
Defining and Classifying Software Bots:
A Faceted Taxonomy

Carlene Lebeuf∗, Alexey Zagalsky†, Matthieu Foucault† and Margaret-Anne Storey†
∗Microsoft, USA

Email: calebeuf@microsoft.com
†The CHISEL Group, University of Victoria, Canada

Email: alexeyza@uvic.ca, mfoucault@uvic.ca, mstorey@uvic.ca

Abstract—While bots have been around for many decades,
recent technological advancements and the increasing adoption
of language-based communication platforms have led to a surge
of new software bots, which have become increasingly pervasive
in our everyday lives. Although many novel bots are being
designed and deployed, the terms used to describe them and
their properties are vast, diverse, and often inconsistent. Even
the concept of what is or is not a bot is unclear. This hinders
our ability to study, understand, design, and classify bots.

In this paper, we present a taxonomy of software bots, which
focuses on the observable properties and behaviours of software
bots, as well as the environments where bots are deployed and
designed. We see this taxonomy as a focal point for a discussion
in our community so that together we can deeply consider how
to evaluate and understand existing bots, as well as how we may
design more innovative and productive bots.

Index Terms—software bots, taxonomy, classification, software
engineering

I. INTRODUCTION

“The bot family tree is a confused and contradictory plant,
a warped and twisted structure, as unlike Darwin’s great Tree
of Life as a blackberry bush is unlike a weeping willow.” [1]

From the earliest days of computer programming, people
have dreamed about creating software programs that could
think and behave like humans [1]. Such programs would not
only automate tasks that humans perform, they would also
work with humans to solve intellectual problems that cannot
be entirely automated. The term “bot” was used to describe a
realization of this vision quite early on [1].

In just the past few decades, we have witnessed an uprising
of the next generation of software bot technologies, which are
becoming increasingly pervasive in our everyday lives. Recent
technological advancements and the adoption of language-
based messaging platforms (e.g., Microsoft Teams, Slack) have
led to a surge of new ubiquitous software bots [2]. Bots are
replacing not just simple tasks but also very complex software
applications. However, we worry that a poor understanding
of this shift could lead to unanticipated challenges and risks
experienced by both bot users and creators.

Although many novel bots have been designed and widely
deployed, the terminology used to describe them and their
properties is inconsistent. This is due to their development
(and adoption) across multiple technical disciplines (including

HCI, AI, SE, and systems) and diverse domains (e.g., health,
software engineering, commerce, and entertainment). Indeed
even definitions about what is or is not a bot vary considerably.
This is not surprising given the wide range of software
applications that are commonly referred to as “bots”. The
use of the term bot varies from describing simple scripts that
automate a task in the background, to complex applications
that interact with one or more humans and autonomously adapt
to activities that people and other systems do, and even all the
way to software applications that use AI and natural language
processing (NLP) to mimic human behaviour and intelligence.
We believe that, as a research and design community, we
need an agreed upon taxonomy so that we can together more
effectively compare, classify, evaluate, and design new bots.

In this paper, we provide a definition of software bots and
present a taxonomy developed through an extensive literature
review and consideration of a broad landscape of bots [3].
We used Usman et al.’s process for taxonomy generation [4],
part of which involved a card sorting activity to develop the
main facets (and subfacets) in the taxonomy [3]. We propose
a faceted taxonomy so that bots may be classified using
multiple perspectives.

Faceted taxonomies are commonly used in software engi-
neering and are particularly suitable for classifying complex
entities where “each facet is independent and can have its
own classes, which enable facet-based taxonomies to be easily
adapted so they can evolve smoothly over time” [4]. As bots
and their properties tend to evolve rapidly, any taxonomy about
them needs to be easy to expand and adapt. The taxonomy we
propose has three main facets that refer to:
• the properties of the environment that the bot was created

and operates in;
• the intrinsic properties of the bot itself; and
• the bot’s interactions within its environment.

We hope it will serve as a focal point for discussion so that
our community can share insights and knowledge about how
to evaluate and understand existing bots, as well as how we
may design innovative bots for the future while being aware
of the limitations and risks they may introduce. We invite the
community to reflect on the definition and taxonomy we put
forward as we expect other insights may help us improve and
refine both of these contributions.



