
How Software Developers Mitigate
Collaboration Friction with Chatbots

Carlene Lebeuf
University of Victoria
Victoria, BC, Canada
clebeuf@uvic.ca

Alexey Zagalsky
University of Victoria
Victoria, BC, Canada
alexeyza@uvic.ca

Margaret-Anne Storey
University of Victoria
Victoria, BC, Canada
mstorey@uvic.ca

Abstract
Modern software developers rely on an extensive set of
social media tools and communication channels. The adop-
tion of team communication platforms has led to the emer-
gence of conversation-based tools and integrations, many
of which are chatbots. Understanding how software devel-
opers manage their complex constellation of collaborators
in conjunction with the practices and tools they use can
bring valuable insights into socio-technical collaborative
work in software development and other knowledge work
domains.

In this paper, we explore how chatbots can help reduce
the friction points software developers face when working
collaboratively. Using a socio-technical model for collabora-
tive work, we identify three main areas for conflict: friction
stemming from team interactions with each other, an indi-
vidual’s interactions with technology, and team interactions
with technology. Finally, we provide a set of open questions
for discussion within the research community.

Author Keywords
Software Development, Collaboration, Chatbots, Bots, Con-
versational Interfaces, HCI, Socio-Technical Systems

ACM Classification Keywords
H.5.2 [User Interfaces]: Natural Language

ar
X

iv
:1

70
2.

07
01

1v
1

 [
cs

.H
C

]
 2

2
Fe

b
20

17

Introduction

Figure 1: A simplified view of the
intersection between domain
models: the team’s social system
consists of collaborative work
between people; the human
computer interaction system
focuses on individuals’ interactions;
and the socio-technical systems
lies in the intersection of both.

Many software projects have adopted team communication
and collaboration tools such as Slack, Hipchat, Microsoft
Teams, and Flowdock [10]. These IRC-like communication
tools serve as a central hub for the organization, providing a
fully searchable interface with persistent chat rooms, private
group messages, and direct messages. Not surprisingly,
distributed software teams rely on these team messaging
platforms for the majority of their team communication, but
collocated teams also use such systems to facilitate collab-
oration and promote a participatory culture. While software
developers are at the forefront of the design and exploration
of new tools—they can manipulate tools to fit their needs—
other knowledge worker domains (e.g., journalism) are also
adopting popular collaborative software development tools.
Studying how software developers manage the complex
constellation of collaborators in conjunction with their tools
and practices provides valuable insights into understanding
socio-technical collaborative work.

This widespread adoption of team-based communication
platforms provides a breeding ground for new conversation-
based tools and integrations. Many of these integrations are
in the form of conversational bots (also referred to as chat-
bots). Although bots have been around for many years, the
ability to easily integrate them with modern communication
tools and access various APIs and data sources has cre-
ated a recent explosion of new bots. These chatbots can
be powered by rules, machine learning, or artificial intel-
ligence, allowing users to interact via text or even spoken
words (e.g., MyVoiceBot connects Amazon’s Alexa to other
chatbots inside Hipchat, giving the user voice control over
typical text-based interactions).

Developers have been adopting these chatbots at a dizzy-
ing pace to support and fill many of the roles that software

developers have traditionally filled: maintaining code qual-
ity, preforming testing, conducting development operations,
supporting customers, and creating documentation [9]. Yet
the research community struggles to understand how chat-
bots are supporting (or hindering) collaborative work, why
some bots are more useful than others, and what risks they
introduce.

Based on our past research, we realize that developers
face friction points not only when using tools, but also when
working with each other [8, 10, 3]. Recently, developers
have been creating their own breed of chatbots to address
the collaboration needs these friction points expose.

In this paper, we explore how chatbots help reduce collab-
oration friction points in software development. Specifically,
we aim to answer the following research question:

RQ: What collaboration friction points can chatbots
help mitigate in software development, and how?

Through a study of existing literature, an analysis of pop-
ular chatbots, our past studies [10, 8, 9], and our personal
software development experiences, we synthesized a set
of friction points software developers face when working
collaboratively. This is not a comprehensive list of all pos-
sible areas of conflict, but rather a curated list focusing on
common collaboration friction points.

