
Creating visualizations through ontology mapping

Sean M. Falconer R. Ian Bull Lars Grammel Margaret-Anne Storey
University of Victoria

{seanf,irbull,lgrammel,mstorey}@uvic.ca

Abstract

We explore how to support the creation of customized vi-
sualizations of ontology instance data through the specifica-
tion of ontology mappings. We combine technologies from
the disciplines of software modeling and ontology engineer-
ing. The feasibility of our approach is demonstrated by ex-
tending an existing ontology mapping tool, COGZ, to trans-
late ontology mappings into software model transformation
rules. The tool uses these transformations to automatically
convert domain instance data into data that conforms to a
model describing a visualization. After this transformation,
a visualization of the domain instance data is generated.

1 Introduction

Ontologies provide a shared and common understand-

ing about a specific domain [7]. The members of this do-

main represent instances of the concepts within the ontol-

ogy. For example, if “Country” is defined as a concept in an

OWL (Web Ontology Language) ontology, then “Canada”

and the “United States” are potential members or instances

of this class. Information visualization helps people ex-

plore and understand complex information spaces like on-

tologies. A variety of tools to explore and navigate ontolo-

gies have been developed; Jambalaya [20], OntoRama [8],

TGVizTab [1], and OntoSphere [3] are but a few of these

tools. However, there has been little work investigating

techniques for visualizing the instance data associated with

an ontology. Also, when these types of visualizations have

been developed, programmers or information visualization

experts have typically created the visualization for the on-

tology’s instance data explicitly, as in Mutton et al.’s work

[13]. This can be a time consuming process and the result-

ing applications are not easily re-usable or configurable for

other ontologies.

In our collaborations with the National Center of

Biomedical Ontology (NCBO) 1, we are developing an in-

1http://bioontology.org/

formation visualization toolkit. The NCBO provides an on-

line tool called BioPortal for uploading and sharing biomed-

ical ontologies 2. The goal of the visualization toolkit is to

provide a general means of rapidly developing and deploy-

ing ontology-specific instance data visualizations to Bio-

Portal. These visualizations are meant to assist scientists

with exploring and understanding their data.

Bull [5] developed a model-based approach to generating

visualizations called Model Driven Visualization (MDV).

In this work, he represented visualizations (e.g. node-link

diagrams, charts) with abstract software models using the

Eclipse Modeling Framework (EMF). To use these visual-

izations, a software data model is “mapped” or transformed

to the visual model, and then the corresponding visualiza-

tion can be generated by executing the transformation.

We recognized that a similar approach could potentially

be used for generating visualizations of ontological instance

data where the visualizations are constructed by mapping

ontology concepts to view model concepts. In this paper, we

explore this idea by demonstrating how to leverage existing

software modeling tools along with ontology mapping tools

to generate highly customized visualizations.

We begin by discussing relevant background about soft-

ware modeling (Section 2). In Section 3, we describe ex-

tensions made to the COGZ mapping tool [10] to support

the creation of instance data visualizations. This includes

extensions to Bull’s existing work by integrating his model

transformation techniques into COGZ. By visually speci-

fying mappings in COGZ from the source ontology to the

target visualization ontology, data level transformations are

generated that can be used to automatically create informa-

tion visualizations. We demonstrate this process with a case

study in Section 4. Following this, we briefly discuss re-

lated work (Section 5). Finally, we discuss our future work

(Section 6) and conclusions (Section 7).

2 Background

Model Driven Engineering (MDE) is an approach to

software development where software is specified, de-

2http://bioportal.bioontology.org/

International Conference on Complex, Intelligent and Software Intensive Systems

978-0-7695-3575-3/09 $25.00 © 2009 Crown Copyright
DOI 10.1109/CISIS.2009.40

688

International Conference on Complex, Intelligent and Software Intensive Systems

978-0-7695-3575-3/09 $25.00 © 2009 Crown Copyright
DOI 10.1109/CISIS.2009.40

688



signed, implemented and deployed through a series of mod-

els and model transformations [18, 19]. Software mod-

els, while designed and developed to assist engineers with

the process of building quality software, share a number

of commonalities with ontologies. Software models typ-

ically consist of classification hierarchies. For each con-

cept in the hierarchy, its name, properties and relationship

to other concepts can be specified. These models are used

to help understand the domain, test hypotheses, build pro-

totypes and even generate working systems. Toolkits have

even emerged that allow knowledge and software engineers

to convert their data between ontology and software model

representations. We believe by integrating the concepts

from both disciplines, we can leverage strengths of each dis-

cipline and enable the rapid specification and generation of

customized visualizations of ontology instance data.

To build software using MDE, engineers first capture

both domain concepts and their relationships as Platform

Independent Models (PIMs). These models are transformed

to one or more Platform Specific Models (PSMs), which can

be executed. By developing software in this manner, the

same PIM can be used on a number of different platforms.