II. AN OVERVIEW AND THE ORIGINS OF SOFTWARE BOTS

Early descriptions of bot-like helpers include Socrates’ dai-
monion in 399 BC [1] and James Clerk Maxwell’s hypothetical
demon in 1871 [5]. However, the first real digital helpers were
created for the Multics operating system by programmers at
MIT in 1963 [1]. They adopted the term daemon, which is still
used today, to describe small programs running unobtrusively
as background processes instead of being directly controlled
by users on Unix-like operating systems.

While the first appearance of the term robot is credited
to a 1921 science fiction play entitled Rossum’s Universal
Robots [6], where the author replaced the classical term
automata with robot, real robots only began to appear in the
early 1970s [7], [8]. The term bot originated as an abbreviation
of robot, however, unlike software bots, which are digital,
robots are mechanical. And while robots are used in the
physical world much in the same way software bots are used
in the digital world, they have tangible, mechanical bodies
that perform tasks by manipulating the physical world, often
helping automate repetitive tasks.

The Turing Test (1950) sparked the development of chat-
bots, computer programs designed to act humanly by talking
to users [9], [10]. Created in 1966 by MIT professor Joseph
Weizenbaum, Eliza was the first computer program to converse
with humans. Eliza attempted to cover her limited vocabulary
by imitating a psychotherapist: Eliza searched for keywords
in the user’s speech and responded with preprogrammed
questions, shifting the focus of the conversation back onto
the user.

Eliza inspired a variety of notable chatbots, including: Perry
(1972), the paranoid schizophrenic [11]; Alice (1995), the
natural language processing bot with lots of personality [12];
and SmarterChild (2000) [13]. While these earlier chatbots’ in-
teractions were purely text based, advances in natural language
processing allowed chatbots to begin using spoken language
or a combination of text and speech. The personal assistant
chatbot Julia (1994) was the first verbal chatbot [14]. A couple
of years later, Sylvie (1997) became the first “virtual human”
with an animated face and voice [15].

Related to these are software agents, which are often con-
fused with bots. The word agent originates from the Latin word
agere, meaning “to do” or “to act on someone’s behalf” [10],
[16]. The first software agents can be traced back to Hewitt’s
Actor Model [16]. However, agents were brought into the
public eye by the famous “Knowledge Navigator” video that
portrayed the interaction between a software agent and its
user [17]. Later, software agent research began to diversify and
a variety of agents emerged to support a broad range of tasks
across many domains. Software agents also began to take on
various names, based on either some significant property (e.g,.
collaborative, interface, mobile, internet, reactive, or smart) or
their purpose (e.g., personal assistants, guides).

The recent re-emergence of software bots and subsequent
increase in new bots being designed, deployed, and used has
been a result of technological advancements, the mainstream

adoption of both text messaging and voice-based platforms,
the transition to service-oriented architectures, and the abun-
dance of public APIs and datasets [3]. However, due to the
complicated and dispersed history of bots, bot design and
research communities are confronted with a vast, diverse, and
often inconsistent terminology, and lack a proper classification
scheme.

There are existing bot taxonomies and classification
schemes [16], [18]–[29], but we believe they are ineffective
or unsuitable for classifying many of the modern software
bots. Some classifications organize bots into subtypes (e.g.,
agents, chatbots) or based on their roles (e.g., informational
bots, transactional bots). Other taxonomies focus only on the
properties of specific subtypes of bots. In terms of granularity,
some taxonomies are too low level and describe a specific
property or behaviour of bots in extreme detail, while others
are too high level and combine many properties together into
a single dimension, often providing no description of the
property or behaviour at all. Moreover, the rapidly changing
bot landscape means that classification schemes become out
of date if they don’t consider recent technological advances
that are a central part of the bots we see today (e.g., NLP,
voice).

We believe that a taxonomy should not be a one-size-
fits-all solution. However, we strived to combat these issues
through the design decisions behind our taxonomy: (1) it was
designed as a multi-faceted taxonomy to allow for selective
use and graceful expansion as each facet is independent;
(2) it can be used to classify the observable properties and
behaviours of software bots; and it (3) provides a consistent
set of terminology (i.e., variant terms [30]) that map between
our controlled vocabulary and the terms used to describe
the same content in other related work. It is the product of
many software bot taxonomies being merged together, yet we
strongly believe that it should never be considered complete.

