
Building Test Suites in Social Coding Sites by
Leveraging Drive-By Commits

Raphael Pham, Leif Singer, and Kurt Schneider
Leibniz Universität Hannover
Software Engineering Group

Hannover, Germany
{raphael.pham, leif.singer, kurt.schneider}@inf.uni-hannover.de

Abstract—GitHub projects attract contributions from a com-
munity of users with varying coding and quality assurance
skills. Developers on GitHub feel a need for automated tests
and rely on test suites for regression testing and continuous
integration. However, project owners report to often struggle with
implementing an exhaustive test suite. Convincing contributors
to provide automated test cases remains a challenge. The absence
of an adequate test suite or using tests of low quality can degrade
the quality of the software product.

We present an approach for reducing the effort required by
project owners for extending their test suites. We aim to utilize the
phenomenon of drive-by commits: capable users quickly and easily
solve problems in others’ projects—even though they are not
particularly involved in that project—and move on. By analyzing
and directing the drive-by commit phenomenon, we hope to use
crowdsourcing to improve projects’ quality assurance efforts.
Valuable test cases and maintenance tasks would be completed
by capable users, giving core developers more resources to work
on the more complicated issues.

I. INTRODUCTION

GitHub1 changed the way developers collaborate on social
coding sites. Software projects (source code, documentation,
tests, etc.) are located in one place and GitHub provides
communication means for project members, reducing coordi-
nation efforts. The collaboration process is streamlined: public
projects can be cloned by interested developers (“forked”),
improved, and then be offered back to the original project
owner (by “sending a pull request”). In our analysis of
GitHub [1], we found different attributes of user interaction on
GitHub that pose difficulties for quality assurance in projects.
Project owners try to cope with differing education in testing
and a bigger contribution community by resorting to auto-
mated tests and maintaining an exhaustive test suite. Having
a test suite in place enables regression testing and heightens
confidence in the software product. This in turn encourages
new contributions: contributors are now more likely to alter
code, as newly introduced problems with old functionality
would become apparent instantly. Also, contributors often
rely on existing tests as educational examples or even as the
basis for creating their own tests: some contributors start their
own tests by copying and pasting existing tests. Encountering
tests in the codebase or seeing a test suite in place even
communicates a demand for tested contributions. However,

1https://github.com

communicating testing culture in this voluntary environment
of a social coding site properly remains a challenge [1].
Project owners often receive untested contributions and merge
them into the project’s main branch for various reasons. This
way, the project accumulates technical debt: As testing is an
important quality assurance effort [2], the project owner will
have to provide suitable test cases later in development. A
constrasting approach would be test driven development [3].

GitHub exhibits several attributes that allow for crowdsourc-
ing mechanisms [4] [5]. For example, GitHub’s high exposure
is already being exploited by some companies. Industrial
projects have been reported to release a version of their project
on GitHub and to rely on the open source community to find
and fix most of the inherent bugs. The core developers of the
project could concentrate on more pressing issues [1].

We observed another interesting phenomenon: GitHub facil-
itates so-called drive-by commits (DBC): small changes that
do not require a prolonged engagement with a project, yet
provide some value for it. Developers providing such changes
would not always be actively interested in a project, but might
have stumbled upon it when browsing GitHub. When they had
found, for example, a spelling error or a missing translation,
they would make a quick correction, submit their commit as a
pull request to the project, and forget the project again. This
may due to the low barriers of GitHub and a project’s high
exposure to a huge number of potential contributors.

Actively guiding a project’s community to deliver DBCs
could help these open source teams to improve their workflow:
suitable tasks are distributed to the community while the core
development team takes care of more complicated issues. Also,
many companies use open source software for developing their
own products [6] [7] [8]. Such companies would benefit from
higher quality and productivity in open source software.

II. RESEARCH GOALS

Our research goal can be divided into two subgoals:
1) to understand the mechanisms of DBC better, and
2) to employ this knowledge for improving quality assur-

ance efforts in open source development teams.
This would allow us to distribute a project’s testing work-

load to uninvolved bystanders, enabling a project’s core mem-
bers to focus on complex and critical issues.

