
Code, Camera, Action:
How Software Developers Document and Share

Program Knowledge Using YouTube
Laura MacLeod, Margaret-Anne Storey and Andreas Bergen

University of Victoria, Victoria, BC, Canada
{lmacleod, mstorey, andib}@uvic.ca

Abstract—Creating documentation is a challenging task in
software engineering and most techniques involve the laborious
and sometimes tedious job of writing text. This paper explores an
alternative to traditional text-based documentation, the screen-
cast, which captures a developer’s screen while they narrate how
a program or software tool works. We conducted a study to
investigate how developers produce and share developer-focused
screencasts using the YouTube social platform. First, we identified
and analyzed a set of development screencasts to determine how
developers have adapted to the medium to meet the demands of
development-related documentation needs. We also explored the
techniques and strategies used for sharing software knowledge.
Second, we interviewed screencast producers to understand their
motivations for creating screencasts, and to uncover the perceived
benefits and challenges in producing code-focused videos. Our
findings reveal that video is a useful medium for communicating
program knowledge between developers, and that developers
build their online personas and reputation by sharing videos
through social channels.

I. INTRODUCTION

Software documentation is the castor oil of software
development. —Gerald Weinberg, 1975

Much of current software development involves using or
altering code authored by other developers. The existence of
well-written documentation and relevant examples is often
critical for other developers to understand code they did not
write themselves. Yet efficiently and succinctly documenting
software poses many challenges. Describing how a program or
an application interface works often involves the tedious and
laborious task of writing text, which many developers shun.
Traditional documentation may be embedded in the program
code itself (as comments), or it may be captured in documents
such as help files and Wikis.

Developers are now leveraging social channels such as
blogs, community portals, GitHub, Twitter and Stack Overflow
to author and share documentation [1]. Sharing knowledge on
social channels benefits the producer of the documentation as
it helps build their online reputation and creates a network of
like-minded developers [4].

Today, the diffusion of technology makes it easier for people
to record and share videos. Some prefer video over text for
communicating tacit knowledge, and we see videos being used
for many knowledge sharing tasks. Developers have also begun
using video to capture their screens and software development
environments.

Screencasts are “movies of software” [5] that capture a
developer’s screen as they manipulate code for a specific
example or goal. Screencasts can be used to demonstrate tool
use and to present how-to information for using application
program code, instances which can be difficult or tedious
to describe in text. Screencasts are also frequently used for
educational purposes. For software development, they are used
in conjunction with written documentation and posted directly
on popular project Websites (e.g., see the Ruby on Rails
project1), or hosted and shared through social video channels.

In this paper, we investigate how and why developers
create and share screencasts through YouTube. In the first
phase of our study, we analyzed a broad set of development-
related YouTube screencasts to determine how they are used
for sharing programming knowledge. In a second phase, we
interviewed screencast creators to gain insights into their
motivations for creating and sharing these videos. The inter-
views revealed a variety of benefits and challenges screen-
cast creators may experience when using and sharing video
documentation. Our findings reveal that video is an efficient
and useful medium for program documentation aimed at other
developers, and that the social features of the hosting channels
(our study focused on YouTube) play an important role in
screencast development and distribution.

The main contributions of this paper are:
1) a first study of how and why screencasts are used to

share development knowledge through YouTube;
2) an understanding of the types of knowledge developers

share through screencasts;
3) a list of motivating factors for why developers create

these screencasts and share them on YouTube; and
4) technical insights into how developers create screencasts

and the challenges with using current video creation
tools for documenting code.

In the remainder of this paper, we review the literature on
the role of documentation within social software development
and the literature on using YouTube for sharing knowledge in
other domains, as well as outline our research methodology
and research questions. We present the findings from an
analysis of 20 developer screencasts hosted on YouTube and
describe the findings from 10 interviews with developers who

1http://rubyonrails.org/screencasts/



have created screencasts. We relate our findings to the existing
literature and then address the limitations of our study. Since
this paper reports first findings on how YouTube is used by
developers, we pose a number of questions for future research.

II. BACKGROUND

Our study builds on three areas: the role of documentation
in software engineering, the social nature of software docu-
mentation, and how YouTube is used by knowledge workers.

A. Software Documentation

Documentation is essential for the development and evolu-
tion of software. It describes many facets of the development
process, including requirements, feature implementations, us-
age scenarios, code examples, and decisions made during
development. Many studies have shown that documentation
is needed to provide programmers with vital information.
For example, Brooks discusses how documentation is used
to help programmers understand a program [6]. Yet there
are many challenges in producing software documentation,
including managing large software documents and incorporat-
ing an appropriate level of detail for particular understanding
needs [7]. Keeping documentation up to date may also be time
consuming and costly for developers [7].

Today, most software documentation is text based and
maybe embedded in books, source code comments, and bug
tracking issues [8]. Wikis [8], question and answer sites [9],
and technical articles [10] provide crowd-based ways to
contribute knowledge in online communities. For software
documentation, these platforms provide different benefits and
limitations for developers (e.g., Wikis are easy to create and
navigate, question and answer sites remain up to date longer,
while blogs generate more fanfare [10]).

A drawback with text-based approaches for sharing de-
veloper knowledge is that they may not capture the tacit
knowledge needed to understand workflows and processes.
Tacit knowledge is best communicated through face-to-face
interactions, verbal discussions, or more recently, through
video [11]. Screencasts are becoming an increasingly popular
way for developers to describe how others can navigate source
code2. Such screencasts may capture video clips of a developer
directly interacting with and manipulating source code, as well
as showing the executed program. These screencasts provide
visual and audio cues that go beyond the information portrayed
by the static text of a program. Screencasts have the potential
to supplement written documentation, and for some purposes,
even surpass it. One area in which video may provide more
support for developers is in the documentation of software exe-
cution and navigation. Previous work has found that executable
products are often preferred over static documentation when
providing development context [10]. Screencasts can capture
software execution in addition to a developer’s environment
and insights.

2See https://news.ycombinator.com/item?id=8897389 for a recent discus-
sion of the prevalence of screencasts for sharing developer knowledge

While our study investigated how video can be used for
software documentation, we also sought to understand the
social implications when video-based software documentation
is shared through social channels. In the next subsection,
we review existing research on the social nature of software
documentation.

B. The Social Nature of Software Documentation

Today’s developers work in “social ecosystems around con-
tent, media and developers” [1]. Social dissemination of docu-
mentation promotes collaboration with other individuals [12],
helps find answers to questions [13], and increases developer
awareness among communities [14].

Developer participation in social ecosystems leads to the
emergence of online identities [14]. A developer’s online iden-
tity becomes associated with their knowledge and skills [14],
affording them informal membership in many communities
of practice that build around members with shared interests
and goals [15]. Peers use this information to evaluate other
developers and to shape their interactions with them [16].

The transparency of social media not only helps developers
establish identities, it also creates awareness about trends and
cultural norms [14]. The ability to share new developments
instantaneously makes developers aware of changes in their
community [12] and provides a way to locate experts [15].