III. DEFINING SOFTWARE BOTS

Despite their increasing popularity, analyzing and under-
standing bots is challenging. Existing research of software bot
technologies spans across multiple areas and disciplines, and
has resulted in the lack of a generally accepted definition of
software bots. Over the years, researchers and practitioners
have tried to define bots in accordance with their specific
applications. For example, some define bots by their ability to
automate tasks [31]–[33] or behave autonomously [34], while
others define bots by their conversational capabilities [35], [36]
or human-like behaviors [37], [38].

While a multitude of definitions exist, some contradicting or
overlapping, there are several themes that are consistent across
many of the interpretations. We used these central themes to
develop our proposed definition of software bot-hood. We also
compared software bots to other related technologies to further
understand what makes a bot a “bot”. For brevity, we do not
include this comparison here and kindly refer the interested
reader to Lebeuf’s thesis [3].



We view software bots as a new interface paradigm; bots
connect users with software services. While bot users are often
humans, they are not required to be: users can be programs,
systems, or even other bots. A bot is the interface that provides
the services to the user, i.e., a bot is everything required to
present the service to the user. However, the bot and the service
can and should be decoupled from each other.

Fig. 1: The relationship between (a) software bots, (b) software
services, and (c) software bots with internal services.

Software services are “a mechanism to enable access to
one or more capabilities” [39]. Software bots utilize software
services for the raw value they provide; services provide
software functionality (or a set of software functionalities) in
a format that can be reused by multiple clients for a variety
of purposes. Modern services come in many forms, ranging
from the retrieval of information to the execution of a set
of operations. Often, a bot performs tasks that rely on these
services repetitively, saving the user time through automation.
Software services can be external to the bot, internal, or a
mixture of both types. Figure 1 illustrates this bot–service
relationship.

If software bots provide an alternative interface to services,
then what exactly does a software bot interface entail? A
software bot is the interface where the user and the bot’s
services meet. Furthermore, the software bot interface usually
leverages recent advances in interface paradigms and provides
additional value on top of its services (e.g., lowering the
barrier of access, consolidating multiple services, providing
automation).

Nowadays, users can interact with software bots via
the command line, graphical interfaces, touch interfaces,
spoken/written language, or a combination of interaction
paradigms. It should be noted, however, that these interfaces
are not required to be interfaces that humans use; the software
bot’s interface can be used by other bots or other types
of software systems. Another common way that software
bots provide additional value is through anthropomorphism—
making the user’s interactions with the software services
more enjoyable by making it more human. There are many
ways in which people anthropomorphize software bots: giving
them names, personalities, emotions, etc. We discuss more
of the additional value that bots provide as we introduce our
taxonomy in the next section.

IV. THE TAXONOMY

This taxonomy aims to update and organize the emergent
properties of software bots to provide a deeper understanding
of existing software bots as a whole. More specifically, it
presents a controlled vocabulary (i.e., variant terms [30])
for discussing the observable properties and behaviours of
software bots. This taxonomy also provides a range of possible
values for each category of properties or behaviours. It was
designed specifically as a faceted taxonomy to allow for the
subject matter (software bots) to be classified from multiple,
independent perspectives (called facets) that can be combined
to create a full classification of a software bot.

TAXONOMY OF SOFTWARE BOTS

Environment
Dimension

Intrinsic
Dimension

Interaction
Dimension

Knowledge

Reasoning

Adaptability

Goals

Delegation

Specialization

Anthropomorphism

Lifecycle

Type

Scope

Closure

Dynamism

Determinism

Permanence

Population

Access

Sense

Act

Communicate

Initiative

Robustness

Mobility

Fig. 2: A high-level view of the Software Bot Taxonomy’s
structure. The bolded facets are used as examples in the
following sections.

As mentioned, we used an adaptation of Usman et al.s
iterative software engineering taxonomy generation method-
ology in order to ensure rigour and to allow a multi-stage
data collection, term extraction, taxonomy construction, and
validation process [4]. We collected articles that discussed
the characteristics of software bots following a systematic
literature review. We extracted any terms used to describe
the observable properties and behaviours of software bots.
The extracted terms were then reduced (through mapping and
merging variant terms) and card sorted to allow the new taxon-
omys dimensions, facets, and facet values to emerge from the
data. More information regarding the full methodology used
to generate this taxonomy is available in Lebeuf’s thesis [3].