To support this software development methodology, a

number of software modeling languages have emerged. Ex-

amples of such languages include the Unified Modeling

Language (UML) [16] and the Eclipse Modeling Frame-

work (EMF) [4]. In addition to software modeling lan-

guages, transformation languages have also been designed

to facilitate the transformation from one model to another,

or from PIM to PSM. In the software engineering world,

the Atlas Transformation Language (ATL) [12] and Query

View Transformation (QVT) [15] are widely used.

Bull investigated how information visualizations can be

specified as a series of platform specific models [5]. Us-

ing these models, he transformed complex software mod-

els into visualization models, facilitating the rapid construc-

tion of highly customized visualizations. Due to the overlap

between software modeling and ontology development, we

have started investigating if modeling technologies, and in

particular Model Driven Visualization, can be applied to the

process of customizing ontology visualizations.

3 The Tool

r u l e mappingRule {
from IN : s h r i m p b i b ! User

to OUT : d i s t i n c t n o d e l i n k ! GraphNode

nodeLabe l <− IN . nickname ,

c o l o r <− ’ Orange ’

}
Listing 1: Example of User to GraphNode ATL mapping rule.

COGZ is an ontology mapping perspective integrated as

a plugin to the ontology management suite PROMPT [14].

Source
Model
(OWL)

Target
Model
(OWL)

Mapping
Ontology

Source
Model
(EMF)

ATL Rules

transformed

generates

executed on produced

Instance
Data

Target
Model
(EMF)

Instance
Data

co
nf

or
m

s
to

transformed

specified on

specified on

co
nf

or
m

s
to

Ontology
Modeling

Software
Modeling

Figure 1: COGZ instance data mediation architecture.

COGZ supports a visual representation of mappings and

a drag and drop interface for creating mappings. Previ-

ous research indicates that this interface helps users create

mappings faster and with more accuracy than the default

PROMPT view [10]. The mappings are recorded in an align-

ment ontology, which stores mapping relationships as in-

stance data. To create customized visualizations of ontology

instance data, we extended COGZ by combining technolo-

gies from software modeling and ontology engineering.

The extended COGZ architecture for ontology instance

data mediation is shown in Fig. 1. We use the existing EMF

visualization models introduced by Bull [5]. To make these

usable within COGZ, we integrated the Eclipse Ontology

Definition Metamodel (EODM) 3 project, which supports

automatic conversion between EMF and OWL models. To

support data integration between the source and target mod-

els, we developed an ATL rule writing library that converts

the specified source to target mappings that are stored in the

mapping ontology into transformation rules that describe

how to convert data between the two models. Since ATL

only works with software models, we automatically con-

vert the source and target OWL models into EMF and use

the EMF versions for data transformation. The conversions

and generating process happen automatically and are hid-

den from the user.

The ATL rule writer library supports three types of map-

pings: concept to concept, data type property to data type

property, and reference property to reference property map-

pings. We extended COGZ to support a property value ed-

itor for concept to concept mappings. This allows the user

to assign values to a target concept’s property for a spe-

3http://eclipse.org/modeling/mdt/?project=eodm

689689



Figure 2: A simplified representation of graph viewer model.

cific mapping. This is necessary for manipulation of core

visual elements. For example, assume we map a concept

User from a source ontology to the concept GraphNode in

a target visualization ontology. The GraphNode concept

represents the node in a node-link graph visualization and

we want all users in our ontology to be represented by a

node. The GraphNode may have properties such as color,
size, shape, etc. It is important that the end-user be able to

customize the visualization to their needs, such as making

the nodes in the graph that represent a user be colored “Or-

ange”. The property editor allows the end-user to assign this

value to the property and this will automatically be associ-

ated with the corresponding mapping rule, see Listing 1.

Finally, we enhanced COGZ to allow the end-user to ex-

ecute their transformation rules and generate the result as a

visualization. By executing this, the instance data stored

and associated with the source OWL model is converted

into target model elements via the specified ATL rules. The

MDV rendering engine is then used to display the visualiza-

tion. This engine is capable of rendering any visualization

conforming to one of the pre-defined models. Models exist

for node-link diagrams, charts, maps and treemaps, among

others. The simplified view of the node-link model is shown

in Fig. 2. In the next section, we discuss a specific example

demonstrating how this mapping process works.

4 Case Study

r u l e mappingRule {
from IN : s h r i m p b i b ! Document

to OUT : d i s t i n c t n o d e l i n k ! GraphEdge

f o r e a c h ( e i n IN . c o m p u t e C r o s s P r o d u c t ( ) ) (

d e s t i n a t i o n <− e . domain ,

s o u r c e <− e . r a n g e

)

}

Listing 2: Document to GraphEdge ATL mapping rule.

Figure 3: A simplified representation of the domain ontology.

To demonstrate the feasibility of this approach, we chose

to regenerate an ontology instance data visualization dis-

cussed by Allen [2] and Bull [5]. Allen developed an on-

tology to describe researchers, research areas, research doc-

uments, and the relationships between these concepts (Fig.

