
Utilizing Debug Information to Compact Loops in
Large Program Traces

Del Myers and Margaret-Anne Storey
Department of Computer Science

University of Victoria,
Victoria, BC, Canada

Email: delmyers.cs@gmail.com, mstorey@uvic.ca

Martin Salois
Defence Research and Development Canada

Valcartier, QC, Canada
Email: martin.salois@drdc-rddc.gc.ca

Abstract—In recent years, dynamic program execution traces
have been utilized in an attempt to better understand the runtime
behavior of various software systems. The unfortunate reality
of such traces is that they become very large. Even traces of
small programs can produce many millions of messages between
different software artifacts. This not only affects the load on
computer memory and storage, but it also introduces cognitive
load for users, affecting their ability to understand their software.
This paper discusses an algorithm which combines data from
multiple sources–dynamic execution traces, source code, and
debug information–in order to drastically reduce the number
of messages that are displayed to the user. We introduce the
algorithm and apply it to the Java programming language. The
algorithm is employed against several Java software systems to
investigate its effectiveness in compacting loops. Its usage is
demonstrated in the context of a visualization based on UML
Sequence Diagrams.

Index Terms—reverse engineering; program traces; algorithm;
compaction; visualization

I. INTRODUCTION

Software is complex and can be very difficult to understand.
Maintenance of software systems often requires some level
of reverse engineering as developers investigate source code
in order to understand their software. Unfortunately language
features such as polymorphism or late binding limit the
expressive power of source code and static analysis. Dynamic
techniques such as execution traces help to address these
problems. Execution traces offer the advantage that they report
precisely the actions of a program at runtime.

Execution traces suffer from a number of shortcomings,
however. One is that they tend to be very large. This is a
critical shortcoming when software tools attempt to visualize
the contents of execution traces. It is very important that
information be hidden [1], removed [9] or compacted [4] in
order to display large amounts of information.

Another shortcoming is that raw execution traces are not
able to express the semantics of why traced events occurred
in the context of the originating source code. Our previous
experiments with programmers showed that they rely heavily
on source code even when presented with a sequence diagram
visualization of an execution trace [1]. Guéhéneuc and Ziadi
have made a similar observation and suggest that tools and
visualizations of dynamic execution traces should incorporate
information from static source code [5].

These challenges led us to develop a research project
called Dynamic Interactive Views for Reverse Engineering
(Div er).1 Div er was developed as a set of plug-ins for the
Eclipse integrated development environment (IDE). It offers
users of Eclipse the ability to create execution traces of their
Java applications or Eclipse plug-ins, and inspect them using
graphical views which employ combined static and dynamic
analysis. In developing this project, we discovered that the size
of visualizations can be drastically reduced if the source code
that defines the executed program is taken into account.

The main contribution of this paper is an algorithm that is
able to compact execution traces through the use of debug
information and loops found in source code. The algorithm is
used for visualizations and tools that integrate dynamic pro-
gram behavior with static source code. The solution makes use
of information that is commonly available on most platforms.

The remainder of this paper proceeds as follows. Section II
discusses related work. Section III describes the algorithm in
detail. Section IV describes an experiment that uses several
industrial software systems to evaluate the effectiveness of
the algorithm. Section V describes how the algorithm can be
applied in reverse engineering tools by way of an example
in the Div er tool. Section VI discusses the limitations of
the method and offers indications of when other methods
should be employed. Finally, section VII summarizes the
contributions and concludes this paper.

II. RELATED WORK

Much research and many tools have been presented that
attempt to aid users in their understanding of the dynamic
processes of software. Hamou-Lhadj and Lethbridge [6] and
our previous work [1] both present surveys of such tools and
techniques. Most center around various visualization methods
which attempt to display large amounts of data in compact
ways. Some recent examples are Massive Sequence and Cir-
cular Bundle views [4]. Both of these methods use visual
attributes such as proximity, color, and line thickness to relate
software artifacts by the “calls” relationship while minimizing
the screen or print area that is used. The two views are
synchronized in a single tool and give users the ability to gain

1http://diver.sf.net

2010 14th European Conference on Software Maintenance and Reengineering

1534-5351/10 $26.00 © 2010 IEEE

DOI 10.1109/CSMR.2010.19

41

an overview of the trace and effectively locate features in the
software. These examples rely purely on execution traces and
not on source code.

Object-message based diagrams such as UML sequence
diagrams are also popular. The Eclipse Test and Profiling Tools
Platform [21] is an example of one such tool. These tools have
the advantage that they can display detailed information about
the trace, but they suffer from the fact that they require a
large area for display. It can be difficult to infer, for example,
repeated patterns in the software since the repetitions cannot
be displayed simultaneously.

One common attribute of execution traces is that they are
highly repetitive. This allows for high compression ratios in
program traces and therefore some lessons can be learned from
trace compression literature. One source of heavy repetition
in execution traces is that of the simple loop. Ketterlin and
Claus [10] use loop recognition to compress the values found
in traces of memory. Their technique is able to compress
execution traces more than 8 000 times better than standard
file compression techniques such as Bzip2 [18]. For the work
in this paper, we are not with concerned trace compression,
since our goal is not to reduce the size of stored trace data.
We are interested in what we will call trace compaction. By
compaction, we mean the reduction of the amount of trace
information that must be displayed in a visualization of a trace.
The trace compression literature indicates that loops are a good
candidate for such reduction.