Using this methodology, we arrived at a holistic taxonomy
of software bots. At its top level, the taxonomy has three main



dimensions: (a) the bot’s environment, (b) the intrinsic prop-
erties of the bot itself, and (c) the bot’s interactions within its
environment. Figure 2 shows an overview of the taxonomy’s
dimensions and their top-level facets. In the following, we
provide a high-level description of our proposed taxonomy. We
refer interested readers to Lebeuf’s thesis [3], where each of
the taxonomy’s dimensions, facets, sub-facets, and facet values
are described in greater detail, along with many examples of
bots classified using the taxonomy.

A. Environment Dimension

To better understand a bot, we have to first understand
its environment. The environment dimension describes the
surroundings in which the bot lives and operates. What we can
observe about bots is how they behave with the environment
around them, therefore, the environment has an influence on
the bot’s behaviours. In the case of a bot operating in many
distinct environments, each of these environments should be
classified independently to provide a more complete picture
of the bot’s environmental influences.

As shown in Fig. 2, there are seven top-level facets that
fall under the environment dimension: type, the bot’s setting;
scope, the size of the bot’s environment; closure, who is able
to access the bot’s environment; dynamism, the degree to
which the bots environment changes; predictability, the de-
gree to which outcomes of the bot’s actions are deterministic;
permanence, how long the effects of the bot’s actions last;
and population1, who else resides in the bot’s environment.
Each of these facets have a set of sub-facets or facet values.

For instance, the type facet represents the setting (often a
system) that the bot inhabits, participates, or accesses. This
facet can have one of two values:
• Standalone: The bot is not tied to a specific platform.

Instead, the bot is hosted independently but can access
platforms in the same way as users. For example, most
video game bots and IRC bots are standalone.

• Platform: The bot can be hosted independently or
through the platform, but accesses the platform through
non-user methods. These kinds of bots augment a sys-
tem’s behaviour. For example, most GitHub and Mi-
crosoft Team’s bots inhabit specific platforms.

B. Intrinsic Dimension

The intrinsic dimension is composed of facets that describe
the properties belonging to the bots themselves. These prop-
erties are controlled at design-time by the bot developers.
Although some of these intrinsic facets touch on the inner
workings of the software bot itself, they are still relatively
visible from a black-box approach2. For the most part, we try
to focus on the externally observable, intrinsic properties of
software bots.

As shown in Fig. 2, the intrinsic dimension has a total of
eight facets3: knowledge, what the bot knows or understands;

1The population facet has two additional subfacets: cardinality and diversity [3].
2We adopted a black-box approach so that software bots could be classified using the

taxonomy even if their inner structures were not known.

reasoning, the bot’s logical capacity; adaptability, the bot’s
ability to modify its own behaviour; goals, the type of future
state the bot is attempting to achieve; delegation, the bot’s
authority to act on behalf of others; specialization, the degree
to which the bot specializes its efforts in a specific area;
anthropomorphism, the degree to which the bot is given
human-like traits; and lifecycle, the phases the bot goes
through in its life.

An example of an intrinsic property is the delegation
facet, describing the bot’s permission to act on behalf of or
to represent others. This facet is defined according to the
following ordinal scale:
• None: The bot does not have the authority to act on

behalf of others. However, bots with this property can
appear to be acting on behalf of users, but do so without
their permission and often with malicious intent (e.g.,
’doppelganger’ bots [40]).

• Partial: The bot has authority to act on behalf of the
user, but does not pretend to be the user, e.g., bots that
complete pull requests on behalf of users.

• Complete: The bot has the authority to both act on behalf
of and pretend to be the user, e.g., bots that complete pull
requests using the users’ credentials.

C. Interaction Dimension

The interaction dimension is composed of facets that de-
scribe the bot’s interactions with different entities in its envi-
ronment. More specifically, they try to focus on the wide range
of externally observable behaviours that the bot can exude
when interacting with the various elements in its environment.
Some of these interaction facets touch somewhat on the
inner workings of bots, yet, they are needed for a black-box
approach2 when examining bot behaviours.

As shown in Fig. 2, there are a total of seven facets4 that
fall under the interaction dimension: access, the bot’s ability
to sense and act within its environment; sense, the degree to
which the bot can perceive environmental stimuli; act, the
bot’s ability to act upon its environment; communicate, the
degree to which the bot can have meaningful interactions with
others; initiative, the way the bot’s environmental interactions
are initiated; robustness, the bot’s error or ambiguity handling;
and mobility, the bot’s ability to move around in its environ-
ment.

