
Automated Detection of Test Fixture Strategies and Smells

Michaela Greiler, Arie van Deursen

Delft University of Technology
{m.s.greiler‖arie.vanDeursen}@tudelft.nl

Margaret-Anne Storey

University of Victoria, BC, Canada
mstorey@uvic.ca

Abstract—Designing automated tests is a challenging task.
One important concern is how to design test fixtures, i.e.
code that initializes and configures the system under test
so that it is in an appropriate state for running particular
automated tests. Test designers may have to choose between
writing in-line fixture code for each test or refactor fixture
code so that it can be reused for other tests. Deciding on
which approach to use is a balancing act, often trading off
maintenance overhead with slow test execution. Additionally,
over time, test code quality can erode and test smells can
develop, such as the occurrence of overly general fixtures,
obscure in-line code and dead fields. In this paper, we show that
test smells related to fixture set-up occur in industrial projects.
We present a static analysis technique to identify fixture related
test smells. We implemented this test analysis technique in a
tool, called TestHound, which provides reports on test smells
and recommendations for refactoring the smelly test code. We
evaluate the tool through three industrial case studies and show
that developers find that the tool helps them to understand,
reflect on and adjust test code.

Keywords-test code comprehension; maintainability; test fix-
ture; test smells; software testing; test code refactoring;

I. INTRODUCTION

Modern software development practice dictates early and

frequent (automated) testing. While automated test suites

written by developers are helpful from a (continuous) in-

tegration and regression testing perspective, they lead to

a substantial amount of test code. Like production code,

test code needs to be maintained, understood, and adjusted,

which can become very costly. The long term success of

automated testing is highly influenced by the maintainability

of the test code [14]. To support easier maintainability of

a system, test methods should be clearly structured, well

named and small in size [7]. The duplication of code across

test methods should be avoided.

One important part of a test is the code that initializes the

system under test (SUT), sets up all dependencies and puts

the SUT in the right state to fulfill all preconditions needed

to exercise the test. In line with Meszaros, we refer to this

part of a test as the test fixture [14]. Developers can adopt

several strategies for structuring their fixture code. The most

straightforward option is to place the setup code directly

in the test method, which we refer to as an in-line setup.

A positive aspect of an in-line setup is the proximity of

the setup code to the test itself. However, when several test

methods require the same fixture, an in-line setup can lead

to code duplication and high maintenance costs [5]. Also,

configuring the SUT within the test method might hide the

main purpose of the test and result in an obscure test [14].

An alternative approach is to place the setup code in

helper methods that can be called by several test methods,

which we refer to as a delegate setup [14]. With a delegate

setup, the developer has to make sure the right methods are

invoked at the right time (e.g. as a first statement in a test

method).

In today’s testing frameworks, such as the widely used

xUnit family, there is a dedicated mechanism to manage

setup code invocations [1], [8]. Therefore, helper-methods

containing the setup code can be marked (e.g. using anno-

tations or naming conventions) as specific setup methods,

which we refer to as an implicit setup.1 The advantage of

an implicit setup is that the framework takes care of invoking

the setup code at a certain point in time and for a specific

group of tests, but also that the methods are explicitly

marked as setup which helps with code comprehension.

Often, implicit setups are invoked either before each test

within a class, or once before all the tests within a class.

One main drawback of this approach is that the tests grouped

together (i.e. within one class) should have similar needs in

the test fixture. Otherwise, tests might only access (small)

portions of a broader fixture, which can lead to slow tests

and maintenance overhead.

During the evolution of test code, developers have to

make conscious decisions about how to set up the test

fixture and adjust their fixture strategies, otherwise they

end up with poor solutions to recurring implementation and

design problems in their test code, so-called test smells [5].

Unfortunately, until now, no support has been made available

to developers during the analysis and adjustment of test

fixtures.

To address this shortcoming, we developed a technique

that automatically analyzes test fixtures to detect fixture-

related smells and guides improvement activities. We imple-

mented this technique in TestHound, a tool for static fixture

analysis. We evaluate our technique in a mixed methods

research approach. First, we analyzed the test fixtures of

three industry-strength software systems. Second, we eval-

1For example, in the JUnit frameworks methods can be either named
setUp() or marked with annotations such as @Before or @BeforeClass.

2013 IEEE Sixth International Conference on Software Testing, Verification and Validation

978-0-7695-4968-2/13 $26.00 © 2013 IEEE

DOI 10.1109/ICST.2013.45

322

uated the usefulness of the technique with 13 developers.

In the paper, we show that fixture-related smells exist in

practice, and that developers find TestHound helpful during

fixture management.

In Section II, we briefly summarize different test smells

related to test fixtures. In Section III, our fixture analysis

technique is presented, followed by implementation details

in Section IV. Section V details our experimental design.

In Section VI, the evaluation of our technique is presented,

followed by a discussion in Section VII. In Section VIII, we

present related work, and conclude in Section IX.

II. TEST SMELLS

In earlier research [9], we interviewed 25 Java develop-

ers on information needs for test code understanding. We

observed that the test structure is important for developers

to navigate and retrieve tests within a code base. For

example, to support easier retrieval of test code, it is a

common practice in Java-based systems to organize tests

similar to production code (i.e. class to test class, package

to test package). Although this practice is chosen to facilitate

maintenance, it might lead to groups of tests within one test

class that have very different requirements on the system

under test. This means that each test might need a different

test fixture that initializes and configures the system under

test and all its dependencies (to fulfill all preconditions of a

test). As test code grows and evolves, this strategy can lead

to test smells with respect to the test fixture.