We classify and present three categories of collaborative
friction points inspired by the model of socio-technical sys-
tems [11]. Figure 1 shows a simplified view of the relation-
ships between the systems. For each category, we found
various chatbots being used by software teams, which we
believe highlights the growing challenges in modern collab-
orative work environments.

We conclude the paper with a set of research questions to
spark discussion on the future use of chatbots in software
development.

Collaboration Friction
Points in Software

Development

Team Interactions
 Understanding team mem-

bers’ roles and expertise
 Adhering to team proce-

dures and agreements
 Understanding and work-

ing towards team goals
 Coordinating team activi-

ties
 Managing trust and team

cooperation

Individuals ⇔ Technology
 Distracting and interruptive

technologies
 Maintaining awareness of

new technologies
 Understanding channel

affordances

Teams ⇔ Technology
 Information fragmentation

and overload
 Adopting and under-

standing tool usage in the
team’s context

 Maintaining awareness of
project activities

 Inadequate collaboration
tooling

 Miscommunication on
text-based channels

Background
We define a collaboration friction point () as any resis-
tance or conflict arising from a team’s joint processes.
These friction points may stem from the developers’ manda-
tory collaborative needs not being fully satisfied.

Since friction can occur at various levels in a team’s collab-
orative activities, we explored Whitworth’s Model of Socio-
Technical Systems [11] as a way to classify the types of
friction developers experience. A socio-technical system is
a complex social system evolving around a technical base,
which includes the interplay of human, social, environmen-
tal, and technological factors. The lowest level contains
the hardware system, or the collection of physical parts.
The software system emerges from the hardware sys-
tem and is based on information, the exchange of data, and
code. With the addition of personal exchanges between the
software and a human, the human-computer interaction
(HCI) system is activated. The socio-technical (ST) sys-
tem, the highest level, emerges from the HCI system with
the addition of community exchanges.

We expanded the Model of Socio-Technical Systems (Fig-
ure 2) to encapsulate the societal and team social systems.
We identified that collaboration breakdowns can occur at
three levels: team interactions (team’s social system),
 individuals’ interactions with technology (HCI sys-
tem), and the team’s interactions with technology (ST
system). The sidebar presents a high-level summary of the
friction points, classified by their interaction level.

In the following sections, we detail the levels of collabo-
rative friction experienced by developers, summarize se-

Figure 2: Socio-Technical Model for Collaborative Software
Development including the (a) society’s social system, (b) team’s
social system, and 3 categories of friction points: (b) team’s
interactions, (c) individual’s interactions with technology, and (d)
 team’s interactions with technology.

lect collaboration friction points, and then suggest popular
chatbots that we believe can help mitigate the detrimental
effects of this friction.

Friction in Team Interactions
This type of collaborative friction occurs as a result of in-
teractions within the team’s social system as they work to-
gether to realize and achieve shared goals. Although tech-
nology may facilitate these interactions, the friction stems
from collaborative processes and would occur regardless of
the use of technology.

 Understanding team members’ roles and expertise.
Understanding team members’ roles and responsibilities
can be difficult in large or distributed teams. Developers

often experience difficulty locating the best team member
for mentorship [7], assistance on tasks requiring special
expertise [6], or help when experience with certain aspects
of the code base is needed, e.g., bug fixes [2].

Figure 3: Cloze slackbot. Photo:
https://www.cloze.com/

To help maintain awareness of teammates’ roles, develop-
ers use WhoBot and Cloze. Asking WhoBot "who knows
about ..." returns a list of team members that frequently
mentioned the topic, and Cloze consolidates everything
you need to know about your contacts in one place: back-
ground information, a summary of interactions, and any
follow-up items or notes.

