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Abstract—Today’s build systems distribute build tasks across
thousands of machines, reusing cached build results whenever
possible. But despite the sophisticated nature of modern build
tools, the core software architecture of the system under build
defines the lower bound for how fast the system can compile.
Long, consecutive build chains or slow individual build targets
can introduce expensive compilation bottlenecks. Further, the
growing complexity of both build systems and software systems
under build makes comprehending, debugging, and optimizing
build performance a significant challenge faced by many software
engineers. We present a design study to describe and help
mitigate the cognitive challenges faced by software engineers
that use modern, cached, and distributed build systems. We
characterize the performance analysis process and identify the
main stakeholders involved, key usage scenarios, and elicit im-
portant requirements for tool support. We propose an interactive
BuildExplorer tool for understanding, optimizing, and debugging
cached and distributed build sessions, justifying our design deci-
sions among alternative solutions. Our novel solution is evaluated
through usage scenario walkthroughs, iterative deployments of
the tool in the field, and a user study.

Index Terms—Build Systems, Build Optimization, Build De-
bugging, Software Visualization, Design Science

I. INTRODUCTION

In today’s fast-paced world, software companies face in-
creasing pressure to rapidly ship new features. Releasing new
versions on a daily or weekly basis has become commonplace,
even for large, complex software projects [1]. For many years,
the major bottlenecks in software development pipelines have
been the build and verification processes [2, 3, 4, 5] and much
effort in research and industry has been dedicated to improving
build tools [1, 2, 6]. Today’s build systems are very different
from the systems of just a couple decades ago: build systems
used to execute build tasks sequentially, while modern build
systems distribute single builds across hundreds of machines in
different data centers, reusing previous build results wherever
possible. Combining a high degree of parallelism and only
rebuilding required elements enables these systems to perform
massive builds in mere minutes—a task that would take several
hours even just a few years ago.

Prominent examples of modern build systems at large com-
panies include Microsoft’s CloudBuild [7], Google’s Bazel [8],
and Facebook’s Buck [9], while smaller open source projects
often rely on more lightweight but similarly sophisticated build
systems, such as Pants [10] and FastBuild [11].

Build tools are a single component of the much larger and
more complex software development process [1, 2], so to gain
any meaningful speed gains, it is not enough to only focus
on tool performance. Cached and distributed build systems
(CDBS) can only improve the overall build time by a fraction
of what is possible if the core architecture of the software
being built does not allow independent tasks to be built in
parallel (e.g., poor modularization, unnecessary dependencies
between targets). In addition, the complexity of these systems
can introduce more bottlenecks in the development process.
While caching and distribution provide huge benefits when
functioning correctly, these systems are extremely hard to
debug when not working as expected. Every internal failure
can easily bring the entire continuous integration and de-
ployment (CI/CD) pipeline to a halt, affecting hundreds of
engineers, and potentially costing thousands of dollars [3].
Debugging build issues can also take a long time and require
considerable effort [12]; meanwhile, the CI/CD pipeline of a
major software product might be broken. Although existing
tools can help identify and correct a variety of common
build errors/failures [13, 14, 15], debugging build performance
regressions or refactoring build architecture requires the engi-
neers performing these tasks to understand the build system,
its decision making process, and how potential changes to
the underlying software architecture will change the tool’s
behavior. Telemetry and tooling that can provide insights and
knowledge into what happened during a build is essential to
help diagnose, debug, and repair build issues [12]. Even basic
build analysis tasks can quickly overwhelm humans; in fact,
Hilton et al. [12] found that troubleshooting build failures and
overly long builds are two of the greatest challenges faced by
developers using CI/CD systems.

In our research, we aim to understand the nature of the
challenges that developers face with distributed builds and
design a tool that can help humans better comprehend and
solve build-related issues. We conducted a field study at a
large software company working closely with the build system
engineers and their first-party customers.

Two research questions guided our study:

RQ 1: What challenges do developers face using modern
cached and distributed build systems?

RQ 2: What tasks require tooling support to help engineers
understand, debug, and optimize complex build sessions?



Fig. 1. CloudBuild in a nutshell. The three high-level phases that all builds
go through: 1) prepare, 2) build and test execution, 3) cleanup.

Although there has been research into reducing build times
by optimizing build systems and automatically detecting basic
code refactorings [16, 17, 18, 19], little research has been
conducted to explicitly address supporting engineers’ cognitive
needs despite the awareness in industry that cognitive support
is a challenge [1, 12]. Although not specifically targeted at
CDBSs, researchers have proposed the use of build architec-
ture visualizations [20, 21, 22] and build code change detection
tools [13, 23] to cognitively support developers performing
complex build-related tasks.

Throughout our research, we found that large software
projects struggle to take full advantage of distributed build
systems due to these challenges and their own underlying
project architecture. Since the problem of understanding cog-
nitive support needs for large distributed builds is not well
understood, we used a design science methodology, deeply
analyzing this real-world problem faced by domain experts
and iteratively designing and validating a solution. Our study
at Microsoft revealed challenges that engineers face in un-
derstanding, debugging, and optimizing CDBS sessions, and
helped develop a deeper understanding of their practices,
needs, problems, and requirements. These insights supported
us as we iteratively designed and developed BuildExplorer.
We validated our proposed solution through usage scenario
walkthroughs, by deploying the tool as it was iteratively
designed in the field, and through a controlled user study.