The code smell metaphor has been introduced by Fowler

[6] who describe a smell as a poor solution to a recurring

implementation and design problem. Code smells are not

a problem per se, but they may lead to issues such as

understanding difficulties, inefficient tests and poor main-

tainability of a software system. Later, van Deursen et al.

introduced the term test smells by applying the concepts of

smells to test code [5]. The initial set of test smells has been

extended by several researchers [14], [19], [17]. We further

extend this set, in particular, with test smells related to test

fixtures. Apart from the General Fixture Smell (introduced

by van Deursen et al. [5]), we present five new test smells

as well as possible refactorings to address these issues:

General Fixture Smell. The general fixture smell occurs

if test classes contain broad functionality in the implicit
setup, and different tests only access part of the fixture.

Problems caused by a general fixture are two-fold: firstly, the

cause-effect relationship between fixture and the expected

outcome is less visible, and tests are harder to read and

understand. This can cause tests to be fragile: a change

that should be unrelated affects tests because too much

functionality is covered in the fixture. Secondly, the test

execution performance can deteriorate, and test execution

times may eventually lead to developers avoiding to execute

tests. Refactoring. A general fixture can be refactored by

creating a minimal fixture, which covers only the setup code

common for all test methods. Individual setups can be placed

in delegate setups by applying an extract method refactoring.

In the case where the test methods do not share too much

setup code, an extract class refactoring can be applied.

Test Maverick. Based on the general fixture smell, we

derived a related smell: the test maverick smell. A test

method is a maverick when the class comprising the test

method contains an implicit setup, but the test method is

completely independent from the implicit setup procedure.

The setup procedure will be executed before the test method

is executed, but it is not needed. Also, understanding the

effect-cause relationship between setup and test method can

be hampered. Discovering that test methods are unrelated

from the implicit setup can be time consuming. Refactor-
ing. Test mavericks can be eliminated by the extract class
refactoring, placing them in their own class.

Dead Fields. The dead field smell occurs when a class or

its super classes have fields that are never used by any test

method. Often dead fields are inherited. This can indicate

a non-optimal inheritance structure, or that the super class

conflicts with the single responsibility principle. Also, dead

fields within the test class itself can indicate incomplete or

deprecated development activities. Refactoring. Dead fields
associated with the class should be removed. A possible

refactoring for dead fields of the super class are splitting

the super class into several classes.

Lack of Cohesion of Test Methods. Cohesion of a class

indicates how strongly related and focused the various

responsibilities of a class are [4]. Classes with high cohe-

sion facilitate code comprehension and maintenance. Low

cohesive methods are smelly because they aggravate reuse,

maintainability and comprehension [6], [12]. The smell Lack
of Cohesion of test methods (LCOTM) occurs if test methods

are grouped together in one test class, but they are not

cohesive. Refactoring. To reduce LCOTM, the extract class

refactoring can be applied to split a test class with too many

test responsibilities into different classes.

Obscure In-Line Setup. Meszaros introduced the smell ob-
scure test to refer to a test that is difficult to understand [14]

and thus is not suitable for documentation purposes. Based

on this smell, we created the obscure in-line setup. An in-line
setup should consist of only the steps and values essential to

understanding the test. Essential but irrelevant steps should

be encapsulated into helper methods. An obscure in-line
setup covers too much setup functionality within the test

method. This can hinder developers in seeing the relevant

verification steps of the test. Refactoring. To conquer ob-

scure in-line setups, the setup code can be moved into

delegate setup methods, or if the in-line setup is common to

all tests, one can use an implicit setup.

Vague Header Setup. A vague header setup smell occurs

when fields are initialized in the header of a class, but not

in implicit setup. We consider this a smell as the behavior

of the code is not explicitly defined, and depends on the

323

setup

field

teardown test-helpertest-method

method

test class
 has has

used by
variable

declares

is super class

initialized by
depends on

Figure 1. Meta-model Test Fixture Analysis

field modifier (static or member), as well as on the imple-

mentation of the test framework. Further, field declarations

are not restricted to the header of a class, but can occur

anywhere within the class. Vague header setups hamper

code comprehension and maintainability. Refactoring. Field

initializations should be placed in an implicit setup to specify

the behavior and the places to inspect within a class.

III. ANALYSIS OF FIXTURE USAGE

This section describes the technique we developed to

analyze the test fixture organization, fixture usage and

fixture smells, and suggest refactorings for the test code.

Our reverse engineering technique follows the well-known

reconstruction approach: fact extraction, abstraction, and

presentation [18].

A. Fact Extraction

To determine fixture strategies and fixture-related smells

we extract several facts for each test class. All relevant

entities for our analysis are illustrated in the meta model

in Figure 1. Firstly, we identify all methods in a class. We

differentiate between test methods, setup methods, tear-down

methods and test helper methods based on the method’s

annotation or naming conventions.2 Further, we extract all

global fields of the class, and all local variables for each of

the test methods.

B. Analysis

The analysis consists of two steps. First, we derive indi-

cators for smells based on the extracted facts as summarized

in Table I. Second, we use those indicators to measure the

existence of test smells based on our metrics (see Table II).

