Empir Software Eng (2017) 22:1478-1507 Mark
DOI 10.1007/510664-017-9501-9 @ CrossMar

Documenting and sharing software knowledge
using screencasts

Laura MacLeod! - Andreas Bergen! -
Margaret-Anne Storey!

Published online: 30 March 2017
© Springer Science+Business Media New York 2017

Abstract Screencasts are used to capture a developer’s screen while they narrate how a
piece of software works or how the software can be extended. They have recently become a
popular alternative to traditional text-based documentation. This paper describes our inves-
tigation into how developers produce and share developer-focused screencasts. In this study,
we identified and analyzed a set of development screencasts from YouTube to explore what
kinds of software knowledge are shared in video walkthroughs of code and what techniques
are used for sharing software knowledge. We also interviewed YouTube screencast pro-
ducers to understand their motivations for creating screencasts as well as to discover the
challenges they face while producing code-focused videos. Finally, we compared YouTube
screencasts to videos hosted on the professional RailsCasts website to better understand the
differences and practices of this more curated ecosystem with the YouTube platform. Our
three-phase study showed that video is a useful medium for communicating program knowl-
edge between developers and that developers build their online persona and reputation by
sharing videos through social channels. These findings led to a number of best practices for
future screencast creators.

Keywords Software engineering - Screencasting - Social media

Communicated by: Christian Bird and Rocco Oliveto

< Laura MacLeod
Imacleod @uvic.ca

Andreas Bergen
andib@uvic.ca

Margaret-Anne Storey

mstorey @uvic.ca

University of Victoria, Victoria, BC, Canada

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9501-9&domain=pdf
mailto:lmacleod@uvic.ca
mailto:andib@uvic.ca
mailto:mstorey@uvic.ca

Empir Software Eng (2017) 22:1478-1507 1479

1 Introduction

Software documentation is the castor oil of software development. —Gerald Weinberg,
1975

Describing how a program works often involves the laborious task of writing text, a pro-
cess shunned by many developers. Today’s developers use social channels such as blogs,
community portals, GitHub, Twitter and Stack Overflow to author and share documenta-
tion (Storey et al. 2014). Sharing knowledge on these social channels benefits the producer
of the documentation as it helps build their online reputation and creates a network of
like-minded developers (Singer et al. 2013).

This paper describes a study where we explore how screencasts are used for software
documentation. Screencasts are “movies of software”(Udell 2004) that capture a developer’s
screen as they manipulate code for a specific goal such as to demonstrate the use of a tool
or to present how-to information that can be difficult to describe in text. Their popularity
is growing and they are frequently produced as a source of documentation, but little else is
known about how screencasts are used or how they can be improved.

In this paper, we investigate how and why developers create and share screencasts on
the Internet. In our previous work (MacLeod et al. 2015), we analyzed a selection of
development-related YouTube screencasts to determine how and why they are used for doc-
umenting and sharing programming knowledge. We also interviewed YouTube screencast
creators to understand how they create their videos, revealing the benefits and challenges
one may experience when creating video documentation. This paper extends that work by
analyzing a set of screencasts from the popular Ruby on Rails screencast site, RailsCasts!,
and compares how development videos are hosted on YouTube with how they are shared on
a more formal screencast sharing site.

Our findings reveal that video is an efficient and useful medium for program documen-
tation aimed at other developers. In addition, the social features of the hosting channel,
whether it is YouTube or a self-hosted website, play an important role in screencast
development and distribution.

The main contributions of this paper are:

an understanding of the types of knowledge developers share through screencasts;

an understanding of how developers share knowledge through screencasts;

technical insights into how developers create screencasts and the challenges they face;
insights into the differences and similarities of hosting screencasts on YouTube (a social
channel) compared to a self-hosted professional website; and

5. alist of best practices for future screencast creators.

Eal ol

In the remainder of this paper, we review the literature on the role of documentation
within social software development and on using YouTube for sharing knowledge in other
domains. Then we outline our research methodology and present the findings from an
analysis of 20 YouTube screencasts and 10 interviews with developers who have created
YouTube screencasts. We also present a comparison of 7 Ruby on Rails screencasts hosted
on YouTube with 7 screencasts hosted on the RailsCasts site. We relate our findings to
the existing literature and then address the limitations of our study. As this is a rather new
research topic, our paper concludes with a number of directions for future research.

ISee http://railscasts.com

@ Springer

http://railscasts.com

1480 Empir Software Eng (2017) 22:1478-1507

2 Background

Our study builds on three areas of research: the role of documentation in software engineer-
ing, the social nature of software documentation, and how YouTube is used by knowledge
workers.

2.1 Software Documentation

Documentation is a key component of software development that captures many facets of
the development process, including requirements, feature implementations, usage scenarios,
code examples, and decision insights. Studies have shown that documentation provides pro-
grammers with vital information. For example, Brooks discusses how documentation is used
to help programmers understand a program (Brooks 1983). Yet there are many challenges in
producing software documentation, such as managing large bodies of documentation, incor-
porating an appropriate level of detail, and keeping documentation up to date (Lethbridge
et al. 2003).

Wikis (Dagenais and Robillard 2010), question and answer sites (Parnin et al. 2012),
and technical articles (Treude and Storey 2011) provide crowd-based alternatives for con-
tributing knowledge in online communities. For software documentation, these platforms
benefit developers in different ways (e.g., Wikis are easy to create and navigate, question
and answer sites remain up to date longer, while blogs generate more fanfare (Treude and
Storey 2011)).

A drawback of text-based approaches for sharing developer knowledge is that they may
not capture the tacit knowledge needed to understand workflows and processes. Tacit knowl-
edge is best communicated through face-to-face interactions, verbal discussions, or more
recently, through video (Riisdnen and Oinas-Kukkonen 2008). Screencasts are becoming an
increasingly popular way for developers to describe how others can navigate source code.
These videos may capture clips of a developer directly interacting with and manipulating
source code as well as showing the executed program. Screencasts provide visual and audio
cues that go beyond the information portrayed by static text.

While our study investigated how video can be used for software documentation, we also
sought to understand the social implications when video-based software documentation is
shared through social channels. In the next section, we review existing research on the social
nature of software documentation.

2.2 The Social Nature of Software Documentation

Today’s developers work in “social ecosystems around content, media, and develop-
ers” (Storey et al. 2014). Social dissemination of documentation promotes collaboration
with other individuals (Storey et al. 2010), helps people find answers to questions (Treude
etal. 2011), and increases developer awareness among communities (Dabbish et al. 2012).

When developers participate in social ecosystems, online identities are formed (Dabbish
et al. 2012). Peers use this information to evaluate other developers and to shape their inter-
actions with them (Capiluppi et al. 2013). The transparency of social media not only helps
developers establish identities, it also makes them immediately aware of changes in their
community (Storey et al. 2010) and provides a way to locate experts (Wenger 2000).

The creation and consumption of social media content has led to the rise of “communities
of practice”—communities that form around shared interests and common goals (Wenger
2000). The knowledge shared in these communities may be explicit or tacit. Explicit knowledge

@ Springer

Empir Software Eng (2017) 22:1478-1507 1481

is found in participants’ artifacts, such as blog posts or answers to questions (Parnin et al. 2012).
Tacit knowledge can be supported through informal mentoring, the sharing of experiences,
observation, discussion, and trust within a social media platform (Panahi et al. 2012).

Previous work has found that developers use “rich media” such as screencasts and pod-
casts to support learning and follow community trends (Storey et al. 2014). From this work,
we know that developers use screencasts across social channels to gain technical knowledge.
Yet more research is needed to understand how video hosted in social channels supports
documentation and the exchange of technical knowledge.

2.3 YouTube and Screencasts

Screencasts created by developers are frequently hosted on a larger social platform and
YouTube is easily one of the most popular online platforms for sharing video content. It has
anumber of social features that facilitate interactions and communication among users (Elli-
son 2007): it allows people to create profiles, maintain individual channels, participate in
discussions (via comments), and search for material (Duncan et al. 2013).

The use of YouTube has not received a lot of attention in software engineering research.
One recent exception is the work by Ponzanelli et al. (Ponzanelli et al. 2016) where the
researchers developed a technique to extract fragments from YouTube code tutorials. How-
ever, YouTube has been studied in other domains. Researchers have examined YouTube as
an educational platform (Snelson 2011; Azer 2012) and found that students enjoy using
it for content delivery—it lets users discover content and learn at their own pace (Duffy
2007). Other studies have investigated how to create effective educational video content
for the classroom (Sugar et al. 2010), and how YouTube is used as a source of informal
“Do It Yourself” and “How-to” videos(Lankshear and Knobel 2010). Researchers have
explored how screencasts are made (Mohorovicic 2012), what techniques are used for shar-
ing knowledge (Sugar et al. 2010), and best practices for creating screencasts (Oud 2009).
These studies suggest that YouTube provides an online participatory culture which serves
as a way to share knowledge between experts and amateurs (Paek et al. 2011). Users
share content to stay connected to their online community and provide updated sources of
information (Lankshear and Knobel 2010).

This paper explores how screencasting is used to share knowledge among developers and
how screencasts can be used to support software documentation tasks.

3 Methodology and Research Questions

Understanding the role screencasts play in developer documentation is an emerging research
topic that has not been well studied. Our research sought to answer the following questions:

RQ1: What kinds of program knowledge are captured in screencasts on YouTube? In our
previous work (Storey et al. 2014), we learned that some developers rely on screen-
casts (and podcasts) to learn new technical information, but we lacked insights
into the types of programming knowledge captured through YouTube screencasts.
This research question helped us further explore the information being shared with
screencasts. By analyzing a set of YouTube screencasts, we were able to identify
the different types of screencasts developers create and watch.

RQ2: How are YouTube screencasts used to document code? Our goal behind this
research question and the analysis of a set of YouTube screencasts was to learn

@ Springer

1482 Empir Software Eng (2017) 22:1478-1507

how developers explain and present program code through screencasts, as well
as how authors talk about and present their own code. This research question
explores how knowledge is presented in screencasts and what techniques are
used.

RQ3: What motivates developers to create screencasts on YouTube? By conducting
interviews with screencast creators, we elicited their motivations for creating screen-
casts, gaining insights into the factors that drive developers to distribute their
documentation through a video sharing channel such as YouTube.

RQ4: How do developers produce screencasts for YouTube and what challenges do they
face? Through the interviews, we were also able to identify the common tech-
niques developers use and the friction they experience when creating video software
documentation.