The repetitive nature of execution traces has also proven
useful in the field of trace analysis. Safyallah and Sartipi
[15] use data mining techniques such as sequential pattern
mining to extract repeated execution patterns from a trace and
display them to the user. Hamou-Lhadj and Lethbridge [7]
use repeated sub invocations to create directed-acyclic graphs
which are used to define the concept of a comprehension unit.
Comprehension units were used again in a later work to aid in
the removal of utility methods from the trace visualization [8].
Bohnet et al. [2] use a related approach in a metric named
call fingerprints based on the similarity between the sub-
invocations of different parent invocations. Putting a threshold
on this metric allows traces to be pruned by eliminating
invocations that are too similar. All of these examples work
only on execution trace data without considering source code.

Some work has attempted to match execution traces to
source code. As early as 1994, Kimelman et al. [11] offered an
application called PV which had an active loop view. This view
acted as a postmortem debugger, highlighting source code as it
is reached in a play-back of an execution trace. PV was tied to
the IBM AIX system, relying on the trace data that it supplied.
The process given does not, in fact, attempt to compact traces
for visualization, but it does help users to locate source code
from within an execution trace. Systä [17] augmented static
visualizations of Java software in Rigi [14] by annotating
them with code coverage information from execution traces.
Our approach is different in that it uses code information to
compact and visualize execution traces.

Finally, much work has focused on finding repeated patterns

in order to aid in visualization, particularly through the use of
loop detection. MaintainJ [13] follows a simple process of
removing sequential calls to the same method. Jerding et al.
removed repetitive patterns in software visualizations using
hashing and loop detection. Our earlier work, the OASIS
Sequence Explorer [1], utilized an algorithm that is able to
detect nested loops and allows users to swap out different
iterations of the loop to see how the program behaved on
each iteration. Lui et al. [12] search UML sequence diagrams
to infer loops. In this process, sequence diagrams are treated as
long character strings, and loops are inferred by creating suffix
trees for the strings. The process is not specific to execution
traces, but it can be easily applied to them. None of these
approaches use source code information.

Briand et al. [3] treat the issue as a modelling problem. They
use the Object Constraint Language (OCL) to unify extensive
models of Java execution traces and UML Sequence diagrams.
They compact loops in sequence diagrams by using combined
fragments. However, the use of OCL requires that they strictly
comply with the UML and its limited vocabulary. They do not
offer an explicit algorithm or set of procedures for applying
their process.

All of the work discussed here indicates that the field of
reverse engineering has been quite active with respect to efforts
to reduce the visual complexity of dynamic execution traces.
Our work combines key elements from the previous research.
One insight is that dynamic traces are very repetitive and that
these repetitions can be expressed as program loops. Another
insight is that loops are expressed in program source code. We
propose a simple process that combines elements of dynamic
program behaviour and the definition of the program in static
source code. This gives us the ability to greatly compact
execution traces for the purpose of visualization while unifying
elements of dynamic and static reverse engineering.

III. THE ALGORITHM

The basic idea of the algorithm is relatively simple. We
consider one invocation of a program statement at a time
and try to compact all of the statements that it invokes.
What constitutes an invocation is language and application
dependent. Method or function calls are some of the most
commonly traced invocations, but other statements, such as
variable assignments or expressions, could also be considered
invocations.

We use the source code representation of the program to
compact the trace. In order to to this, it must be possible
to match a traced invocation to its original representation in
source code. Debug information is used for this purpose. A
standard debugging compiler will typically record the source
code line number of an invocation. However, a line number
is not sufficient to make a match in source code, since many
statements may exist on a single line. The trace data must also
contain a representation of the invocation being made which
can be matched to the source code. Most compilers will store
the signature for method or function invocations in symbol
tables or within the debug information in the executable. This

42

Fig. 1. The data structures. (a) is the input data, and (b) is the output data

Fig. 2. An example transformation from the input data to the output data

makes method or function calls particularly good candidates
as input to our algorithm. Some debugging compilers may also
store the column value for the originating source code for an
executed instruction. In such cases, the column value may be
used instead of a signature.

With these three sources of information (source code, debug
data, and trace data), the remaining problem is to match
invocations to the loops in which they are contained in the
originating source code. Once this is done, we can prune
loops by culling out the uninteresting iterations. The following
subsections discuss how to match invocations to source.

A. Data Structures

We use several simple tree data structures as input for the
algorithm (see Figure 1(a)). The first data structure is a call
tree stored for the trace. Two data items must be stored with
each invocation in the call tree: a line number and textual
representation of the invocation which we call a signature.
Both can be retrieved from the debug information or symbol
tables stored with the program.

The second data structure is the abstract syntax tree (AST)
of the source code. Standard ASTs for many programming
languages will work. The most important part of the AST is the
statement. We define statements as any program construct, and
a statement may contain any number of other statements. We

list two specializations of statements–loops and invocations–
because they are important concepts in the algorithm. Invo-
cation statements require the program to do some work such
as invoke a function or assign a variable. A class definition
is an example of a statement that is not an invocation. All
statements must be associated with the region of text that they
occupy in the originating source (startLine, endLine,
startChar, endChar), and a signature. These will be used
to match them to the invocations in the trace.

The objective of the algorithm is to group repeated calls
found within loops. The GroupingNode tree structure of
Fig. 1(b) is used for this purpose. A GroupingNode has one
statement which defines a group of invocations. This statement
could be the block that defines a loop or a method. It also
contains a list of invocations which occur within the group.
In these elements, the GroupingNode mirrors the abstract
syntax tree. Loops may repeat (i.e. iterate) during the execution
of a program. When this occurs, a new GroupingNode for
the loop statement that is being repeated is created with a
new list of invocations that occur within the loop. This new
GroupingNode represents a higher iteration of the same loop
statement, so it is given a higher iteration count.