II. BACKGROUND

We provide a brief overview of how modern build sys-
tems [7, 8] work by referring to the tool that was the focus of
our case study, CloudBuild [7].

There are three high-level phases that all builds go through:
(1) build preparation, (2) build execution, and (3) build
cleanup. When CloudBuild receives a build request, it parses
the dependency structure and produces a build dependency
graph (DG) (see Fig. 1.1). The DG is a directed acyclic
graph, where nodes represent build targets and edges represent
dependencies between targets. Thus, the DG defines the order
in which build targets have to be executed. Once the DG
is constructed, the coordinator starts scheduling individual
build tasks across different machines and CPUs (see Fig. 1.1).
Targets can only be executed if all their dependencies (source
nodes of all incoming edges) were successfully executed. Each
target is associated with a dependency tier, where targets at
dependency tier zero are processed first, and targets having a
dependency tier n have to wait for at least one target in tier
n− 1 to be processed before they can begin execution.

Once the DG is produced, the build and test execution phase
of the build process begins (Fig. 1.2). The coordinator tries
to optimize build times by assigning unblocked build targets
to available builders based on their position in the DG, the
estimated execution time, and the preparation work required.
The wall-clock time spent in the build phase is defined by the
longest time to execute a path of dependent targets. This path is
called the LCP (longest critical path) of the DG—the longest
path in the DG with regard to sequential execution time.
LCPs can vary dramatically between builds due to caching
dynamics and the distributed nature of a build task, which adds
additional complexity when trying to understand builds and
their performance. Before executing each target, CloudBuild
checks if the targets have to be executed or if previous results
can be reused (retrieved from cache). A previous result can
be reused only if the target definition has not changed (e.g.,
no code changes) and if none of its dependencies have been
rebuilt. When all build tasks complete, the cleanup phase
starts (see Fig. 1.3): machine states are reset to ensure build
isolation and final build information is produced.

Understanding build processes (e.g., why targets are ex-
ecuted and not retrieved from cache) is fundamental for
analyzing build sessions. Bazel [8] provides a built-in static
node-link dependency graph visualization, while build tools
such as Maven [24], Ant [25], and SBT [26] rely on user-
driven external plug-ins to provide basic hierarchical node-
link graphs [27, 28], text-based dependency trees [29], and
exportable graph files that can be uploaded to external visual-
ization tools [30, 31, 32, 33]. However, the generated visual-
izations are mostly static, while external plug-in visualizations
lack context. Although not specific to CDBSs, research has
begun exploring the use of visualizations to help developers
reason about their products’ build systems [20, 21, 22].

As CDBSs continue to rise in popularity, we predict that not
having proper tooling to visualize full (or even partial) build
structures and build session executions will become a major
barrier for developers using these complex systems, which we
address in our research. The growing body of research and
tools on build comprehension shows that the problem is not
unique to Microsoft.

III. RESEARCH METHODOLOGY

Our study used a design science methodology [35, 36],
which aims for a deeper understanding of often poorly under-
stood problem spaces. Design science uses problem insights
to guide the design of solutions to mitigate those problems,
and suggests working closely with stakeholders to iteratively
design, develop, and evaluate solution artifacts (such as tools
or processes). The goal of design science research is not just
to capture the nature of the problem being studied and the
justification for the specific solution proposed, but also to
arrive at knowledge that can be generalized to other settings.

For our study, we aimed to characterize the problem do-
main of the challenges that arise when engineers have to
understand, debug, and optimize cached, distributed build
systems. We conducted our study at a software company to



Fig. 2. Overview of our design study and research cycles, based on a diagram by Hevner [34].

inspect a specific instance of the distributed software build
problem, and used our gathered insights from working with
stakeholders to create actionable design requirements for our
proposed solution artifact. We iteratively designed and refined
our solution (in our case, a tool) by evaluating it through
deployments in the field, cognitive walkthroughs, and user
testing. Finally, we wanted to reflect on the requirements we
found and our proposed solution so that others may apply this
design knowledge to other distributed build systems. Fig. 2
provides an overview of the design study methodology we
used to guide our research.

Our study occurred at Microsoft, a large international tech-
nology company that offers a wide range of products and
services. CloudBuild is an internal build system that is part of
Microsoft’s renewed engineering system and is used by many
of their products and services. In total, CloudBuild executes
more than 20,000 builds per day, across more than 500 product
branches spanning more than 15 internal organizations.

We worked closely with the engineering team responsible
for developing, maintaining, and supporting CloudBuild. The
broader CloudBuild team is divided into 5 sub-teams and
counts more than 50 people, including software engineers,
product managers, service delivery engineers, and data ana-
lysts. In the following sections of the paper, we describe the
specific methods we used for gathering requirements (insights
on the problem), and designing and evaluating the solution.

IV. PROBLEM CHARACTERIZATION

To answer our two research questions, we used contextual
inquiry interviews with the CloudBuild team. We identified
common challenges developers face when using CloudBuild,
the main stakeholders that could benefit from improved tool
support, and the data they need to help solve their problems.
Lastly, we defined an initial set of solution objectives to guide
the design and development of BuildExplorer.

A. Contextual Inquiry

Contextual inquiry is a semi-structured interview method for
gaining valuable contextual information in a highly participa-
tory manner [37]. We conducted interviews with six build en-
gineers who were responsible for developing and maintaining
CloudBuild, as well as providing support to other engineers
using CloudBuild. During these semi-structured interviews,
participants were asked about the current state of their build
session understanding, debugging, and optimization, the data

and tooling available, and use cases they felt required further
cognitive support.