RQ5: How do screencasts hosted on YouTube compare to screencasts hosted on a profes-
sional platform? Through this question, we wished to compare screencasts hosted
on a professional, purpose-built platform (we selected RailsCasts) with similar types
of videos hosted on YouTube. We selected and analyzed two sets of Ruby On Rails
videos and coded them using the codes that emerged from our answers to RQ1
and RQ2. Our goal was to explore the similarities and differences of screencasts
hosted across these two platforms. We also compare some differences across the
two platforms.

3.1 Phase 1: YouTube Video Selection and Analysis

To answer RQ1 and RQ2, we selected and analyzed a sample of videos from YouTube.
We used the following inclusion criteria to select an appropriate sample of videos for our
analysis:

1. The video was available on YouTube from November 2013 until March 2014 (the data
collection phase of this part of the study).

2. The video presented a completed code base or code snippet.

3. The video description or title contained a variant of the terms “Code Walkthrough”
or “Code Tour”. We selected these terms as we were interested in videos that docu-
mented how to use or adapt code without limiting our sample to any one language or
technology.

4. The video contained an audio description with a screen capture of the narrator’s com-
puter. The videos we analyzed showed the narrator’s screen and relevant code, and
contained audio narration.

We excluded screencasts that focused on programming fundamentals as screencasts
aimed at education have a very different purpose. Rather, we analyzed videos a developer
would use to learn about unfamiliar technologies or libraries. A standard YouTube search
was used with no filter options in a fresh browser session. By default, YouTube sorts these
results by relevance, which “includes prioritizing videos that lead to a longer overall viewing
session over those that receive more clicks”(YouTube 2016). Further details on the algo-
rithm YouTube uses to rank videos by relevance are not publicly available. To see if videos
met our inclusion criteria, we viewed the start of each video returned in the search results.
The final sample contained 20 videos and represented over 8 hours of footage. Although
this represents a fraction of the possible screencasts hosted on YouTube, our findings were
well saturated using this sample.

@ Springer

Empir Software Eng (2017) 22:1478-1507 1483

The top half of Table 1 provides descriptions and links? to the selected videos for the first
phase of our study. The topics of these 20 screencasts include Arduino projects, Django, the
Corona SDK, Google App Engine, VB.Net, C#, C++, Java, and Unity programs. The videos
ranged in age from eight years to a few months (at the time of our study). Table 1 shows addi-
tional metrics on the videos we analyzed. In the following, specific screencasts are denoted
as V# (as per Table 1). To develop a preliminary set of codes, two of our researchers used a
qualitative open coding methodology (Adolph et al. 2011) and independently reviewed and
coded a set of two videos—we agreed beforehand to code for what we saw or heard in the
videos.? Then we came together to compare findings and discuss what we had observed.
This process occurred over multiple sessions.

Through multiple coding sessions, we established a set of defined codes and docu-
mented them in a code book.* While developing the book, we discussed the emerging codes,
ultimately establishing 21 codes to describe the techniques used by developers in the screen-
casts. To ensure consistency in applying the codes, both coders reviewed a subset of videos
until an inter-rater reliability of 80 % was achieved (MacQueen et al. 1998). After this point,
we coded the remaining videos separately.

To answer RQ2, we iteratively grouped the codes to sort them into themes. This process
involved creating a Post-it note for each code and arranging them on a board. We then
grouped the Post-it notes spatially to visually denote relationships and similarities Fig. 1.

3.2 Phase 2: Interviews with YouTube Developer Screencasters

For the second phase of our study, we conducted semi-structured interviews with 10 screen-
cast creators that hosted their videos on YouTube. We contacted 6 authors of the 20
screencasts we analyzed in the first phase of the study, but only 2 people responded. The
other 14 videos we analyzed were hosted under corporate or inactive accounts and the
authors could not be reached. To locate additional participants for our interviews, we used
similar screencast selection criteria from the first phase of the study and generated a list of
15 additional video authors. In total, we contacted 21 developers through email, YouTube,
or social media—10 of these developers responded to our requests for interviews and were
included in the study.

The interviewees were all English speaking, male, and had formal education in pro-
gramming or computer science. All participants had programming experience outside of
academia, though not all were active developers at the time of the study. Three partic-
ipants were students, five were active software developers, and three of the participants
were educators (formerly or currently). Participants were from the UK, the United States,
Canada, and Australia. While all participants had uploaded at least one video, five of our
interviewees had posted over sixty videos.

The interviews ranged from 20 to 45 minutes. Audio was recorded and later tran-
scribed for analysis.”> We analyzed each transcript using a content analysis methodology
(Krippendorff 2012), identifying themes that appeared across multiple interviews (Gubrium
2012). As part of the content analysis method, two of our researchers individually analyzed
an initial set of four interviews and identified categories—at this point we were looking

2Click on the URL links in the PDF to navigate to the videos.

3More in-depth information about our coding methodology can be found in (MacLeod 2015).

4A copy of our code book can be found at Imacleod.com/docs/ICPC2015_Codebook.pdf

5 A copy of our interview questions can be found at http://Imacleod.com/docs/ICPC2015 _Interview_questions

@ Springer

http://lmacleod.com/docs/ICPC2015_Codebook.pdf
http://lmacleod.com/docs/ICPC2015_Interview_questions/

1484

Empir Software Eng (2017) 22:1478-1507

Table 1 This table first lists the YouTube videos (V1-V20) that were analyzed to answer RQ1 and RQ2.
It then lists the YouTube videos about the Ruby on Rails language (V21-V27) that were analyzed to answer
RQS5. All URLs are clickable and follow the format of “https://www.youtube.com/watch?v=". View and
comment counts as of Nov 2013. *View counts unavailable for Google Hangouts

Number Title URL Links Length Views Comments

V1 Simple Chat Walkthrough with Unity 0d-wY65uVGw 14:51 3184 7

V2 Code Walkthrough - Cafe Townsend Robotlegs ~ 6MpuB654_hM 59:15 658 12
for Corona SDK

V3 Minecraft Launcher - Code Walkthrough UiSTOtcOWvU 35:07 6339 93

V4 Django - high level walkthrough qUpiWWjOfRw 12:21 263 2

V5 Addressbook: A walkthrough of a nwn3YYo6cyEQ 11:09 25848 2
simple AppEngine application

\') Ruby and Rails Code-Walkthrough/Tutorial djApduemlf4 56:33 3251 3

V7 Asteria Plugin Source Code Tour jGROEVYc_Bo 23:43 84 1

\'4 Asteria World Generator Tour mn_wW8uZ6eQ 05:59 50 0

Vo9 Tour of Mega Happy Sprite source Code G1DbLOVs7UM 14:44 138 1

V10 A High Level Cruise Through Ruby MRI’s Onpv906I1Qag 33:20 7419 21
Source Code

Vil Arduino Code Walkthrough for the wg_gNs3Xxq4 14:00 726 1
Talking Breathalyzer Portable Mode
Part 1

V12 Arduino Code Walkthrough for the UdDr9QquilLc 04:39 455 0
Talking Breathalyzer Portable Mode
Part 2

V13 Intro to Cocos2d Tutorial Part 2: Code T1-yARGKhXU 92:53 8616 16
Walkthrough

V14 3 Minute Code Walk through of Part kwY-8mAyixU 03:04 507 1
1 of the AR Programming Series

V15 Arrow M2M kit - node code walk- WCuQOjD8w_E 06:06 46 0
through Part 1

V16 Blackberry MBO Application Code T1f4xXoRDG8 07:36 104 0
Walkthrough

V17 OpenDaylight OVSDB Developer Getting 3-jCTvNRIJSO 26:20 * 0
Started - Code Walkthrough 2 (Java APIs)

V18 Flocking Code Walkthrough OPuYYLEyz-A 15:46 41 0

V19 VB.Net Web Crawler/Spider Source iep-zZ KXRNS8 08:19 6334 7
Code Walkthrough

V20 Corona Geek #49 - Creating A Simple 0130d8ioFS4 64:15 * 4
Game (Code Walkthrough)

V21 Ruby on Rails Saving Data: Learn qKhb3WGdOIM 17:20 1238 6
with Codecademy

V22 Ruby on Rails Getting,Started: Learn XqnEM7VI9SjA 7:01 1024 7
with Codecademy

V23 Install,Bootstrap into a Ruby on Rails 4zMgLzfprqo 16:21 14258 4
Application

V24 CODE GENIUS - OMG Ruby and, IMGmaRZtgM8 34:42 34852 23
Rails Performance by Aaron Patter-
son

V25 Learn Ruby,with Codecademy: CgwZU_c4q3A 11:11 1547 4
Putting the From in Formatter Section
2/19

V26 Ruby on,Rails Tutorial Part 1 - Getting Started ~ UQ8_VOGj5H8 11:09 237657 148

V27 Live,Coding: Introduction to Persis- p5XdoBQNCNU 38:51 18061 32

tence with Ruby on Rails

@ Springer

https://www.youtube.com/watch?v=
https://www.youtube.com/watch?v=0d-wY65uVGw
http://www.youtube.com/watch?v=6MpuB654_hM
http://www.youtube.com/watch?v=UiST0tcOWvU
http://www.youtube.com/watch?v=qUpiWWjOfRw
https://www.youtube.com/watch?v=nwn3YY6cyEQ
https://www.youtube.com/watch?v=djApduemlf4
https://www.youtube.com/watch?v=jGR0EVYc_Bo
https://www.youtube.com/watch?v=mn_wW8uZ6eQ
https://www.youtube.com/watch?v=G1DbLOVs7UM
https://www.youtube.com/watch?v=0npv906IQag
https://www.youtube.com/watch?v=wg_gNs3Xxq4
https://www.youtube.com/watch?v=UdDr9QquiLc
https://www.youtube.com/watch?v=T1-yARGKhXU
https://www.youtube.com/watch?v=kwY-8mAyixU
https://www.youtube.com/watch?v=WCuQOjD8w_E
https://www.youtube.com/watch?v=T1f4xXoRDG8
https://www.youtube.com/watch?v=3-jCTvNRJS0
https://www.youtube.com/watch?v=OPuYYLEyz-A
https://www.youtube.com/watch?v=iep-z1KXRN8
https://www.youtube.com/watch?v=O130d8ioFS4
https://www.youtube.com/watch?v=qKhb3WGd0lM
https://www.youtube.com/watch?v=XqnEM7V9SjA
https://www.youtube.com/watch?v=4zMgLzfprqo
https://www.youtube.com/watch?v=JMGmaRZtgM8
https://www.youtube.com/watch?v=CgwZU_c4q3A
https://www.youtube.com/watch?v=UQ8_VOGj5H8
https://www.youtube.com/watch?v=p5XdoBQNCNU

Empir Software Eng (2017) 22:1478-1507 1485

Programming Changes

System Setup

Alter Variable or .
control flow Introduce Bugs | Live Code Changes Technical
Environment
Code Elements on One Line .
Mapping
Level of Detail
RPeturn Type/ Line Number Linking Code
arameters High Level Code Segments
Purpose
Picks out Identifier Draws Connection
with type Focus on line of Between Demo
Code and Code
\— ~/
Code K
S Break Down Project Structure
Goals/Expectations
N Referencing
Prepping the user/ Project Structure
setting R
epxectations Demo
Navigating File
Defining videos Explorer
purpose or goal Demo
(. — Opening the file
"—/ explorer
I
External Resources
Visual .
Annotations Web Pages Diagrams

Fig. 1 The resulting map after multiple coding sessions. We used an adjacency coding technique to map
different relationships between the codes. As per Charmaz, we tried multiple organizations to distinguish
underlying assumptions about each code (Charmaz 2006)

for common ideas and experiences. We then presented our findings to each other, and after
several iterations, established a final set of categories.