The knowledge shared in these communities may be explicit
or tacit. Explicit knowledge can be found in the artifacts of
participants, such as blog posts or answers to questions [9].
Tacit knowledge can be supported through informal mentoring,
the sharing of experiences, observation, discussion, and trust
within a social media platform [17]. Through building an
online identity, developers are able to establish expertise and
build trust associated with their identity [14]. With knowl-
edge foraging activities, developers are able to build on the
experiences of others and create common spaces where the
discussion and transfer of knowledge can occur.

Previous work has found that developers use “rich media”
such as screencasts and podcasts to support learning and
follow trends in their community [1]. From this work, we
know that developers use screencasts across social channels
to gain technical knowledge. Yet more research is needed
to understand how video hosted in social channels supports
documentation and the exchange of technical knowledge.

C. YouTube and Screencasts

Screencasts created by developers are frequently hosted on a
larger social platform. In order to understand the implications
of video within a social context, it is also important to
understand the social aspects of the hosting media channel.
YouTube is easily one of the most popular online platforms
for sharing videos—over 100 hours of video is uploaded
every minute [18]—and developers frequently use it.. For
these reasons, we chose YouTube as a focus of our study.
Although the use of YouTube has not been studied in software
engineering research, it has been studied in other areas.



YouTube has a number of social features, which facilitate
interaction and communication amongst users [19]. It allows
users to create profiles, maintain individual channels, partici-
pate in discussions via comments, and search for material [20].

Researchers have examined YouTube as an educational
platform [21], [22] and found that students enjoy using it
for content delivery—it lets users discover content and learn
at their own pace [23]. Other studies have investigated how
to create effective educational video content for the class-
room [27], and how YouTube is used as a source of informal
“Do It Yourself” and “How-to” videos [28]. Researchers have
explored how screencasts are made [25], what techniques
are used for sharing knowledge [27], and best practices for
creating screencasts [29]. These studies suggest that YouTube
provides an online participatory culture which serves as a way
to share knowledge between experts and amateurs [30]. Users
share content to stay connected to their online community and
provide updated sources of new information [28].

This paper offers a first study on how screencasting is used
as a social channel for sharing knowledge amongst developers,
and how screencasts can be used to support software develop-
ment and documentation tasks.

III. METHODOLOGY

Our research methodology consisted of two phases. In the
first phase, we conducted an analysis of screencasts hosted
on YouTube. Our goal was to understand how developers
share software knowledge when they narrate and navigate
their source code in a screen capture, as well as understand
the nature of the knowledge shared. In the second phase, we
interviewed screencast creators to understand their motivations
for and experiences with creating screencast content. Our
intent was to gain insights that would inform the practices
of others and improve support for creating screencast content.

A. Research Questions

We developed and refined four research questions over
the course of this study. RQ1 and RQ2 were addressed by
analyzing a sample of videos hosted on YouTube. Insights
from interviews with screencast creators were used to answer
RQ3 and RQ4.

RQ1: What kinds of program knowledge are captured in
screencasts? In previous work [1], we learned that some
developers rely on screencasts (and podcasts) to learn new
technical information, but we did not discover what types of
knowledge are best portrayed through this medium.

RQ2: How are screencasts used for documenting code? We
wanted to learn about the techniques developers use to explain
and present program code through screencasts. We hoped to
discover what level of detail they discuss in screencasts, which
kinds of programming features are described, and how the
authors talk about and present code.

RQ3: What motivates developers to create screencasts?
We wanted to investigate developer motivations for creating
screencasts and to gain insights into the factors that drive them
to distribute their work through video sharing channels.

RQ4: How do developers produce screencasts and which
challenges do they face? We wanted to understand more about
the “behind the scenes” production process and uncover the
challenges developers face when making screencasts. Through
the interviews, we were able to identify both common tech-
niques for screencast creation and areas of friction.

B. Phase 1: Video Analysis

1) Screencast Selection Process: To answer the first two
research questions, we searched for and analyzed a sample of
videos from YouTube. To establish this sample, we defined a
list of inclusion criteria: the video should have a description or
title containing the term “Code Walkthrough” or “Code Tour”;
the video should present the code for a working program or
code snippet; the video should contain audio narration and a
recording of the narrator’s computer screen; and the video
should be hosted on YouTube from November 2013 until
March 2014. The terms “walkthrough” and “tour” were chosen
to focus our search on videos that showed completed code and
because the terms imply guidance through a project.

We excluded screencasts that focused on explaining pro-
gramming fundamentals, as screencasts aimed at teaching the
basics of programming have a very different purpose. Rather,
we were interested in videos a developer would use to learn
about unfamiliar technologies or libraries. A standard YouTube
search was used with no filter options on a clean browser. By
default, YouTube sorts these results by relevance. To select our
sample, we watched the beginning of each video in the search
results to see if it met the inclusion criteria. The final sample
contained 20 videos and represented over 8 hours of footage.
Though this represents a fraction of the possible screencasts
hosted on YouTube, our findings were well saturated using
this sample.

2) Screencast Sample Characteristics: Table I provides
descriptions and links to the selected videos3. The topics
of these screencasts include Arduino projects, Django, the
Corona SDK, Google App Engine, VB.Net, C#, C++, Java and
Unity programs. The videos ranged in age from eight years to
a few months. Total views for each screencast ranged from a
few dozen to several thousands; at the time of our study, eight
of the videos had over three thousand views. Table I shows
some metrics on the videos we analyzed. In the following,
specific screencasts are denoted as V# (as per Table I).

In 14 of the videos, the narrator had authored the program
featured in the screencast. Two videos (V17 and V20) involved
multiple narrators discussing the code in the video. V17 was
aimed at onboarding developers onto an open source project,
while V1 and V16 demonstrated examples of how to integrate
their servers into a program. V20 was a weekly video podcast
that explained how to use the Corona SDK.

3) Screencast Analysis: Screencasts were analyzed using a
qualitative coding methodology: we used open coding to sys-
tematically review the videos [31]. To develop a preliminary
set of codes, two of the paper’s authors individually reviewed