After the interviews, we observed and continued to question
the CloudBuild team as they carried out their daily work.
Special attention was paid to CloudBuild experts that were
working on problems related to build optimization and debug-
ging. We also examined the existing tools, build logs, and other
artifacts the CloudBuild experts were using to help them with
these tasks. We explicitly encouraged the CloudBuild team
to provide suggestions and feedback throughout the artifact
design and development processes.

Detailed notes were taken throughout the contextual inquiry
process, which took place in person at Microsoft. This data
was qualitatively analyzed through open coding [38], and the
following themes emerged:
(1) human challenges when working with build systems;
(2) potential stakeholders and their unique requirements;
(3) data that could be leveraged to build solutions; and
(4) a set of solution objectives.

These themes were later validated with the CloudBuild team.

B. Human Challenges

Although previous research has identified some challenges
with the CI/CD process as a whole [12], our interviews with
build system experts further highlighted the specific difficulties
that many users face working with complex modern build
systems, such as CloudBuild. Although it was clear that engi-
neers value the benefits of these systems, there are also costs.
The number of unknown variables and continuously changing
states of the cache, build machines, or code under build
makes answering simple questions such as “why are builds
slower than they were yesterday?” difficult. We identified the
following challenges with CloudBuild.

Understanding the dynamics of the build system: One
main challenge engineers face is understanding the complex
dynamics of modern cached and distributed build systems.
Debugging build failures requires vast knowledge about the
build’s dependency graph, the distribution of tasks over ma-
chines, and the state of the cache at the time of the build.

The dependency graph of a build is indispensable when
trying to understand what happened during a build session.
Given unlimited resources, all targets at the same dependency
tier could hypothetically be built in parallel as they have no
dependencies between them. However, sometimes dependency
tiers contain thousands of targets, making parallel execution
infeasible. In this case, the build system needs to select



execution targets based on a variety of metrics: position
in LCP, build duration, number of dependencies, etc. Thus,
proper build comprehension also requires detailed knowledge
of the decisions the build system made.

End-to-end build time is dependent on the time taken to
build the longest-building dependent sequence of targets in the
dependency graph, the LCP. However, with caching enabled,
unchanged targets can be retrieved from cache, which may
result in very different LCPs between builds. To understand
why a build took a long time, engineers need to understand
the caching dynamics as well as the LCP.

Lack of visibility into why targets are being rebuilt: In
extremely large projects, CloudBuild users sometimes have a
hard time determining why specific targets are rebuilt. Often,
users that are unaware of target dependencies are confused
when downstream targets are rebuilt. In legacy build systems,
engineers could rely on idempotent build sessions—building
the same set of code changes on different machines would
result in the same targets being executed— but this is often
not the case with CDBS like CloudBuild.

Builds can have dramatically different LCPs and build times
(even when building the same code change twice in a row),
adding complexity when trying to understand builds and their
corresponding run times. Although the state of the cache is
hard to capture and comprehend, this information is needed
when trying to understand why a target had to be rebuilt. Cache
misses can require the re-execution of thousands of dependent
targets, causing delays in the CI/CD pipeline and forcing other
builds to queue due to occupied resources.

Data fragmentation: Another commonly mentioned chal-
lenge was the scattering of build data across many locations
(logs, databases, tools, systems), while different data stores
used diverse and often incompatible data schemas. This makes
it extremely difficult for engineers to find all relevant build
session information, let alone draw insights from this data.
Engineers had to rely on multiple tools to explore the data
emitted by CloudBuild, most of which provided inadequate
support. They often had to use raw log files or query telemetry
databases to try to find what they needed, repeatedly wishing
for a standalone tool, in the form of an easy-to-access web
visualization, that could present a holistic view of a build.

C. Stakeholder Characteristics

We identified three user groups that would benefit from
a dependency graph visualization tool to ease build session
understanding and to support build system debugging and
optimization tasks. Fig. 3 depicts these user groups and
their common interaction patterns. These user groups are not
mutually exclusive and may have overlapping build tool needs.

(1) Build system engineers have expert knowledge of the
internal workings of the build system, and actively develop
and maintain the build service. Although they have detailed
knowledge of the data that CloudBuild generates, they often
have trouble navigating the complex set of logs required to
analyze build failures. Build system engineers are exposed to
build issues and failures on a constant basis. They onboard new

Fig. 3. The three categories of CloudBuild stakeholders.

users and support customers trying to leverage the distributed
and cached nature of CloudBuild. Build system engineers are
often the first point of contact when CloudBuild users have
questions, working 24/7 to address their issues as quickly as
possible. As build tools are essential in many development
pipelines, any build-related issues could potentially threaten a
team’s ability to deliver software on time. Thus, the time taken
to resolve these issues is crucial.

(2) Customer build engineers work on product teams
that use CloudBuild in their engineering workflows. They
are responsible for configuring builds and maintaining build
structures for their team. This user group serves as the
main interface to the CloudBuild engineers, and manage the
integration of the build system into their product’s develop-
ment pipelines, usually in partnership with the build system
engineers. While performance regressions and reliability of
the build system itself are the responsibility of the build
system engineers (see above), customer build engineers are
responsible for monitoring the overall status of their team’s
builds. They quickly need to identify and understand any code
changes that negatively impact the build (e.g., adding a new
dependency between two components) so that they can take
action (e.g., reject the change, trigger a refactoring). They also
want powerful visuals to help them better understand and share
the impact of code changes with the rest of their team.