An example of an interaction sub-facet that falls under
the communication facet is cardinality. It represents the
number of users that the bot is capable of interacting with
simultaneously. Its values are along the following ordinal
scale:
• One-One: The bot is capable of interacting with one user

at a time. For example, most Microsoft Teams bots that a
user can have direct, private messages with are one-one.

• One-Many: The bot is capable of interacting with many
users simultaneously. For example, most Microsoft Teams
bots on public channels are one-many.

3With an additional 27 sub-facets for these eight intrinsic facets [3].
4With an additional nine sub-facets for these seven interaction facets [3].



• Many-Many: The bot is capable of interacting with many
users who are also interacting between themselves, e.g.,
Xiaoice [41].

D. Validation

Following Usman et al.’s guidelines [4], we ensured that the
taxonomy correctly captured the range of observable software
bot properties and behaviours by validating it through: (i)
benchmarking our taxonomy against existing classifications
of software bots; (ii) demonstrating the utility of the taxon-
omy through the tagging of three publicly available software
bots [3, p. 126]; and (iii) testing the utility and usability
of the taxonomy through a domain expert tagging session.
More details regarding our validation efforts can be found in
Lebeuf’s thesis [3].

V. WHY DEFINING & CLASSIFYING BOTS IS IMPORTANT

Ability to identify bots: The taxonomy we developed helps
determine what may or may not be a bot, identify different
bot species, and clarify the differences between bot subtypes
and other types of non-bot programs. For example, it could
be used to better answer questions like how do agents differ
from other bots? Additionally, using the definition we provide
in this paper, we may also be able to more easily ascertain
the number of and nature of bots “in the wild” for specific
domains.

Capture and describe diversity: When validating our tax-
onomy, participants were asked to classify bots they had built
themselves, and were able to do so with little guidance [3].
However, when we attempted to classify bots from previously
published research and literature, we found it extremely chal-
lenging (and in many cases impossible) since key details were
lacking in the authors’ descriptions of their bots. This indicates
to us that having a taxonomy such as the one we propose can
help researchers and designers more clearly describe bots and
compare them with existing bots. Having a set of consistent
terminology in an emerging field (like SE) also makes it easier
to understand and build upon each other’s work, which in turn
speeds up research [4].

Indeed, a taxonomy should allow us to capture the diversity
of bots we see today. In software development, for example,
we often classify bots by their ability to support different
development activities [32], [42] (e.g., assist in code review,
testing, bug fixing, quality checks, deployment), but describ-
ing bots by their goals alone may lead to an impoverished
description. Classifying these bots using other dimensions
can help reveal important similarities and differences between
them. For example, identifying the different mechanisms bots
use to “collaborate” with developers can help reveal insights
into designing bots that focus on mediating the collaboration
between two or more developers.

Document patterns of change: Integrating bots into software
developers’ workflows can lead to changes in the behaviour
and practices of individual members, their teams, and their
organizations. However, documenting these patterns of change
without a description or an understanding of the various bot

species and their characteristics is bound to be very difficult.
For example, Lebeuf et al. [43] used a socio-technical model
to explore how chatbots can help reduce the friction points
software developers face when working collaboratively.

Provide a basis for future guidelines: Although our tax-
onomy is currently non-prescriptive (i.e., it does not provide
guidelines or recommendations for selecting between facet
values), we feel the taxonomy could be used to help develop
a set of best practices for designing bots. Since the taxonomy
describes the set of possible values for each of the facets or
sub-facets, recommendations could be derived by exploring the
variety of bot facets. However, much future work is needed
to develop and evaluate recommendations and best practices
for general and specific domains, as well as to further validate
our proposed taxonomy.

VI. DISCUSSION POINTS

To conclude this paper, we provide a set of questions
that we hope may spark discussion on the classification of
software bots both in this workshop and across the software
bot community.

1) What is a bot to you? Do you agree with our proposed
definition of software bots? What do you see as their
defining characteristics?

2) Do you see a need to have a more formal definition of
software bots?

3) What other facets can/should be added to the taxonomy?
Which ones do you think will become more or less
important as we continue to design, develop, and research
software bots?

4) What kinds of guidelines are needed to guide the design
of bots, especially for specific domains and activities such
as software development?

5) What is your vision for the future role bots may play
in software engineering (or other domains)? Does the
taxonomy prompt you to think of future bot capabilities?