3Click on the URL links in the PDF to navigate to the videos



Number Title URL Links Length Views Comments
V1 Simple Chat Walkthrough with Unity 0d-wY65uVGw 14:51 3184 7
V2 Code Walkthrough - Cafe Townsend Robotlegs for Corona SDK 6MpuB654 hM 59:15 658 12
V3 Minecraft Launcher - Code Walkthrough UiST0tcOWvU 35:07 6339 93
V4 Django - high level walkthrough qUpiWWjOfRw 12:21 263 2
V5 Addressbook: A walkthrough of a simple AppEngine application nwn3YY6cyEQ 11:09 25848 2
V6 Ruby and Rails Code-Walkthrough/Tutorial djApduemlf4 56:33 3251 3
V7 Asteria Plugin Source Code Tour jGR0EVYc Bo 23:43 84 1
V8 Asteria World Generator Tour mn wW8uZ6eQ 05:59 50 0
V9 Tour of Mega Happy Sprite source Code G1DbLOVs7UM 14:44 138 1
V10 A High Level Cruise Through Ruby MRI’s Source Code 0npv906IQag 33:20 7419 21
V11 Arduino Code Walkthrough for the Talking Breathalyzer Portable Mode Part 1 wg gNs3Xxq4 14:00 726 1
V12 Arduino Code Walkthrough for the Talking Breathalyzer Portable Mode Part 2 UdDr9QquiLc 04:39 455 0
V13 Intro to Cocos2d Tutorial Part 2: Code Walkthrough T1-yARGKhXU 92:53 8616 16
V14 3 Minute Code Walk through of Part 1 of the AR Programming Series kwY-8mAyixU 03:04 507 1
V15 Arrow M2M kit - node code walkthrough Part 1 WCuQOjD8w E 06:06 46 0
V16 Blackberry MBO Application Code Walkthrough T1f4xXoRDG8 07:36 104 0
V17 OpenDaylight OVSDB Developer Getting Started - Code Walkthrough 2 (Java APIs) 3-jCTvNRJS0 26:20 * 0
V18 Flocking Code Walkthrough OPuYYLEyz-A 15:46 41 0
V19 VB.Net Web Crawler/Spider Source Code Walkthrough iep-z1KXRN8 08:19 6334 7
V20 Corona Geek #49 - Creating A Simple Game (Code Walkthrough) O130d8ioFS4 64:15 * 4

TABLE I
THE YOUTUBE VIDEOS ANALYZED. ALL THE YOUTUBE VIDEO URLS ARE CLICKABLE AND FOLLOW THE FORMAT OF

“HTTPS://WWW.YOUTUBE.COM/WATCH?V=”. VIEW AND COMMENT COUNTS AS OF NOV 2013. *VIEW COUNTS UNAVAILABLE FOR GOOGLE HANGOUTS.

and coded a set of two videos. Then we came together to
compare findings and discuss what we had observed.

Through multiple iterations, and after coding a set of six
videos together, we developed a common set of codes and
documented them in a code book, including definitions and
examples of each code [31]4. Using this code book, we each
reviewed the same videos until an inter-rater reliability of 80%
was achieved [32]. This threshold was met after two iterations,
and then we coded the remainder of the selected videos
separately. Throughout this process, we continued to discuss
the emerging categories and their relationships, ultimately
establishing 21 codes to describe the techniques used by
developers in the screencasts. The findings from this process
helped us develop our interview questions for the second phase
of the study.

C. Phase 2: Interviews with Developer Screencasters
1) Interviewee Selection Process: For the second phase

of our study, we conducted semi-structured interviews with
screencast creators. We contacted six of the authors of the
screencasts we analyzed in the first phase of the study, but
only two people responded. The other 14 videos we analyzed
were hosted under corporate or inactive accounts. Using the
screencast selection criteria from the first phase of the study,
we generated a list of additional video authors to contact.
In total, 15 more developers were contacted through email,
YouTube or social media. 10 developers responded to our
requests for interviews and were included in the study.

The interviewees were all English speaking, male, and had
formal education in programming or Computer Science. All
participants had programming experience outside of academia,
though not all were active developers at the time of the
study. Three participants were students, five were active soft-
ware developers, and three of the participants were educators

4A copy of our code book can be found at
lmacleod.com/docs/ICPC2015 Codebook.pdf

(formerly or currently). Participants were from Europe, the
United States, Canada and Australia. While all participants
had uploaded at least one video, five of our interviewees had
posted over sixty videos.

2) Interview Process: The interviews ranged from 20 to 45
minutes. We used Skype and Google Hangouts for 9 of the
10 interviews, and held 1 interview face to face. We asked
participants to tell us how they began making screencasts and
describe their production process. Audio was recorded during
each interview and later transcribed for analysis. Questions
asked included “What prompted you to start posting on
YouTube?” and “How do you decide to make a video?”5

3) Content Analysis: After transcribing the interviews,
two of the paper’s authors analyzed each transcript using
a content analysis methodology [33]. We met to compare
findings and create an initial list of themes. After further
analysis, we met again to refine the codes and organize them
into themes, along with relevant examples and quotes from
the transcripts. Through this method, we identified themes
that appeared in multiple interviews [34].

IV. FINDINGS

In this section, we present our findings organized around
the four research questions. In the first phase of our study, we
analyzed screencasts to answer research questions 1 and 2. In
the second phase, we interviewed screencast creators to answer
research questions 3 and 4. Our findings explore how devel-
opers present software in screencasts and their experiences
creating them. Throughout the findings, we draw connections
to the relevant literature. In the following, screencasts are
denoted as V# (as per Table I) and interview participants are
denoted as P#.

5A copy of our interview questions can be found at
lmacleod.com/docs/ICPC2015 Interview questions.pdf

https://www.youtube.com/watch?v=0d-wY65uVGw
http://www.youtube.com/watch?v=6MpuB654_hM
http://www.youtube.com/watch?v=UiST0tcOWvU
http://www.youtube.com/watch?v=qUpiWWjOfRw
https://www.youtube.com/watch?v=nwn3YY6cyEQ
https://www.youtube.com/watch?v=djApduemlf4
https://www.youtube.com/watch?v=jGR0EVYc_Bo
https://www.youtube.com/watch?v=mn_wW8uZ6eQ
https://www.youtube.com/watch?v=G1DbLOVs7UM
https://www.youtube.com/watch?v=0npv906IQag
https://www.youtube.com/watch?v=wg_gNs3Xxq4
https://www.youtube.com/watch?v=UdDr9QquiLc
https://www.youtube.com/watch?v=T1-yARGKhXU
https://www.youtube.com/watch?v=kwY-8mAyixU
https://www.youtube.com/watch?v=WCuQOjD8w_E
https://www.youtube.com/watch?v=T1f4xXoRDG8
https://www.youtube.com/watch?v=3-jCTvNRJS0
https://www.youtube.com/watch?v=OPuYYLEyz-A
https://www.youtube.com/watch?v=iep-z1KXRN8
https://www.youtube.com/watch?v=O130d8ioFS4
http://lmacleod.com/docs/ICPC2015_Codebook.pdf
http://lmacleod.com/docs/ICPC2015_Interview_questions.pdf


RQ1: What kinds of program knowledge are captured in
screencasts?

Developers create screencasts to convey and share technical
information. We found a variety of different goals motivating
the screencasts we analyzed. The main goals observed are
shown below using bold text. We refer the reader to video
examples that demonstrate the goals we identified through our
analysis.

Sharing Customization Knowledge: Five of the analyzed
screencasts showed how programs could be customized. They
explained enough of the program functionality and develop-
ment details (such as pertinent features and variables) so that
the code could be repurposed or customized. For example, the
narrator of V11 showed how other developers could change
the sound files used by the program being discussed.