3.3 Phase 3: Analysis of Ruby on Rails Screencasts Hosted on Different Platforms

To answer our last research question (RQS5), we wanted to compare similar types of screen-
casts hosted on two different platforms: we selected 7 videos on RailsCasts and 7 additional
YouTube videos about the Ruby on Rails programming language. To analyze the screen-
casts selected in this phase, we used the codes that emerged from our analysis of YouTube
videos during Phase 1. We also watched for emergent codes from this new set and added
two new codes, as shown in Table 7 and discussed later in the findings.

3.3.1 Ruby on Rails Screencasts Hosted on RailsCasts

RailsCasts is a popular learning resource for Ruby on Rails developers and it is one of
three screencast resources linked from the official Ruby on Rails website.® According to

Shttp://rubyonrails.org/screencasts/

@ Springer

http://railscasts.com/
http://rubyonrails.org/screencasts/

1486 Empir Software Eng (2017) 22:1478-1507

Table 2 This table lists the RailsCasts videos that were analyzed to answer RQS5. All URLs are clickable
and follow the format of “http://railscasts.com/episodes/”

Number Title URL Links Length Comments Paid
R231 Routing Walkthrough Part 1 231-routing-walkthrough 13:22 45 No
R232 Routing Walkthrough Part 2 232-routing-walkthrough-part-2 13:26 14 No
R239 ActiveRecord::Relation 239-activerecord-relation-walkthrough 11:45 21 No
Walkthrough
R299 Rails Initialization Walkthrough 299-rails-initialization-walkthrough 13:00 9 Yes
R319 Rails Middleware Walkthrough 319-rails-middleware-walkthrough 14:00 7 Yes
R395 Action Controller Walkthrough 395-action-controller-walkthrough 11:00 6 Yes
R397 Action View Walkthrough 397-action-view-walkthrough 15:00 13 Yes

Alexa web tracking, RailsCasts is one of the top 32,000 visited websites on the Internet.”
While this influenced our decision, we ultimately chose the RailsCasts platform because it
contained videos that closely mirrored the inclusion criteria we specified for the YouTube
videos in the first phase of our study (i.e., the videos contained similar keywords in their
titles and descriptions).

The ability to access content was another reason for choosing RailsCasts. When asked
about effective screencasting sites, our interviewees mentioned RailsCasts and Egghead.io,
but Egghead.io requires a $200 annual fee to access content behind their paywall, while
RailsCasts charges $9 monthly.

RailsCasts hosts over 400 screencasts (published periodically from 2007 until 2013), and
while it offers some videos for free, many are behind a paywall (four of the seven videos we
analyzed were behind the paywall). In order to access the paid videos, we acquired a paid
subscription. For our comparison, we selected the set of videos featured in the site’s “Code
Walkthroughs™ category as this closely mirrored our YouTube search criteria keywords.
The videos we analyzed were created by RailsCasts’ owner, Ryan Bates. Table 2 shows the
characteristics of the videos we analyzed.

3.3.2 Ruby on Rails Screencasts Hosted on YouTube

Rather than just compare the YouTube screencasts from Phase 1 to the RailsCasts screen-
casts, we decided to use other YouTube screencasts focused on Ruby on Rails. To find
additional videos for this comparison, we used the same search criteria from Phase 1
but included the search term ‘Ruby on Rails’. We selected an additional seven YouTube
videos—three of the videos were created by companies that focus on teaching programming
rather than just code walkthroughs.

4 Findings

In this section, we present our findings organized around the five research questions. Our
findings explore how developers present software in screencasts and their experiences creat-
ing them. Throughout our presentation of the findings, we draw connections to the relevant
literature.

7http://www.alexa.com/siteinfo/railscasts.com. Alexa rankings as of October 2015.

@ Springer

http://railscasts.com/episodes/
http://railscasts.com/episodes/231-routing-walkthrough
http://railscasts.com/episodes/232-routing-walkthrough-part-2
http://railscasts.com/episodes/239-activerecord-relation-walkthrough
http://railscasts.com/episodes/299-rails-initialization-walkthrough
http://railscasts.com/episodes/319-rails-middleware-walkthrough
http://railscasts.com/episodes/395-action-controller-walkthrough
http://railscasts.com/episodes/397-action-view-walkthrough
http://www.alexa.com/siteinfo/railscasts.com

Empir Software Eng (2017) 22:1478-1507 1487

RQ1: What kinds of program knowledge are captured in screencasts on YouTube?
Developers create screencasts and host them on YouTube to convey and share technical
information. We found a variety of different goals motivating the screencasts we analyzed.
The main goals we observed from the initial 20 YouTube videos we analyzed in Phase 1
are shown using bold text and discussed below. We refer the reader to video examples
(screencasts are denoted as V# for the YouTube videos (see Table 1) that demonstrate the
goals we identified through our analysis. These goals and the videos where they occurred
are summarized in Table 3.

Demonstrating the Application of Design Patterns YouTube screencasts are some-
times used to demonstrate how repeatable design patterns are included as part of the
implementation of a solution. In the V02 screencast, the narrator stated that they made the
video to demonstrate how to implement responsive design principles in the programming
language Lua. They also wanted to share language-specific knowledge through a screen-
cast. The video demonstrates design principles that rely on an understanding of the Lua
programming language through a real-world example. The video approach allows the narra-
tor to demonstrate the implementation of these design patterns while executing the finished
product.

Explaining Data Structures Other technical screencasts hosted on YouTube allow nar-
rators to explain language-specific data structures. The goal of these videos is to impart
technical knowledge about a specific language as opposed to implemented programs or pat-
terns. This technical knowledge helps the audience utilize and understand the programming
language. For example, V10 includes a walkthrough of the Ruby programming language.
In this video, the narrators discussed the low-level implementation of Ruby data structures.
The video shows the language’s internal structure and commonly used components. In order
to create these technical screencasts, the narrators need a deep understanding of the subject
matter.

Table 3 The types of technical information shared by the YouTube videos we analyzed in Phase 1 to answer
RQI, as well as the YouTube and RailsCasts videos we analyzed in Phase 3 to answer RQ5

Types of Program Knowledge Captured in Screencasts:

YouTube RQ1 YouTube RQ5 RailsCasts RQ5
Sharing Customization Knowledge V1, V5, V11, V21, V22, V23, R319, R395,
V12,V15,V16 V24, V25, V26, R397
V27
Sharing Development Experiences V1, V2, V3, V21, V22, V23,
V7,V8, V11, V24,V25, V26,
V19, V20 V27
Sharing Implementation Approaches V3, V4, Ve, V21, V22, V23, R231, R232,
V9, V13, V14, V24,V26, V27 R299, R319,
V17, V18 R395, R397
Demonstrating the Application V2,V5 V21, V22,V24,
of Design Patterns V25, V26, V27
Explaining Data Structures V4,V10 V23,V24 R239

@ Springer

1488 Empir Software Eng (2017) 22:1478-1507

Sharing Implementation Approaches Narrators use screencasts on YouTube to share
unique problem-solving solutions with developers that may face similar issues. For exam-
ple, V18 presents an implementation of an artificial intelligence animation behavior using
JavaScript and HTML. This video serves as both a demonstration and documentation of
the narrator’s approach. By sharing implementation approaches, the narrator discussed how
they developed a solution to a particular problem. In another example, VO3 demonstrates
a custom game launcher developed by the narrator for the popular Minecraft game. The
narrator was proud of their program and wanted to share the approach with the Minecraft
community. They also explained the challenges they faced creating the user interface.

Sharing Development Experiences In eight of the YouTube videos analyzed in Phase 1,
narrators shared insights on their development experiences and the challenges encountered
along the way. Their experiences became part of the narrative tied to the physical code and
its evolution. The narrators described ways to expand the program. This included features
that the narrator had not yet implemented or ways of improving performance. For example,
V19’s narrator explained the following while executing the program in the screencast: “/
didn’t use multithreading. At first I didn’t have time for it and then I didn’t feel like it was
quite necessary.” Here the narrator acknowledged they didn’t have time to implement a
feature. They also recognized that multithreading may improve performance. This provides
context to the audience about the program’s development history.

Sharing Customization Knowledge Five of the YouTube screencasts from Phase 1 show
how programs can be customized. The narrators explained enough of the program function-
ality and development details (such as pertinent features and variables) so that one could
repurpose or customize the code. For example, V11’s narrator showed how developers could
change the sound files used by the program they discussed in the screencast.

In summary, we observed many different goals in the YouTube screencasts analyzed in
Phase 1, including demonstrating a unique approach to a problem and showing the audience
how they could customize a program. These walkthroughs forced the narrator to explain
their understanding of a program and how they developed its features.

RQ2: How are YouTube screencasts used to document code? For RQ2, we investi-
gated how narrators portray code documentation through video. For this analysis, we coded
the techniques the narrators used in the screencasts, and then grouped the coded tech-
niques into high-level themes that represent the key approaches used for documenting code.
These key approaches (themes) are shown below using bold text, and for each approach,
we include the related coded techniques in italics. We summarize the approaches, corre-
sponding coded techniques, and show more details on their screencast occurrences in the 20
YouTube videos from Phase 1 in Table 4.

Goal Setting In nearly all the YouTube screencasts in our sample, we observed that narra-
tors started by verbally defining the video’s purpose, which was followed by an explanation
of the limitations (i.e., the scope) of the video and its intended audience. Lethbridge et
al. noted that developers will avoid reading documentation that is “complex and time-
consuming” (Lethbridge et al. 2003). Consequently, it is not surprising that a video’s
purpose was explicitly stated first. This allows a viewer to quickly judge if a video applies
to their current task.