REFERENCES

[1] A. Leonard, Bots: The Origin of New Species. Penguin Books Limited, 1998.
[2] J. Cabot, “Best bots to improve your software development process,” https:

//livablesoftware.com/best-bots-software-development, 2018, [Online; accessed 28-
Feb-2019].

[3] C. Lebeuf, “A taxonomy of software bots: towards a deeper understanding of
software bot characteristics,” Master’s thesis, University of Victoria, 2018.

[4] M. Usman, R. Britto, J. Börstler, and E. Mendes, “Taxonomies in software
engineering: A systematic mapping study and a revised taxonomy development
method,” Information and Software Technology, vol. 85, pp. 43–59, 2017.

[5] W. Thomson, “The sorting demon of maxwell,” in Proceedings of the Royal Society,
vol. 9, 1879, pp. 113–114.

[6] K. Čapek, R.U.R. (Rossum’s Universal Robots). Oxford University Press, 1951,
english translation.

[7] I. Kato, “Development of wabot-1,” Biomechanism, vol. 2, pp. 173–214, 1973.
[8] P. Mowforth and I. Bratko, “AI and robotics; flexibility and integration,” Robotica,

vol. 5, no. 2, pp. 93–98, 1987.
[9] A. M. Turing, “Computing machinery and intelligence,” in Parsing the Turing Test.

Springer, 2009, pp. 23–65.
[10] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson

Education Limited, 1995, vol. 25, ch. 2.
[11] V. Cerf, “Parry encounters the doctor,” Tech. Rep., 1973.
[12] R. Wallace, “Artificial linguistic internet computer entity (alice),” 1995.
[13] R. Hoffer, T. Kay, P. Levitan, and S. Klein, “Smarterchild,” ActiveBuddy, 2001.
[14] M. L. Mauldin, “Chatterbots, tinymuds, and the turing test: Entering the loebner

prize competition,” in AAAI, vol. 94, 1994, pp. 16–21.
[15] “Verbot sylvie,” Virtual Personalities Inc, 1997.

https://livablesoftware.com/best-bots-software-development
https://livablesoftware.com/best-bots-software-development


[16] H. S. Nwana, “Software agents: An overview,” The Knowledge Engineering Review,
vol. 11, no. 3, pp. 205–244, 1996.

[17] J. Sculley, “The knowledge navigator,” 1987, educom Keynote.
[18] S. D. Bird, “Toward a taxonomy of multi-agent systems,” International Journal of

Man-machine Studies, vol. 39, no. 4, pp. 689–704, 1993.
[19] S. Franklin and A. Graesser, “Is it an agent, or just a program?: A taxonomy for

autonomous agents,” in International Workshop on Agent Theories, Architectures,
and Languages, 1996, pp. 21–35.

[20] Z. Huang, A. Eliens, A. van Ballegooij, and P. de Bra, “A taxonomy of web agents,”
in Proceedings of the 11th International Workshop on Database and Expert Systems
Applications, 2000, pp. 765–769.

[21] S. Munroe and M. Luck, “Agent autonomy through the 3m motivational taxonomy,”
in Proceedings of the International Conference on Agents and Computational
Autonomy, 2003, pp. 55–67.

[22] P. T. Tosic and G. A. Agha, “Towards a hierarchical taxonomy of autonomous
agents,” in IEEE International Conference on Systems, Man and Cybernetics, 2004,
pp. 3421–3426.

[23] J. Aguero, M. Rebollo, C. Carrascosa, and V. Julian, Agent Capability Taxonomy
for Dynamic Environments. Springer Berlin Heidelberg, 2012, pp. 37–48.

[24] G. Sakarkar and N. M. Shelke, “A new classification scheme for autonomous
software agent,” in International Conference on Intelligent Agent Multi-agent
Systems, 2009, pp. 1–2.

[25] A. Hector and V. L. Narasimhan, “A new classification scheme for software agents,”
in Third International Conference on Information Technology and Applications,
2005, pp. 191–196.

[26] H. V. D. Parunak and M. Fleischer, “A design taxonomy of multi-agent interac-
tions,” in International Workshop on Agent-Oriented Software Engineering, 2003,
pp. 123–137.

[27] M. Huhns and M. P. Singh, “Agents and multiagent systems: Themes, approaches
and challenges,” in Readings in Agents, 1998, ch. 1.