Implicit Fixture Usage Indicators. To determine how

much a test class and its test methods use the implicit setup,

we derive smell indicators setupFlds, usedSetupFlds

and deadFlds. setupFlds are fields that are initialized

in the implicit setup procedures or the class header. For

2This depends on the particular test framework.

Table I
SMELL INDICATORS

Indicator Description

setupFlds Fields set in implicit setups or class header.
usedSetupFlds SetupFlds used in test methods.
adHocFlds Fields solely initialized in test methods.
deadFlds SetupFlds fields never used in any test method.
localVars Variables declared in a test method.
headerInit Fields initialized in the class header.

Table II
SMELL METRICS AND THRESHOLDS

Smell name Metric

General Fixture
usedSetupFlds

setupFlds−deadFlds ≤ 0.7

Test Maverick usedSetupFlds ≡ 0 ∧ setupFlds ≥ 1

LCOTM LCOTM ≥ 0.4

Dead Field |deadFlds| ≥ 1

Vague Header Setup |headerInit| ≥ 1

Obscure In-line Setup |localVars| ≥ 10

example, in Listing 1, the fields repository, repository2,

gitDir and store are seen as setupFlds. usedSetupFlds

represents the number of setupFlds of the class that have

also been accessed (i.e. read or write) by a test method. This

access can happen directly in the test method or via (a chain

of) helper methods invoked by the test method. A field only

accessed in the setup, but by no test method is not seen as

used. In Listing 1, test method testRepository() uses fields

repository and dir, whereas the fields repository2 and

store are not used. Further, we establish field dependency
relationships to determine whether a setup field is used by

a test method. Setup fields depend on each other if one field

fa is used to set another field fb (e.g. fb = fa). To extract

these relations, we have to analyze the data flow. We detect

direct assignments, but also whether a field fa depends on

another field fb based on method calls (e.g., fb.set(fa)).
Hereby, the field used for the method call (fb) is seen as

dependent on the fields (fa) used as parameter. This means

that in Listing 1, test method testRepository() also uses

field gitDir, as repository depends on gitDir. Finally,

deadFields are fields that are initialized in the implicit
setup, but are never used by a test method. In our example,

field repository2 is never used by any test method.

Measuring General Fixtures. To identify general fixtures,

we calculate the ratio between how many usedSetupFlds

a test method has, and how many setupFlds exist in the

class. If this ratio is below a certain threshold, we identify it

as a general fixture test method. In our current experiments,

we set the threshold to 70%. We leave determining the

optimal thresholds, for example through benchmarking, for

future work.

Measuring Test Mavericks. If a class has an implicit setup,

i.e. has setupFlds, and a test method does not use any of

324

the setupFlds, we identify a test method as detached from

the test class setups.

Measuring Dead Fields. Dead fields are all fields that are

initialized by the implicit setup, but that are never used

by any test method. We differentiate between dead fields

inherited by the super class (i.e. inherited fields) and dead

fields declared in the class itself. Note that an IDE would

not identify deadFlds, because an IDE only shows whether

a field is never used within a class. Our analysis reveals

whether a field is never used by a test method, even if it is

accessed within a helper method or the implicit setups.

Cohesion Indicator. To address how cohesive test methods

are in a class, we need another smell indicator: fields solely

initialized in test methods but not in the setup procedure. We

call these fields adHocFlds, as they are only created when

they are needed. In Listing 1, the field dir is an adHocFld.

Measuring Lack of Cohesion in Test Methods. To measure

how cohesive the test methods of a test class are, we adjusted

the Henderson-Seller Lack of Cohesion of Method metrics

[10]. Differing from the original metric, we exclusively cal-

culate the cohesion between the test methods in a class and

exclude any other methods (e.g. helper or setup methods).

For our analysis, we consider all fields of the test class

(i.e. setup and ad hoc fields) that have been used (i.e.

we exclude dead fields). We calculate the Lack of Cohesion
of Test Methods as the following:

LCOTM =

1
|F | ∗

∑|F |
i=1 r(fi)− |M |
1− |M |

Where M is the set of test methods defined by the

class, F is the set of setupFlds and adHocFlds (without

deadFlds) of the class, and r(fi) is the number of test

methods that access field fi and fi is a member of F . As

we do not consider deadFlds, the metric reports a value

between 0 and 1, with 0 indicating no lack of cohesion and

1 highest lack of cohesion. We choose 0.4 as an indicator

for a smelly test class.

The LCOTM complements the metric for test mavericks
and general fixtures, as it also addresses adHocFlds and

thus reflects on how strongly test methods differ from each

other independent of the fixture.

Obscurity Indicator. The counterpart to the implicit setup,

is the in-line setup. We measure the obscurity of an in-line

setup based on the number of local variables directly defined

within a test method (i.e. localVars indicator).

Measuring obscure in-line setup. We detect an obscure
in-line setup if the number of localVars exceeds a certain

threshold (i.e. 10 variables per method). The rationale behind

this threshold is that with the increasing length of the test

method, the primary focus of the test may be hidden. The

chosen threshold follows the best practices for the length of

a method.

Header Indicator. Finally, the last smell indicator is

the fields initialized in the header of the class (i.e.

headerInit).

Measuring Vague Header Setup. We report this when at

least one field is initialized in the header of the class.