Sharing Development Experiences: In eight of the videos,
narrators shared insights on their development experiences and
the challenges encountered along the way. Their experiences
became a part of the narrative tied to the physical code and its
evolution. For example, narrators described ways to expand the
program V 01,V 02,V 03,V 7,V 8,V 11,V 19,V 20. This included fea-
tures that the narrator had not yet implemented, or ways of
improving performance. In V19, the narrator explained while
executing the program:

“I didn’t use multithreading. At first I didn’t have
time for it, and then I didn’t feel like it was quite
necessary. I mean, if you want to add that function-
ality, you can.”

Here the narrator acknowledged that he didn’t have time
to implement a feature. He also recognized that multithread-
ing may improve performance. This provides context to the
audience about the program’s development history.

Sharing Implementation Approaches: Narrators use screen-
casts to share unique problem solving solutions with develop-
ers that may face similar problems. For example, V18 presents
an implementation of an artificial intelligence animation be-
havior, using JavaScript and HTML. This video serves as
both a demonstration and documentation of the narrator’s
approach. In another example, V03 demonstrates a custom
game launcher developed by the narrator for the popular
Minecraft game. The narrator was proud of his program and
wanted to share his approach with the Minecraft community.
He also explained the challenges he faced creating the user
interface.

Demonstrating the Application of Design Patterns: Screen-
casts are used to demonstrate how design patterns are applied
as part of the implementation of a solution. In V02, the narrator
stated that he made the video to demonstrate how to implement
responsive design principles in Lua. He also wanted to share
language-specific knowledge through a screencast. The video
demonstrates design principles that rely on an understanding of
the Lua programming language through a real world example.

The video approach allows the narrator to demonstrate the
implementation of these design patterns while executing the
finished product.

Explaining Data Structures: Other technical screencasts
allow developers to explain language-specific data structures.
The goal of these videos is to impart technical knowledge
about a specific language, as opposed to implemented pro-
grams or patterns. This technical knowledge helps the audience
utilize and understand the programming language. For exam-
ple, V10 includes a walkthrough of the Ruby programming
language. In this video, the narrators discussed the low-level
implementation of Ruby data structures. The video shows the
language’s internal structure and commonly used components.
In order to create these technical screencasts, the narrators
need a deep level of understanding about the subject matter.

We observed many different goals in the screencasts we
analyzed, including demonstrating a unique approach to a
problem and showing the audience how they could customize
a program. These walkthroughs forced the narrator to explain
their understanding of a program and how they developed its
features.

RQ2: How are screencasts used for documenting code?

By answering RQ1, we were able to gain insights into the
broad kinds of programming knowledge captured by screen-
casts. For RQ2, we drill down to investigate how developers
portray and interact with code in these videos in more detail.
In this analysis, we coded the techniques the narrators used
in the screencasts, and then grouped the coded techniques
into higher-level themes that represent the key approaches
used for documenting code. These key approaches (themes)
are shown below using bold text, and for each approach, we
include the related coded techniques in italics. In some cases,
we give more detailed examples of the coded techniques,
and frequently reference the videos that contain the observed
technique and approach. We summarize the approaches, cor-
responding coded techniques, and show more details on their
screencast occurrences in Table II.

Goal Setting: In nearly all the screencasts in our sample, we
observed that narrators started by verbally defining the video’s
purpose, which was followed up with an explanation of the
limitations (i.e., the scope) of the video and its intended audi-
ence. Lethbridge et al. noted that developers will avoid reading
documentation that is “complex and time-consuming” [7].
Consequently, it is not surprising that a video’s purpose and
scope was explicitly stated up front, as doing so allows a
developer to quickly judge if the resource applies to their
current task.

Live Editing to Showcase Code Changes: A key advantage
of screencasts over static documentation is that the audience
can visually follow changes made to the code.

We observed that live code changes were performed in
most of the videos. More specifically, we observed developers



Themes Coded Techniques Video Occurrences
Goal Setting Explaining the limitations (i.e., the scope) of the V1, V2, V3, V4, V5, V6, V7, V8, V10, V11, V13, V14, V15,

video and its intended audience V16, V17, V18, V20
Verbally defining the video’s purpose V1, V2, V3, V4, V5, V6, V7, V8, V10, V11, V13, V15, V16,

V17, V18, V19, V20
Live Editing to Showcase Code Changes Making live code changes V2, V3, V5, V6, V7, V8, V10, V11, V13, V14, V19, V20

Changing control flow or variables V2, V13, V19, V20
Introducing bugs V2, V3, V5, V13, V15, V20

Demonstrations to showcase the execution Executing the program to demonstrate features V1, V2, V3, V5, V6, V9, V13, V16, V17, V18, V19, V20
of the program to the audience
Referencing Different Levels of Detail High-level code overview V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13,

V14, V15, V16, V17, V18, V19, V20
Medium-level focus on sub-block of code V1, V2, V3, V4, V5, V6, V7, V8, V9, V11, V12, V13, V14,

V15, V16, V17, V18, V19, V20
Low-level focus on a single line of code V1, V2, V3, V4, V5, V7, V8, V9, V10, V11, V12, V13, V14,

V15, V16, V17, V18, V19, V20
Pointing out element identifiers V1, V2, V3, V4, V5, V6, V7, V8, V9, V10, V11, V12, V13,

V14, V15, V16, V17, V18, V19, V20
Referencing return types, parameters V1, V2, V3, V4, V5, V7, V8, V10, V12, V13, V14, V15,

V17, V18, V19, V20
Referencing line numbers V1, V4, V5

Browsing the Technical Environment Making use of file explorers V1,V2, V4, V5, V6, V7, V9, V11, V13, V17
Explaining the program structure V1, V2, V4, V6, V7, V10, V13, V14, V16, V17, V18, V20
Explaining the technical environment (including V1, V2, V3, V4, V5, V6, V8, V10, V11, V12, V13, V14,
libraries, servers) V16, V17, V20

Provisioning of Additional Resources Webpages V1, V2, V4, V6, V10, V11, V13, V16, V19, V20
Diagrams V16, V17, V18
Source Code V1,V2, V4, V6, V9, V10, V13, V18, V19, V20
Visual Annotations V1, V3, V6, V10, V11

Mapping Execution and Code to Code Connection between the demonstration and code V2, V5, V6, V9, V13, V15, V16, V17, V18, V19, V20
Linking code segments together V1, V2, V3, V5, V7, V9, V10, V11, V12, V13, V15, V16,

V17, V18, V19, V20

TABLE II
THE CODES AND THEMES (CLUSTERED CODES) CREATED TO ANSWER RQ2: HOW DEVELOPERS USE SCREENCASTS TO DOCUMENT CODE

making changes to a program’s control flow or to specific
variables V 2,V 13,V 19,V 20. We also saw one developer making
live code changes to introduce the audience to examples of
increasing difficulty V 13.

Narrators also introduced bugs into the program, either
intentionally or unintentionally V 2,V 3,V 5,V 13,V 15,V 20. For ex-
ample, in V05 the narrator created an error and explained
to the audience how to read the error output. In V20, an
error occurred after the narrator had changed a variable—the
narrator used this unexpected situation to turn the session into
a live debugging exercise. Live editing also offers the audience
a glimpse into the narrator’s coding style, or it can be used to
manipulate the output of a program.