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
New Ideas and Emerging Results

1209

To better understand the supporting and facilitating circum-
stances for DBC, we will investigate how and when DBCs
happen. Such an understanding would allow us to derive a
model of the DBC. This would clarify the following questions:

1) What are the preconditions for DBCs?
2) Which circumstances support or prevent DBCs?
3) How can the DBC mechanism be applied in the domain

of testing?
We will investigate how the DBC mechanism can be em-

ployed in a controlled manner to solve varying problems. In
this case, we try to solve quality assurance problems of open
source development teams on social coding sites, improving
the process of building a test suite.

This effort should help the development of open source
projects in several ways. The project is provided with a
steadily growing test suite and the quality of the project should
rise. The existence of a test suite in turn could trigger or help
following contributors to provide tests themselves [1]. Also,
if the creation of less complex test cases is distributed to the
community, the core development team is able to care about
more complex issues and drive the development of the project
forward.

III. PRELIMINARY RESULTS

This section describes preliminary results gained from fur-
ther analysis of interview data of our previous work [1].

A. The Drive-By Commit

Often, the core development team of a popular project on
GitHub is comprised of a small group of developers while the
periphery of less deeply involved developers is rather large.
This is due to several reasons: GitHub encourages users to
connect to projects and “follow” their development. Users can
also follow other developers whose work they find interesting
or inspiring. GitHub generally encourages collaboration by
employing easy to use and low-barrier mechanisms to get
involved with a project: forking a project can be done with
several clicks all inside the Web browser. Lastly, projects
and developers on GitHub are searchable and browsable by
different criteria. These mechanisms allow projects on GitHub
to attract and gather a large group of developers, active
users, and passive by-standers. With each new contributor
and pull request, this community grows and project owners
observe a constant flux in contributors. This high exposure
combined with a project’s large periphery and GitHub’s low-
barrier mechanisms spawned the new mode of contributing to
a project by drive-by commit.

In our previous research [1], interviewees reported a certain
spin-up time to get acquainted with a project’s conventions
in order to start working on it. This, however, was not the
case with DBCs—and said users pointed this out as one of
GitHub’s most prominent advantage.

Users linked the ease of use, complexity of the change,
and assurance of correctness to DBC. For example, one
interviewee recounted how he added a new language to a
GitHub project as a DBC. He did so because it was easy

Ext. Motivation Support Reward

Assurance Swiftness Ease of Use

Discovery Task Closure

Int. Motivation Ability

Attributes of
DBC Task

DBC
Process

Attributes of
User

Task Giver
provides

chronological order influencesLegend:

Fig. 1. The DBC Model

for him to provide this language and it only took him one
night. Furthermore, this project had an internationalization
framework in place and the user knew exactly where to apply
his changes. This reassured him: “I just can operate on the
promises that a well-developed system will just work and not
have to do a whole lot of work to make that contribution.”

In our interviews [1] with active GitHub users about their
testing behaviors, the topic of assurance of correctness—
especially in the context of collaboration with others—came
up repeatedly. Said user also said that not having to explicitly
checking out the project, setting up an environment, and
building it made things much easier. In this case, he could just
“drop” his commit, felt assured that it worked, and moved on.

We validated that ease of use can facilitate DBCs. 496 active
GitHub users rated the following statement on a five item
Likert Scale [9]: “Since it is so easy to send a pull request,
I contribute more changes that I would not have engaged
in otherwise.”. Value one represented most disagreement and
value five most agreement. The median of this distribution was
value 4 (154 answers), the modus (value 5) accumulated 209
answers.

B. A Model of the Drive-By Commit

In our interviews with active GitHub users [1], the inter-
action mode of DBC showed several similarities. Reoccurring
themes of DBC in action were: little effort, swift, focussed,
and generally low-barrier tasks. We extracted these similarities
and formed a preliminary model of the DBC (see Fig. 1).

The DBC process that we encountered on GitHub involved
the Discovery of an open Task and its straight-forward resolv-
ing. Discovery should either present potential contributors with
open and suitable tasks, or provide means for them to discover
such. Suitability of a task is dependent on a user’s Ability. The
step of discovery should take this into account.

Flooding a user with tasks that do not fit her ability might
impede existing motivations to help. We therefore believe that
the discovery process needs to support users in finding tasks
that they are actually capable of solving.

1210

Lastly, sending a pull request with a new commit to a
project provides Closure in the DBC process. When designing
interventions that aim to facilitate DBCs, this step should
provide the user with a defined and clear end of the task.