Listing 1. Test Class Example
class BlobStorageExampleTest extends GitTestCase {
//setup field
Repository repository;
Repository repository2;
//header initialization
Storage store = new Storage();
//ad hoc field
Directory dir, gitDir;

@Before public void setUp() throws Exception {
super.setUp();
gitDir = new Directory(".");
//repository depends on gitDir
repository = new FileRepository(gitDir);
repository2 = new FileRepository(gitDir);

}
...
@Test public void testRepository() {
dir = new Directory(".");
loadFile();
...}

private void loadFile(){
repository.getFile("testfile");
...}}

C. Presentation

This section explains how we present the information

gathered in the analysis. We chose to use a navigable

hypertext report to present the outcome to the developers,

thus supporting a seamless navigation between overviews

and details. The report is split into three parts: the fixture

classification, the smell overview and the detail improvement

report.

Fixture Classification Report. This report provides a list-

based overview of the fixture strategies and used framework

mechanisms of all test classes. Further it highlights the

inheritance structures.

Test Fixture Smell Report. This report provides an

overview of the test smells, also in the form of a list, as

illustrated by Figure 2. The smells are indicated by an icon

and, where relevant, a number showing how often the smell

occurred within the test class. To get detailed information

about the test class, the developer can click on the test class

name and drill into the detail improvement report.

Detail Improvement Report. This report provides detail

information on the analysis outcome for a single test class.

In the first part of the report, a summary of all smells of the

class is given, including a detailed description of the cause.

Further, each smell description is enhanced with refactoring

suggestions, as illustrated in Figure 3. The second part

of the report outlines how fields and helper methods are

used within each test method of the class. This part details

325

Figure 2. Excerpt of the Test Fixture Smell Report for eGit

Figure 3. Excerpt Detail Improvement Report for eGit - BlobStorageTest

information on the fixture usage, which is hard to obtain

from the IDE and the code alone. It is designed to guide

refactoring decisions and to support the developer during

the smell assessment.

IV. IMPLEMENTATION AND TOOL ARCHITECTURE

TestHound is implemented in Java and supports languages

which compile to Java byte code by using the Apache

BCEL library to extract facts. TestHound supports the JUnit

and TestNG test frameworks, but can easily be extended

to support other frameworks. Although TestHound supports

only Java, the analysis is language and framework inde-

pendent and only the facts extraction aspect is language

specific. For the generation of the hypertext report, we

use the StringTemplate engine.3 TestHound is available for

download4 and we are in the process of making the source

3http://www.stringtemplate.org/
4http://swerl.tudelft.nl/bin/view/MichaelaGreiler/TestHound

code available on GitHub. In a future release, the tool will be

available as a Maven5 plug-in to facilitate integration with

the continuous integration process.

V. EXPERIMENTAL DESIGN

This section outlines the experimental design of the study,

including the research questions, case studies, interviews and

questionnaires.

A. Research Questions

To evaluate the applicability and helpfulness of our tech-

nique, we set out to investigate the following research

questions:

RQ1 What do the structure and organization of test fixture

look like in practice?

RQ2 Do fixture-related test smells occur in practice?

RQ3 Do developers recognize these test smells as potential

problems?

RQ4 Does a fixture analysis technique help developers to

understand and adjust fixture management strategies?

To answer our four research questions, we applied a mixed

methods research approach. To answer RQ1 and RQ2, we

applied case study research and investigated the code bases

of three different Java-based software systems. To answer

RQ3 and RQ4, we used interviews and a questionnaire.

B. Case Studies

We use three different subject systems in our experimental

design - one closed and two open source systems.

HealthCare: Closed Source Health Care System. The first

subject system is developed by a company based in Canada,

that offers health care related software solutions. Part of the

system is a Java back-end, which provides an API to other

5http://maven.apache.org/

326

systems. This back-end comprises 750K lines of code and

has 945 test methods, using the TestNG6 framework.

eGit: Open Source Eclipse-Integrated Version Control
System. eGit7 integrates the Git version control system into

the Eclipse IDE. It consists of 130K lines of code and has

479 test methods, all written in JUnit8.

Mylyn: Open Source Task Management System Mylyn9

provides task management functionality within the Eclipse

IDE. It consists of 500K lines of code and has 1644 test

methods, written in JUnit.

C. Interviews and Questionnaire

We set out to evaluate our tool and technique by present-

ing it in a one hour session to a group of 13 professional soft-

ware developers. These developers worked for the company

of the HealthCare system. All developers have experience in

writing and maintaining test code, and approximately half

of the participants have been working on the code base

of the HealthCare system. In this session, we covered the

general functionality and purpose of TestHound, as well

as the report produced for the HealthCare system. After

the presentation, we interviewed five software developers

who had contributed to the code base, with each interview

taking 30 minutes. During these interviews, the participants

could browse through the report produced by TestHound,

ask questions and express their opinions on TestHound in

depth. We recorded and transcribed each interview.

To capture the opinions of all participants of the presenta-

tion, we designed a questionnaire addressing the perception

of the audience on software maintenance and the helpfulness

of “TestHound”. The questionnaire was filled in by all 13

developers and is available online.10

Pilot Sessions. To improve the experimental design of

the interviews and questionnaire, we conducted three pilot

sessions with experienced testers. Two pilot participants

were co-workers, and the third participant was the second

author of this paper.

VI. EVALUATION

A. RQ1: What do the structure and organization of test
fixture look like in practice?

This section highlights the basic structure and organiza-

tion of the test code we analyzed. The results are summa-

rized in Table III.