An example of the transformation from the input data to
the output data is shown in Fig. 2. In this example, we have
the AST for some code that consists of a single loop which

43

is executed twice and invokes two methods each time. The
corresponding trace is shown beside it. It contains 5 method
invocations (one start invocation and 4 children). On the far
right, the data is combined into one grouping tree.

The grouping tree is used to reduce the amount of data
that must be visualized. Each GroupingNode has an iteration
associated with it. In order to reduce the size of the visualized
trace, we simply display one iteration at a time. A selection
critera must be used to decide which iterations to show. The
experiment in section IV will use one criterion. It is also
possible to allow users to select iterations interactively as will
be discussed in section V.

B. Algorithm Details

The main part of the algorithm is listed in Fig. 3. It is
called Group-Invocations, and it performs the transformation
explained in section III-A. Due to space restrictions, Group-
Invocations is the only part of the algorithm listed in full detail.
Other details will be explained within the text.

The algorithm takes an invocation and its associated AST
statement as input. The invocation must be one that is able to
have child invocations, such as a method call. The associated
statement for this invocation is the method definition and not
the originating call.

Since the purpose of the algorithm is to associate invoca-
tions to corresponding statements, the first five lines set up
associative structures. The GroupingNode tree that will be the
output of the algorithm is created on line 3 and is rooted at
root. m (line 4) is used to look up the statement associated
with an invocation. gs is used as a quick look-up into the
GroupingNode tree. When looking up a GroupingNode for
the statement representing the loop, the algorithm is only
concerned with its current iteration, so gs contains references
to the GroupingNode that represents the latest iteration of
a loop for a given statement. The references held in gs are
used by the sub-algorithms Get-Grouping and Next-Iteration
to update the tree structure. Lines 4 and 5 initialize the
associations in m and gs.

Lines 6 through 31 contain the main loop of the algorithm in
which each sub-invocation is processed. The first step (line 7)
is to locate the source code that caused the invocation of
the current sub-invocation c. This is done by utilizing the
debug information that has been stored with the trace. The sub
algorithm Associated-Statement traverses the AST starting at
statement a to find the line that matches the invocation c. Once
that line is found, the statements on that line are matched to
the signature of c. In the case that multiple statements with the
same signature as c occur on the same line, the first statement
is returned. Parent-Block (line 8) traverses up the AST, starting
at m[c] to retrieve the block statement (i.e., loop) b in which
the previously located statement is contained. If no loop can
be found, then a is returned.

Get-Grouping creates the necessary GroupingNodes needed
to associate c with b. First, the associative array gs is checked
to see if b already has a GroupingNode associated with it.
If it does, then gs[b] is returned. If it does not, then a

Algorithm Group-Invocations

Require: A traced Invocation i
Require: A Statement a that defines i
Ensure: A GroupingNode tree structure as output

1: Let m be an associative array of Invocations to Statements
2: Let gs be an associative array of Statements to Group-

ingNodes
3: Create a new, empty GroupingNode, root to represent the

root of the node tree
4: m[i]← a
5: gs[a]← root
6: for all c of i.children do
7: m[c]← Associated-Statement(a, c)
8: b← Parent-Block(m[c])
9: gs[b]← Get-Grouping(b, gs)

10: if gs[b].Empty() then
11: gs[b].Add(c)
12: else
13: l← Last-Invocation(gs[b])
14: if l.line <= c.line then
15: if m[l].Is-Child-Of(m[c]) then
16: m[l] is expected to be later than m[c] according

to syntax. . . continue
17: else if m[c].Is-Child-Of(m[l]) then
18: if m[l].startChar <= m[c].startChar then
19: gs[b]← Next-Iteration(b, gs)
20: end if
21: else if m[l].startChar >= m[c].startChar then
22: gs[b]← Next-Iteration(b, gs)
23: end if
24: else
25: gs[b]← Next-Iteration(b, gs)
26: end if
27: gs[b].Add(c)
28: end if
29: end for
30: return root

Fig. 3. Grouping invocations into loops

new GroupingNode associated with b is created and put in
gs[b]. Get-Grouping must also ensure that GroupingNodes
exist for all of the containing blocks for b, so it recurses on
Get-Grouping(Parent-Block(b), gs) until gs[b] = root. This
way, Get-Grouping ensures a consistent tree structure.

What is left is to ensure that the current GroupingNode,
gs[b], represents the correct iteration of the loop represented
by b, and then to add the invocation c to the group. First,
if the GroupingNode gs[b] has no invocations in it (line 10),
then it must be on the first iteration, and c can be added to it
(line 12). Otherwise, we compare line numbers and associated
AST positions to check if the trace is looping. The basic idea
is this: if the current invocation c precedes the last invocation
l (line 13) in the syntactic structure of the source code, and
both are in the group gs[b] (line 9), then the trace has begun

44

a new iteration of a loop, and the groups must be updated.
Normally, one would assume that if the line for l is less

than the line for c, then the program is progressing without
looping. This normal case of loop iteration is dealt with on
line 25. However, there are exceptions to this rule. Lines 14
through 23 take care of the exceptions.

If the statement associated with the last invocation is a child
of the statement for the current invocation then the relationship
is reversed. For example, foo(bar()) will call bar, then
foo, but foo comes before bar in the source code. So,
line 15 checks for this condition and allows the algorithm
to proceed without creating a new iteration for the loop.

