
Focusing on Execution Traces Using Diver

Del Myers
Department of Computer Science

University of Victoria

Victoria, British Columbia, Canada

Email: delmyers.cs@gmail.com

Margaret-Anne Storey
Department of Computer Science

University of Victoria

Victoria, British Columbia, Canada

Email: mstorey@uvic.ca

Abstract—Understanding the behaviour of software is an essen-
tial part of program understanding in general. Execution traces
of running software can be used as a source of information about
software behaviour. Unfortunately, execution traces tend to be
extremely large, making it difficult to show users the information
that they need. This demo presents new developments in our tool
called Dynamic Interactive Views for Reverse Engineering (Diver),
which attempts to address this difficulty.

Index Terms—Software engineering, reverse engineering,
graphical environments, integrated environments

I. INTRODUCTION

During software maintenance activities, a significant amount

of time and effort is invested in program understanding

tasks [1]. The static and dynamic behaviour patterns of soft-

ware are both important components of program understand-

ing [2]. Some understanding of dynamic behaviour can be

elicited by manually walking through source code, but this is

time consuming and can be incomplete due to programming

language features such as dynamic binding.

Alternatively, maintainers can record execution traces of

running software. Such traces faithfully represent the run-

time behaviour of software, but they tend to be extremely

large. Tools are necessary to aid users in their investigation

of execution traces and creating such tools is a significant

challenge. If care is not taken, there is serious risk of actually

increasing a maintainer’s work load as they are tasked with

investigating not only a large code base, but also large amounts

of execution trace data.

This demo presents a tool called Dynamic Interactive Views
for Reverse Engineering (Diver), which we created to aid

software developers in their program understanding tasks. It

is built on the Eclipse IDE1 and is designed to transform the

familiar IDE into a tool for program understanding based on

dynamic execution traces of Java software. Diver does this

through a technique we call the trace-focused user interface.

While Diver was briefly introduced in another short tool

demo [3], it now has a fuller integration with the Eclipse

IDE and better filtering in its primary visualization (sequence

diagrams). This demo features these recent developments.

II. THE TRACE-FOCUSED USER INTERFACE

Research indicates that developers’ productivity increases if

their IDEs highlight the artifacts that are pertinent to the task

1http://www.eclipse.org

at hand [4]. Execution traces contain information about what

is pertinent to program behaviour. The challenge is to extract

the interesting information and present it in a useful way.
Diver uses a method called software reconnaissance [5].

Software developers can use Diver to gather several execution

traces of the software under investigation, some that exhibit

a feature of interest, and some that do not. These traces are

displayed in a custom view called the Program Traces view.

In this view, users can “activate” a trace that exhibits the

feature of interest, and “hide” traces that do not (Fig. 1).

Activated traces are displayed using a green indicator icon, and

an “open eye.” Hidden traces show a “closed eye.” Software

reconnaissance is used to discover what artifacts are unique to

the feature of interest. This is the essence of the trace-focused

user interface. Diver uses this information to filter the standard

Eclipse Package Explorer view so that it displays only the

classes and methods that are unique to the activated trace.

Fig. 1. The Program Traces View

.

Fig. 2. Java Search Results, Highlighted by the Trace-Focused User Interface

New to Diver is the ability to affect any view that displays

Java code elements, including the source code editor, the

2011 18th Working Conference on Reverse Engineering

1095-1350/11 $26.00 © 2011 IEEE

DOI 10.1109/WCRE.2011.66

439

(a) Greying-out method executions

(b) Hiding method executions

Fig. 3. Using Software Reconnaissance in Sequence Diagrams

Hierarchy view, the Outline view, and the Search Results view.

