
Atlantis: Improving the Analysis and Visualization
of Large Assembly Execution Traces

Huihui Huang, Eric Verbeek,
Daniel German, Margaret-Anne Storey

University of Victoria
Victoria, BC, Canada

Email: norah, everbeek, dmg, mastorey@uvic.ca

Martin Salois
Defence Research and Development Canada - Valcartier

Quebec, QC, Canada
Email: martin.salois@drdc-rddc.gc.ca

Abstract—Assembly execution trace analysis is an effective
approach to discover potential software vulnerabilities. However,
this analysis is labour intensive due to the lack of source code
and the huge size of the execution traces. Instead of browsing
billions of instructions one by one, software security analysts
need higher level information that can provide an overview
of the execution of the program to assist in the identification
of patterns of interest in the executed program. The tool we
are presenting in this paper has a number of features that
make it particularly successful in achieving this goal. These
features are improvements we have made to Atlantis, our trace
analysis environment for multi-gigabyte long assembly traces.
The contributions of this continuous work falls into three main
categories: a) the ability to efficiently reconstruct and navigate
the memory state of the program at any point in the trace; b) the
reconstruction and navigation of functions and processes, and c) a
powerful search facility to query and navigate the trace. Software
nowadays is increasingly complex and many applications are
designed as collaborative systems or modules interacting with
each other, as a result making the discovery of vulnerabilities
extremely difficult. The contributions of this paper extend the
security analyst’s capability to investigate vulnerabilities of real-
world large execution traces, and can lay the groundwork for
supporting trace analysis of interacting programs in the future.

I. INTRODUCTION AND BACKGROUND

Software vulnerabilities can compromise a computer or even
an entire internal network, exposing data and control systems
to attackers [1]. While software companies are expected to
prioritize creating secure software and invest a significant
amount of resources in the process as a first line of defense, it
is often the case that software is shipped with vulnerabilities
that can expose it to attacks [2].

A second line of defense is to perform software auditing.
Auditors attempt to find vulnerabilities in these systems by
testing and studying them. However, these Auditors often lack
access to source code, creating additional technical challenges
for an already-difficult activity [3].

Dynamic analysis [4]—which records and analyses the
assembly execution trace of a running program—is one of the
main methods used in vulnerability detection. Traces contain
every micro instruction executed by the program, often billions
of them, resulting in large and opaque traces. Without access
to the more readable and concise source code, analysing these
trace is a labour intensive task.

As part of our ongoing research work, we have previously
developed Atlantis, an assembly trace analysis environment
designed specifically to work with execution traces generated
for security analysis. It was designed as a user-friendly en-
vironment to provide security engineers with the ability to
inspect and navigate large traces. Users are able to browse the
trace, add comments, and mark regions of interest (this version
of Atlantis was demonstrated at WCRE 2012 [5]).

This paper showcases the contributions we made for assem-
bly execution trace analysis by implementing several novel
and powerful features in Atlantis. As we know, with the
newly implemented features, Atlantis is the only tool that can
reconstruct the memory state of the trace as well as visualize
the function call pattern and process and executable interaction
patterns. All of these unique and novel features allow software
security analysts to perform analyses with new insights and
allow scaling to very large traces.

In software security analysis, there is an assumption that
all memory corruption vulnerabilities should be treated as
exploitable until you can prove otherwise [3]. To determine a
program’s potential exploitability from a trace, it is important
to know, at any point in the trace, the state of the memory used
by the program. That is at any instruction, what memory has
the program accessed, and what are its current contents. This
feature enables analysts to observe how the program accesses
and changes its memory in order to find out the misuse of
memory.

However, implementing this feature is not trivial. Cleary
et al. proposed several methods to solve this problem [6],
including the Memory State Delta Tree Algorithm, which
precomputes and store the memory state at different points
in the traces and dynamically recreates memory from the last
checkpoint up to the desired instruction. Using this algorithm,
Atlantis is the first trace analysis environment that can provide
efficient memory reconstruction of gigabyte assembly traces in
an interactive manner.

Reconstructing functions and processes of a trace create
higher-level entities helps analysts cope with the complexity
of a trace. This information allows them to observe potential
patterns of the program. Atlantis examines the trace to auto-
matically identify both functions and processes and provides
specialized views to inspect and navigate them.



II. TOOL DESCRIPTION

Atlantis is an interactive environment for analyzing assem-
bly level traces to assists security analysts who perform dy-
namic analysis of software in search of security vulnerabilities.
It is currently capable of inspecting large traces (dozens of
gigabytes long). It has four main features1:

1) It allows to navigate and inspect each instruction in the
trace.

