing practices,” IEEE Software, vol. 23,
pp. 22–29, July 2006.

[24] V. Garousi and J. Zhi, “A survey of software testing practices in
Canada,” Journal of Systems and Software, vol. 86, pp. 1354–1376,
May 2013.

[25] M. Fowler (2012, May 01), “Test pyramid.” [Online]. Available:
http://martinfowler.com. [Accessed: Jun. 09, 2015].

[26] J. Kasurinen, O. Taipale, and K. Smolander, “Analysis of Problems in
Testing Practices,” in Software Engineering Conference, 2009. APSEC
’09. Asia-Pacific, pp. 309–315, Dec. 2009.

[27] K. Wiklund, D. Sundmark, S. Eldh, and K. Lundvist, “Impediments
for Automated Testing An Empirical Analysis of a User Support
Discussion Board,” in 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation (ICST), pp. 113–122, Mar.
2014.

[28] M. Delahaye and L. du Bousquet, “Selecting a software engineering
tool: lessons learnt from mutation analysis,” Software: Practice and
Experience, Jan. 2015.

[29] A. Walenstein, Cognitive Support in Software Engineering Tools: A
Distributed Cognition Framework. PhD thesis, School of Computing
Science, Simon Fraser University, May 2002.

[30] F. Detienne, Software Design - Cognitive Aspect. London ; New York:
Springer, softcover reprint of the original 1st ed. 2002 edition ed., Nov.
2001.

[31] H. A. Simon, G. B. Dantzig, R. Hogarth, C. R. Piott, H. Raiffa, and
T. C. Schelling, Research Briefings 1986. National Academies Press,
Jan. 1986.

[32] D. Stone, C. Jarrett, M. Woodroffe, and S. Minocha, User Interface
Design and Evaluation. Morgan Kaufmann, Apr. 2005.

[33] D. Norman, The Design of Everyday Things: Revised and Expanded
Edition. New York, New York: Basic Books, revised ed., Nov. 2013.

[34] S. Davies, “Display-based problem solving strategies in computer
programming,” Empirical Studies of Programmers: Sixth Workshop,
pp. 59–76, 1996.

[35] D. A. Norman, Things That Make Us Smart: Defending Human At-
tributes In The Age Of The Machine. Reading, Mass: Basic Books,
reprint edition ed., Apr. 1994.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