Figure 4: Jell slackbot. Photo:
https://jell.com/

Figure 5: Github slackbot. Photo:
https://twitter.com/SlackHQ/status/
448572066808090624

 Adhering to team’s procedures and agreements.
Scripts, often referred to as working agreements, are a set
of rules or guidelines that teams agree to follow to make
themselves—and the team as a whole—more efficient [3].
Team members often forget or are unaware of the correct
sequence of steps when completing tasks, particularly new
members joining the team [3].

A development team at a large software company uses
Slackbot to answer users’ queries regarding the correct
procedures for development activities, such as merging
feature branches into the main code base. They also use
Slackbot to monitor system status (e.g., website outages),
notify the team, and provide a set of next steps.

 Understanding and working towards team goals.
To collaborate successfully, all team members must un-
derstand the team’s goals and the actions needed to
achieve them [3]. They must also maintain awareness of
the project’s overall status by communicating what they are
working on, their progress, and blockers they face [3].

To help the team maintain awareness of each other’s activ-
ities, developers use chatbots like WorkingOn to broadcast

real-time status updates to the group, and Jell to share
their accomplishments, ongoing tasks, and blockers.

 Coordinating team activities.
For large or distributed teams, coordinating multiple meet-
ings, deadlines, and other activities can be a complex task.
However, it can be even more difficult to ensure everyone is
made aware of and remembers activities.

To help find a meeting time that works for everyone, de-
velopers turn to Meekan, a chatbot that searches through
everyone’s calendars, returns the times with the least con-
flicts, and allows team members to vote on their preferred
options. Before a meeting, the Solid chatbot sends de-
tailed reminders to team members. During the meeting,
Solid keeps track of the time remaining and any incom-
plete tasks. After the meeting, Solid sends attendees the
meeting’s outcomes and any tasks they were assigned.

 Managing trust and team cooperation.
Collaborating with others is difficult; some team members
may have poor attitudes or lack the willingness to partici-
pate in a collaborative manner [10], while others may take a
while to warm up to and begin trusting their teammates [1].

Oskar asks and shares how individuals are feeling to pre-
vent isolation and allow teammates to offer support. To
monitor team morale, Ava Bot privately checks in with
team members to see how things are going and raises is-
sues to management when appropriate.

Friction in Interactions with Technology
Two categories of friction points stem directly from tech-
nologies not adequately supporting software developers’
collaboration needs: friction resulting from individual and
team interactions with technology.

https://www.cloze.com/
https://jell.com/
https://twitter.com/SlackHQ/status/448572066808090624
https://twitter.com/SlackHQ/status/448572066808090624

Friction resulting from individuals’ interactions with tech-
nology arises when an individual’s needs are not fulfilled by
the technologies they are using, which impedes their ability
to collaborate effectively. Although an overview of these fric-
tion points is provided in the sidebar, for the sake of brevity,
we focus on team interactions with technology.

Friction resulting from team interactions with technology
arises when the community’s needs are not fully satisfied
by the technologies they are using.

Glossary of Chatbots

Ava Bot
http://zeal.technology
BitBucket
https://slack.com/apps/
A0F7VRDPE-bitbucket
Convergely
https://www.convergely.com
Cloze
https://www.cloze.com/app/
connect/slack
Digest.ai
https://digest.ai/
Github
https://github.com/integrations/
slack
WhoBot, T-Bot
https://www.onmsft.com/news/
microsoft-teams-introduces-t-bot
-and-who-bot
Jell
https://jell.com/slack
Knelfbot
http://www.knelf.com/slack.html
Meekan
https://meekan.com
MyVoiceBot
http://demo.softserveinc.com/
Oskar
http://oskar.hanno.co
Screenfully
http://screenful.com/guide/
slack-integration
SlackBot
https://slack.com/apps/
A0F81R8ET-slackbot
Solid
https://getsolid.io/slackbot
Subversion
https://slack.com/apps/
A0F827LTA-subversion
WorkingOn
https://www.workingon.co/
integrations/slack

 Information overload.
Attempting to enable developers to work more productively,
teams often adopt more tools in their workflow, resulting in
information and channel overload [10]. As the team’s knowl-
edge gets spread over the growing number of channels,
issues with information fragmentation and quality begin to
emerge [10].