2) It reconstructs the program’s memory at any point during
the trace (e.g. a byte-level snapshot of memory as seen
by the program at that particular moment in time), and
provides features to query and navigate the memory state
of the program.

3) It provides function and thread views to help analysts
cope with the size and complexity of the trace.

4) It provides a powerful search mechanism to query and
navigate the trace.

The following subsections describe why we need to pre-
process the trace file; The new sub module, Gibraltar, for trace
pre-processing; What is new for Atlantis as a trace viewer.

A. The need to pre-process the trace

One of the major challenges of analysing assembly-level
traces for security analysis is that they tend to be huge. This
makes reconstructing the entire memory state at any point of
the trace very costly. Cleary et al [6] described several different
strategies to address this problem. They rely upon the creation
of data structures that can be pre-computed. Some of them
consume more storage while others require more computation
at the time when the user wants to inspect memory at a
given point. One of these strategies is the Memory State Delta
Tree algorithm, which we have implemented in Atlantis. This
algorithm strikes a balance between storage and time that
makes live interaction possible.

In a nutshell, this algorithm requires the creation of the
memory state delta tree which is a B-tree [7]. Each node
contains a start instruction line number(startline) and end
instruction line number(endline) along with a snapshot delta of
the memory change for the section of the trace from startline
to endline. The startline of a node is the next number of the
endline of its previous node in the same tree level. The parent-
node’s startline equals to its first child-node’s startline while
its endline equals to its last child-node’s endline.

The memory reconstruction of a certain instruction line
is based on that line number search in the B-tree on the
endline numbers. All the memory snapshot of the nodes in
the traverse path will be retrieved and combined into the
memory state of that instruction line. This process reduces the
computational complexity of computing the trace at any given
point from linear to logarithmic (with respect to the number
of instructions in the trace).

However, it has two main drawbacks: computing the mem-
ory state delta tree is very expensive (e.g. a gigabyte trace

1The last three features are the main contributions of this paper while the
first one is presented in the paper in WCRE2012 [5].

might require hours to be processed) and it requires a lot of
disk space to store it. Fortunately, the memory state delta tree
needs to be computed only once per trace.

Another challenge that Atlantis users faced was loading a
trace for the first time. At this point, the trace was analyzed
(i.e. to reconstruct functions and processes) and several indices
were created to speed up navigation. As the traces became
larger, this process slowed down and became too long to be
done interactively.

For these reasons, processing of a trace is now done off-
line. Once the trace is generated, it can be processed and all
the necessary data structures (including the memory state delta
tree and any indices) are created. This process is depicted in
Fig. 1. The pre-processing is done by a new module called
Gibraltar that reads the original trace and generates a SQLite
database contains all that Atlantis requires.

B. Gibraltar: A Trace Pre-Processor

Gibraltar is a pre-processor that converts trace file into
a SQLite database that Atlantis uses as input. Gibraltar is
responsible for three main tasks: a) creation of the memory
state delta tree, b) identification of higher-level entities, such
as functions and processes, and c) creation of data structures
(such as indices to the instructions in the execution trace) to
improve the performance of Atlantis. The output of Gibraltar
also contains all the information present in the original trace.

Gibraltar needs to be run only once per trace and does not
require any interaction with the user; hence it can be run off-
line, right after the trace has been generated.

Separating the pre-process tasks in Gibraltar is an other dis-
tinguish improvement that makes the later interactive response
from Atlantis to the users possible.

C. Atlantis: A Trace Viewer

Atlantis connects to the SQLite database file generated
by Gibraltar. The main views of Atlantis, depicted in Fig.2,
presents the state of the program at a particular instruction
line. For this instruction line, Atlantis retrieves the tree node
data from the database, reconstructs the memory state, and
presents it. All the unique and novel features provided by
Atlantis are hosted in its views. This views provides various
information to the analysts which significantly improve their
analysis efficiency. Due to space constraints we only elaborate
on the most novel views.

1) Memory views: The reconstructed memory state is up-
dated immediately after the selection of an instruction and
can be inspected in the Register view and Memory view.
The memory changes made by the current instruction line are
highlighted in red.