Live Editing to Showcase Code Changes A key advantage of screencasts over static
documentation is that the audience can visually follow changes made to the code. We

@ Springer

Empir Software Eng (2017) 22:1478-1507

1489

Table 4 This table summarizes how the narrators of the YouTube videos used screencasts for documenting

their code (RQ2)

Theme

Coded Techniques

YouTube Videos

Goal Setting

Live Editing to Showcase
Code Changes

Demonstrations to Show-
case the Execution of the
Program

Referencing Different
Levels of Detail

Browsing the Technical
Environment

Provisioning of Additional
Resources

Mapping Execution to
Code and Linking Code to
Code

Explaining the limitations (i.e., the
scope) of the video and its intended
audience

V1, V2, V3, V4, V5, V6, V7, V§,
V10, V11, V13, V14, V15, V16,
V17, V18, V20

Verbally defining the video’s purpose

Making live code changes

Changing control flow or variables
Introducing bugs

Executing the program to demon-
strate features to the audience

High-level code overview

Medium-level focus on sub-block
of code

Low-level focus on a single line of
code

Pointing out element identifiers

Referencing return types,
parameters

Referencing line numbers

Making use of file explorers
Explaining the program structure

Explaining the technical environ-
ment (including libraries, servers)

Webpages

Diagrams

Source code
Visual annotations
Connection between the demon-

stration and code

Linking code segments together

V1, V2, V3, V4, V5, V6, V7, V8§,
V10, V11, V13, V15, V16, V17,
V18, V19, V20

V2,V3,V5,V6,V7, V8, V10, V11,
V13, V14, V19, V20

V2,V13,V19, V20
V2,V3,V5, V13, V15, V20

V1,V2,V3,V5,V6,V9, V13, V16,
V17, V18, V19, V20

V1, V2, V3, V4, V5, V6, V7, V§,
V9, V10, V11, V12, V13, V14,
V15,V16,V17, V18, V19, V20

V1, V2, V3, V4, V5, V6, V7, V8§,
V9, V11, V12, V13, V14, V15,
V16, V17, V18, V19, V20

V1, V2, V3, V4, V5, V7, V8, V9,
V10, V11, V12, V13, V14, V15,
V16, V17, V18, V19, V20

V1, V2, V3, V4, V5, V6, V7, V8,
V9, V10, V11, V12, V13, V14,
V15,V16, V17, V18, V19, V20
V1, V2,V3,V4, V5, V7, V8, V10,
V12, V13, V14, V15, V17, V18,
V19, V20

V1, V4, V5

V1,V2, V4, V5, V6, V7, V9, V11,
V13, V17

V1, V2, V4, V6, V7, V10, V13,
V14, V16, V17, V18, V20

V1, V2, V3, V4, V5, V6, V8, V10,
V11, V12, V13, V14, V16, V17,
V20

V1, V2, V4, V6, V10, V11, V13,
V16, V19, V20

V16, V17,V18

V1,V2, V4, V6, V9, V10, V13,
V18, V19, V20

V1, V3,Ve, V10, V11

V2, V5, V6, V9, V13, V15, V16,
V17, V18, V19, V20

V1,V2,V3,V5,V7,V9, V10, V11,
V12, V13, V15, V16, V17, V18,
V19, V20

@ Springer

1490 Empir Software Eng (2017) 22:1478-1507

observed that live code changes were performed in most of the YouTube videos in our sam-
ple. More specifically, we observed developers making changes to a program’s control flow
or to specific variables in four videos. We also saw V13’s narrator making live code changes
to introduce the audience to examples of increasing difficulty.

Narrators also introduced bugs into the program in six of the videos, either intentionally
or unintentionally. For example, VO5’s narrator created an error and explained to the audi-
ence how to read the error output. In V20, an error occurred after the narrator renamed a
variable and they used this unexpected situation to turn the session into a live debugging
exercise. Live editing also offers the audience a glimpse into the narrator’s coding style, or
it can be used to witness changes to the output of a program as code changes are made.

Demonstrating the Execution of a Program Screencasts allow the audience to witness
“live” executed code. The majority of the screencasts in our sample executed a program to
demonstrate features to the audience.

More specifically, narrators used demonstrations as an opportunity to explain software
functionality in six videos. We observed that demonstrations were also used to explain spe-
cific use cases and data flows within a program in 4 of the 20 videos. In these situations,
narrators were mapping references to the code, the executable, and external resources to
share information. By connecting these different sources, they shared their understanding of
the program. The approach used in screencasts to showcase program execution also allows
the audience to see “the properties of a running software system” (Biggerstaff et al. 1993),
and through screencasts, narrators show both program output and code, allowing the viewer
to create mental mappings between output and code (Lee et al. 2008).

Referencing Different Levels of Detail We observed narrators describing features and
components using various levels of detail. Features that were distributed across many files
were summarized by the narrators in all but one of the videos using high-level descriptions.
For example, V02’s narrator described how the program handled views: “When the user
successfully logs in, I need to react to it, Cafe Townsend needs to orchestrate something to
happen. That is ... show the employee view. It doesn’t tell the employee to load anything, it’s
assumed that view will take care of all it needs to handle.”

Narrators provided high-level overviews of program structure and features, but also
described code in terms of functional groupings. We coded references to blocks of code,
such as a logical sequence that spanned multiple lines, at a medium level of abstraction.
Narrators used this level of detail in 19 of the videos to quickly summarize sections of code
while still providing some technical details. For example, V03’s narrator briefly described
the control flow of four lines in an if statement: “First I want to make sure that the directory
exists for where we are going to install [the launcher].”

In contrast, when narrators referred to in-line, language-specific information, these were
coded as low level—the narrators in these videos referred to one or more low-level details.
Frequently this meant reading the code aloud, verbatim. For example, with respect to the
following source code:

private Room currentRoom = null; €8

V01 read this aloud as follows: “There is also a current room property with the data
type of room and it’s set to null.”

Within these low-level descriptions, narrators would reference specific line numbers or

mention element identifiers and explain their functionality to the audience. For example,

V04’s narrator picked out the variables “Name”, “User” and “Password” to explain how

@ Springer

Empir Software Eng (2017) 22:1478-1507 1491

to set up a connection to a local database. In addition, they highlighted return types and
parameters to provide contextual information about control flow and focus the audience’s
attention on relevant technical implementations.

Browsing the Technical Environment The environment in which a program executes
can be essential to understanding the program itself. We saw narrators in all but three of the
YouTube videos exploring the fechnical environment to give the audience a spatial under-
standing of the supporting libraries or tools needed for the program (e.g., launching and
connecting to a server).

One of the benefits of screencasting is that the narrator is able to provide context for
the development environment, such as how to set up a program, and information about its
structure. In 12 of the videos we analyzed, narrators described where code fit within the
structure of a program using various levels of scope. In 10 of the 20 videos, we observed
the file explorer being used for browsing a project and describing file organization. These
explorations provide context to the audience, allowing them to establish links between code
and program features (Sugar et al. 2010).

Provisioning of Additional Resources Screencasts exist as documentation accessible to
software developers via the Internet. In the YouTube videos we analyzed, narrators incor-
porated other forms of documentation, such as webpages, for audience members to find
additional documentation in 10 videos, and diagrams to provide a visual aid in 3 videos.

Source code was also referred to in 8 of the 20 screencasts. It was provided to the audi-
ence as a working example that they could manipulate on their own. A notable exception to
this was VO03: the narrator explained how they specifically did not make their source code
available.

To fix errors and share links, the narrators of 5 videos used YouTube’s visual annotation
feature. We also observed two narrators (of V16 and V20) supplement existing text-based
documentation with screencasts.

Mapping Execution to Code and Linking Code to Code A benefit of screencasts
is that they allow narrators to walk the audience through source code and execution. We
observed 11 narrators make connections between the execution and the code to show the
audience where program features resided. By linking together code elements and project
structure, 16 narrators also built up the audience’s understanding of multiple segments of
code and explained their relationships.

Linking segments together allows developers to connect concepts within the program.
Through mapping, developers move between low- and high-level explanations. The work of
Von Mayrhauser and Vans refers to this cross-referencing as “relating different abstraction
levels...by mapping program parts to functional descriptions” (Von Mayrhauser and Vans
1995). By linking beacons (Brooks 1983), narrators navigate the program’s code.

RQ3: What motivates developers to create screencasts on YouTube? In the sec-
ond phase of our study, we interviewed developers who created and distributed screencasts
through YouTube. From our interviews, we found that developers create screencasts to gen-
erate an online identity, to promote themselves, to help them learn, and to give back to
the community by sharing knowledge with others. Developers also create screencasts as an
alternative to blogging. We use quotes from the interviews to demonstrate these motiva-
tional themes, referencing specific interviewees using P#. We summarize the motivations
and indicate which interviewees shared these themes with us in Table 5.

@ Springer

1492 Empir Software Eng (2017) 22:1478-1507

Table 5 This table summarizes the interviewees’ motivations for creating screencasts

Why do Developers Create Code Screencasts? Interviewees

To Build an Online Identity P05, P06, P07, PO8

To Promote Themselves P03, P04, P05, P07, P10
As a Learning Exercise P02, P03, P07

To Give Back P01, P03, P07, PO8

As an Alternative to Blogging P01, P07, P08, P09

To Build an Online Identity As mentioned in the background literature, developers build
an online identity through online participation, which in turn is associated with their skills
and projects (Dabbish et al. 2012). We observed that YouTube helps developers create an
online identity and build “social capital” (Swart and Kinnie 2003). For example, PO5 made
screencasts to improve their credibility with potential employers: “The biggest impact those
videos had was on credibility. The fact that they exist was a sign that I'm serious and I should
be taken seriously.” Screencasts require time and effort to create. By creating these artifacts,
developers codify their knowledge and establish themselves as being knowledgeable in an
area.

To Promote Themselves/Others Once developers have created an identity, they put it
to work for personal gain. The literature shows that developers experience positive benefits
(e.g., finding jobs) from building their online identity in developer social networks (Singer
et al. 2013). Developers promote themselves by creating an identity tied to a set of skills.
They also benefit by curating and sharing knowledge resources with others (Treude et al.
2012). Four interviewees also described how they used YouTube to promote their companies
or products, not just themselves.