Package Structure. In all three case studies, the pack-

age structure of the test code closely followed the

package structure of the system under test. In eGit

and the HealthCare system, test code and production

code is not separated by an additional package (e.g.

6http://testng.org
7http://www.eclipse.org/egit/
8http://www.junit.org
9http://www.eclipse.org/mylyn/

10http://swerl.tudelft.nl/bin/view/MichaelaGreiler/TestHound

Table III
FIXTURE MANAGEMENT STRATEGIES

Project #test #test Implicit setup No Tear
classes methods member class setup down

eGit 87 479 56 47 5 79

HealthCare 36 933 26 25 9 25

Mylyn 232 1644 164 0 68 152

test). In contrast, for the Mylyn system, the package

“org.eclipse.mylyn.commons.core” is mapped to the pack-

age “org.eclipse.mylyn.commons.tests.core”. In all three

systems, the test code is often mapped to classes. For

example, in Mylyn, the class “CoreUtil” is tested by the

class “CoreUtilTest”.

In the HealthCare system, this mapping is followed rig-

orously, and this design decision has a significant impact on

the modularity of the test code. The test code of this system

consists of only 36 test classes that comprise 933 unique test

methods (two of which are parameterized tests). Some of the

test classes have more than 4,000 lines of code. For example,

one test class comprises 112 test methods and approximately

4,500 lines of code. The Mylyn system consists of 232 test

classes that comprise 1,644 test methods. Three of these

test classes comprise more than 100 test methods, with a

maximum of 172 test methods in the TextileLanguageTest

(i.e. more than 1,500 lines of code). In eGit, 87 test classes

comprise 479 test methods. The test class with the most tests

has 19 tests and 600 lines of code.

Framework Fixture Functionality. In all three systems, the

majority of the tests use the implicit setup mechanisms of

the test frameworks. Interestingly, in the HealthCare sys-

tem, only the functionality to automatically invoke implicit
setups, either before one class or one test method, is used.

The more fine-grained directives which TestNG offers are

not used. In the eGit system, several separate test suites exist

and the usage pattern of the implicit setup constructs differs:

the test suite addressing the core of the system often invokes

the setups before each test method, and the fields are mostly

non-static. On the other hand, in the test suites addressing the

user interface functionality, setups are most often invoked

before each class and the fields are static. This design

decision is probably due to performance considerations. User

interface-related tests often need more setup and involve

more expensive resources. In Mylyn, only the implicit setups

that are executed before each test are used. In all systems,

the tear down mechanisms of the test frameworks are used

less frequently than the setup mechanisms.

B. RQ2: Do fixture related test smells occur in practice?

Table IV summarizes all smells detected in the three

projects, whereby showing the absolute number and the

percentage of entities affected by a smell. Each of the smells

occurred several times in practice. In the following, we will

present some highlights.

General Fixture Smell. The general fixture smell occurred

for 32% of the test methods in the HealthCare system, for

327

Table IV
FIXTURE PROBLEMS

Project General Fixture Test Maverick LCOTM Dead Field Obscure In-line Vague Header
#methods pct. #methods pct. #classes pct. #fields pct. #methods pct. #classes pct.

HealthCare 299 ≈ 32% 84 ≈ 9% 7 ≈ 19.4% 180 ≈ 33% 100 ≈ 10.7% 26 ≈ 72%

Mylyn 377 ≈ 23% 82 ≈ 5% 36 ≈ 15.5% 66 ≈ 12.1% 17 ≈ 1% 35 ≈ 15%

eGit 65 ≈ 13.5% 17 ≈ 3% 12 ≈ 13.8% 110 ≈ 23.6% 8 ≈ 1.6% 79 ≈ 91%

23% of the test methods in Mylyn, and for 13.5% of the

tests in eGit. An example from the eGit system is Projec-
tReferenceTest. In this test class, none of the setup fields

are used by all test methods (i.e. the fixture is disjointed).

To improve the class design, an extract class refactoring

is recommended. In the HealthCare system, only a few

classes contribute the majority of general fixture methods.

In particular, three classes comprise 172 of the 299 general

fixture methods (i.e. ≈58%). In Mylyn, the largest test class

with 172 tests contributes 168 general fixture methods. This

class has only two fields, whereby one is only used by three

test methods. In eGit, fewer general fixture methods are

detected and they are more distributed among classes, as

compared with the other systems.

Test Mavericks Smell. Test mavericks occur less frequently

than general fixture methods. Also, they are more distributed

among classes. In the HealthCare system, the largest class

(with 112 tests) contributes the largest set of detached

methods (23 methods). In Mylyn, the class TaskListExter-

nalizationTest has the largest number of test mavericks (10

out of 28). In eGit, 4 of the 8 methods in ChangeTest are

test mavericks.

Dead Fields Smell. All three systems contains many dead

fields, and most of them are are inherited by super classes

and not needed. In case fields declared in the actual test

class are dead, it often seems to be because of obsolete

functionality or open issues. In the HealthCare system, more

dead fields exist than in the other systems. There are two

main reasons: first, as discussed most tests inherited from

only two large super classes and inherit fields that are

never used. Second, in this system many static methods

are access via the fields, which is unnecessary and often

even not recommended. For example, via a field context the

static method getBean() is invoked (i.e. context.getBean()),

whereby getBean() should be access via the class.