C. Influencing Factors

We extracted different levels of Influencing Factors for the
occurrence of DBCs in this process: attributes of the task itself
and user attributes. Users seemed more at ease to provide DBC
when they believed in the correctness of their contributions.
Providing some form of Assurance during the tasks would
support this need. This may be done by either giving the user
the opportunity to check correctness herself or by providing
automatic checks and opportunities for correction.

Swiftness describes several attributes of the task that can be
useful when selecting tasks for a potential DBC community.
Users described DBCs to be fairly quick and focussed activ-
ities. Any disturbance from the main task was perceived as
counter-productive. This includes any form of prolonged pre-
or post-processing and any effort connected with this:

1) The potential contributor will not set up any environment
or build any software in order to develop the DBC.

2) Believing that their actions could cause a follow-up
duties should cause most users to refrain from com-
mitting. Nonetheless, some degree of extra-work for a
DBC can probably be elicited if it happens before the
Closure event—such as providing a commit message.
This remains to be investigated.

3) The task should not need any start-up time and design
of the task should keep tight focus on the DBCs value.

4) The task should be clearly defined and the user should
be informed what is expected of her.

Ease of Use refers mainly to a user interface that should be
easy to learn and use.

On GitHub, users creating DBCs reported an intrinsic
motivation to improve a project, even though they were not
deeply involved with it. This was often coupled with a strong
sense of capability: they knew that they could improve on a
certain issue fairly easily and quickly.

We want to actively employ the DBC mechanism and
introduce the role of the Task Provider to our model. Currently,
DBCs may include an intrinsic motivation, such as the need
to “scratch an itch” (to improve something that is bothering
the user). Regarding testing, this need may not be equally
developed. Therefore, we introduce extrinsic motivators that
influence users to solve testing tasks. These could be used
to trigger the user to search or discover a project that offers
open tasks. This could be facilitated by offering a Reward that
assigned at the closure step.

D. Introducing the DBC Model to GitHub

GitHub provides low-barrier mechanisms for cloning and
merging source code repositories. Developers can start collab-
orating with a few clicks, all from within the browser. The

+- + GitHub.com

Domain

Technology

Test Type

CancelOK

Rank Project Name Testing Task

Android Application

Java

GUI-Tests

Fig. 2. The Search Site

popular GitHub project Travis-CI2 tries to automate continu-
ous integration for GitHub projects and eases the testing effort.

However, even cloning a project locally might hinder the
DBC mechanism. In order to enable DBCs on a larger scale,
we propose to simplify the GitHub collaboration process even
more. As we want the user to solely concentrate on creating
a test case as a DBC, we plan to hide any step that we can
automate from the user.

The overall idea is as follows: we introduce new means for
the interested user to search for “testing tasks” (Discovery).
When the user has found a suitable task, we deploy everything
needed for providing a test case (the whole project, existing
test suite, ...) in the background. The user is presented with
a minimalistic interface for the sole purpose of providing the
test case (Task). When everything is done, the user receives
visual feedback and a reward (Closure).

IV. IMPLEMENTATION SKETCHES

The activity of discovering a new testing task for a DBC can
be supported by a web site that allows developers to search
for projects in need of testing efforts (see Fig. 2).

Here, the user can filter projects by technology, domain, or
other attributes. This way, she can choose which kind of tasks
she wants and is able to solve (Ability). All results are ranked
by an internal score. Projects with a higher need for testing
help will be rated with a higher score and are pushed up. This
should give these projects a higher exposure and lead to more
test cases being delivered by DBC. The need for testing help
or the assessment of the state of the test suite is done by an
internal metric that we are still developing.

The internal score and thus the rating of a project could
be influenced by the project owner: if a project owner solves
open testing tasks for other projects (in the role of a developer,
driven by the DBC mechanism) she gains internal score points
as a reward. She can spend these to push her own project up
(ext. Motivation).

2https://travis-ci.org

1211

+- + GitHub.com

Your Test Case:

Code Under Test:

More Examples Tutorials

Support RUN TESTBack

Fig. 3. The Simplistic Test Case Interface

A project owner testing other projects instead of putting that
effort towards better tests for her own project seems counter-
intuitive at first, but provides some benefits:

1) By engaging in testing of other projects, the project
owner can activate a larger number of potential con-
tributors. This could potentially lead to more test cases
being added by the crowd than the number of test cases
he would have been able to provide himself.

2) Test cases generated by DBC would be written by
strangers—and could potentially provide much needed
distance or lead to different test approaches.