To deal with this ever growing flow of knowledge artifacts,
developers use chatbot integrations for many of their ev-
eryday tools [8, 4, 9]. Chatbots also provide them curated
overviews of channels they may not be actively following:
Digest.ai creates daily recaps of team discussions, and
TLDR generates summaries for long messages.

 Adopting & understanding tool usage in the team’s
context.
Friction occurs when team members refuse to adopt the
tools required for their job, which is often due to a lack of
technical knowledge[5]. Even with successful adoption,
team members still need to understand how to use these
tools within their team’s social context.

To help teams learn to use communication tools, Slackbot
and T-Bot teach teammates how to preform common ac-
tions, such as creating a new channel. Developers also use

chatbots to "bring technology into the conversation" and
make complex tools or tasks (e.g., development operations)
accessible to the entire team though text-based commands
in their communication platforms1.

 Maintaining awareness of the team’s technology-
dependent activities.
With the surge of social development tools, developers
must maintain awareness and coordinate their development
activities with those of their teammates [10]. For successful
collaboration to occur, they need to understand how to use
the tools within the context of others using them as well.

Chatbot-style integrations for existing tools like GitHub,
BitBucket, and Subversion notify the team when
changes are made to the codebase, helping developers
maintain awareness of the team’s collaborative activities.

Discussion Points for the Workshop
We believe that chatbots have immense potential for sup-
porting developers’ collaboration needs. However, we first
need to understand the benefits and possible risks these
new, virtual teammates are bringing to the software devel-
opment teams that are so openly embracing them.

To conclude, we propose a set of research questions to
spark discussion on the future of chatbots and their ability
to facilitate collaboration in software development:

1. How should we study chatbots? Can existing models
and theories of collaboration help explain how chat-
bots are being used?

2. What other collaborative friction points can be ad-
dressed with new or existing chatbots?

1https://youtu.be/IhzxnY7FIvg

http://zeal.technology
https://slack.com/apps/A0F7VRDPE-bitbucket
https://slack.com/apps/A0F7VRDPE-bitbucket
https://www.convergely.com
https://www.cloze.com/app/connect/slack
https://www.cloze.com/app/connect/slack
https://digest.ai/
https://github.com/integrations/slack
https://github.com/integrations/slack
https://www.onmsft.com/news/microsoft-teams-introduces-t-bot
https://www.onmsft.com/news/microsoft-teams-introduces-t-bot
-and-who-bot
https://jell.com/slack
http://www.knelf.com/slack.html
https://meekan.com
http://demo.softserveinc.com/
http://oskar.hanno.co
http://screenful.com/guide/slack-integration
http://screenful.com/guide/slack-integration
https://slack.com/apps/A0F81R8ET-slackbot
https://slack.com/apps/A0F81R8ET-slackbot
https://getsolid.io/slackbot
https://slack.com/apps/A0F827LTA-subversion
https://slack.com/apps/A0F827LTA-subversion
https://www.workingon.co/integrations/slack
https://www.workingon.co/integrations/slack

3. With rapid progress being made in the fields of artifi-
cial intelligence, machine learning, and speech inter-
faces, how might this change the use of chatbots in
the future?

4. What risks are introduced by adopting chatbots in
software development?

References
[1] B. Al-Ani, M.J. Bietz, Y. Wang, E. Trainer, Be. Koehne,

S. Marczak, D. Redmiles, and R. Prikladnicki. 2013.
Globally Distributed System Developers: Their Trust
Expectations and Processes. In Proceedings of the
2013 Conference on Computer Supported Cooperative
Work. ACM, New York, NY, USA, 563–574. DOI:http:
//dx.doi.org/10.1145/2441776.2441840

[2] J. Anvik, L. Hiew, and G.C. Murphy. 2006. Who
Should Fix This Bug?. In Proceedings of the 28th
International Conference on Software Engineer-
ing. ACM, New York, NY, USA, 361–370. DOI:
http://dx.doi.org/10.1145/1134285.1134336

[3] M. Arciniegas-Mendez, A. Zagalsky, M.A. Storey, and
A.F. Hadwin. 2017. Using the Model of Regulation
to Understand Software Development Collaboration
Practices and Tool Support. In Proceedings of 20th
ACM Conference on Computer-Supported Cooper-
ative Work and Social Computing. IEEE, Portland,
OR, USA, 17. DOI:http://dx.doi.org/10.1145/2998181.
2998360

[4] F. Calefato and F. Lanubile. 2016. A Hub-and-Spoke
Model for Tool Integration in Distributed Development.
In Proceedings of International Conference on Global
Software Engineering.