(3) Software development engineers work on product
teams and use the build system in their daily development
workflows. This group often lacks detailed knowledge about
how the build system works and the impact that their code
changes may have on the overall development pipeline. The
main concern of this user group is the end-to-end build time
(i.e., how long they may have to wait for a build result). If build
time dramatically deviates from what they expect, they may
start a high-level investigation into what happened. However,
if they fail to find the cause, they usually seek the assistance
of one of their team’s customer build engineers.

D. Data Characteristics

Through our discussions with build system engineers and
an examination of their telemetry data and support tools, we
identified three main categories of CloudBuild build data.

Build session information (BSI) contains high-level meta-
data about a build session. The BSI object summarizes the
build configuration and request options, which are essential
for understanding the context of the build. The BSI object
also provides a summary with statistics of the build results,



such as time spent in each build phase, resources used, build
results, and potential errors.

Build dependency graphs represent the dependencies be-
tween build targets at the time of the build. As discussed
earlier, the dependency graph provides insights into the overall
connectivity of the project and defines a lower bound of how
fast any build system can build the underlying software system.
The dependency graph is crucial for understanding the build
system’s choices, e.g., the target build order.

Target information contains details about each target’s
execution, such as if the target was retrieved from cache, how
much memory was consumed during execution, the amount of
processing time, the size of the inputs and outputs, the type
of the target, and the name of the machine that processed the
targets. This information is essential for understanding what
happened to the individual targets during a build session.

E. Solution Objectives

As expected, many of the tool support needs for the three
user groups overlap. However, for the initial design of the
BuildExplorer tool, we focused on the needs of build system
engineers as they have expert knowledge and are also users
of the build system. We identified two main use cases:
Use case 1: Debugging a build session for specific perfor-
mance issues. This task requires deep analysis of diverse data.
Use case 2: Optimizing the performance of end-to-end builds
for customer projects. This task often leads to recommenda-
tions for software architecture refactoring.

Based on these two main use cases, we identified a set of
requirements that a build visualization tool should satisfy. We
iterated and validated these requirements through discussions
with the build system engineers until we arrived at a relatively
stable set of tasks to be supported by our BuildExplorer tool:
Task 1: showing high-level build session information;
Task 2: visualizing the overall structure and distribution of

dependencies;
Task 3: providing insights where build time was spent;
Task 4: highlighting the build’s caching dynamics; and
Task 5: allowing one to browse build target information.

Using these requirements, we designed an interactive tool
that visualizes a build’s dependency graph while also allowing
the user to drill into other build-related details.

V. THE BUILDEXPLORER SOLUTION

BuildExplorer was designed to help build system engineers
understand build graph structure, analyze build performance,
and diagnose possible build-related issues. We worked closely
with the CloudBuild team to generate and evaluate multiple
ideas and ensure we produced the best solution, we developed
low-fidelity mockups and incorporated the build system engi-
neers’ feedback. To allow for easy access and integration into
the existing CloudBuild ecosystem, we implemented the se-
lected solution as an ASP.NET web application, complemented
with D3.js [39] and HTML canvas [40]. In the following
section, we describe the design and implementation details
along with the rationale behind our choices, and include a

brief discussion of discarded alternatives where appropriate.
A full demo of BuildExplorer is also available online [41].

A. Layout and Interactions

The BuildExplorer tool provides a series of coordinated
views, linked by visual and interactive strategies that showcase
different aspects of the build data, as shown in Fig. 4. These
coordinated views allow users to actively explore the com-
plexities of build session data from a variety of perspectives,
promoting deeper understanding and better decisions [42].

The views were designed to fit on a single screen to reduce
cognitive overhead from switching and navigating between
screens. Our goal was to provide a highly interactive user
experience with fast overviews and easy filtering to support
a details-on-demand analysis [43]. A search bar allows users
to quickly find and filter targets of interest (Fig. 4(i)). Hovering
is used throughout the tool to provide extra information and
link data items across views, e.g., hovering over a target
triggers a tool-tip summarizing the target’s key properties
and highlights the target across all coordinated visualizations.
Clicking on targets selects them in the connected visualizations
and highlights their direct dependencies.

B. Views and Visualizations

BuildExplorer’s user interface features two summary views
and a set of coordinated visualizations. We use X to refer to
the corresponding view/visualization in Fig. 4.

A The Build Header View consolidates build information
(e.g., parameters, settings) to provide contextual information
that impacts the behavior of a build in an easy to understand
visualization. This information is critical for nearly all debug-
ging scenarios. Since presenting all the build settings would
overload the view, we worked with CloudBuild engineers to
determine what was essential (e.g., build type, architecture,
caching, change id) and provided a link to the complete logs.

B The Build Summary View provides a visual break-
down of the stages and caching dynamics of a build session.
The build timeline visualization (Fig. 4(ii)) shows the time
spent in each build stage (Task 3 from Sec. IV-E), e.g.,
preparation, build, cleanup, etc. The target cache visualizations
(Fig. 4(iii)) provide cache statistics per build target type
(Task 4 from Sec. IV-E). Combined, the two build summary
components present a high-level overview of the dynamics of
a build session (Task 1 from Sec. IV-E).