2) Search views: Search views provide users with an easier
way to access information. Atlantis has two search views. The
Search Assembly view allows users to search for specific
instructions. The Memory Search view provides users with
two different search expressions, text or hexadecimal. When
the users are looking for a specific value, all matching memory
locations (with the values they contained at the current line



Fig. 1. Before a trace can be inspected by Atlantis, it must be pre-processed offline by Gibraltar. Gibraltar reads the trace and creates a SQLite database that
contains the data structures to speed up access to the trace, the memory state delta tree (used for memory reconstruction) and the reconstructed functions and
processes.

Fig. 2. Screenshot of Atlantis with Default View Setting

in the Instruction view) will be listed in the result window.
The Memory List view allows the user to browse specific
memory addresses and to identify instructions that modify
these addresses.

3) Functions views: There are two views in this group:
Functions view and Function Recomposition view, as shown
in Fig. 3. The Functions view lists all the executable modules
(such as .dll and .exe) in the trace. Expanding an executable
entry shows the functions in this executable that are called in
the trace. Atlantis inspects the executable binary or any DLLs
it used in search of symbolic names to label the identified
functions found in the trace. This higher-level information
provides analysts more a structural analysis method.

Users can get the function recomposition information by
right clicking a specific function entry and selecting the
“Perform Static Code Recomposition” action item as shown
in Fig. 3. This is the impressive since it allows analysts to
understand the program complexity without source code.

4) Trace Visualization views: There are three views in
this group: Assembly Visualization view, Thread Trace
Visualization view and Thread Functions view. Fig. 4 shows
a screen shot of these three views (the last two are new). The
Tread Trace Visualization view shows the threads’ temporal

Fig. 3. Screenshot of Function views

relationships. The Assembly Trace Visualization view shows
the time segments in which each executable module is being
executed. Jumping among executable modules indicates calls
across each module. The Thread Functions view shows the
function call of the selected thread. Meaningful patterns, might
be discovered by experienced reverse engineers using these
views.

Fig. 4. Screenshot of Visualization views

III. PRELIMINARY EVALUATION

Our research partner, Defence Research and Development
Canada (DRDC) uses Atlantis. Assembly-level trace files are
generated by an in-house tool they have developed. DRDC
has provided several traces to measure the performance of
Gibraltar and Atlantis. The measurements were conducted
separately for Gibraltar and Atlantis, on a machine running



Windows 7, with a 3.60GHz Intel i7-4790 CPU, and 16GB of
RAM.

A. Gibraltar

By running the sample traces, we proved that Gibraltar
can successfully reconstruct the memory delta tree and other
needed data for Atlantis. With regard to precise measurement
of Gibraltar, two measures are of interest. First, the time to
process a trace. Second, the size of the SQLite database. We
conducted the measurement tests on three trace files. Table I
shows the results. As one can see, the processing time of
Gibraltar is very long. Fortunately it only needs to run once per
trace. The size of the output file is much larger than the input,
due to the additional information and the indices created. The
processing time and output size depend on the characteristics
of the specific trace and do not correlate with the trace file
size. For example, the total memory footprint of the traced
program will affect all three metrics (regardless of actual size
of the trace), and thrashing of memory during the execution
of the program will also affect processing time.

TABLE I
MEASUREMENTS FOR TRACES WHEN PROCESSED BY GIBRALTAR

Traced
Application

Input Trace
File Size

(GB)

Input Trace
Number of
Instructions

Processing
Time

(hours)

Output
Database
File Size

(GB)
AdobeReader 4.81 82,778,317 12.44 29.5

Cmd 23.3 2,772,154 63 150
Chrome 38.8 671,168,459 212 245

B. Atlantis

As we claim before, Atlantis can deal with large traces
responsively. Since the biggest bottle neck of the response time
of Atlantis is located in the reconstruction of memory state,
we only evaluate its responsiveness by measuring the time
it takes to update its memory view (the most time-consuming
view, all over views are updated almost instantaneously) when
a user jumps to a given instruction in a very large trace. This
measurement will be an indicator of how interactive Atlantis
is. For this test, we used the trace file of Cmd (one of the
three shown in Table I). We instrumented Atlantis to measure
the time it takes from selecting an instruction to the time
the memory view has been completely updated. To perform a
measurement, we placed the current and destination instruction
pairs in the Instruction view. We navigated from the current
to the destination using the “Go To Line” short-cut provided
by the Instruction view. This minimized any interaction with
other Atlantis features that might skew the results.

We divided the test into three groups, each with different
distances between the source and destination instructions. Each
group has a constant gap (in terms of number of instructions)
between the current and destination instructions; these are
13,861, 138,607 and 831,646, corresponding to 0.5%, 5% and
30% of the length of the trace file.