Demonstrating the Execution of a Program: Screencasts
allow the audience to witness “live” executed code. Apart from
V04 and V14, all of the screencasts in our sample executed
a program to demonstrate features to the audience. More
specifically, narrators used demonstrations as an opportunity
to explain software functionality V 01,V 02,V 13,V 18,V 19,V 20. We
observed that demonstrations were also used to explain specific
use cases and data flows within a program V 01,V 16,V 02,V 20.
Some screencasts with a graphical component made use of
demonstrations to explain how a program manipulated user
input V 05,V 06,V 13.

Traditionally, developers execute software to gain insights
into details about the program’s behavior [35]. The approach

used in screencasts to showcase program execution also allows
the audience to see “the properties of a running software
system” [36], and through screencasts, narrators show both
program output and code, allowing the viewer to create mental
mappings between output and code [37].

Referencing Different Levels of Detail: We observed narra-
tors describing features and components using various levels
of detail. Features that ran across many files were summarized
by the narrators in all the videos using high-level descriptions.
For example, the narrator of V02 described how the program
handled views:

“When the user successfully logs in, I need to react
to it, Cafe Townsend needs to orchestrate something
to happen. That is ... show the employee view.
It doesn’t tell the employee to load anything, it’s
assumed that view will take care of all it needs to
handle.”

Narrators provided high-level overviews of program struc-
ture and features, but also described code in terms of functional
groupings. We coded references to blocks of code, such as a
logical sequence that spanned multiple lines, at a medium level
of detail. Narrators used this level of detail in all the videos
(except V10) to quickly summarize sections of code while still
providing some technical details. For example, the narrator of
V03 briefly described the control flow of four lines in an if
statement:



“First I want to make sure that the directory exists
for where we are going to install [the launcher].”

In contrast, when narrators referred to in-line, language-
specific information, these were coded as low-level. The narra-
tors in all the videos referred to one or more low-level details.
Frequently this meant reading the code aloud, verbatim. For
example, with respect to the following source code:

private Room currentRoom = null;

V01 read this aloud as follows:

“There is also a current room property with the data
type of room and it’s set to null.”

Within these low-level descriptions, narrators would ref-
erence specific line numbers or mention element identifiers
and explain their functionality to the audience. For example,
the narrator of V04 picked out the variables “Name”, “User”
and “Password” to explain how to set up a connection to a
local database. In addition, they highlighted return types and
parameters to provide contextual information about control
flow and focus the audience’s attention on relevant technical
implementations.

Browsing the Technical Environment: The environment in
which a program is run can be essential to understanding
the program itself. We saw narrators in all but three of
the videos exploring the technical environment to give the
audience a spatial understanding of the supporting libraries or
tools needed for the program (e.g., launching and connecting
to a server).

One of the benefits of screencasting is that the narrator is
able to provide context for the development environment, such
as how to set up a program, and information about its structure.
From our analysis, we saw narrators describe where code fit
within the structure of a program using various levels of scope
V 1,V 2,V 4,V 6,V 7,V 10,V 13,V 14,V 16,V 17,V 18,V 20. We also ob-
served the file explorer being used for browsing a project and
describing file organization V 1,V 2,V 4,V 5,V 6,V 7,V 9,V 11,V 13,V 17.
These explorations provide context to the audience, letting
them establish links between code and features of the pro-
gram [27].

Provisioning of Additional Resources: Screencasts ex-
ist as documentation accessible to software developers via
the Internet. From our analysis, we found narrators in-
corporating other forms of documentation, such as Web-
pages for audience members to find additional documentation
V 1,V 2,V 4,V 6,V 10,V 11,V 13,V 16,V 19,V 20, and diagrams to provide
a visual aid V 16,V 17,V 18. Source code was also frequently
referred to in the screencasts. It was provided to the audience
as a working example that they could manipulate on their own
V 01,V 02,V 04,V 06,V 13,V 18,V 19,V 20. A notable exception to this
was V03: the narrator explained how he specifically did not
make his source code available.

To fix errors and share links, narrators used YouTube’s vi-
sual annotation feature V 01,V 03,V 06,V 10,V 11. We also observed

two narrators supplementing existing text-based documenta-
tion with screencasts V 16,V 20.

Mapping Execution to Code and Code to Code: A
benefit of screencasts is that they allow the narrator to
walk the audience through code execution and source.
We observed narrators making connections between the
execution and the code to show the audience where program
features resided V 2,V 5,V 6,V 9,V 13,V 15,V 16,V 17,V 18,V 19,V 20.
By linking together code elements and project structure,
narrators built up the audience’s understanding between
segments of code and explained their relationships
V 1,V 2,V 3,V 5,V 7,V 9,V 10,V 11,V 12,V 13,V 15,V 16,V 17,V 18,V 19,V 20.

RQ3: What motivates developers to create screencasts?

In the second phase of our study, we interviewed developers
who created and distributed screencasts. From our interviews,
we found that developers create screencasts to generate an
online identity, to promote themselves, to help them learn,
and to give back to the community by sharing knowledge with
others. Developers also create screencasts as an alternative to
blogging. We use quotes from the interviews to demonstrate
these motivational themes, referencing specific interviewees
using P#.

To Build an Online Identity: As mentioned in the back-
ground literature, developers build an online identity through
online participation, which in turn is associated with their
skills and projects [14]. We observed that YouTube helps
developers create an online identity and build “social capi-
tal” [38]. For example, P05 made screencasts to improve his
credibility with potential employers:

“The biggest impact those videos had was on cred-
ibility. The fact that they exist was a sign that I’m
serious and I should be taken seriously.”

Screencasts require time and effort to create. By creating
these artifacts, developers codify their knowledge and establish
themselves as being knowledgeable in an area.

To Promote Themselves: Once developers have created an
identity, they put it to work for personal gain. The literature
shows that developers experience positive benefits (e.g., find-
ing jobs) from building their online identity in developer social
networks [4]. Developers promote themselves by creating an
identity tied to a set of skills. They also benefit by curating
and sharing knowledge resources with others [3].

In our study, we also found that developers use YouTube
to promote themselves for personal or financial gain
P03,P04,P05,P10. For example, P10 began posting his videos
on Udemy as a way to make money. But through YouTube,
he reached a bigger audience than with the closed, paid model
of Udemy. When he posted his videos on YouTube, P10 said:

“It went wild. Like I got tens of thousands of peo-
ple viewing these videos and sending me personal
messages about how amazing the course is and they
want more. . . and I have a lot of blog followers now,



and I have a couple thousand YouTube subscribers
from thirty.”

P07 also used YouTube as a public channel to reach more
viewers. He spoke of how this experiment helped promote his
Udemy course and, as a result, benefited him financially.

P06 published a game to an app store and wanted to share
his experiences with other developers. He described how, as
a sole developer, he cannot “outspend bigger companies, but
you can out teach them in a way.” He put his screencast on
YouTube to create a relationship with his audience that he felt
would benefit him financially. P06 said:

“And teaching people builds trust like I said and
you’re kind of giving them something for free in a
sense where that’s a nice thing and then they feel like
they know you. It’s a much more natural relationship
with your audience.”