C The Dependency Graph Visualization provides an
overview of the project’s dependency structure. To help users
understand and navigate their complex code bases, many ex-
isting tools leverage common graph visualization techniques,
such as hierarchy visualizations [44, 45, 46], nested tree visual-
izations [47], node-link diagrams [20, 21, 45, 48], and hybrid
visualizations [49, 50]. However, these existing graph-based
approaches struggle to scale to larger software projects [20].

We used rapid prototyping to visualize the dependency
graph as a whole (or even in parts) using traditional network
graph techniques. However, due to the size and density of even
smaller build dependency graphs processed in CloudBuild,



Fig. 4. The proposed BuildExplorer solution, featuring: (A) Build Header View, (B) Build Summary View, (C) Dependency Tiers Visualization, (D) Target
Properties Visualization, (E) Longest Critical Paths View, (F) Target List View, (G) Target Details View.

these early attempts were almost illegible. Automatic layout
strategies generated tangled “hairballs” [51] that provided
users with little actionable information. Graph reduction tech-
niques [48, 52, 53, 54] hid important relationships between tar-
gets, while expanding nodes left the graphs cluttered. Although
researchers have shown promising results using query lan-
guages and filtering mechanisms to help reduce and simplify
their build graph visualizations [20], we ruled out these and
other common filtering strategies [43] as the different usage
scenarios required complex filtering options which quickly
became cumbersome and did not scale to massive software
projects (≈16,000 targets, ≈20,000 dependencies).

Instead, we were inspired by an existing, internal visualiza-
tion that uses a histogram to group build targets according to
their dependency tier and colors them based on their current
status (e.g., in process, finished). However, this visualization
has its own set of weaknesses: targets are hard to find, the
amount of color-coding is overwhelming, and when the tier
“stacks” become too tall to fit on the screen, they overflow
into a new stack.

Consequently, our dependency tier visualization is an up-
dated and refined version of the original histogram. It visu-
alizes the overall structure and distribution of targets in the
build’s dependency graph (Task 2 from Sec. IV-E). Each bar in

the histogram represents the number of targets (y-axis) in the
corresponding dependency tier level (x-axis). The distribution
of targets across tiers provides an estimate of where targets
are concentrated in the build graph and whether there are any
funnels or bottlenecks in the graph. With this visualization,
users can get a sense of the overall structure and health of the
build dependency graph, as discussed in Sec. VI-A.

Overlaid on the dependency tier visualization is the tier
timeline (Fig. 4(iv)), which provides a high-level overview of
the relative distribution of time spent across all dependency
tiers—the sum of target execution or target cache fetch times
overall targets for each dependency tier. Although we grouped
targets by dependency tiers in this visualization to meet the
build system engineers’ needs, this style of visualization could
easily be adapted to suit other stakeholders’ needs and future
use cases (e.g., to show machine utilization or target build
start-time bins).

D The Target Properties Visualization provides an easy
comparison across many targets and their relationships. Build
targets are visualized using a parallel coordinates plot [55],
where each of the target’s properties (e.g., execution time,
start time, bytes read or written) are represented as parallel,
vertical axes. Target values are plotted as a series of connected
lines across all axes (Task 5 from Sec. IV-E). The arrangement



Fig. 5. Brushing technique used to select targets with a particular range of
property values. The dependency tier view gets filtered upon selection.

of lines between axes shows possible relationships: roughly
parallel lines suggest a positive relationship; crisscrossing lines
(x-shape) suggest a negative or inverse relationship; while
randomly crossing lines suggest no relationship. The axes
can be reordered, added, or removed to examine relationships
between various target properties.

To avoid clutter, users can brush [56] along axes to select
targets within ranges, fade out unselected targets, and filter
the data in the connected visualizations. Individual targets (or
groups of targets) in the target properties visualization can
also be selected by directly clicking on them.

E The Longest Critical Paths Visualization shows a list
of the top 10 longest critical paths (LCPs). Regardless of the
number of resources, a build’s end-to-end execution time is
bounded by the execution time of the LCP. Targets situated
on the same LCPs are drawn as a series of connected bars
(built targets) or circles (cached targets). The LCP’s targets
can be arranged along the horizontal axis, either based on
their dependency tier or start time. In the tier-based LCP
visualization, targets are horizontally aligned with their depen-
dency tiers, while the height represents target execution time
(Fig. 6(a)). Using the time-based LCP arrangement, targets
are horizontally aligned by their start and end times, while the
width of a box represents execution duration (Fig. 6(b)). This
visualization supports Tasks 3 and 4 from Sec. IV-E.

F The Target List Visualization is visible upon initial
load or when a set of targets have been selected. Users can
sort the list of targets by properties (e.g., name, build time).

G The Target Details Visualization is only shown when
a single target is selected and provides information regarding
what happened to that target during the build session (Task
5 from Sec. IV-E). When a target is being executed (or
retrieved from cache), it goes through a series of phases called
target transitions. The target transition timeline bar graph
visualization shows the time a target spent in each transition
phase (Task 3 from Sec. IV-E). Underneath the timeline is a
list of the target’s direct dependents and dependencies, as well
as a list of key target properties.