We performed the test in both directions: forward and
backward. Forward means the current instruction number is

less than the destination instruction number, while backward is
the opposite. We performed 10 tests in each group per direction
and recorded the time it took to reconstruct the memory and
update the memory view for each test. Table II shows the
minimum, maximum and average time of each test group and
direction. Miller [8] described that a response time of 100
ms is perceived as instantaneous while 1 second or less is
fast enough for users to feel they are interacting freely with
the computer. From the result of our measurement test, we
can see even the maximum response times are far less than 1
second. These results support the view that Atlantis provides
a responsive user experience.

TABLE II
ATLANTIS INTERACTION TIMES, IN SECONDS, FOR MEMORY

RECONSTRUCTION.

line gap 13,861 (0.5%) 138,607 (5%) 831,646 (30%)
Direction FW1 BW 2 FW BW FW BW
Max(s) 0.159 0.204 0.217 0.272 0.151 0.168
Min(s) 0.031 0.094 0.056 0.081 0.132 0.063
Avg(s) 0.098 0.14 0.14 0.152 0.139 0.119

1 Forward. 2 Backward.

Due to the space limitation, we can not present evaluation
of other futures. The effect of these futures can be refer from
the demo video.

IV. CONCLUSION AND FUTURE WORK

This paper presents the significantly improved Atlantis. Its
new given ability of deriving and visualizing various types
of information, especially the memory state at any point of
the trace, the function reconstruction and the call flow helps
analysts understand the program’s behaviour and reduce the
cognitive overload of dealing with these very large traces.

We have also shown that by pre-processing the trace (a step
that can be performed right after the trace is created, without
any interaction from the user), Atlantis is capable of providing
real-time views of the memory state of the program at any
point of a huge trace.

In the future, we aim to extend our tool in two directions.
First, we would like our pre-processor to read traces from
other trace generators. This will permit users of other trace
generators to use Atlantis. And this is the most important step
and reason for Atlantis open sourcing while it is now only
an in-house tool. Second, we want to assist in the analysis
and visualization of dual-traces. A dual-trace consist of two
execution traces that are generated from two applications that
are communicating in some way. Applications nowadays rarely
work in isolation, and many are designed as collaborative
systems or modules in a network [9], which makes the
discovery of vulnerabilities even harder since communications
and interactions across applications affect their behaviour.

ACKNOWLEDGMENT

We wish to thank all members in CHISEL lab especially
Cassandra Petrachenko, Alexey Zagalsky, Omar Elazhary and
our visiting professor Andy Zaidman for supporting the de-
velopment of this tool and the writing of this paper.



REFERENCES

[1] V. M. Igure and R. D. Williams, “Taxonomies of attacks and vulnerabil-
ities in computer systems,” IEEE Communications Surveys & Tutorials,
vol. 10, no. 1, 2008.

[2] C. P. Pfleeger and S. L. Pfleeger, Security in computing. Prentice Hall
Professional Technical Reference, 2002.

[3] M. Dowd, J. McDonald, and J. Schuh, The art of software security
assessment: Identifying and preventing software vulnerabilities. Pearson
Education, 2006.

[4] T. Ball, “The concept of dynamic analysis,” in ACM SIGSOFT Software
Engineering Notes, vol. 24, no. 6. Springer-Verlag, 1999, pp. 216–234.

[5] B. Cleary, M.-A. Storey, L. Chan, M. Salois, and F. Painchaud, “Atlantis-
assembly trace analysis environment,” in Reverse Engineering (WCRE),
2012 19th Working Conference on. IEEE, 2012, pp. 505–506.

[6] B. Cleary, P. Gorman, E. Verbeek, M.-A. Storey, M. Salois, and
F. Painchaud, “Reconstructing program memory state from multi-gigabyte
instruction traces to support interactive analysis,” in Reverse Engineering
(WCRE), 2013 20th Working Conference on. IEEE, 2013, pp. 42–51.

[7] D. Comer, “Ubiquitous b-tree,” ACM Computing Surveys (CSUR), vol. 11,
no. 2, pp. 121–137, 1979.

[8] R. B. Miller, “Response time in man-computer conversational transac-
tions,” in Proceedings of the December 9-11, 1968, fall joint computer
conference, part I. ACM, 1968, pp. 267–277.

[9] L. Wen, D. Kirk, and R. G. Dromey, “Software systems as complex
networks,” in Cognitive Informatics, 6th IEEE International Conference
on. IEEE, 2007, pp. 106–115.