In our study, we also found that interviewees used YouTube to promote themselves for
personal or financial gain. Four interviewees mentioned this theme. For example, P10 began
posting their videos on Udemy as a way to make money. But through YouTube, they reached
a bigger audience than with the closed, paid model of Udemy. P10 spoke of their experience
when they posted their videos on YouTube: “It went wild. Like I got tens of thousands
of people viewing these videos and sending me personal messages about how amazing the
course is and they want more. .. and I have a lot of blog followers now, and I have a couple
thousand YouTube subscribers from thirty.”

P06 published a game to an app store and wanted to share their experiences with other
developers. They described how, as a sole developer, they cannot “outspend bigger compa-
nies, but you can out-teach them in a way.” They put their screencast on YouTube to create a
relationship with their audience that they felt would benefit them financially: “And teach-
ing people builds trust like I said and you're kind of giving them something for free in a
sense where that’s a nice thing and then they feel like they know you. It’s a much more
natural relationship with your audience.”

As a Learning Exercise Four of our interviewees discussed how developers create screen-
casts to better understand a topic. For example, PO1 used screencasts to improve their skills
every week: “I just open up the Blender specs and see what developers were working on,
what was new, what people might have some issues with. I figure out how to do it on my
own and then make a tutorial on it.”

@ Springer

Empir Software Eng (2017) 22:1478-1507 1493

Using a resource that was openly available online, PO1 focused their screencasts on new
developments in the Blender community. They identified not only changes to the technol-
ogy, but taught themselves how to adapt to those new changes. They gained insights, which
they then shared in their screencasts.

Other interviewees used screencasts as a way to teach themselves new material. For
example, two interviewees described feeling more confident in their understanding of the
material after creating a screencast. PO7 used screencasts as a way of testing themselves on
the material: “I mean in creating it you have to know something well enough to articulate
it. So I'll record myself ... and I'll watch it and I'll say ‘dude I don’t know what I'm talking
about’, so I'm going to go research again ...”

This experience of learning from sharing through social media is not isolated to video
channels. Other researchers have found that knowledge workers who blog about their pro-
fession feel that “they have more expertise... than those who do not blog” (Porter et al.
2007). Similarly in the educational literature, creating a blog or screencast forces students to
use their “critical thinking, producing and publishing skills” to reflect on their experiences
within a topic (Richardson 2010).

To Give Back We found that developers make videos to document what they wished they
had known before they started a task, which four interviewees mentioned. Research on how
developers use Twitter revealed that developers share their experiences as a way to “spare
others from having to go through the same discovery process” (Singer et al. 2014). Sharing
knowledge through social media is done not only to benefit the developer and their identity,
but also to distribute knowledge and contribute to a larger community (Adamic et al. 2008).

Three of our interviewees were teachers and two of them spoke of how they started creat-
ing videos to help students in their classes. PO3 reflected on their development experiences
and created content that addressed the problems they encountered while learning: “I kind
of wanted to package that nicely and deliver it to people who are where I used to be last
year, working on my thesis projects, and were like ‘if only I had known’.” This desire to
help others has been shown in other literature where developers contribute knowledge with
no expectation of direct compensation (Lindvall and Rus 2002) and share information with
altruistic motivations (Levy 2009).

As an Alternative to Blogging Several of our interviewees said they produced screen-
casts instead of blogging, a popular activity with many developers these days—three
interviewees mentioned that they found creating screencasts easier than writing. Three inter-
viewees also reported having a personal preference for learning from video instead of text,
as P03 stated: “If I had the choice to watch a video, I'll definitely watch the video. It’s way
faster and a better, smoother learning curve.”

RQ4: How do developers produce screencasts for YouTube and what challenges
do they face? This research question concerns developer screencast production processes.
Through the interviews, we gained the following insights (in bold text) into how developers
prepare, record, and edit their screencasts. These techniques are summarized in Table 6.

Preparing the Screencast Interviewees spoke of the importance of organizing their
thoughts and sources before recording a screencast. Nearly all interviewees, with the excep-
tion of P03, discussed using an outline or script to gather their thoughts. For example, P06
noted: “I did write... basically just an outline, like a Markdown outline, with headers and

@ Springer

1494 Empir Software Eng (2017) 22:1478-1507

Table 6 This table summarizes the intervieweeh techniques for producing screencasts

How Do Developers Produce Subtopics Interviewees
Code Screencasts?

Preparing the Screencast
Used an Outline PO1, P02 ,P04, PO5 ,P06,
P07, P08, P09, P10
Recording the Screencast

Importance of Breaking Clips P03, P04, P05, P06

into Short Segments

Debugged live P01, P08, P10

Post-production

Edited Their Screencasts P01, P04, P05, P06, P07,
P09, P10

Did Not Edit Their Screencasts P02, P03, P08

Stressed the Importance of P04, P05, PO7, P10

Production Quality

Frustration with Software P01, P04, P06, P07, P08,
P09

sub-points and then I didn’t actually even end up referencing it. It was more just the thing
where I wrote it all out, so then I had all my thoughts organized.”

The preparation stage consisted of the creators identifying key points for their videos and
gathering materials for recording. Three interviewees described writing or finding existing
code for their screencasts, as well as gathering pertinent images.

The interviewees’ descriptions of the planning process fit with other research on the
topic, such as using outlines as planning tools (Sugar et al. 2010). Some research suggests
that the planning stage is the most important in the screencast creation process as it forces
the creator to focus their ideas and goals (Mohorovicic 2012). Screencast creators also need
to tailor videos for their audience through the planning stage (Oud 2009).

Recording the Screencast When recording videos, our interviewees used a wide variety
of screen capture tools, such as Quick Time, Camtasia, and Screenflow. Other software was
mentioned for manipulating audio, such as Astro Effects.

Four interviewees stressed the importance of splitting clips into short segments when
recording. This seemed to be for two reasons: it limited the possibility of mistakes (which
would require a retake), and it forced the creators to articulate their ideas clearly and quickly.
The literature points to the importance of focused, short screencast videos for learning (Guo
et al. 2014; Oud 2009). Since screencasts are not searchable, short screencasts help the audi-
ence locate information (Oud 2009). Therefore, this practice benefits both the screencast
creator and the audience.

Interviewees also stressed the importance of good presentation skills while recording, as
P10 mentioned: “I make a strong effort to have good audio recording equipment, but I also
speak really clearly, and I try to communicate my ideas so that they’re really easy to listen
to and to follow along.”

Speaking clearly when recording is important for screencasts (Mohorovicic 2012), but
screencast narrators who speak quickly may be perceived as more energetic and engaging
by the audience, which can increase audience enjoyment (Guo et al. 2014).

@ Springer

Empir Software Eng (2017) 22:1478-1507 1495

Post-production After finishing an initial recording, interviewees took time to edit their
screencasts: 7 of the 10 video authors told us they edited their work to improve the quality of
their videos. The editing actions ranged from adding effects, to improving and augmenting
the audio. PO1 applied a lengthy post-production process to their screencasts: “I’ll come
over to the audio and spend two hours just combing through getting rid of clicks.”

Of those who edited their work, four interviewees reported placing a high value in the
production quality of their screencasts. P10 shared a story of how a man with a hearing
disability was able to understand his screencasts because of the audio quality: “It was really
cool to know that my courses were also accessible to disabled people simply because of the
effort I put into the quality.”

A minority of the participants (only three) said they did not do any editing and simply
watched their videos for clarity before putting them on YouTube, as PO8 noted: “I have full
respect for the people who actually go in and edit their video, because that to me is just so
painful. I find it quicker just to do a good take.”

A common theme was the participants’ frustration with the tools they used to create
videos—this was mentioned by six participants. Sources of frustration included poor edit-
ing and recording software, slow upload times, poor video quality, as well as adjusting their
videos to different screen resolutions. Three interviewees reported that they spent the most
amount of time in post-production improving the quality of their work. Though many differ-
ent tools were used in the sample, none of them were found to be ideal by our participants.
The majority of people we interviewed reported doing some form of editing as a quality
measure.

RQS5: How do screencasts hosted on YouTube compare to screencasts hosted on a
professional platform? To answer RQS5, we set out to compare the key characteristics of
YouTube screencasts with more professionally made screencasts on a similar topic hosted
on a dedicated website. To do this, we selected a set of seven videos from the popular
RailsCasts site (we use R# to refer to specific RailsCasts videos below, see Table 2) and
compared them to an additional seven screencasts about Ruby on Rails hosted on YouTube
(Table 1 lists the additional videos for this phase).

As mentioned previously, to code this set of Ruby on Rails videos, we applied the codes
that emerged from our Phase 1 analysis of YouTube videos. We were interested in learning
if the types of knowledge shared were similar across the two platforms (that is, to revisit
RQ1), as well if the approaches used to document Ruby on Rails code were similar (that is,
to revisit RQ2). We also wished to determine if there were other differences or similarities
we could see in terms of the platforms and the features they offered.

Comparing the two platforms for hosting Ruby on Rails screencasts All of the
RailsCasts videos started with a short overview of how to download the respective source
code from the command line via Git, as well as a description of what was going to be
covered in the screencast. As mentioned in Section 3, the RailsCasts videos we analyzed
were created and narrated by the RailsCasts owner, Ryan Bates.

The RailsCasts site was specifically designed to showcase developer-focused screen-
casts. Every screencast is accompanied by source code, an “ASCllIcast” (a RailCasts
video transcribed into text, similar to a blog), and code examples. Showing examples,
such as commands for the terminal, makes it easier for the audience to copy items into their
local environment. Compared to YouTube, the majority of RailsCasts videos can only be
accessed with a paid subscription. However, RailsCasts uses YouTube to share free limited
previews of paid content. RailsCasts also allows users to easily download episodes. While

@ Springer

1496 Empir Software Eng (2017) 22:1478-1507

this can be done with YouTube, it requires extra plugins or steps. This makes the RailsCasts
videos more accessible off-line.

The RailsCasts videos we analyzed had links to source code, whereas only a few of
the Ruby YouTube videos referenced source code and mentioned how to download it. The
RailsCasts narrator frequently mentioned previous screencasts they had created, and in such
cases, there were easy-to-use links to other episodes at the bottom of each screencast.
To capture this new behaviour in our open coding, we added the code ‘“Provisioning of
Additional Resources: Screencasts”, as shown in Table 4.

Finally, as shown in Tables 1 and 2, the RailsCasts videos were all less than 15 minutes,
whereas two of the YouTube videos were longer than 30 minutes. This is not a feature of the
platforms per se, but perhaps there is an expectation that videos on Railscasts are relatively
short.