The algorithm also has to deal with complications that occur
when it encounters loops that only span a single line. Lines
21 through 23 deal with the normal case by comparing the
location of the starting character for the statements associated
with the last and current invocations. For example, given a
loop that contains only the single line foo(); bar();,
each iteration of the loop would begin with foo. It is on
the same line as bar but with a lower character index.

Once again, if there is a parent-child relationship, then the
character ordering in source code is reversed. Lines 18 through
20 take care of such instances of single-line loops. Lines
18 through 20 also handles an exception that can occur in
some object-oriented languages in which a method may be
called on the return value of another method. For example in
foo().bar(), foo gets called before bar, but in the AST,
foo is a child of foo().bar(), and they both have the
same start position. So, when a loop occurs on a single line,
the relationship is similar to that of foo(bar()).

The above discussion accounts for parent-child relationships
for invocation statements that occur on a single line. Similar
checks as above can be added to line 25 of the algorithm to
handle cases that are broken across multiple lines.

The last detail to explain is the functioning of the Next-
Iteration sub-algorithm. Next-Iteration updates the Grouping-
Node tree structure when a loop occurs. First the current
iteration for the GroupingNode in gs[b] must be stored. We
call this iteration it. The associative array gs is then cleared
for the AST statement b and all of its children. Next, Get-
Grouping is called for b and gs. Since gs has been cleared,
this will force Get-Grouping to create a new tree structure for
the AST of b which will hold all of the invocations for the
next iteration of the loop. gs[b] is set to this new grouping, and
its iteration number is set to it+1. The new gs[b] is returned,
which updates the tree for the next loop. The algorithm runs
on one invocation at a time and can be run iteratively over
each invocation as required.

C. Caveats

There are a number of instances in which the algorithm will
fail. First, it assumes that invocations in the trace can always
be matched with statements in source code (line 7). This is
not the case for some programming languages. For example,
Java will insert method invocations that load classes from disk
the first time that they are referenced in the program. Such

invocations are typically side effects of invocations that are
present in the source code, and the problem can be solved by
associating invocations with their side effects. These cases are
language dependent and must be dealt with on a language to
language basis.

Second, the sub-algorithm Associated-Statement cannot
guarantee that it returns the correct statement in the case
that multiple invocations with the same signature occur on
the same line of code. It is not possible to distinguish the
two invocations because the only data given in the input for
the invocation is the signature and the line number. This can
be a problem in examples such as single-line loops. In such
a case the algorithm may count more iterations than there
actually are, though invocations will still be associated with the
correct code block. Standard coding conventions will normally
eliminate this problem.

Finally, the algorithm assumes that invocations occur in the
same order in the trace as they do in the source code. This will
not always be the case with optimizing compilers which may
reorder invocations in order to speed up processing. Compiler
optimizations should be turned off to fully benefit from this
algorithm.

D. Extensions

The algorithm presented is not limited to just detecting
loops. It can also be used to detect other block statements
such as conditional or error handling blocks. In these cases, the
blocks are treated like loops that execute only once. They can
then be presented in a user interface to enrich the visualizations
with more semantic information related to the source code.

IV. EXPERIMENT

The goal of this algorithm is to locate portions of execution
traces that are repetitious due to loops and compact them for
visualization purposes. It is impossible to formally prove the
effectiveness of the algorithm as the amount that the algorithm
can compact a trace visualization will depend on the source
code and traces that are given as input. Source code varies
widely between projects. Therefore, we chose to perform an
experiment that will demonstrate the level of compaction that
this approach can achieve. The following subsections describe
the experiment design and results.

A. Experiment Design

The algorithm described in this paper has been implemented
in our Open Source research project Div er. Div eroffers the
ability to capture, visualize and compare dynamic execution
traces within the Eclipse IDE. It can also enhance static struc-
ture views such as source code editors and the Java package
explorer based on the contents of the dynamic trace. We used
the implementation in Div erto evaluate the algorithm’s ability
to compact execution traces.

The Div er implementation of the algorithm works on an
AST for the Java programming language. It is able to recog-
nize method calls and constructor invocations and associate

45

them with their containing loops. All Java 6 loops are rec-
ognized including the for, while, do...while, and the
extended for (otherwise known as the foreach loop).

We tested Div er’s implementation of the algorithm against
three industrial Open Source Java applications and utilities: the
Eclipse IDE 3.5R1 [19], the HSQLDB database engine 1.8.1
[22], and the Jetty web server platform 6.1.21 [20]. These
three applications were chosen because they are high-quality
software products that are popular within the software industry,
and their source code is readily available. They also support
a wide variety of different computer usage scenarios.

Div erwas used to generate traces for each of the programs.
Since each program is designed to supply very different
functionality from the others, a use case had to be chosen
for each.

Eclipse. Eclipse was chosen because it is an interactive
graphical application, and it supplies functionality for many
typical computer usage scenarios (graphical interaction, docu-
ment editing, file manipulation, etc.). The use case for this
experiment was that of opening a project in the Eclipse
workspace. This use case was chosen because it is a simple
operation that is typical of normal Eclipse usage, and it ex-
ercises many portions of Eclipse. Div erallows users to pause
and restart traces at any time. In order to trace information
related to opening the project, a break-point was set within the
open method of the Project class of the Eclipse Resources
plug-in. When the breakpoint was hit, the Div er tracer was
started, and Eclipse was allowed to run until the user interface
indicated that the project had been opened, at which point
the Div er trace was paused, and Eclipse was closed down.
Note that Div er captures data from all threads as long as
the trace is running, so any operation that occurred while the
project was being opened was recorded regardless of whether
it was directly related to the opening of the project. This is
not considered a defect in the experiment, as it is part of the
normal operation of Eclipse.