Lack of Cohesion of Test Methods Smell. In the three

systems, 14-19% of the classes have a LCOTM value greater

or equal 0.4. In Mylyn, a class with high LCOTM (0.8)

is the EncodingTest. Each of the test methods in the class

uses different combinations of the setupFlds. In eGit, an

example of a test with high LCOTM is ProjectReferenceTest.

Here, all test methods share one field, and in addition, each

test method addresses an additional field. In the HealthCare

system, the test class with the highest LCOTM (0.89) has

two used setupFlds that are only used by 4 out of 23 test

methods.

Obscure In-line Setup Smell. In the HealthCare system,

10% of the methods contain an obscure in-line setup. The

average number of variables declared within these tests is

14.4, with a maximum of 29 variables. In the Mylyn and eGit

system, less than 2% of the test methods are reported to have

an obscure in-line setup. In terms of test size, for example

in Mylyn, a test method testSynchChangedReports in Class

BugzillaRepositoryConnectorTest with 24 localVars has

113 lines of code.
Vague Header Setup. In the HealthCare system, header

initializations occur in 72% of the test classes, and in eGit,

in 91% of the test classes. In Mylyn, this smell occurs in

only 15% of the test classes.

C. RQ3: Do developers recognize these test smells as po-
tential problems?

During the tool demonstration and interviews, it became

clear that developers do indeed recognize the reported test

smells as potential problems, and that they see a strong

connection between smelly tests and maintenance overhead.

In the questionnaire, as illustrated in Figure 4, 12 of 13

developers agreed with the statement that wrong fixture

management can lead to code quality problems, and all

indicated that improving test quality is important. Only three

indicated they they regularly engage in maintenance of test

code, whereas four indicated that they do not regularly

maintain test code. In the interviews, we investigated why

test code is not regularly maintained. All of the interviewed

developers said that they had expected their test code base

to be very messy. Interviewee number two (i.e. P2) says:

“We know our classes are too large and wrongly focused.
We start to write test code and then, next step, we improve.”
Soon it became clear that time for the next step is limited,

as P1 says: “We do not have the option to say ’Oh, that’s
ugly, I’ll spend a day to clean it up’ if it does not give us
immediate business.”

On the other hand, developers express that they are slowed

down by the smelly classes (that our tool also identified). P1

says “If you have to debug a bug revealed by one of these
large test classes, then it takes 5 minutes to run and it makes
you think ’I don’t want to do that anymore’.”

How do these test code quality problems emerge? P1 says

that “people think: ’Ah, this test has to do with a Container-
Type’, and then add the test to the ContainerTypeTest class,
even though it has nothing to do with the other tests in
this class.” He adds “I skip the implicit setup because often
the initial setup is made by the first person who created

328

0
2
4
6
8

10
12
14

Wrong test fixture
management can lead

to code quality
problems.

Improving test code
quality is important.

We regularly engage in
maintenance tasks of

test code.

The report will primarily
show irrelevant

information.

Using a fixture
management tool could

help me improve the
test code quality.

I expect to look at the
reports of this tool on a

regular basis.

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

Figure 4. Answers of the questionnaire about maintenance attitude and tool expectations

the class. Maintainers are adding stuff to this setup as they
go along, but maybe this is not as common for the other
methods and some methods are even unrelated. And then,
you make it just in-line, ugly in-line, instead of using the
provided framework functionality.” Also, other developers

explain that they do not look at the implicit fixture because

their experience tells them it is often not related to the test

methods in a class.

Two interviewees did not see the value of detecting the

dead fields smell for their system. P2 explains: “I am not
bothered by the inherited fields of the super class. If two
classes have the same functionality, we immediately move
this in the super class so they can share it.” Also P3

does not see a problem with this design and says “I find
the information on fields misleading. In our code base,
inheritance is used as a convenient way of accessing helper
methods.” Even though two participants are not concerned

with their design decisions, systems which use inheritance

instead of composition to allow code reuse are known to

be vulnerable to the fragile base class problem, which

hinders maintainability [15]. The other three interviewees

refer positively to the identification of the dead field smell.

D. RQ4: Does a fixture analysis technique help developers
to understand and adjust fixture management strategies?

The results of the questionnaire show that developers

expect a fixture management tool to be helpful during

understanding and adjusting fixture management strategies,

as illustrated in Figure 4. All participants agree that a

fixture management tool could help improve the test code

quality and 12 developers think the tool shows relevant

information. In the interviews, all developers were positive,

as demonstrated by P4: “I really like the tool. I think it
presents a lot of useful information. I think it can definitely
be very beneficial for our company.”

Not all developers are sure to look at the test fixture smell

reports regularly. In the interviews, developers strongly felt

that to allow adoption, the tool must be integrated with the

regular build infrastructure. P1 says: “It’s not enough to have
the tool run. It should be part of the infrastructure and result

in a failed build.” Because time for quality improvement

is limited, P3 suggests: “We are not actively looking for
opportunities to improve the code, but one gets the lucky
one, when the threshold is exceeded.” He then adds: “If the
tool calls our attention to these problems, we would schedule
blocks of time to make the internal quality better.” P5 likes

that: “I cannot get others to review my code all the time.
So, a tool that tells me that things look odd, that’s good.”

Regarding refactoring test code, P1 says: “You want to
assess how much risk is involved with a refactor. Sometimes
you come to that point that you are less likely to change a
test because it is smelly. But with the tool telling you that
this test did not use anything, then you are more trusting to
refactor test code.” P1 mostly appreciates refactorings that

can be done easily and quickly: “It is all about low-hanging
fruit: what can you do easily and quickly.”