VI. EVALUATION

We used three different methods (congruent with Venable
et al.’s framework for evaluating design science research [57])

Fig. 6. The two versions of the Longest Critical Path visualization: (a)
the default tier-based visualization, and (b) the time-based visualization.
The circles and bars reflect targets coming from cached and built targets,
respectively. The size of the bar represents the target’s build time.

to evaluate the utility, quality, and efficiency of our solution:

a) two usage scenario walkthroughs to demonstrate how the
tool satisfies the utility requirements for the two use cases
identified in Sec. IV;

b) ongoing field deployments of the solution to validate the
utility requirements and to shape the tool’s design in a
natural setting; and

c) a user study in a controlled, artificial setting to consider
the utility, quality, and efficiency of the solution.

A. Usage Scenario Walkthroughs

We outline how the set of tasks the tool was designed to
support can help CloudBuild engineers in two scenarios.

Scenario 1 - Build Optimization: Here, the build engineer
is contacted by a customer on-boarding to CloudBuild. The
customer wants to know if they can speed up their builds. The
build engineer, recognizing the customer is new to the build
system, examines the dependency tier view to determine the
overall structure and parallelization potential of the project’s
current build dependency graph. Fig. 7 shows the dependency
tier visualization for three sample plausible builds:

(a) A healthy dependency graph. The tiers have a positively
skewed distribution, indicating that most of the targets can
immediately be built in parallel. This build fully utilizes
the distributed nature of the CDBS.

(b) A potentially unhealthy dependency graph. The tiers have
a negatively skewed distribution, indicating that most of
the targets have to wait for a series of dependencies to
build. This could possibly be slowing down the overall
build time since the beginning of the build does not
leverage the distributed nature of the CDBS.

(c) A bottlenecked dependency graph. This build has many
targets waiting for the outputs of just a few targets.

With this view, the build engineer may spot possible per-
formance optimizations that will decrease build times, e.g.,
refactoring the dependency structure to allow for greater
parallelization of build tasks. The tier timeline graph may
be consulted to determine how much time is spent in each
dependency tier. If the dependency tier graph is negatively



Fig. 7. Three vastly different dependency graph structures visualized with
the dependency tier view: (a) healthy positively skewed graph, (b) unhealthy
negatively skewed graph, (c) unhealthy bottlenecked graph (tiers 6 - 8).

skewed but spends relatively little time building targets in the
larger tiers, the build may still result in a good run time.

Since the lower bound of a build’s run time is determined by
its LCP, the next step in identifying potential causes for slow
builds is the LCP visualization. The build engineer can check
the tier-based LCP visualization to identify targets in the LCP
that might be bottlenecks, e.g., have a high dependency tier
and therefore must wait for the outputs of many targets. They
can switch to the time-based LCP visualization to identify
expensive (long-running) build targets.

Lastly, the build engineer can explore the target properties
view to filter for abnormalities, e.g., long-running or highly de-
pendent targets. If these targets (or any of their dependencies)
change frequently, it can become very costly to the overall
build and development process. Possible mitigations include
splitting these targets or removing unnecessary dependencies.

Scenario 2 - Build Debugging: Here, the build system
engineer is contacted by one of the build system’s end-users
(likely a Customer Build Engineer) who is worried about their
project’s build times, e.g., the builds are suddenly unusually
slow. The customer wants to understand what changed and the
implications of those changes on overall build performance.
The first step is to check if the customer’s complaints are
justified and there is actually a build regression. The build
summary view can then be used to check for long queue or
setup times, indicating missing resources, or dramatic changes
to target caching dynamics that could explain the slowdown.

Once a performance issue has been confirmed, the build
system engineer can check the LCP visualization to see if any
targets are taking an abnormally long amount of time, or if
any new targets have been added. The build system engineer
can also check the overall health of the build’s dependency
graph to see if new bottlenecks were introduced, if the general
distribution of tiers changed, or if new tiers were added. Lastly,
they can inspect the target properties to identify targets whose
build times have increased significantly, or to check if any new
long-running targets were added.

B. Deployments in the Field

Since the development of BuildExplorer was iterative and
incremental, we made our prototypes and early versions of
the tool available as soon as possible to observe its use
with real users. We encouraged users to provide feedback
and to share ideas for future features. This early feedback
shaped the development of the tool, validated the problem

characterization, and helped us refine the solution objectives
(see Sec. IV). We found that the features users often requested
were consistent with our initial development roadmap, which
further validated our design choices and user tasks. Below, we
highlight some key experiences to illustrate the nature of the
feedback we received.

Tasked with helping a new team on-board to CloudBuild,
one early adopter used BuildExplorer to optimize the prod-
uct’s average build time. They used the dependency tier
visualization to understand the project’s architecture, identify
candidates for dependency refactorings, and determine the
project’s overall parallelization potential. With the help of
BuildExplorer, the onboarding team was able to re-shape the
graph from an unhealthy, negatively skewed distribution to a
healthier, positively skewed distribution. The target list and
target properties also identify targets with high build times
and identified potential target refactorings. Following these
recommendations, the team reported large speed improvements
for both cached and non-cached builds. Another reported
experience was exploring possible causes of a suspected build
performance regression, brought to the CloudBuild team’s
attention by a customer. Using the LCP and target details
views, they were able to identify a stalling build machine and
sent screenshots of their findings to a co-worker for follow-up.

C. User Study

Since the type and frequency of real-life incidents (such
as the ones described above) vary dramatically, we designed
a study to simulate a common usage scenario that would
require the participants to use a variety of BuildExplorer’s
views/visualizations, allowing us to better gauge the target
user’s perceptions of the tool.