HSQLDB. HSQLDB is a good use case because it exercises
low-level data and disk manipulation. To gather data for
HSQLDB, the database was configured to run in embedded
mode within the Java virtual machine. A program was created
that used the Java Database Connectivity drivers for HSQLDB
to perform a simple select on a pre-populated table. After the
selection, the program iterated through all of the results of
the query and cached them into a local data structure. This
program exercises the functionality that is typically used in
database systems by loading tables, retrieving data, and storing
that data for manipulation in the program. Once again, Div er
was used for the trace, and was left paused until a breakpoint
was hit immediately before the execution of the query. The
trace was then started, and the program was allowed to run
until all of the results had been cached, at which point the
trace was paused and the program was exited.

Jetty. Jetty was chosen as a use case because it represents
another very common instance of computer usage. It is a multi-
threaded HTTP server that hosts web pages for communication
over network connections. Div erwas configured to trace from

the beginning of the Jetty program in order to record the server
start-up process. One page request was also made for the Jetty
default test page by using a web browser on the local host.
Once the page was loaded into the browser, Jetty was shut
down and the trace ended. This usage was chosen to, once
again, exercise the common functionality of the software as it
loaded, and processed communication over the network.

For all three cases, Div er was configured to record all
method and constructor invocations and store them into a
local database. For the purpose of this discussion, we will
call the set of all recorded invocations in a use case I. For
each case, 400 method or constructor invocations were selected
using a random procedure. We will call this set R. Invocations
were only considered if they, in turn, caused at least 15 more
invocations. This was done in order to rule out parts of the call
tree that would not cause significant stress on a visualization
whether compacted or not. Each of the invocations were tested
to discover how many method invocations would need to be
displayed if not compacted and how many would need to be
displayed if compacted. The following definitions were used.

Definition 1 For any i ∈ I the set S(i) = {s ∈ I | s is invoked
by i} is called the sub-invocations of i.

Definition 2 For any i ∈ I the set C(i) = {c ∈ S(i) | c is
(1) not contained in any loop or (2) contained in only the first
iteration of any loop} is called the compaction of i.

What this means is that to compact a set of sub-
invocations of i, we made sure that the selected sub-
invocations were reachable within the first iteration of any
nested loops. In visualization terms, this means, “only dis-
play the first iteration of any loop.” For example, given
an invocation i of the pseudo code in Figure 4, S(i) =
{a(1), b(1,1), b(1,2), c(1,2), a(2), b(2,1), b(2,2), c(2,2)} and C(i) =
{a(1), b(1,1)} (given in order of invocation). Note that no
invocation of c occurs in C(i) because it never appears in
the first iteration of the nested loop.

Algorithm Loops Example

for l← 1 to 2 do
invoke a(l)

for m← 1 to 2 do
invoke b(l,m)

if m = 2 then
invoke c(l,m)

end if
end for

end for

Fig. 4. An example of nested loops

These rules were used to ensure that every invocation
was reachable through a simple series of iterations. Different
results would have arisen for different iterations of the loops.
However, loops are repetitive by nature, so the results would
not be expected to be significantly different.

46

B. Results

After the data was collected for the three cases, we took
several measurements to help indicate the level of compaction
that this algorithm enables. As stated earlier, a random subset,
R, of 400 invocations were taken from the set of all recorded
invocations. The data collected is summarized in Table I. The
measurements we took are defined as follows.
• Total Invocations |I|: the total number of calls made

during the experiment
• Percent of Invocations Measured %|I|: since a random

sample of 400 invocations were recorded (i.e. |R| = 400),
this is defined as (400/|I|) · 100%

• Total Sub-Invocations
∑
|S(i)|: the total number of sub-

invocations measured, defined as
∑

i∈R |S(i)|
• Total Compaction

∑
|C(i)|: the total number of invo-

cations in all sets C(i), defined as
∑

i∈R |C(i)|
• Overall Compaction Ratio Compact(R): the ratio of

compacted invocations to un-compacted invocations over
all i ∈ R. Simply the ratio between the previous two
measurements

• Average Compaction Ratio Compact(R): the average
of the sum of the compaction ratios for each i ∈ R,

defined as
∑

i∈R
|C(i)|/|S(i)|
|R| . This is the amount that the

sub-invocations for a single invocation are compacted, on
average

• Number of Loops |L|: the total number of invocations in
R that contain loops. In other words the set L = {i ∈ R
| i contains at least one loop}

As can be seen in Table I, each of the traces recorded
more than 2 000 000 invocations. Of the recorded invocations,
400 (approximately .02%) were sampled for the experiment
in each case.

Both Jetty and Eclipse yielded similar results. To ensure
that the samples were representative of the population, we per-
formed a normal probability plot over the average compaction
ratio of the sampled data and found that they both followed
a normal distribution. We can say with confidence that our
samples are representative. In terms of overall compaction,
Eclipse had a compaction ratio of .186 and Jetty had a
compaction ratio of .149. This means that the compacted
sample in the Jetty trace is 6.7 times smaller than the un-
compacted one, in terms of sub-invocations. Similarly, the
compacted sample in the Eclipse trace is 5.38 times smaller.
In other words, if we considered a visualization that displayed
all sub invocations of the 400 invocations sampled in Jetty,
85.1% need not be displayed due to looping.