TestHound is designed not only to indicate smells in the

test code, but also to guide the developer during refactoring

by providing information on the test fixture usage profile,

which is hard to obtain manually. This tool characteristic is

also valued by the developers, as P1 says: “I would look at
the test methods and they might look unrelated, but without a
lot of digging and work I might not know that they were not
relying on anything from the class or the super class.” And

P3 especially liked the detail report: “The summary report
is good to get an idea why the build failed, but then I want
to go and see these variables in the detail report.” Also,

P5 likes the refactoring suggestions: “The tricky part is to
actually understand why something is indicated as smelly.
That’s the learning part. The refactoring suggestions help.
That’s interesting to see.”

We also asked participants to list the additional features

they would like to see. P4 expresses that the different smells

should be integrated in one high-level metric: “This would
gives us an overall assessment, so that if you make some
improvements you should see it in the metric.”

Another positive outcome of the evaluation is that de-

velopers state the tool makes them think differently about

their test code. P5 said: “I found particularly interesting
that the tool made me think about how the tests that I write

329

might not be good tests. They do their job, but they may not
be maintainable.” P3 said: “The report was definitely very
useful. It triggered a lot of ideas to improve and discussions.”

VII. DISCUSSION AND THREATS TO VALIDITY

In the following section, we discuss some of the key

findings, observations and threats to validity.

Test Class to Class Convention. A simple way to start

organizing test suites is to adopt the Testcase Class per Class
pattern [14], a commonly used approach that is supported

by IDEs like Eclipse which can generate test class templates

for a given class. This is at odds with a different pattern,

Testcase Class per Fixture, in which “we organize Test

Methods into Testcase Classes based on commonality of the

test fixture.” [14]. Our empirical study shows that this pattern

is not followed as often as it should, resulting in the smells

and maintainability problems we detected. Based on this, we

believe it is necessary to rethink traditional mapping strate-

gies and to develop further grouping recommendations and

naming conventions, which take into account the evolution

of a class as it starts to require more test fixtures.

Frequency of Vague Headers. One might argue that

because vague headers occur frequently, they might not

be a potential problem. During the interviews, we asked

developers to explain the behavior of vague headers. Even

though developers are familiar with the test framework and

did place vague headers themselves, for several incidences

they were uncertain or wrong about the concrete behavior.

Violation of the Single Responsibility Principle. Another

observation we made is that the problem of not being able

to have a non-smelly test class for a class can indicate a

problem with the class under test, such as having too many

responsibilities. Sometimes the solution can be not only to

split the test class but also to split the class under test into

several classes.

Inheritance Structure. In the test code we analyzed, we

saw that some super classes are inherited by many test

classes. This leads to dead inherited fields, because inherited

setup functionality may not be needed. In all three systems,

the dead fields are often the same ones (from certain super

types), but repeatedly dead for many subclasses. While

unused inherited fields are not a problem per se, the large

superclass may become fragile (conform [15]), making de-

velopers reluctant to adjust it.

Performance Improvement. Based on our case studies,

we believe that refactoring of test mavericks and general

fixtures can lead to interesting performance improvements,

especially considering that with continuous integration, test

suites might run several times a day. In a future study, we

want to gain a deep understanding of potential performance

improvements associated with the application of the sug-

gested refactorings of smelly test fixtures.

Threats to Validity. In terms of generalizability, in its

current form, our implementation only works for Java-based

systems that use JUnit or TestNG test frameworks. On the

other hand, we believe that this technique is not only easily

transferable to other xUnit testing frameworks, but also to

other languages. Further, our evaluation is limited to three

software systems. We chose three systems that are quite

different in nature (domain, open versus closed source),

and believe that similar results will occur in other software

systems. We chose the closed source case study because

of the availability of software engineers to take part in the

study and its closed source nature. The two open source

systems were selected because they are well-known and used

software systems. Further, we were familiar with the systems

through earlier studies and thus could more easily test that

the analysis was accurate. The developers we interviewed

also felt this tool could be used to analyze other systems

they had worked with.

With respect to internal validity, the analysis may be

incomplete or have bugs. To conquer this threat, we im-

plemented many test cases. The developers also indicated

the results were consistent with their understanding of the

system. Finally, the developers may have been positively

biased towards the tool due to the nature of the experimental

design. We tried to offset this somewhat by collecting the

responses to the questionnaire anonymously.

Our method has some limitations when establishing de-

pendency relationships between setup fields. This can lead

to false-positive dead fields. To mitigate the risk of wrong

results, we manually inspected all dead fields, and found

only a few false-positive cases. For example, in eGit, 3% of

the fields could not be mapped to a field usage. For future

work, we will enhance the recognition of field usages, and

we plan to assess the accuracy of the results in additional

case studies. The metrics designed for smell detection are

based on field and variable declarations. Actions performed

on persistence data storages (such as databases or files) are

only detected when a handle (i.e., object reference) is used

for access.