Some developers also described how they used YouTube
to promote their companies or products, not just themselves
P04,P06,P07,P10.

As a Learning Exercise: Our interviews demonstrated how
developers create screencasts to better understand a topic
P01,P02,P03,P07. For example, P01 used screencasts to im-
prove his skills every week:

“I just open up the Blender specs and see what
developers were working on, what was new, what
people might have some issues with. I figure out
how to do it on my own and then make a tutorial
on it.”

Using a resource that was openly available online, P01
focused his screencasts on new developments in the Blender
community. He identified not only changes to the technology,
but taught himself how to adapt to those new changes. He
gained insights, which he then shared in his screencasts.

Other interviewees used screencasts as a way to teach them-
selves new material. They described feeling more confident in
their understanding of the material after creating a screencast
P03,P07. P07 used screencasts as a way of testing himself on
the material:

“I mean in creating it you have to know something
well enough to articulate it. So I‘ll record myself
... and I’ll watch it and I’ll say ‘dude I don’t know
what I’m talking about’, so I’m going to go research
again . . . ”

This experience of learning from sharing through social
media is not isolated to video channels. Other researchers have
found that knowledge workers who blog about their profession
feel that “they have more expertise... than those who do not
blog” [39]. Similarly in the educational literature, creating
a blog or screencast forces students to use their “critical
thinking, producing and publishing skills” to reflect on their
experiences within a topic [40].

To Give Back: We found that developers make videos to
document what they wished they had known before they

started a task P01,P03,P07,P08. Research on how developers
use Twitter revealed that developers share their experiences as
a way to “spare others from having to go through the same
discovery process” [41]. Sharing knowledge through social
media is done not only to benefit the developer and their
identity, but also to distribute knowledge and contribute to
a larger community [42].

Three of our interviewees were teachers P03,P05,P08 and
two of them spoke of how they started creating videos to
help students in their classes P03,P08. P03 reflected on his
development experiences and created content that addressed
the problems he encountered while learning:

“I kind of wanted to package that nicely and deliver
it to people who are where I used to be last year,
working on my thesis projects, and were like ‘if only
I had known.”’

This desire to help others has been shown in other literature
where developers contribute knowledge with no expectation of
direct compensation [43] and share information with altruistic
motivations [44].

As an Alternative to Blogging: In our interviews, several
developers described making screencasts as an alternative
approach to blogging (an activity very popular with many
developers these days) as they found creating screencasts
to be easier than writing P07,P08,P09. As video creators,
these interviewees felt that they were comfortable with the
information they wanted to present.

Interviewees also described having a personal preference for
learning from video instead of text P03,P07,P08. As P03 stated:

“If I had the choice to watch a video, I’ll defi-
nitely watch the video. It’s way faster and a better,
smoother learning curve.”

RQ4: How do developers produce screencasts and which
challenges do they face?

Our final research question concerns developer screencast
production processes. Through the interviews, we gained the
following insights (in bold text) into how developers prepare,
record and edit their screencasts.

Preparing the Screencast: Before recording, interviewees
spoke of the importance of organizing their thoughts and
sources. Nearly all of the interviewees, with the exception
of P03, discussed using an outline or script to gather their
thoughts. For example, P06 noted:

“I did write... basically just an outline, like a Mark-
down outline, with headers and sub-points and then
I didn’t actually even end up referencing it. It was
more just the thing where I wrote it all out, so then
I had all my thoughts organized.”

The preparation stage consisted of participants identifying
key points for their videos and gathering materials for record-
ing. Interviewees described writing or finding existing code
for their screencasts, as well as gathering pertinent images
P01,P07,P08.



The interviewees’ descriptions of the planning process fits
with other research on the topic, such as using outlines as
planning tools [27]. Some research suggests that the planning
stage is the most important in the screencast creation process
as it forces the creator to focus their ideas and goals [25].
Screencast creators also need to tailor video for their audience
through the planning stage [29].

Recording the Screencast: When recording video, our in-
terviewees used a wide variety of screen capture tools, such
as Quick Time, Camtasia and Screenflow. Other software was
mentioned for manipulating audio, such as Astro Effects.

While recording videos, the interviewees stressed the im-
portance of splitting clips into short segments P03,P04,P05,P06.
This seemed to be for two reasons: it limited the possibility
of mistakes (which would require a retake) P05,P08, and
it forced the creators to articulate their ideas clearly and
quickly P02,P03,P04,P06,P08. As mentioned in the findings for
Research Question 2, the literature points to the importance
of focused, short screencast videos for learning [29], [45].
Since screencasts are not searchable, short screencasts help
the audience locate information [29]. Therefore, this practice
benefits the screencast creator and the audience.

Interviewees also stressed the importance of good presen-
tation skills while recording, as P10 mentioned:

“I make a strong effort to have good audio recording
equipment, but I also speak really clearly, and I try
to communicate my ideas so that they’re really easy
to listen to and to follow along.”

Being clear when recording videos is important for screen-
casts [25]. But screencast narrators who speak quickly may
be perceived as more energetic and engaging by the audi-
ence [45].

Post-production: After finishing an initial recording, inter-
viewees took the time to edit their screencasts. Seven of the
ten video authors told us they edited their work to improve
the quality of their videos P01,P04,P05,P06,P07,P09P10. The
editing actions ranged from adding effects, to improving and
augmenting the audio. P01 applied a lengthy post-production
process to his screencasts:

“I’ll come over to the audio and spend two hours
just combing through getting rid of clicks.”

Of those who edited their work, interviewees reported plac-
ing a high value in the production quality of their screencasts
P04,P05, P07,P10. A minority of the participants expressed that
they did not do any editing and simply watched their videos
for clarity before putting them on YouTube P02,P03,P08. As
P08 noted:

“I have full respect for the people who actually go
in and edit their video, because that to me is just so
painful. I find it quicker just to do a good take.”

V. DISCUSSION

Modern software documentation exists on the Web in an
ever-changing state. It is hosted on question and answer

sites like Stack Overflow [46], in public repositories like
GitHub [14], and on Wikis [3]. Our exploratory study shows
how YouTube contributes to documentation that is embedded
within the social developer ecosystem.

Throughout this paper, we have provided what we believe
to be a first investigation of the motivations and techniques
used by developers for creating and hosting screencasts on
YouTube. Our study showed that developers use video to
create a permanent record of their understanding of and
experiences with a project. This includes design decisions and
the challenges faced during development. Our analysis of a
sample of screencasts revealed how developers describe code
through video. We observed developers executing programs
to explain relationships between the code and the program’s
output. This allows the audience to draw connections between
concepts and processes in the program [27]. Furthermore, we
saw that developers also focused the audience’s attention on
specific variables and elements in the code. The sections of
code that the narrator chose can be considered examples of
“beacons” [47], which gives the audience a better understand-
ing of the program.