How do RailsCasts and YouTube compare for documenting types of knowledge
about Ruby on Rails Here we revisit RQ1 to compare the types of knowledge shared on
the two platforms. We do see some differences, at least in this small sample. As mentioned,
overall, the RailsCasts videos were shorter and more focused on a single type of knowledge
(see Table 3).

Several of the YouTube Ruby on Rails screencasts we analyzed in this phase shared
development experiences, such as covering general “getting started” topics (like V23, V24,
V26), or were more focused on “data saving” (V21) or “performance” (V24). In compari-
son, the RailsCasts videos were not focused on shared development experiences and instead
tended to cover implementation approaches or sharing customization knowledge.

In one YouTube video that was recorded live (V27), the narrator used the end of the
screencast to answer questions from audience members. Since this behaviour did not emerge
in our analysis of any of the videos in Phase 1, we created a new code, “interacting with the
audience”, for this behaviour. This was not seen in any of the RailsCasts videos or any other
YouTube videos analyzed in the third phase.

How do RailsCasts and YouTube compare in terms of how developers share
knowledge about Ruby on Rails through screencasts In terms of how developers use
screencasts to document code (RQ?2), Table 7 shows that there are many similarities but
also some differences between the RailsCasts and YouTube videos.

The main differences were in how information was provided to the audience and how
people were directed to additional information. First, we saw very little execution of the
source code in the RailsCasts videos. Since the narrator was walking through the Ruby on
Rails source code, the focus was on the implementation of classes and libraries.

Secondly, while the sole RailsCasts narrator live coded to show how to use Ruby on Rails
code, they did not introduce any bugs into the code nor did they change the control flow of
the program. However, this could be the style of this one narrator rather than a difference
between the two platforms.

Thirdly, compared to the YouTube set, the RailsCasts videos were visually minimal-
istic. The most number of windows ever displayed to the audience was two: an IDE file
explorer and the source code window. In the YouTube Ruby on Rails screencasts, the source
code was sometimes hard to see due to the number of windows open or the small text size.
In the RailsCasts videos, there were no instances of diagrams or visual annotations. The
narrator focused on the source code, terminal, and less frequently, on a file explorer window
or webpage—any source code and webpages were linked under each RailsCasts video.

@ Springer

1497

Empir Software Eng (2017) 22:1478-1507

S6€d ‘1€2d

L6€Y ‘S6£d
‘6628 ‘6€Td ‘€T ‘1€2d

L6€Y ‘S6€Y ‘61€9
‘66 ‘6T ‘T€TY “1€2d

L6EY ‘S6€d ‘61€d
‘662 ‘6£7Yd ‘7€ ‘1€2d

L6€Y ‘S6£d
‘66Cd ‘6T ‘T€TY ‘1€Td

L6EY S6€d ‘61€d
‘662 ‘6£7Yd ‘7€ ‘1€2d

L6EY “S6£d

L6€Y ‘S6€d ‘61€d
‘662d ‘6£TYd ‘€T ‘1€Td

L6EY “S6€d ‘66T
‘6€Td ‘cecd ‘1€Td

L6€Y ‘S6€Y “1€2d

€CA

€CA

LTA ‘9TA TTA

LTA® 9TA
‘STA" VTA “€TA TCA

LTA ‘9TA
‘STA “VTA “€TA ‘TTA

LTA ‘9TA
‘STA VTA “€TA “TTA

9CA
‘STA VTA ‘€TA TCA

LTA ‘VTA

sIoquInu dUT| SUTOUAIRJOY

s1arowrered
‘sodA) urmar Surouaioyoy

SIOTITIUSPT JUSW[Q Jno Junurod

9pod jo aur|
J[SUIS B UO SNOOJ [OAJ[-MOT]

3pod jo
J00[q-qNS UO SNO0J [OAJ[-WINIPIIA

MITAIOAO IPOD [IAI-YSTH

90UQIpNE A} O SAINJBIJ AJRNS
-uowap 03 weidoid ay) Sunnooxyg

sSnq Suronponug

SO[qELIEA JO MO[} [o1u0d SurSuey)

Sa3uBYD 9p0d JAI[SUDRIN

osodind

S,09pIA Ay Suruyyep A[[eqloA
douarpne

PopualuI sII pue 0opta ay) Jo (adoos
ay “o'1) suoneywiy Yy Sururejdxg

reled
JO S[9AQT JUAIOHJI SUIOUAIJY

wer3o1d Y} Jo UOHNIAXF
JY) 9SLOMOYS 0) SUOTIEISUOWS(]

saguey)
9po)) aseomoys 0) SunIpg Al

Sumeg reon

SOAPIA SISEDS[IRY

SOOPIA QNI NOx

sonbruyoa], papo)

QwayJ,

(ZOY Sunsiadl) apod

S[TEY U0 AQNY JUSWNIOP 0) $ISLIUARIVS asn s1odojadp moy aredwiod 0) pazA[eue 1M Jey) SOIPIA SISE)S[IEY PUB SOIPIA QNI NOX Jo uosLredwod ay) SMoys a[qe) SIYL, L d[qeL

pringer

N

Empir Software Eng (2017) 22:1478-1507

1498

L6EY ‘S6£d
‘6628 ‘6€Td ‘€T ‘1€2d

Soed ‘01€y

L6€Y ‘S6€d
‘61¢d ‘6£TY ‘1€2d ‘6124

L6EY “S6€d
‘61€Y ‘6£7Y ‘€T ‘612d

61€d ‘6678 ‘6£TY ‘6174

L6€Y ‘S6€Yd ‘1€Td

L6cd
‘G6€d ‘6£7Y ‘TETY ‘1€2d

L6€d
‘66€d ‘66T ‘6£TY 1€Td

LTA

LTA 9TA "STA

VA

LTA “STA “€TA “TTA

9CA

LTA “TTA

LTA ‘9TA “€TA “TTA

QouaIpny Ayl PIm FunoeIou]
19132303 sjuaw3as 9pod Jupur]
9pOd pueE UoNeNs

-UOWIP Y} UIIMIPQ UOTIIAUUOD)
SUOTJBJOUUY [BNSIA

9poD) 2210

SISBOURIOS

sweidei(q

saSedqom.

(S19AI9s ‘soLIeIqI] Surpnjour) juow
-UOIIAUD [eJTuydd) Ayl Sururerdxyg

armonns weidoxd oy Sururerdxg

s1o10[dxa (1} JO asn JuBeA

Q0UAIPNY Y} YPIM SunorIU]

9poD
0] 9po)) Juryury pue apod
0] uonnooxyg Surddepy

S92IN0SAY
[eUOnIPPY JO SUTUOTSIAOIJ

JUSWIUOIAUF]
[eoruyod], oy Sursmorg

SOAPIA SISEDS[TEY

SOAPIA AQNLNOX

sanbruyoa], papo)

Qway,

(penunuod) £ 9[qeL,

pringer

NS

Empir Software Eng (2017) 22:1478-1507 1499

5 Discussion

In this section of the paper, we discuss our results to date, noting that our findings are
preliminary as this is an exploratory study in an emerging field. Nevertheless, we are able to
suggest some best practices gleaned from the interviews with screencast creators and from
our examination of the videos hosted on YouTube and RailsCasts. This is followed by a brief
discussion of how screencasts play a role in the socio-technical ecosystems that underlie
today’s software projects. Although our discussion around the impact of screencasts on a
community of practice is speculative, we share these initial insights as we believe this points
to some interesting future work. Finally, we discuss the limitations of using screencasts as
documentation that emerged from our study.

5.1 Screencast Best Practices

Based on our study, we propose a set of best practices for developers wishing to create
screencasts. We draw from our interviews with screencast creators (interviewees were asked
what they thought were good and bad characteristics of screencasting), the literature, a cur-
sory analysis of the comments from watchers (as many provided feedback to the videos
creators), and our analysis of the screencasts from YouTube and RailsCasts.

1) Design screencasts that are short and sweet In the set of YouTube videos we ana-
lyzed, some screencasts were over an hour long, whereas all of the RailsCasts videos we
studied were at or under 15 minutes in length. Four interviewees stressed the importance
of breaking screencasts into shorter segments in the interest of time. Our interviewees felt
that short clips are important because they make editing easier and that sitting through an
hour-long clip can be overwhelming for the audience, as P02 mentioned to us: “I’'m sure
I’ve been guilty of it. But that’s definitely something that when I'm watching a video, if I got
the point in the first few seconds, I really don’t want to have another three minutes of the
guy kind of explaining the same thing over and over again.” Recent related work by Pon-
zanelli et al. found through a survey that watchers of screencasts “would either try to scroll
it to seek the relevant information (47 %), or give up to find alternative sources (53 %)”
when a screencast was too long (Ponzanelli et al. 2016) further justifies the need for shorter
screencasts.

2) Stay on topic Five interviewees discussed the importance of not rambling and stay-
ing on topic. The educational literature suggests minimizing memory load when creating
screencasts (Oud 2009) and not overwhelming the audience with too much information. In
the RailsCasts sample, we saw the author frequently link to other screencasts. These point
audience members to additional resources they can use, but also limit the scope of the
current screencast.

3) Show by doing As discussed in the findings to RQ2, nearly all of the videos in the
YouTube screencast sample executed the program under discussion. While the RailsCasts
sample did not execute the code, the narrator did show how to write source code using the
classes or libraries under analysis.

Audience members need to make connections about the expected purpose of the source
code featured in a screencast. According to Brooks, executing code allows the audience to
create mappings between the code and the problem it solves (Brooks 1983). Previous work
also suggests that it provides context and sets audience expectations as to what the program

@ Springer

1500 Empir Software Eng (2017) 22:1478-1507

does (Oud 2009). Though code that does not produce easily recognizable output can still be
demonstrated through live coding for context.

4) Strive for high-quality screencasts All of the videos in both screencast samples con-
tained narration. Interviewees stressed the importance of being able to understand the
person speaking in the screencast.

As previously mentioned, the RailsCasts sample was visually sparse compared to the
YouTube sample. Screencast creators can help their audiences by minimizing distractions,
both audio and visual. Surprisingly, because of text size or a lack of clarity, it was difficult
to read the source code on the screen with a number of screencasts in our YouTube sample.
Two of the watchers of the YouTube content even requested higher definition versions of
the screencasts (V5, V14). Readable source code is important for these kinds of videos.

Other quality issues relate to more than the videos. For example, authors should ensure
that included resource links are robust, as one of the watchers of V11 mentioned:

“Hey man, good job on the tutorial, it really helped. Your link to your website is not
working FYI. Is there a link I can go to and read over the code or a source that would
help me learn more about it? Any feedback would be appreciated. Thanks.”