For example, the trace-focused user interface can be used

to refine the results of a Java code search. Developers have

difficulty with code searches because their keywords often

return too many results [6]. Diver annotates the Eclipse Search
Results view to highlight the results that are unique in the

activated trace. Fig. 2 shows the results of a Java Search for

the log-in process of an Open Source web application. The

original search returned 152 results, but according to Diver,

only 11 of them are relevant to the “log-in” feature (captured

using execution traces). The relevant results are displayed as

darker text, and they can be cross-referenced with the filtered

Package Explorer to help programmers gain insights about the

specific details of their software.

III. USING SOFTWARE RECONNAISSANCE TO FILTER

SEQUENCE DIAGRAMS

Diver includes an interactive sequence diagram viewer,

which can be used to visualize a thread of execution by open-

ing it from Diver’s Program Traces view. Sequence diagrams

are a common way to visualize program execution traces, but

they tend to be extremely large, even for simple programs,

which can make them difficult to understand.

Previous versions of Diver attempted to address this prob-

lem in several ways. First, we developed a method of com-

pacting the view by using loops found in source code [7].

Second, users could right-click on Java elements in the filtered

Package Explorer and use them as an aid to navigation into

the sequence diagram. For example, right-clicking on a method

offers the user a context menu action that will display the first

call to that method in a sequence diagram.

These versions of Diver, however, did not apply any filters to

the sequence diagram itself. A user was able to see and traverse

a call tree in the diagram even if it was not related to a feature

of interest (as described using software reconnaissance). We

have recently developed a way that can efficiently apply

software reconnaissance to large sequence diagrams.

Diver users can choose to either grey-out method executions

that are not related to the feature of interest (Fig. 3(a)), or

they can remove them completely (Fig. 3(b)). This filter can

be used to prevent users from viewing parts of the sequence

diagram that are irrelevant to their current understanding task.

Our preliminary investigation into this technique indicates that

it can reduce the size of many sequence diagrams by 80%.

IV. DISCUSSION AND FUTURE WORK

The Diver tool has been very well received by the developer

community. It recently received the honor of being named

finalist for the Best Developer Tool of 2011 by the Eclipse

community2 and it is among the top 150 most-installed Eclipse

extensions according to the Eclipse Marketplace3. We have

also run a user study to help validate Diver on empirical

grounds and are preparing the study for publication.
Diver is available as Free and Open Source Software.

Further details can be found at: http://diver.sf.net.

V. ACKNOWLEDGEMENTS

This work is funded by Defence Research and Develop-

ment Canada under contract W7701-82702/001/QCA, and a

DND/NSERC grant with IBM and DRDC Valcartier (DNDPJ

380607-09).

REFERENCES

[1] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: a
roadmap,” in Proc. of the Conf. on The Future of Software Engineering.
New York, NY, USA: ACM, 2000, pp. 73–87.

[2] A. Von Mayrhauser and A. Vans, “Program comprehension during soft-
ware maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–55,
August 1995.

[3] D. Myers and M.-A. Storey, “Using dynamic analysis to create trace-
focused user interfaces for ides (tool demo),” in Proc. of the 18th ACM
SIGSOFT Int’l Symp. on The Foundations of Software Engineering.
ACM, 2010.

[4] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in Proc. of the 14th ACM SIGSOFT Int’l Symp. on
The Foundations of Software Engineering. New York, NY, USA: ACM,
2006, pp. 1–11.

[5] N. Wilde and M. Scully, “Software reconnaissance: mapping program fea-
tures to code,” Journal of Software Maintenance: Research and Practice,
vol. 7, no. 1, pp. 49–62, 1995.

[6] J. Starke, Finding what is important: understanding and improving code
search. University of Calgary, July 2010, masters Thesis.

[7] D. Myers, M.-A. Storey, and M. Salois, “Utilizing debug information to
compact loops in large execution traces,” in Proc. of the European Conf.
on Software Maintenance and Re-engineering. IEEE, March 2010, pp.
41–50.

2http://www.eclipse.org/org/press-release/20110301 awardfinalists.php
3http://marketplace.eclipse.org/metrics/installs

440