The average compaction ratio indicates how much an indi-
vidual invocation is compacted on average. Eclipse’s average
compaction ratio is similar to its overall compaction ratio (.218
versus .186). This indicates that the number and size of the
loops in this trace of Eclipse are relatively well distributed and
equal. In fact, there was only one invocation that could not be
compacted due to a lack of loops in the code. Contrasting this
result to Jetty, we see that the difference between the overall
compaction ratio and the average compaction ratio is quite

large (.149 versus .357). This indicates that there are several
“dominator” invocations which allow for a high compaction.
These dominators are invocations that contain small loops
that iterate many times. The average case, though, is a larger
invocation that contain loops without many iterations, or no
loops at all. It can be seen that 82 of the 400 invocations
(20.5%) did not contain any loops. Nonetheless, the average
invocation is compacted by 74.3%.

HSQLDB yielded very different results than the other two
cases. Of the 400 sampled invocations, none of them contained
loops, so no compaction was possible. By inspecting the sum
of all sub-invocations

∑
|S(i)|, we can gain more insight into

why this is. For HSQLDB
∑
|S(i)| is only 6 824 meaning

that the average invocation in the sample set causes only
17.06 sub-invocations. This indicates that most of the calls
in HSQLDB are low-level calls that are likely uninteresting.
The trace for HSQLDB was further investigated to see what
may be the cause of these low-level calls. We found that 387
of the 400 calls (96.8%) were in fact different invocations of
the same method. The probability of 387 of the same invoca-
tions occurring in a sampling of a random set of more than
2 000 000 invocations is nearly 0. Therefore, the invocations
that do not contain loops must dominate those few invocations
that do. While there may be several invocations that could be
compacted to a high degree, Table I is representative of the
HSQLDB system.

C. Time Analysis

The run-time of this algorithm is also an important consider-
ation. The compaction ratios may be high, but if the algorithm
takes too long to run, users will wait too long to get their
results, and the application will have failed to be an efficient
aid to their reverse engineering tasks.

Theoretical analysis is not a practical approach. The algo-
rithm delegates the work of parsing files and searching for
matching code elements (such as the method definition for an
invocation) to different processes. In fact, the implementation
in Div erdelegates these tasks to the Eclipse Java Development
Tools. These tasks are not trivial, but a time-analysis is not
available for them. It is therefore very difficult to mathemati-
cally prove the run-time of the algorithm.

Instead, we opted for an experimental approach to evaluate
the efficiency of the algorithm. We re-ran the same experiment
as before except that our data point was the average amount
of time it took for the algorithm to run. This included the
times required to parse the file into an abstract syntax tree,
to associate invocations with corresponding elements in the
abstract syntax tree, and to detect the loops. This experiment
was performed on a machine, with a 2.21 Ghz Dual Core
processor and 2GB of RAM. The results are listed in Table
II, rounded to the nearest millisecond.

The worst performer was Jetty at 167ms per run of the
algorithm. This is approximately 6 executions per second. It
is slow enough that it is not instantaneous, but it is more than
fast enough for an interactive application. The speed could be
improved significantly by caching the abstract syntax trees,

47

TABLE I
THE RESULTS OF THE THREE CASES

Case |I| %|I|
∑

|S(i)|
∑

|C(i)| Compact(R) Compact(R) |L|

Eclipse 2 214 478 0.018% 15 826 2 948 0.186 0.218 399

Jetty 2 304 848 0.017% 31 398 4 673 0.149 0.357 318

HSQLDB 2 333 381 0.017% 6 824 6 824 1.0 1.0 0

TABLE II
THE AVERAGE ALGORITHM RUN-TIME

Eclipse Jetty HSQLDB Mean
Time (ms) 112 167 33 104

and the associations with invocations. However, such a move
would also put significant stress on system memory resources
when considering large traces. The speed of the algorithm is
fast enough as-is, and the memory trade-off is likely not worth
the extra milliseconds for most applications.

D. Threats To Validity

The largest threats to the validity of the experiment are the
small sample sizes, both in terms of the range of software
tested and the small sample taken from each of the traces.

In regard to the range of the software tested, we note that
all three applications are highly used and of industrial quality.
The three applications are representative of a large range of
common computing tasks.

To address the small samples taken from the traces (less
than .02% of each trace), we performed some statistical
analysis. However, it was found that both the Eclipse and Jetty
measurements followed a normal distribution, so the sample
size does not depend on the population size. The HSQLDB
example was not a normal distribution, but the probability of
the sampled invocations not being representative of the system
was shown to be very low. It is not likely that more insight
would have been gained from a larger sample size.

One final threat is that the algorithm was not correctly
implemented. This threat has been mitigated through months
of testing and inspection, though bugs may still be present.

V. APPLICATIONS

So far, we have discussed the compaction algorithm without
any reference to its applications. In this section, we show how
it has been utilized in the Open Source project Div er. Div er
uses the algorithm to compact a view that is based on UML
sequence diagrams. The view is modeled after our previous
work [1] and Sharp and Rountev [16]. Specifically, it uses the
concept of “combined fragments” to group together sequences
of messages that are related in some way. Div er uses the
algorithm given in this paper to discover combined fragments
based on source code. Standard UML has a limited vocabulary
for combined fragments, including labels such as “loop” and
“alt”. Div erextends this vocabulary by using the text of the
statement that defines the block.

Figure 5 gives a simple example of the power of the
algorithm to simplify trace exploration views. A small program
was written which uses a for loop in Java to call two methods
100 times. Figure 5(a) shows the resulting trace without loop
compaction, and (b) shows it with compaction. It can be seen
that for even very simple programs, the compacted view is
much simpler and easier to read. The label for the combined
fragment also displays semantic information about the loop
that it represents.