1) Methodology: We used purposive sampling to recruit
five CloudBuild participants. To ensure participants were
representative of build system engineers, they had to hold a
technical role and have experience working with CloudBuild.
Four sessions were conducted in person and one was con-
ducted through a video conferencing tool.

All participants had actively worked on the CloudBuild code
base, ranging from a few months to six years. Four of the five
participants described themselves as having extensive experi-
ence debugging CloudBuild performance issues, spending an
average of 6-10 hours weekly on these tasks. Prior to the user
testing session, two participants had briefly used BuildExplorer
and the other three had seen a tool demo. After participants
granted consent for their participation, they briefly explored
the tool and received a tour of the tool showing them details
they would normally find in documentation or online tutorials.

2) Task Description: Each participant had 30 minutes to
complete the same short task using a think-aloud protocol [58]:
“A customer contacts you about one of their build queues.
They’ve noticed that some of their builds have been taking
longer than normal and want you to help them understand
what has changed. Try using the BuildExplorer tool to inves-
tigate the builds so you can report back to the customer.”



During our contextual inquiry, we found that CloudBuild’s
customers typically sent a few examples when they reported
build regressions, e.g., normal builds and builds behaving un-
expectedly. Based on this, the study participants were provided
with four builds: one fast and three slow builds. We selected
builds from one of the largest projects using the CloudBuild
service (≈16,000 targets and ≈20,000 direct dependencies).
Since the participants actively debug performance-related is-
sues in CloudBuild, we selected three slow builds with no
known issues or associated tickets. We inspected a variety of
slow builds with BuildExplorer and chose a build with very
low cache rate, and two builds that exposed abnormal build and
cache retrieval behaviors. Detecting the last two build issues
would require thorough build log inspections.

3) Findings & Insights: After the initial tour of the tool,
we found that participants were able to use BuildExplorer
with little additional guidance from the facilitators–only asking
the facilitator to repeat information from the tutorial or the
facilitator prompting a stalled participant by asking if they had
looked at x visualization. During the experiment, participants
vocalized a variety of hypotheses as to why they believed the
builds were slower than the normal build, e.g., low cache-
hit rates, too few build resources, etc. These hypotheses
stemmed from their interactions with the tool and provided a
starting point for further investigations. After completing the
task, participants were asked to reflect on their experiences.
All sessions were video-recorded and analyzed for common
themes. Transcriptions were made of the post-task interviews,
and through qualitative analysis, several themes emerged.

The overall response to the user testing session was very
positive. One participant commented, “I think this is awe-
some!” and later added, “I’m like a kid in a candy store—there
are so many cool things about it”. All participants agreed
that they were very likely to use the tool to support their
duties as CloudBuild engineers. All participants also suggested
additional features and visualizations they would like to see
added to the tool, as summarized in Sec. VIII.

Below we discuss some key observations and feedback
gathered during the user testing sessions, specifically reflecting
on the efficiency, utility, and quality of the tool.

(Efficiency) Consolidating views of the data: Designing
a single screen for all views was seen as the right approach
as it combined many different data perspectives and reduced
navigation needs, as one participant noted: “The fact that
it’s able to condense a lot of information in one area is
really useful. The density of information without [it] being
overwhelming is very valuable.” Another participant noted, “I
don’t have to go to multiple locations—I can get it all in one.”

(Utility) Understanding overall build processes: Surpris-
ingly, CloudBuild engineers felt their own build system is
hard to understand and that even for experts, BuildExplorer is
“really good to understand the overall build process”. “It also
permits you to dig deeper to understand the build structure,
the actual build happening, and well as hypothetical limits that
you can achieve for various performance related scenarios”.

(Utility) Starting point for investigations: BuildExplorer

was never meant to be a completely comprehensive tool for
debugging all CloudBuild issues. However, it is clear that
BuildExplorer will remain a starting point for many debugging
scenarios, including customer questions: “We get a lot of
questions on [internal Q/A site] like, ’my build was slow’.
This is a good way to go investigate that.” One participant
stressed that there will always be a need for build logs in
the engineering process and we absolutely agree. “During the
investigation, I’m going to need to look at logs, no matter
how much information you put here. As an engineer, that is
just always going to happen [in] the last mile of investigation,
once we know something—to prove it!” While BuildExplorer
may allow users to understand the scope and potential source
of problems, deeper investigations will likely require many
different tools and data sources.

(Utility) Longest critical path: The LCP view was ex-
tremely popular as it allows fast detection of many build issues.
For example, “the longest critical paths were the most useful to
understanding what exactly happened,” and “the dependency
tiers [are] very helpful, and so [are] the longest critical paths.”
Another participant pointed out that the tier-based LCP is
better for understanding “hypothetically what you could do
to improve”, whereas the time-based LCP allows exploring
“what happened in this [build] or what went wrong”.

(Quality) Intuitive and interactive: We observed that
users, for the most part, were able to navigate the tool
with ease. The participants described the tool as having a
“good, intuitive UI” and being “easy to figure out”. There
was excitement due to the interactive nature of the tool.
Users “really liked that it’s all connected” and enjoyed that
selections “let you focus on that thing in the other views”.