Videos should also be well paced and well structured and authors should not jump
around too much, as a watcher of R397 mentioned:

“I love your videos, however, this video and even the controller walkthrough were
extremely fast and jumped around too quickly. I just couldn’t focus on what you were
saying. It seemed like I was just trying to figure out what directory you were in the
entire time and not paying attention to the code.”

Executing the code can be helpful, but at the same time, if the audience has to wait for
something to compile or run, they may lose concentration, as a watcher of V19 mentioned:

“Thank you, it worked well, besides the waiting part.”

5) Plan ahead As discussed previously, interviewees described using a planning mech-
anism to organize their ideas. Planning helps the screencast creator focus their goals and
allows them to reflect on the audience’s needs. Research suggests that this is the most
important stage when producing a screencast (Mohorovicic 2012). Planning also helps tai-
lor content for the audience’s “level of knowledge” (Oud 2009). Indeed, one of the watchers
of R397 complained about this very thing:

“I am not sure which purpose the walkthroughs serve though. They are very generic,
moreover experienced rails devs can read the code and figure this stuff out. Novice
developers will feel lost anyway.”

Previous work suggests that noise—or confusing information—be filtered out at this
stage (Oud 2009). In the planning stage, screencast creators should focus on defining a
logical path to follow through the source code. This will help the audience with their mental
map of the program and execution flow as the screencast navigates through the project’s
structure. This step also allows the screencast creator to plan what resources to provide the
audience, such as source code and webpages, and where to include links to these materials.

6) Provide the source code As mentioned in the previous step, screencast creators should
think about how they will provide source code to the audience. All of the RailsCasts

@ Springer

Empir Software Eng (2017) 22:1478-1507 1501

screencasts contained additional source code to complement the video. Four of the YouTube
screencast creators we interviewed also stressed the importance of providing source code to
the audience. Many YouTube screencasts included links to source code through the YouTube
description. From the literature, it is known that “learning enough to apply new knowledge
usually requires active engagement or practice in a realistic context” (Oud 2009). The source
code provides a real example which the audience can use to experiment with and build upon.

Summary These best practices address common concerns that were brought up in the
interviews with screencast creators and from our analysis of YouTube and RailsCasts videos.
They also address a number of challenges that are unique to the developer screencasting
experience. A main challenge for screencast viewers is understanding the source code pre-
sented on screen. By providing the audience with a clear, well-planned video, it is hoped
that these guidelines provide support to future screencast creators.

5.2 Screencasting in a Community of Practice

Modern software documentation exists on the Web in an ever-changing state. It is hosted on
question and answer sites like Stack Overflow (Mamykina et al. 2011), in public reposito-
ries like GitHub (Dabbish et al. 2012), and on Wikis (Treude et al. 2012). Our exploratory
study shows how screencasts hosted on social sites contribute to documentation embed-
ded within the social developer ecosystem. Unlike other documentation methods, many
of which are based on text, screencasts allow developers to share their coding practices
through live captured interactions. Furthermore, screencasts are not an “island”—they are a
cog in either a very structured or loosely connected web of documentation and community
authored resources.

The screencasts we analyzed were situated in socially enabled websites: YouTube and
RailsCasts both have features that support comments from watchers. We performed a cur-
sory analysis of the comments associated with the YouTube and RailsCasts videos in our
sample. This analysis gave us some initial insights into the role comments play in the com-
munity. Many of the watchers gave kudos to the authors of the videos. For example, one of
the watchers of R231 shared how important these videos are:

“Great episode (as always, actually). I would be highly interested in more episodes
like this. I find it really interesting how the internals of Rails work but going through
the code on your own can be quite overwhelming sometimes.”

Indeed, watching these videos can sometimes even promote others to create screen-
casts, as another watcher of R231 commented:

“Plus 1 for Mato’s suggestion of ActiveRecord internals, especially the differences
between Rails 2.3 and Rails 3. Come to think [of it], I should probably get my hands
dirty and do it myself.”

But more than that, the screencast became a place for developers to network with others
in the community and ask for help. Both the screencast authors and watchers asked for help
by posting questions. For example, a watcher of R232 made a plea:

“Any tips for solving problems like this? [provides a link to Stack Overflow question]”

As with previous research that explored how developers use social media, our intervie-
wees reinforced that developers shape their online identity by choosing what content to
share (Singer et al. 2013). This was done for a number of reasons, including altruistic and

@ Springer

1502 Empir Software Eng (2017) 22:1478-1507

commercial motivations. And although they don’t get paid, developers are happy to go out
of their way to help others. However, they do appreciate credit, as the author of V3 shared:

“Sorry it has taken me MUCH longer to do this, but I have posted a link to the code
in the description. Feel free to use this code however you want. I’'m not making any
profit off of it and I feel that anyone should be able to use it as they see fit. If you do
copy my code, be sure and credit me with my hard work!!”

But there is a limit to what developers will do for one another. When someone asked for
even more help, the author of V3 replied:

“As a general rule, I don’t help other people code programs unless there is some profit
for me. If you can offer some compensation, such as fair wages for a programmer
(think anywhere from $30 to $300 per hour), then I will write your code for you.”

The majority of watchers that comment on videos seem very eager to show and share
their deep appreciation for the creators of the screencasts, as a watcher of R231 shared:

“Mindblowing. Not enough words for it. This just convinced me to subscribe to watch
all the code walkthrough episodes. Thanks a lot for the great work.”

Finally, we found that developers use YouTube to supplement their activities on other
platforms and to share screencasts. For example, interviewees spoke of how social media
impacted their screencast creation process. Eight interviewees described how being active
on other social media channels provided them with insights for their content. In this way,
interviewees remained aware of programming-related news and events.

These insights are quite preliminary but point to a need for future work on how
screencasts play a documentation role in a community of practice.

5.3 Limitations of Screencasts

It is important to note that there are limitations when using screencasts as a mechanism for
providing documentation to developers. Our interviewees cited the lack of searchability as
a barrier to finding relevant information on video. When searching for content, audience
members are faced with the choice of watching the whole video and hoping that it contains
the information they are looking for, or moving on to a different piece of content. For long
videos, this is not efficient, so shorter videos may be preferred.

Video sharing platforms can help audience members find content by incorporating fea-
tures like search, tags, and metadata supplied by the creator. Tags have been shown to
be useful for helping developers discover and curate software knowledge on sites such as
Stack Overflow (Mamykina et al. 2011). We observed YouTube screencast creators using
metadata to help audience members find content, including linking audience members to
additional resources such as source code and written tutorials. On RailsCasts, tags were
used to organize screencasts into categories and each video included a written description.

The creation of screencasts also poses limitations. As was mentioned by the participants,
recording and editing is not an easy task. For the screencast creator, once they have finished
recording, it may be difficult to re-shoot and add missing information. Two methods that
may help overcome this challenge include source-controlled projects to replicate code, and
web-based development environments that quickly reproduce technical environments and
dependencies.

Finally, a key limitation of using screencasts as documentation is that some forms of
information are more easily digestible as text. Specifically, explicit and formal knowledge

@ Springer

Empir Software Eng (2017) 22:1478-1507 1503

is easier to codify in a written form (Panahi et al. 2012), for example, coding style or
where to place brackets for readability in source code. What screencasts support well is
the sharing of experiences, knowledge of processes, and the practices involved in creating
a specific object. Unlike written information, screencasts provide context into the technical
environment of a developer and the ability to map source code to executable output.

6 Limitations of our Research

A primary limiting factor of this study is the generalizability from our sample of 27 YouTube
videos (20 in Phase 1, 7 in Phase 3), 7 RailsCasts videos, and 10 interviews with YouTube
screencast creators. Just considering YouTube alone, the potential population space con-
tains thousands of screencasts. However, our findings were already well saturated after 20
screencasts in Phase 1 and 10 interviews—they revealed interesting insights and provoke
future research into this phenomenon. Only two new codes emerged when we sampled a
further seven YouTube and seven RailsCasts videos for analysis.

We relied on YouTube as the video source for the first two phases of our study. Intervie-
wees spoke of using other video sharing platforms, so the results of this study may be biased
towards the type of content posted on YouTube. We selected YouTube because of the social
features it offers and its widespread adoption. We next selected RailsCasts for our compari-
son analysis because of its professional level of quality and status within the Ruby on Rails
community. This research only considered videos that were available from the two sites. It
is possible that these factors (i.e., accessibility to content, storage, distribution, choice of
search criteria) may have impacted our findings. However, as a first study, our intent was to
explore how screencasts are used and to pave the way for future work. We discuss some of
these ideas next.

7 Future Work

There are a number of directions to expand this work in future studies. The following themes
focus on creating screencasts for developers and how developers use screencasts to support
software engineering tasks.

7.1 Why and How Developers View Screencasts

While we know that developers publish content on media such as YouTube, we do not know
how and to what extent developers use these videos to support development tasks. We were
able to gain some insights from the comments, but we do not know how many people really
watch these screencasts or how they use them. These questions should be explored through
future studies.

7.2 Tool Support

Our interviewees expressed frustration with the tools they use to produce screencasts. It is
clear that there is room for improvement in screencast tool support, but it is unclear how the
current tools used by these developers hinder or impact the content they produce. While we
found that a variety of tools are being used, none of the tools are seen as ideal by the content
creators. It would be interesting to investigate tools used in professional settings.

@ Springer

1504 Empir Software Eng (2017) 22:1478-1507

8 Conclusions

Through this research, we provided an initial exploration into how and why developers cre-
ate screencasts. In our study of 20 YouTube videos created by developers and 10 interviews
with screencast creators (later supplemented by an additional 7 YouTube and 7 RailsCasts
videos), we identified high-level goals and techniques for creating such screencasts. These
techniques include demonstrations of code, describing code functionality in different ways,
and providing an audience with source code that is integrated with live demonstrations of
the execution of that code.

The screencast creators we interviewed described how they use screencasts to learn, doc-
ument their code, and contribute to their online identity and self-promotion. However, they
expressed frustration with their current tool support.

Through analyzing a set of screencasts from the popular RailsCasts website, we com-
pared the practices and techniques of a paid, managed, screencast platform to YouTube’s
open and ad hoc environment. Our analysis of multiple data sources led us to develop a list
of best practices for screencasts and provided insights into the online developer community
of practice.

The limitations surrounding our qualitative methodology and sample size means that
more work must be done to assess the generalizability of our findings to other screen-
casts. Overall, this work provides a first exploratory study on how developers currently
create video-based documentation for developers. In the future, we hope to explore the
effectiveness of these types of videos for educational and knowledge transfer purposes, and
to study how such videos contribute to improving software documentation and program
comprehension.