[28] L. J. Moya and A. Tolk, “Towards a taxonomy of agents and multi-agent systems,”
in Proceedings of the Spring Simulation Multiconference, 2007, pp. 11–18.

[29] E. Paikari and A. van der Hoek, “A framework for understanding chatbots and their
future,” The 11th International Workshop On Cooperative and Human Aspects of
Software Engineering an ICSE workshop, 2018.

[30] L. Rosenfeld and P. Morville, Information Architecture for the World Wide Web.
O’Reilly Media, Inc, 2002.

[31] C. Vouillon. (2015) Software bots: From do-it-yourself companion bots
to AI powered software. [Online]. Available: https://medium.com/point-nine-
news/software-bots-c56aeedcfec3

[32] M.-A. Storey and A. Zagalsky, “Disrupting developer productivity one bot at
a time,” in Proceedings of the 24th ACM Sigsoft International Symposium on
Foundations of Software Engineering, 2016, pp. 928–931.

[33] B. Nerds. (2017) Types of bots: An overview. [Online]. Available: http:
//botnerds.com/types-of-bots/

[34] A. Zantal-Wiener, “Where Do Bots Come From? A Brief History,” https://blog.
hubspot.com/marketing/where-do-bots-come-from, 2017, [Online; accessed 28-
Feb-2019].

[35] R. Dale, “The return of the chatbots,” Natural Language Engineering, vol. 22,
no. 5, pp. 811–817, 2016.

[36] K. Iqbal, I. Berry, L. Spacil, C. Qian, and R. Standefer, “About Azure Bot
Service,” https://docs.microsoft.com/en-us/azure/bot-service/bot-service-overview-
introduction?view=azure-bot-service-3.0, 2019, [Online; accessed 28-Feb-2019].

[37] G. Maus, “A typology of socialbots (abbrev.),” in Proceedings of the ACM
Conference on Web Science, 2017, pp. 399–400.

[38] “Bot definition,” https://en.oxforddictionaries.com/definition/bot, Oxford English
dictionary, [Online; accessed 28-Feb-2019].

[39] P. Brown, J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton, “OASIS
Reference Architecture Foundation for Service Oriented Architecture,” https://www.
oasis-open.org/committees/soa-rm, 2012, [Online; accessed 28-Feb-2019].

[40] O. Goga, G. Venkatadri, and K. P. Gummadi, “The doppelgänger bot
attack: Exploring identity impersonation in online social networks,” in
Proceedings of the 2015 Internet Measurement Conference, ser. IMC ’15.
New York, NY, USA: ACM, 2015, pp. 141–153. [Online]. Available:
http://doi.acm.org/10.1145/2815675.2815699

[41] J. Markoff and P. Mozur, “For Sympathetic Ear, More Chinese Turn to Smart-
phone Program,” https://www.nytimes.com/2015/08/04/science/for-sympathetic-
ear-more-chinese-turn-to-smartphone-program.html, 2015, [Online; accessed 28-
Feb-2019].

[42] C. Lebeuf, M. A. Storey, and A. Zagalsky, “Software bots,” IEEE Software, vol. 35,
no. 1, pp. 18–23, 2018.

[43] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “How software developers mitigate
collaboration friction with chatbots,” 2017.

https://medium.com/point-nine-news/software-bots-c56aeedcfec3
https://medium.com/point-nine-news/software-bots-c56aeedcfec3
http://botnerds.com/types-of-bots/
http://botnerds.com/types-of-bots/
https://blog.hubspot.com/marketing/where-do-bots-come-from
https://blog.hubspot.com/marketing/where-do-bots-come-from
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-overview-introduction?view=azure-bot-service-3.0
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-overview-introduction?view=azure-bot-service-3.0
https://en.oxforddictionaries.com/definition/bot
https://www.oasis-open.org/committees/soa-rm
https://www.oasis-open.org/committees/soa-rm
http://doi.acm.org/10.1145/2815675.2815699
https://www.nytimes.com/2015/08/04/science/for-sympathetic-ear-more-chinese-turn-to-smartphone-program.html
https://www.nytimes.com/2015/08/04/science/for-sympathetic-ear-more-chinese-turn-to-smartphone-program.html

	Introduction
	An Overview and the Origins of Software Bots
	Defining Software Bots
	The Taxonomy
	Environment Dimension
	Intrinsic Dimension
	Interaction Dimension
	Validation

	Why Defining & Classifying Bots Is Important
	Discussion Points
	References