When the user has a testing task she is interested in solving,
she clicks on this entry and is presented with an in-browser
view of the project that needs to be tested. The user can
browse this project and a goal-oriented overview of the testing
state of the project could be shown: a map or dashboard
showing untested classes or functions or specifically marked
code snippets. When the user has found a suitable place to
add a test case, she can press a button “Add a new test case”.
If this task of browsing proves to be counter-productive, the
user could be taken directly to the missing test case location.

When the “Add a new test case” button is pressed, the
current project is deployed in the background: it is checked
out into a virtual machine, continuous integration services like
Travis-CI are run, and the user is presented with a simple web-
based editor interface to enter her new test case (see Fig. 3).

This interface either features other test cases of this class
or has one of them pre-entered in the text-editor. This way,
the user gets to know the way test cases are handled in this
project and can use it as a basis for his own test case—
a practice we heard of in several interviews [1]. When the
test case is complete, it is automatically run and the user is
informed of the result. When the user accepts, she is informed
of the testing score she has earned and the project’s statistics

overall (Closure). After that, the search site for open testing
tasks could be displayed again to restart the process anew.

Project owners could provide a specific configuration for the
virtual machine that is started when a user accepts to write
a test case. This would allow for certain customizations. If
project owners do not wish to create such a file manually, an
application could derive a project’s required configuration by
analyzing it, generate a suitable configuration file for a virtual
machine, and send it to project owner as a pull request.

V. CONCLUSIONS AND OUTLOOK

While researching GitHub [1], we found the drive-by com-
mit phenomenon: users who are not deeply involved with a
project stumble across small issues, resolve them in a quick
manner, and move on. These users recognize the issue and are
capable of resolving it fairly quickly. We assume this to be a
specialized case of crowdsourcing. Right now, this behaviour
is not guided or leveraged in a controlled manner, even though
GitHub provides the prerequisites to do so.

In this paper, we presented a preliminary model for the
DBC mechanism. We use this model to construct a new view
of GitHub that systematically directs this phenomenon towards
improving test suites for GitHub projects. To illustrate the via-
bility of our approach, we provided concrete examples of how
this new view could be implemented. However, some steps are
not yet defined and are the subject of future work. Currently,
our approach focusses on the creation of test cases — although
other testing related tasks could also be considered.

Our approach can potentially enable the generation of test
cases by an uninvolved crowd of software developers. This
would leave the core development team free to solve more
pressing issues while still holding up quality assurance.

Our next research steps include the definition of a suitable
metric to define a project’s need for test cases. We are also in
the process of developing a feasibility prototype.

REFERENCES

[1] R. Pham, L. Singer, O. Liskin, F. Figueira Filho, and K. Schneider,
“Creating a shared understanding of testing culture on a social coding
site,” in Proceedings of the 35th Intern. Conf. on Software Engineering
(to appear), 2013. [Online]. Available: http://se.uni-hannover.de/pub/
File/pdfpapers/Pham2012.pdf

[2] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing.
Wiley, 2011.

[3] N. Nagappan, E. Maximilien, T. Bhat, and L. Williams, “Realizing quality
improvement through test driven development: Results and experiences
of four industrial teams,” Empirical Software Engineering, vol. 13, pp.
289–302, 2008.

[4] A. Kittur, E. H. Chi, and B. Suh, “Crowdsourcing user studies with
mechanical turk,” in Proceedings of the SIGCHI Conf. on Human Factors
in Computing Systems, ser. CHI ’08, 2008, pp. 453–456.

[5] D. C. Brabham, “Crowdsourcing as a model for problem solving: An
introduction and cases,” Convergence February 2008 vol. 14 no. 1 75-90.

[6] C. Ebart, “Open source software in industry,” Software, IEEE, vol. 25,
no. 3, pp. 52 –53, may-june 2008.

[7] B. Lundell, B. Lings, and E. Lindqvist, “Open source in swedish
companies: where are we?” Information Systems Journal, vol. 20, no. 6.

[8] D. Pranic and Z. Pozgaj, “Usage of open source software in public
administration of republic of croatia,” in MIPRO, 2010 Proceedings of
the 33rd Intern. Convention, may 2010, pp. 1316 –1321.

[9] R. Likert, “A technique for the measurement of attitudes.” Archives of
psychology, 1932.

1212