Acknowledgments We thank our interview participants for sharing their insights with us, as well as Cas-
sandra Petrachenko, Matthieu Foucault and Alexey Zagalsky for editing support and discussions about our
research.

References

Adamic LA, Zhang J, Bakshy E, Ackerman MS (2008) Knowledge sharing and yahoo answers: Everyone
knows something. In: Proceedings of the 17th International Conference on World Wide Web. ACM,
pp 665-674

Adolph S, Hall W, Kruchten P (2011) Using Grounded Theory to Study the Experience of Software
Development. Empir Softw Eng 16(4):487-513

Azer SA (2012) Can youtube help students in learning surface anatomy? Surg Radiol Anat 34(5):465-468

Biggerstaff TJ, Mitbander BG, Webster D (1993) The concept assignment problem in program understand-
ing. In: Proceedings of the 15th International Conference on Software Engineering. IEEE Computer
Society Press, Los Alamitos, pp 482-498

Brooks R (1983) Towards a theory of the comprehension of computer programs. Int J Man Mach Stud
18(6):543-554

Capiluppi A, Serebrenik A, Singer L. (2013) Assessing technical candidates on the social web. Software,
IEEE 30(1):45-51

Charmaz K (2006) Constructing grounded theory a practical guide through qualitative analysis pine forge
press

Dabbish L, Stuart C, Tsay J, Herbsleb J (2012) Social coding in github: Transparency and collaboration in an
open software repository. In: Proceedings of the ACM 2012 Conference on CSCW. ACM, pp 1277-1286

Dagenais B, Robillard MP (2010) Creating and evolving developer documentation: understanding the deci-
sions of open source contributors. In: Proceedings of the 18th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, pp 127-136

@ Springer

Empir Software Eng (2017) 22:1478-1507 1505

Duffy P (2007) Engaging the youtube google-eyed generation: Strategies for using web 2.0 in teaching and
learning. In: European Conference on ELearning, pp 173-182

Duncan I, Yarwood-Ross L, Haigh C (2013) Youtube as a source of clinical skills education. Nurse Educ
Today 33(12):1576-1580

Ellison NB (2007) Social network sites Definition, history, and scholarship. Journal of Computer-Mediated
Communication 13(1):210-230

Gubrium JF (2012) The Sage handbook of interview research: The complexity of the craft Sage

Guo PJ, Kim J, Rubin R (2014) How video production affects student engagement: An empirical study of
mooc videos. In: Proceedings of the First ACM Conference on Learning @ Scale Conference L@S *14.
ACM, New York, pp 41-50

Krippendorff K (2012) Content Analysis An Introduction to its Methodology Sage

Lankshear C, Knobel M (2010) Diy media A contextual background and some contemporary themes. DIY
media: creating, sharing and learning with new technologies. Peter Lang, New York, pp 1-21

Lee M, Pradhan S, Dalgarno B (2008) The effectiveness of screencasts and cognitive tools as scaffolding for
novice object-oriented programmers. J Inf Technol Educ: Research 7(1):61-80

Lethbridge TC, Singer J, Forward A (2003) How software engineers use documentation the state of the
practice. Software, IEEE 20(6):35-39

Levy M (2009) Web 2.0 implications on knowledge management. J Knowl Manag 13(1):120-134

Lindvall M, Rus I (2002) Knowledge management in software engineering. IEEE Softw 19(3):0026-38

MacLeod L (2015) Code, camera, action!: How software developers document and share program knowledge
using youtube. University of Victoria, Master’s thesis

MacLeod L, Storey M-A., Bergen A (2015) Code, camera, action: how software developers document
and share program knowledge using youtube. In: Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension. IEEE Press, pp 104-114

MacQueen KM, McLellan E, Kay K, Milstein B (1998) Codebook development for team-based qualitative
analysis. Cult Anthropol Methods 10(2):31-36

Mamykina L, Manoim B, Mittal M, Hripcsak G, Hartmann B (2011) Design lessons from the fastest q&a
site in the west. In: Proceedings of the SIGCHI Conference on Human factors in Computing Systems.
ACM, pp 2857-2866

Mohorovicic S (2012) Creation and use of screencasts in higher education. In: 2012 Proceedings of the
35th International Convention on Information and Communication Technology. Electronics and Miro-
electronics. IEEE, pp 1293-1298

Oud J (2009) Guidelines for effective online instruction using multimedia screencasts. Ref Serv Rev
37(2):164-177

Paek H-J, Hove T, Ju Jeong H, Kim M (2011) Peer or expert? the persuasive impact of youtube public service
announcement producers. Int J Advert 30(1):161-188

Panahi S, Watson J, Partridge H (2012) Social media and tacit knowledge sharing: Developing a conceptual
model. World Acad Sci Eng Technol 64:1095-1102

Parnin C, Treude C, Grammel L, Storey M-A (2012) Crowd documentation Exploring the coverage and the
dynamics of api discussions on stack overflow. Georgia Institute of Technology Tech. Rep

Ponzanelli L, Bavota G, Mocci A, Di Penta M, Oliveto R, Hasan M, Russo B, Haiduc S, Lanza M (2016)
Too long; didn’t watch!: extracting relevant fragments from software development video tutorials. In:
Proceedings of the 38th International Conference on Software Engineering. ACM, pp 261-272

Porter LV, Sweetser Trammell KD, Chung D, Kim E (2007) Blog power Examining the effects of practitioner
blog use on power in public relations. Public Relat Rev 33(1):92-95

Réisdnen T, Oinas-Kukkonen H (2008) A system architecture for the 7c knowledge environment. Information
Modelling and Knowledge Bases XIX(166):217

Richardson WWH (2010) Blogs, wikis, podcasts, and other powerful web tools for classrooms, Corwin Press

Singer L, Figueira Filho F, Cleary B, Treude C, Storey M-A, Schneider K (2013) Mutual assessment
in the social programmer ecosystem: An empirical investigation of developer profile aggregators. In:
Proceedings of the 2013 Conference on Computer Supported Collaborative Work. ACM, pp 103-116

Singer L, Figueira Filho FM, Storey M-AD (2014) Software engineering at the speed of light How developers
stay current using twitter. In: International Conference on Software Engineering, pp 211-221

Snelson C (2011) Youtube across the Disciplines : A Review of the Literature. J Online Learn Teach
7(1):159-169

Storey M-A, Singer L, Cleary B, Figueira Filho F, Zagalsky A (2014) The revolution of social media in
software engineering. In: Proceedings of the on Future of Software Engineering. ACM, pp 100-116

Storey M-A, Treude C, van Deursen A, Cheng L-T (2010) The impact of social media on software engineer-
ing practices and tools. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research. ACM, pp 359-364

@ Springer

1506 Empir Software Eng (2017) 22:1478-1507

Sugar W, Brown A, Luterbach K (2010) Examining the anatomy of a screencast Uncovering common
elements and instructional strategies. The Intl Review of Research in Open and Distance Learning
11(3):1-20

Swart J, Kinnie N (2003) Sharing knowledge in knowledge-intensive firms. Hum Resour Manag J 13(2):60—
75

Treude C, Barzilay O, Storey M-A (2011) How do programmers ask and answer questions on the web?: Nier
track. In: 2011 33rd Intl Conference on Software Engineering (ICSE). IEEE, pp 804-807

Treude C, Figueira Filho F, Cleary B, Storey M-A (2012) Programming in a socially networked world: The
evolution of the social programmer. The Future of Collaborative Software Development:1-3

Treude C, Storey M-A (2011) Effective communication of software development knowledge through com-
munity portals. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering. ACM, pp 91-101

Udell J (2004) Name that genre: screencast

Von Mayrhauser A, Vans AM (1995) Program comprehension during software maintenance and evolution.
Computer 28(8):44-55

Wenger E (2000) Communities of practice and social learning systems. Organization 7(2):225-246

YouTube (2016) Youtube watch time optimization tips

Laura MacLeod holds a Master of Science from the University of Victoria.

Andreas Bergen is a PhD candidate at the University of Victoria.

@ Springer

Empir Software Eng (2017) 22:1478-1507 1507

Margaret-Anne Storey is a Professor at the University of Victoria.

@ Springer

	Documenting and sharing software knowledge using screencasts
	Abstract
	Introduction
	Background
	Software Documentation
	The Social Nature of Software Documentation
	YouTube and Screencasts

	Methodology and Research Questions
	Phase 1: YouTube Video Selection and Analysis
	Phase 2: Interviews with YouTube Developer Screencasters
	Phase 3: Analysis of Ruby on Rails Screencasts Hosted on Different Platforms
	Ruby on Rails Screencasts Hosted on RailsCasts
	Ruby on Rails Screencasts Hosted on YouTube

	Findings
	RQ1: What kinds of program knowledge are captured in screencasts on YouTube?
	Demonstrating the Application of Design Patterns
	Explaining Data Structures
	Sharing Implementation Approaches
	Sharing Development Experiences
	Sharing Customization Knowledge
	RQ2: How are YouTube screencasts used to document code?
	Goal Setting
	Live Editing to Showcase Code Changes
	Demonstrating the Execution of a Program
	Referencing Different Levels of Detail
	Browsing the Technical Environment
	Provisioning of Additional Resources
	Mapping Execution to Code and Linking Code to Code
	RQ3: What motivates developers to create screencasts on YouTube?
	To Build an Online Identity
	To Promote Themselves/Others
	As a Learning Exercise
	To Give Back
	As an Alternative to Blogging
	RQ4: How do developers produce screencasts for YouTube and what challenges do they face?
	Preparing the Screencast
	Recording the Screencast
	Post-production
	RQ5: How do screencasts hosted on YouTube compare to screencasts hosted on a professional platform?
	Comparing the two platforms for hosting Ruby on Rails screencasts
	How do RailsCasts and YouTube compare for documenting types of knowledge about Ruby on Rails
	How do RailsCasts and YouTube compare in terms of how developers share knowledge about Ruby on Rails through screencasts

	Discussion
	Screencast Best Practices
	1) Design screencasts that are short and sweet
	2) Stay on topic
	3) Show by doing
	4) Strive for high-quality screencasts
	5) Plan ahead
	6) Provide the source code
	Summary

	Screencasting in a Community of Practice
	Limitations of Screencasts

	Limitations of our Research
	Future Work
	Why and How Developers View Screencasts
	Tool Support

	Conclusions
	Acknowledgments
	References