Unlike other documentation methods that are primarily text
based, screencasts allow developers to share their coding
practices through live interactions. These video captured in-
teractions allow developers to present tacit knowledge would
be otherwise difficult to present through textual methods. We
observed developers using screencasts to share tacit knowledge
by sharing their insights and demonstrating processes, such
as setting up the technical environment for a project. They
also demonstrated executable features of a program and their
personal coding style.

It is important to note the limitations of screencasts. Our
interviewees cited the lack of searchability as a barrier to
finding relevant information in video. Audience members are
faced with the choice of watching the whole video and hope
that it contains the information they are looking for, or moving
on to a different piece of content. Although YouTube has a
mechanism for linking to a specific point in a video, we did not
see this used in our analysis. Another limitation of screencasts
is that some forms of information are more easily digested as
text. Specifically, explicit and formal knowledge is easier to
codify in a written form [17].

As in previous work that explored how developers use social
channels, our interviewees reinforced that developers shape
their online identity by choosing what content to share [4].
This was done for a number of reasons, including altruistic
and commercial motivations. We found that developers use
YouTube to supplement their activities on other platforms and
to share screencasts.

VI. LIMITATIONS

A primary limiting factor of this study is the general-
izability from our sample of 20 videos and 10 interviews.
The potential population space contains thousands of videos
of screencasts—just considering YouTube alone. However,
our findings were well saturated after 20 screencasts and 10



interviews, and as a first study on this topic, reveal interesting
insights and provoke future research into this phenomenon.

We relied on YouTube as the source for the videos in
our study. Interviewees spoke of using other video sharing
platforms, so the results of this study may be biased towards
the type of content posted on YouTube. We selected YouTube
because of the social features it offers and its widespread
adoption. There are a number of other video sharing methods
on the Internet, although some of these are behind paywalls.
This research only considered videos that were free of charge
and openly available. It is possible that these factors (i.e.,
“free” content, storage and distribution) may have impacted
our findings.

VII. FUTURE WORK

There are a number of directions to expand this work in
future studies. The following themes are centered on work
pertaining to the creation of screencasts for developers, as
well as addressing how developers use screencasts to support
software engineering tasks.

A. Why and How Do Developers View Screencasts

While we know that developers publish content on YouTube,
we do not know how and to what extent developers use these
videos to support development tasks. We also do not know how
many people watch these screencasts or how they use them.
These questions should be explored through future studies.

B. Screencasting Communities

In gathering our screencast sample, we noted the number
of comments on each video. We also saw that screencasters
interacted with their audience through YouTube’s commenting
features. Future work should consider this aspect.

The popular streaming platform, Twitch, has recently
launched a ‘game development’ channel where developers
stream themselves developing software and answer questions
from the audience, in real time6. A number of our interviewees
also spoke of popular developer-focused screencasting sites
that influenced their work. From this, we know that there are
communities built around producing and sharing developer
knowledge through screencasts. In the future, we wish to
explore these emerging communities and the relationships
between content producers and audience members.

C. Effectiveness of Screencasts for Developers

A further avenue of future research addresses the effective-
ness of code walkthrough videos. Work in education suggests
that screencasts can be an effective delivery method for
formal education [29]. The work in this paper focuses on
screencasts in an informal setting. Therefore, it is not known
if developers and audiences may face different challenges in
this environment than in a formal learning setting.

6http://www.twitch.tv/directory/game/Game%20Development

D. Tool Support

Our interviewees expressed frustration with the tools they
use to produce screencasts. It is clear that there is room for
improvement in screencast tool support. But it is unclear how
the current tools used by these developers hinder or impact
the content they produce. While we found that a variety of
tools are being used, none of the tools are seen as ideal by
the content creators.

VIII. CONCLUSIONS

Through this research, we provided an initial exploration
into how and why developers create screencasts and host them
on YouTube, a social video sharing channel. In our study of
20 videos created by developers, we identified high-level goals
and techniques for creating such screencasts. These techniques
include demonstrations of code, describing code functionality
in different ways, and providing an audience with source code
that is integrated with live demonstrations of the execution of
that code.

The screencast creators we interviewed described how they
use screencasts to learn, document their code, and contribute
to their online identity and self-promotion. However, they
expressed frustration with their current tool support.

The limitations surrounding our qualitative methodology
and sample size means that more work must be done to
assess the generalizability of our findings to other screencasts.
Overall, this work provides a first exploratory study on how
developers currently create video-based documentation for
developers. In the future, we hope to explore the effectiveness
of these types of videos for educational and knowledge transfer
purposes, and to study how such videos contribute to improv-
ing software documentation and program comprehension.

Acknowledgments

We thank our interview participants for sharing their insights
with us, as well as Cassandra Petrachenko and Alexey Zagal-
sky for editing support and discussions about our research.

REFERENCES

[1] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky,
“The r evolution of social media in software engineering,” in Proc. of
the on Future of Software Engineering. ACM, 2014, pp. 100–116.

[2] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey, and
K. Schneider, “Mutual assessment in the social programmer ecosystem:
An empirical investigation of developer profile aggregators,” in Proc.
of the 2013 Conference on Computer Supported Collaborative Work.
ACM, 2013, pp. 103–116.

[3] J. Udell. (2004, Nov.) Name that genre: screencast. [Online]. Available:
http://jonudell.net/udell/2004-11-17-name-that-genre-screencast.html

[4] R. Brooks, “Towards a theory of the comprehension of computer
programs,” Intl. Journal of Man-Machine Studies, vol. 18, no. 6, pp.
543–554, 1983.

[5] T. C. Lethbridge, J. Singer, and A. Forward, “How software engineers
use documentation: The state of the practice,” Software, IEEE, vol. 20,
no. 6, pp. 35–39, 2003.

[6] B. Dagenais and M. P. Robillard, “Creating and evolving developer doc-
umentation: understanding the decisions of open source contributors,” in
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering. ACM, 2010, pp. 127–136.

[7] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and the dynamics of api discussions on
stack overflow,” Georgia Institute of Technology, Tech. Rep, 2012.

http://jonudell.net/udell/2004-11-17-name-that-genre-screencast.html


[8] C. Treude and M.-A. Storey, “Effective communication of software
development knowledge through community portals,” in Proc. of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering. ACM, 2011, pp. 91–101.

[9] T. Räisänen and H. Oinas-Kukkonen, “A system architecture for the 7c
knowledge environment,” Information Modelling and Knowledge Bases
XIX, vol. 166, p. 217, 2008.

[10] M.-A. Storey, C. Treude, A. van Deursen, and L.-T. Cheng, “The impact
of social media on software engineering practices and tools,” in Proc.
of the FSE/SDP Workshop on Future of Software Engineering Research.
ACM, 2010, pp. 359–364.

[11] C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask
and answer questions on the web?: Nier track,” in Software Engineering
(ICSE), 2011 33rd Intl Conference on. IEEE, 2011, pp. 804–807.