Fig. 5. (a) A sequence diagram zoomed to fit (b) the same sequence diagram
compacted using our algorithm

When interacting with execution traces, it is not enough to
hide iterations of loops. Different iterations can have different
side effects, and so it must be possible to inspect them. Div er
offers the ability to interactively select which iteration to view
via a pop-up menu (Figure 6). This allows users to check
individual loop iterations to find whether various iterations
cause different invocations.

Compacting loops hides information about the running
program. Specifically, it is not always possible to see in the
diagram if a method has been called in a trace or in what
context it was called. Consequently, Div er offers ways to
expose method invocations by using the static source code
views offered by Eclipse. Since Div ermust be able to pair
invocations with source code in order to organize them in its
sequence diagram view, the pairings can also be used in static
views to reveal dynamic behavior. Particularly, Div erextends
the Eclipse Package Explorer with a Reveal In. . . action which
can be used to reveal the first invocation of a method in a
particular thread using the sequence diagram view. When the
user selects the thread in which to view an invocation, Div er
automatically expands, scrolls, and swaps loop iterations in

48

Fig. 6. Selecting different iterations in the sequence diagram

the sequence diagram view to reveal the context of the first
invocation of the selected method.

Revealing an invocation from the Package Explorer creates a
link between the static source code and the dynamic execution
trace but in a limited way. Methods are likely invoked many
times within an execution of a program, but methods are
only represented once in the Package Explorer. To help solve
this problem, Div eralso offers a time line which shows the
various invocations of a selected method over the span of the
execution trace. Invocations are shown as small vertical strips
in the time line. Users can right-click on a strip and either
reveal the invocation in the sequence diagram, or focus on it
(Figure 7). Revealing expands and scrolls the view to show
the invocation. Focusing roots the diagram on the selected
invocation, creating a slice of the call tree. In both cases,
loop iterations are swapped automatically to ensure that the
invocation can be shown in context.

Fig. 7. Selecting invocations of a method using a time line

One final pertinent feature of Div eris its implementation
of the extension to the algorithm described in section III-D.
Div er is able to compact loops using the algorithm as well
as create combined fragments for other Java code blocks.
Div ersupports conditional blocks (if and switch) and error
handling blocks (try and catch).

Figure 8 illustrates combined fragments for Java code
blocks. It shows a try block, a for loop, an if block,
and a catch block. Beyond the fact that the algorithm is
able to compact the loops in the diagram (only 1 of 31 loops
is shown), this figure also demonstrates the expressive power
of the algorithm when used in visualizations. By inspecting
the figure we can see not only what happened, but we are
also able to see some information about why it happened.
In this example, it can be seen that on the 31st iteration of a
for loop, which is counting down, the method checkRange
is called on the TestUtilities class. Inside an if
block, the condition number <= 0 evaluates as true, so a
new IllegalArgumentException is created, and the
method immediately returns (indicating that the exception was
thrown). Finally, we can see that the exception is caught in the
catch block following the for loop. This can all be seen in
a compact way on the sequence diagram without the need to
navigate through source code which would typically require
inspecting several different source files.

Fig. 8. Conditional and error handling blocks discovered by an extension to
the algorithm

Besides visualization, there are other applications to the
given algorithm as well. One is that it offers a fine granularity
for profiling applications. Many profilers offer the ability to
locate “hot spots” in code by indicating methods that are called
often or that take a long time to process. This algorithm could
give a finer granularity to indicate the amount of time spent
in a loop or conditional block to help find bugs or possible
candidates for optimization.

VI. LIMITATIONS

The algorithm in this paper suffers from limitations that
make it unsuitable for some applications.

The first of the limitations arises from the fact that the
algorithm requires data from a number of different sources
including dynamic traces, source code, and debug information.
If the source code or debug information is missing, this
algorithm can not be used. In such cases, other methods such
as the one given by Lui et al. [12] may be appropriate.

Using debug information introduces another limitation in
that it is often computationally expensive to query a machine
for the line number of execution. This increases the impact of

49

the tracing on the running application, so the algorithm is not
suited to reverse engineering time critical systems.

Section II indicates that the algorithm is fast enough for
interactive applications. However, it may be too slow as a
pre-processor on very large execution traces. It is best applied
in an iterative, interactive environment or on traces that have
already been trimmed using other filtering mechanisms.

Finally, the HSQLDB example indicates that the algorithm
is not suitable for applications that make heavy usage of low-
level code. For this situation, the summarization method of
Hamouh-Lhadj and Lethbridge [8] may be a better approach.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a method for linking source
code and debug information with dynamic execution traces.
The resulting algorithm is able to compact execution traces
significantly. This greatly reduces the amount of information
that needs to be displayed in a visualization. We conducted
an experiment to demonstrate that the algorithm can be ap-
plied to large scale industrial software. The experiment also
demonstrated that the algorithm is practical for interactive
applications.

The utility of the algorithm was demonstrated in the ex-
ample application Div er. Div eruses the algorithm to display
invocations within the context of the blocks of code in
which they occur by using combined fragments in sequence
diagrams. Different iterations of loops can be viewed, one at
a time, by swapping them in the diagram. It is also possible
to reveal method invocations by using static views of source
code in Div er. In these cases, iterations are swapped implicitly
as the invocations are revealed.

There is still more work to be done in this area of research.
One obvious topic is to address the limitations of the algo-
rithm. For example, when source code is unavailable, it may
be useful to incorporate other compaction techniques which
do not rely on source code. Also, the algorithm does not offer
a lot of compaction in applications that make heavy use of
low-level code. Augmenting the compaction by incorporating
techniques such as the comprehension units of Hamou-Lhadj
and Lethbridge [8] may help in such cases.