(Quality) Tool Complexity: Ideally users should under-
stand how to use a tool without the need for any explanation or
supplementary material, but for complex tasks, it is likely any
tool will also be complex. Even though the participants were
CDBS experts, some users were unsure of some of the data
shown and the data mappings. Most of the confusion stemmed
from the target properties view (Fig. 4h), a visualization type
that none of the participants had previously seen or used.
When reflecting on using the tool, one participant commented
that “[I] was completely lost about the target properties
overview... I wasn’t able to utilize it”. “I don’t really know
how to exploit this”, mentioned another participant about the
target properties view. However, when given a more detailed
demonstration of the target properties view, one participant
responded, “oh, I didn’t know about that...okay, yeah that’s
very useful!”, which may indicate that we did not provide
sufficient training or exploring time before starting the task.
Although the participants had briefly seen the tool before, this
was the first time the participants were using it on their own.

VII. DISCUSSION

To understand the challenges developers face with CDBS
and develop a solution to support them, we conducted a
design study [34, 35, 36] at Microsoft. Our design science
methodology and key findings are summarized in Fig. 2.



To ensure the problem we addressed was relevant (relevance
cycle Fig. 2 [34]), we studied a particular instance of the
problem working closely with domain experts at Microsoft.
Through BuildExplorer, we further ensured that the proposed
solution addressed a relevant problem and that our tool would
extend the current capabilities of our target users.

To ensure rigor (rigor cycle in Fig. 2 [34]), we designed
our solution using existing knowledge from the target domains:
build systems, CI/CD optimization, and software visualization
research on architectural analysis and optimization.

To extend the knowledge base and our contribution to
research, we propose visualization and interaction idioms that
can be applied to similar tools striving to support human
understanding of CDBS. Although previous work has explored
strategies for supporting cognitive needs of the build engineers
when performing basic debugging and optimization tasks,
these strategies have both failed to scale to the size of modern
software projects and do not explore the complexities of
non-deterministic CDBS sessions. Although our study was
conducted on one build tool at a single company, many modern
build systems share similar features. However, validating that
this knowledge applies to other tools remains future work.

Lastly, through our design cycle [34], we evaluated the util-
ity, quality, and efficiency of BuildExplorer solution through
usage scenario walkthroughs, deployments in the field, and
a user study. In this cycle, we also considered alternative
solutions and justified our final solution.

A. Lessons Learned

Here, we share some key lessons learned that may be of
general interest to practitioners and researchers.

Take time to understand usage scenarios and prelim-
inary tool designs in the wild: Since the CDBS system
problem space was largely unexplored, investing the time to
understand and characterize the domain prior to and during the
design of a tool was crucial to the tool’s success. Insights into
the usage scenarios and needs only became clear as people
started using the tool in their workflows. Once the users’
basic needs were partially satisfied through early iterations
of the tool (as one participant pointed out, it’s “better than
anything we have at this point”), there was a flow of new
ideas about how to refine existing and design new features. The
design science methodology helped us structure the problem
space and extract key insights that helped in the design and
evaluation of the proposed solution (see Fig. 2).

A complex solution for a complex problem requires
training: The majority of the feedback about the tool was
positive—any tool support was seen as better than no support.
While the single view reduced navigational overhead, we
noticed that some users became overwhelmed with the amount
of data shown. It took time for users to understand what was
being shown and the benefits of linking information across
views. Other times, the users required additional explanation
from the tool designers before they felt comfortable using
the tool. Thus, with such a complex tool, thorough training
and documentation should be provided, and users should be

encouraged to take the time needed to fully understand and
feel comfortable using BuildExplorer.

Build logs are still essential: Just as developers report a
lack of trust in refactoring tools [59, 60, 61], it is not surprising
that they also prefer to directly refer to the build logs when
confirming their hypotheses concerning performance issues.
BuildExplorer supports this preferred work-flow by providing
users with a starting point for build analysis and links to the
required build logs so they can continue their investigations.
Linking to build logs within BuildExplorer also has the added
benefit of helping to address the data fragmentation issue
identified during our contextual inquiry.

B. Research Limitations
This research was conducted at one organization using a

single build system. Our findings may not generalize to other
organizations and build systems. To ensure broad relevance,
we identified key stakeholders, use cases, and tasks which we
believe need support regardless of the underlying build system.

We also acknowledge that the low number of participants in
our user study limits the generalizability of our research. We
relied on CloudBuild experts as this was our primary target
audience, and so we cannot currently generalize our findings
to other user groups (see Sec. IV-C).

Due to our data collection methods, we may also have
unintentionally introduced researcher bias. Since we conducted
an in-person study, we may have introduced interviewer bias
through subtle clues (e.g., body language, tone) that may have
influenced the participants’ responses or actions. Conversely,
the participants may have consciously, or subconsciously,
provided responses they believed we wanted to hear (e.g.,
positive feedback on the tool in the user study), introducing
response bias. However, we attempted to mitigate this by
encouraging participants to discuss areas for improvement.

VIII. FUTURE WORK AND CONCLUSION

Although BuildExplorer was eagerly adopted at Microsoft
and has received positive feedback, there are many areas
for improvement. The current version of the tool focuses
on CloudBuild engineers and covers a small subset of the
daily occurring scenarios. To support more scenarios or user
groups, many views and additional data need to be added, e.g.,
historical data, comparing builds, advanced filtering. Finally,
understanding the impact of BuildExplorer on software archi-
tecture and distributed building practices over time remains
future work.

Although there remains much work to be done in this
domain, we believe that the work presented in this paper
is a good initial step towards understanding, debugging, and
analyzing build performance. BuildExplorer has tremendous
potential to help other organizations that use similar cached
and distributed build systems.
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