[12] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in github:
Transparency and collaboration in an open software repository,” in Proc.
of the ACM 2012 Conference on CSCW. ACM, 2012, pp. 1277–1286.

[13] E. Wenger, “Communities of practice and social learning systems,”
Organization, vol. 7, no. 2, pp. 225–246, 2000.

[14] A. Capiluppi, A. Serebrenik, and L. Singer, “Assessing technical can-
didates on the social web,” Software, IEEE, vol. 30, no. 1, pp. 45–51,
2013.

[15] S. Panahi, J. Watson, and H. Partridge, “Social media and tacit knowl-
edge sharing: Developing a conceptual model,” World Academy of
Science, Engineering and Technology, no. 64, pp. 1095–1102, 2012.

[16] YouTube. (2013, may) Youtube press statistics. [Online]. Available:
http://www.youtube.com/yt/press/statistics.html

[17] N. B. Ellison, “Social network sites: Definition, history, and scholarship,”
Journal of Computer-Mediated Communication, vol. 13, no. 1, pp. 210–
230, 2007.

[18] I. Duncan, L. Yarwood-Ross, and C. Haigh, “Youtube as a source of
clinical skills education,” Nurse Education Today, vol. 33, no. 12, pp.
1576–1580, 2013.

[19] C. Snelson, “YouTube across the Disciplines : A Review of the Lit-
erature,” Journal of Online Learning and Teaching, vol. 7, no. 1, pp.
159–169, 2011.

[20] S. A. Azer, “Can youtube help students in learning surface anatomy?”
Surgical and Radiologic Anatomy, vol. 34, no. 5, pp. 465–468, 2012.

[21] P. Duffy, “Engaging the youtube google-eyed generation: Strategies for
using web 2.0 in teaching and learning,” in European Conference on
ELearning, 2007, pp. 173–182.

[22] W. Sugar, A. Brown, and K. Luterbach, “Examining the anatomy of a
screencast: Uncovering common elements and instructional strategies,”
The Intl. Review of Research in Open and Distance Learning, vol. 11,
no. 3, pp. 1–20, 2010.

[23] C. Lankshear and M. Knobel, “Diy media: A contextual background and
some contemporary themes,” DIY media: Creating, sharing and learning
with new technologies. New York: Peter Lang, pp. 1–21, 2010.

[24] S. Mohorovicic, “Creation and use of screencasts in higher education,”
in 2012 Proc. of the 35th Intl. Convention on Information and Com-
munication Technology. Electronics and Miro-electronics. IEEE, 2012,
pp. 1293–1298.

[25] J. Oud, “Guidelines for effective online instruction using multimedia
screencasts,” Reference Services Review, vol. 37, no. 2, pp. 164–177,
2009.

[26] H.-J. Paek, T. Hove, H. Ju Jeong, and M. Kim, “Peer or expert? the
persuasive impact of youtube public service announcement producers,”
International Journal of Advertising, vol. 30, no. 1, pp. 161–188, 2011.

[27] K. Charmaz, Constructing Grounded Theory: A Practical Guide
Through Qualitative Analysis. Pine Forge Press, 2006.

[28] K. M. MacQueen, E. McLellan, K. Kay, and B. Milstein, “Codebook
development for team-based qualitative analysis,” Cultural Anthropology
Methods, vol. 10, no. 2, pp. 31–36, 1998.

[29] K. Krippendorff, Content Analysis: An Introduction to its Methodology.
Sage, 2012.

[30] J. F. Gubrium, The Sage handbook of interview research: The complexity
of the craft. Sage, 2012.

[31] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” IEEE Transactions on Software Engineering, vol. 35,
no. 5, pp. 684–702, 2009.

[32] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept
assignment problem in program understanding,” in Proc. of the 15th

Intl. Conference on Software Engineering. IEEE Computer Society
Press, 1993, pp. 482–498.

[33] M. Lee, S. Pradhan, and B. Dalgarno, “The effectiveness of screencasts
and cognitive tools as scaffolding for novice object-oriented program-
mers,” Journal of Information Technology Education: Research, vol. 7,
no. 1, pp. 61–80, 2008.

[34] J. Swart and N. Kinnie, “Sharing knowledge in knowledge-intensive
firms,” Human Resource Management Journal, vol. 13, no. 2, pp. 60–
75, 2003.

[35] C. Treude, F. Figueira Filho, B. Cleary, and M.-A. Storey, “Programming
in a socially networked world: The evolution of the social programmer,”
The Future of Collaborative Software Development, pp. 1–3, 2012.

[36] L. V. Porter, K. D. Sweetser Trammell, D. Chung, and E. Kim, “Blog
power: Examining the effects of practitioner blog use on power in public
relations,” Public Relations Review, vol. 33, no. 1, pp. 92–95, 2007.

[37] W. W. H. Richardson, Blogs, wikis, podcasts, and other powerful web
tools for classrooms. Corwin Press, 2010.

[38] L. Singer, F. M. Figueira Filho, and M.-A. D. Storey, “Software
engineering at the speed of light: How developers stay current using
twitter.” in Intl. Conference on Software Engineering, 2014, pp. 211–
221.

[39] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman, “Knowledge
sharing and yahoo answers: Everyone knows something,” in Proceedings
of the 17th Intl. Conference on World Wide Web. ACM, 2008, pp. 665–
674.

[40] M. Lindvall and I. Rus, “Knowledge management in software engineer-
ing,” IEEE Software, vol. 19, no. 3, pp. 0026–38, 2002.

[41] M. Levy, “Web 2.0 implications on knowledge management,” Journal
of Knowledge Management, vol. 13, no. 1, pp. 120–134, 2009.

[42] P. J. Guo, J. Kim, and R. Rubin, “How video production affects student
engagement: An empirical study of mooc videos,” in Proc. of the First
ACM Conference on Learning @ Scale Conference, ser. L@S ’14.
New York, NY, USA: ACM, 2014, pp. 41–50. [Online]. Available:
http://doi.acm.org/10.1145/2556325.2566239

[43] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” in Proc. of the
SIGCHI Conference on Human factors in Computing Systems. ACM,
2011, pp. 2857–2866.

[44] M.-A. Storey, “Theories, Methods and Tools in Program Compre-
hension: Past, Present and Future,” 13th Intl. Workshop on Program
Comprehension (IWPC’05), pp. 181–191. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1421034

http://www.youtube.com/yt/press/statistics.html
http://doi.acm.org/10.1145/2556325.2566239
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1421034
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1421034

	Introduction
	Background
	Software Documentation
	The Social Nature of Software Documentation
	YouTube and Screencasts

	Methodology
	Research Questions
	Phase 1: Video Analysis
	Screencast Selection Process
	Screencast Sample Characteristics
	Screencast Analysis

	Phase 2: Interviews with Developer Screencasters
	Interviewee Selection Process
	Interview Process
	Content Analysis


	Findings
	Discussion
	Limitations
	Future Work
	Why and How Do Developers View Screencasts
	Screencasting Communities
	Effectiveness of Screencasts for Developers
	Tool Support

	Conclusions
	References