Finally, although the experiment in this paper demonstrates
that utilizing source code and debug information makes it
possible to gain high compaction ratios in execution traces, it
has not been determined that the compaction will actually help
users of trace visualizations. Our own usage of the Div ertool
has given us the insight that they do help. Still, user studies
should be done to test the technique both alone and together
with the other techniques developed by other researchers.

ACKNOWLEDGMENT

We would like to thank Philippe Charland, and David
Ouellet of Defence Research and Development Canada for
their participation, Tricia Pelz and Nick Matthijssen for their
editorial work, and Peter Rigby for his analytical help. This
research has been funded by Defence Research and Develop-
ment Canada under contract W7701-82702/001/QCA.

REFERENCES

[1] C. Bennett, D. Myers, M. Storey, D. German, D. Ouellet, M. Salois, and
P. Charland, “A survey and evaluation of tool features for understanding
reverse-engineered sequence diagrams,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 20, no. 4, pp. 291-315, 2008.

[2] J. Bohnet, M. Koeleman, and J. Doellner, “Visualizing massively pruned
execution traces to facilitate trace exploration,” in IEEE Workshop on
Visualizing Software for Understanding and Analysis, IEEE, 2009.

[3] L. Briand, Y. Labiche, and J. Leduc, “Toward the reverse engineering of
uml sequence diagrams for distributed java software,” IEEE Transactions
on Software Engineering, vol. 32, pp. 642–663, Sept. 2006.

[4] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. van Wijk, and
A. van Deursen, “Understanding execution traces using massive sequence
and circular bundle views,” in ICPC ’07: Proc. of the IEEE Int’l Conf.
on Program Comprehension, (Washington, DC, USA), pp. 49–58, IEEE,
2007.

[5] Y. Guéhéneuc and T. Ziadi, “Automated reverse-engineering of UML v2.0
dynamic models,” in Proc, of the ECOOP Workshop on Object-Oriented
Reengineering, 2005.

[6] A. Hamou-Lhadj and T. C. Lethbridge, “A survey of trace exploration
tools and techniques,” in Proc. of the Conf. of the Centre for Advanced
Studies on Collaborative Research, pp. 42–55, IBM Press, 2004.

[7] A. Hamou-Lhadj and T. Lethbridge, “Measuring various properties of
execution traces to help build better trace analysis tools,” in Proc. of the
IEEE Int’l Conf. on Engineering of Complex Computer Systems, pp. 559–
568, June 2005.

[8] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the content of large
traces to facilitate the understanding of the behaviour of a software
system,” in Proc. of the IEEE Int’l Conf. on Program Comprehension,
pp. 181–190, IEEE 2006.

[9] D. F. Jerding, J. T. Stasko, and T. Ball, “Visualizing interactions in
program executions,” in ICSE ’97: Proc. of the 19th Int’l Conf. on
Software Engineering, (New York, NY, USA), pp. 360–370, ACM, 1997.

[10] A. Ketterlin and P. Clauss, “Prediction and trace compression of data
access addresses through nested loop recognition,” in Proc. of the
IEEE/ACM Int’l Symp. on Code Generation and Optimization, (New
York, NY, USA), pp. 94–103, ACM, 2008.

[11] D. Kimelman, B. Rosenburg, and T. Roth, “Strata-various: multi-layer
visualization of dynamics in software system behavior,” in Proc. of the
IEEE Conference on Visualization, pp. 172–178, IEEE, Oct. 1994.

[12] H. Liu, Z. Ma, L. Zhang, and W. Shao, “Detecting duplications in
sequence diagrams based on suffix trees,” in Proc. of the Asia Pacific
Confrence on Software Engineering Conference, pp. 269–276, Dec. 2006.

[13] MaintainJ Inc., “Maintainj - reverse engineer java like never before.”
Web page on-line http://www.maintainj.com. Cited on 16 Sept. 2009.

[14] H. Müller, K. Wong, and S. Tilley, “Understanding software systems
using reverse engineering technology,” in Proc. of the 62nd Congress
of L’Association Canadienne Francaise pour l’Avancement des Sciences,
1994.

[15] H. Safyallah and K. Sartipi, “Dynamic analysis of software systems
using execution pattern mining,” in Proc. of the IEEE Int’l Conf. on
Program Comprehension, IEEE, 2006.

[16] R. Sharp and A. Rountev, “Interactive exploration of UML sequence
diagrams,” in IEEE Workshop on Visualizing Software for Understanding
and Analysis, pp. 8–13, IEEE, 2005.

[17] T. Systä, “On the relationships between static and dynamic models in
reverse engineering java software,” in Proc. of the Working Conference
on Reverse Engineering, pp. 304–313, Oct 1999.

[18] J. Seward, “bzip2: Home.” Web page on-line http://www.bzip.org. Cited
on 19 Oct. 2009.

[19] The Eclipse Foundation, “Eclipse.org home.” Web page on-line
http://www.eclipse.org. Cited on 13 Oct. 2009.

[20] The Eclipse Foundation, “Jetty.” Web page on-line http://www.eclipse.
org/jetty/. Cited on 13 Oct. 2009.

[21] The Eclipse Foundation, “Using uml2 trace interaction views.” Doc-
umentation on-line http://help.eclipse.org/galileo/index.jsp?topic=/org.
eclipse.tptp.platform.doc.user/tasks/tesqanac.xhtml. Cited on 22 Sept.
2009.

[22] The HSQL Development Group, “Hsqldb.” Web page on-line
http://hsqldb.org. Cited on 13 Oct. 2009.

50