[5] E. Kalliamvakou, D. Damian, K. Blincoe, L. Singer,
and D.M. German. 2015. Open Source-style Col-
laborative Development Practices in Commercial

Projects Using GitHub. In Proceedings of the 37th
International Conference on Software Engineering -
Vol 1. IEEE Press, Piscataway, NJ, USA, 574–585.
http://dl.acm.org/citation.cfm?id=2818754.2818825

[6] A. Moraes, E. Silva, C. Da Trindade, Y. Barbosa, and
S. Meira. 2010. Recommending Experts Using Com-
munication History. In Proceedings of the 2nd Inter-
national Workshop on Recommendation Systems for
Software Engineering. ACM, New York, NY, USA, 41–
45. DOI:http://dx.doi.org/10.1145/1808920.1808929

[7] I. Steinmacher, I.S. Wiese, and M.A. Gerosa. 2012.
Recommending Mentors to Software Project Newcom-
ers. In Proceedings of the Third International Work-
shop on Recommendation Systems for Software En-
gineering. IEEE Press, Piscataway, NJ, USA, 63–67.
http://dl.acm.org/citation.cfm?id=2666719.2666734

[8] M.A. Storey. 2012. The Evolution of the Social Pro-
grammer. In Proceedings of the 9th IEEE Work-
ing Conference on Mining Software Repositories.
IEEE Press, Piscataway, NJ, USA, 140–140. http:
//dl.acm.org/citation.cfm?id=2664446.2664469

[9] M.A. Storey and A. Zagalsky. 2016. Disrupting
Developer Productivity One Bot at a Time. In Pro-
ceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engi-
neering. ACM, New York, NY, USA, 928–931. DOI:
http://dx.doi.org/10.1145/2950290.2983989

[10] M.A. Storey, A. Zagalsky, F. Filho, L. Singer, and
D. German. 2016. How Social and Communica-
tion Channels Shape and Challenge a Participa-
tory Culture in Software Development. IEEE Trans-
actions on Soft. Eng. PP, 99 (2016), 1–1. DOI:
http://dx.doi.org/10.1109/TSE.2016.2584053

[11] B. Whitworth. 2009. The social requirements of techni-
cal systems. Vol. 3. IGI Global.

http://dx.doi.org/10.1145/2441776.2441840
http://dx.doi.org/10.1145/2441776.2441840
http://dx.doi.org/10.1145/1134285.1134336
http://dx.doi.org/10.1145/2998181.2998360
http://dx.doi.org/10.1145/2998181.2998360
http://dl.acm.org/citation.cfm?id=2818754.2818825
http://dx.doi.org/10.1145/1808920.1808929
http://dl.acm.org/citation.cfm?id=2666719.2666734
http://dl.acm.org/citation.cfm?id=2664446.2664469
http://dl.acm.org/citation.cfm?id=2664446.2664469
http://dx.doi.org/10.1145/2950290.2983989
http://dx.doi.org/10.1109/TSE.2016.2584053

	Introduction
	Background
	Friction in Team Interactions
	!Understanding team members' roles and expertise.
	!Adhering to team's procedures and agreements.
	!Understanding and working towards team goals.
	!Coordinating team activities.
	!Managing trust and team cooperation.

	Friction in Interactions with Technology
	!Information overload.
	!Adopting & understanding tool usage in the team's context.
	!Maintaining awareness of the team's technology-dependent activities.

	Discussion Points for the Workshop
	References