VIII. RELATED WORK

Earlier work introducing test smells has been discussed

in Section II. Scant research focuses on automatic detection
of test smells. Among them, Van Rompaey et al. tried to

detect the test smells General fixture and Eager test by

means of metrics [20]. In a subsequent paper, they describe

a tool which used well-known software metrics to predict a

broader variety of potential problems and test smells [3]. Our

study differs in several aspects. First of all, we focus on test

fixture management and analyze the test code for specific

fixture problems that are relevant in practice, and provide

concrete refactoring suggestions. In contrast to our work,

Borg et al. describe automated refactorings for acceptance

tests based on the FIT framework [2]. To the best of our

knowledge, fixture-related test smells and refactoring have

not been studied in detail so far.

330

In general, code and design smells have been researched

in previous work. For example, Moha et al. outline a method

called DECOR and its implementation to detect several code

and design smells, and evaluate their technique in several

case studies [16]. Lanza and Marinescu uses metrics to

identify classes that might have design flaws [11], [13].

IX. CONCLUDING REMARKS

The goal of this paper is to understand the nature of

fixture-related problems in developer test suites. To that end,

the contributions of the paper are 1) five new test fixture

smells, 2) a technique to analyze test fixtures and automati-

cally detect six test fixture smells, 3) an implementation of

the technique in a tool called TestHound, 4) an investigation

of three industrial-strength case studies that shows that test

fixture smells occur in practice and 5) an evaluation with 13

developers that shows that the tool is helpful to understand,

reflect on and adjust the test fixture.

In our future work, we plan to further research the

evolution of test smells and investigate in depth how test

class-to-class mappings influence the emergence of test

fixture smells. Furthermore, we intend to apply TestHound
to a range of further systems, broaden the scope of our

fixture analysis, and assess performance implications of the

proposed refactorings.

Acknowledgments: We would like to thank all interview and

questionnaire participants for their time and commitment.

REFERENCES

[1] Kent Beck. Test Driven Development: By Example. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2002.

[2] Rodrick Borg and Martin Kropp. Automated acceptance
test refactoring. In Proceedings of the 4th Workshop on
Refactoring Tools, WRT ’11, pages 15–21, New York, NY,
USA, 2011. ACM.

[3] Manuel Breugelmans and Bart Van Rompaey. TestQ: Ex-
ploring structural and maintenance characteristics of unit test
suites. In 1st International Workshop on Academic Software
Development Tools and Techniques, 2008.

[4] S.R. Chidamber and C.F. Kemerer. A metrics suite for object
oriented design. Software Engineering, IEEE Transactions
on, 20(6):476 –493, jun 1994.

[5] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok.
Refactoring test code. In M. Marchesi, editor, Proceedings of
the 2nd International Conference on Extreme Programming
and Flexible Processes (XP2001), pages 92–95, 2001.

[6] Martin Fowler. Refactoring: improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[7] Steve Freeman and Nat Pryce. Growing Object-Oriented
Software, Guided by Tests. Addison-Wesley Professional, 1st
edition, 2009.

[8] Erich Gamma and Kent Beck. Contributing to Eclipse:
Principles, Patterns, and Plugins. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 2003.

[9] Michaela Greiler, Arie van Deursen, and Margaret-Anne
Storey. Test confessions: a study of testing practices for
plug-in systems. In Proceedings of the 2012 International
Conference on Software Engineering, ICSE 2012, pages 244–
254, Piscataway, NJ, USA, 2012. IEEE Press.

[10] Brian Henderson-Sellers. Object-oriented metrics: measures
of complexity. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1996.

[11] Michele Lanza and Radu Marinescu. Object-Oriented Metrics
in Practice - Using Software Metrics to Characterize, Eval-
uate, and Improve the Design of Object-Oriented Systems.
Springer, 2006.

[12] Wei Li and Sallie Henry. Object-oriented metrics that predict
maintainability. Journal of Systems and Software, 23(2):111
– 122, 1993.

[13] Radu Marinescu. Detecting design flaws via metrics in object-
oriented systems. In In Proceedings of TOOLS, pages 173–
182. IEEE Computer Society, 2001.

[14] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code.
Addison-Wesley, May 2007.

[15] Leonid Mikhajlov and Emil Sekerinski. A study of the fragile
base class problem. In Proceedings European Conference
on Object-Oriented Programming (ECOOP), pages 355–382.
Springer-Verlag, 1998.

[16] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur.
Decor: A method for the specification and detection of code
and design smells. Software Engineering, IEEE Transactions
on, 36(1):20 –36, 2010.

[17] Helmut Neukirchen and Martin Bisanz. Utilising code smells
to detect quality problems in ttcn-3 test suites. In In Proceed-
ings of the 19th IFIP International Conference on Testing of
Communicating Systems and 7th International Workshop on
Formal Approaches to Testing of Software (TestCom/FATES
2007), pages 228–243. Springer, 2007.

[18] Scott R. Tilley, Dennis B. Smith, and Santanu Paul. Towards
a framework for program understanding. In Proceedings
Workshop on Porgram Comprehension (WPC), pages 19–28.
IEEE, 1996.

[19] Bart Van Rompaey, Bart Du Bois, and Serge Demeyer.
Characterizing the relative significance of a test smell. In
Proceedings of the 22nd IEEE International Conference on
Software Maintenance, ICSM ’06, pages 391–400, Washing-
ton, DC, USA, 2006. IEEE Computer Society.

[20] Bart Van Rompaey, Bart Du Bois, Serge Demeyer, and
Matthias Rieger. On the detection of test smells: A metrics-
based approach for general fixture and eager test. IEEE Trans.
Softw. Eng., 33(12):800–817, December 2007.

331