3). She programmed a specific graph visualization that dis-

played researchers and the documents they had read. Bull

demonstrated how to generate the same view using MDV.

He converted Allen’s ontology into an EMF model and then

manually constructed ATL rules to transform the source

model into his view model (Fig. 2). In this case study,

we demonstrate how to generate a similar visualization by

simply dragging and dropping mappings in COGZ between

Allen’s source ontology and Bull’s visualization model.

The desired visualization is a graph-based view that con-

nects researchers to their area of expertise based on the pa-

pers they have read. In the model, there is no direct as-

sociation between a User and an Area (this information can

only be derived by looking at the papers each researcher has

read). In the following, we demonstrate how a mapping can

be used to describe the desired visualization.

To begin, COGZ is loaded and Allen’s model is specified

as our source ontology and Bull’s node-link model as our

target. We want to represent both users and areas as nodes

and link these based on representing documents as edges.

To do this, we drag mapping lines from the source concept

User to the target concept GraphNode, Area to GraphNode,

and finally Document to GraphEdge. We also assign sev-

eral data type property mappings to configure the labels for

the GraphNode mappings. We map the User property nick-
name to GraphNode’s nodeLabel property and Area’s name
property to nodeLabel. We also assign the color “Orange“

to the User to GraphNode mapping using the property edi-

tor. An ATL rule is automatically created for each concept

to concept mapping, similar to Listing 1. The rule describes

which source class is being mapped to a target class and

which properties should be mapped between the two con-

690690



Figure 4: Mappings from domain ontology to visualization ontology. (A) shows the source domain ontology, (B) shows the target view

ontology, (C) shows the property editor for a mapping, and (D) shows the visual representation of mappings. Thick arcs represent concept

to concept mappings and thin arcs represent property mappings.

cepts. Each of these mappings are simple one-to-one map-

pings and the rule generation is straight-forward.

The final mappings necessary to construct the view are

the reference mappings from a Document’s reference to the

areas it is contained in and the reference to the user’s that

have read that particular document. We map the area ref-

erence property to the GraphEdge’s destination property,

while the readBy property is mapped to the GraphEdge’s

source property. The complete mapping as represented by

COGZ is displayed in Fig. 4.

The reference property mappings have different cardi-

nality as both the area and readBy properties can have mul-

tiple values while the destination and source represent a sin-

gle instance. This change in cardinality is automatically

detected by our ATL rule writing engine and resolved by

computing a cross-product between the users mapped to

source and areas mapped to destination. An example of the

rule generated for the Document to GraphEdge mapping is

shown in Listing 2.

The mappings necessary to generate the view are now

specified and the transformation rules can be executed. The

resulting visualization is shown in Fig. 5.

This small case study has demonstrated the feasibility

of using model driven visualization as an approach for cus-

tomizing visualizations for ontology instance data.

5 Related Work

In this section we discuss research related to ontology

instance data visualization and instance data mediation.

5.1 Ontology Instance Data Visualization

Gilson et al. describes an approach that uses ontology

mapping techniques and probabilistic reasoning to automat-

ically create visualizations for domain specific data from the

691691



Figure 5: Visualization generated by mapping rules. Researchers are connected to their areas of expertise based on documents they have

read from those areas.

web [11]. Three ontologies (domain, visual representation,

and semantic bridging ontology) are used to capture expert

knowledge. The data from the web was mapped to the do-

main ontology, and the semantic bridging ontology deter-

mined how the domain ontology was mapped to the visual

representation ontology. Using those mappings and visual-

ization toolkits, a set of rated visualizations was calculated.

The mappings were represented by the semantic bridging

ontology, which the authors assumed to be created by ex-

perts. In comparison with our approach, we use a semi-

automatic mapping procedure to create mappings between

the domain ontology and the visualization ontology.

Cammarano et al. addressed the problem of visualiz-

ing semi-structured, potentially incomplete ontology data

by automatically mapping it to a visualization [6]. Their al-

gorithm relied on a visualization specification and a set of

ontology entities. The algorithm first generated and ranked

relevant general paths. Second, data instances for the at-

tributes and each ontology entity were searched using these

paths and some additional heuristics. In contrast, our ap-

proach is semi-automatic and enables humans to create and

control the mapping from the ontology to the visualization.

5.2 Instance Data Mediation

There has been a variety of research on transforming on-

tology instance data from a source to target ontology based

on mappings. As of yet there is no standard available. Eu-

zenat et al. proposed using SPARQL queries to transform

RDF triples between ontologies [9]. This approach is attrac-

tive as it works directly with the concepts and relationships

of the ontologies and SPARQL syntax is designed for ex-

tracting and translating data. However, as Euzenat et al.
indicate, SPARQL is missing a number of needed transfor-

mation constructs to fully support ontology data mediation.

Another promising approach is described by Scharffe et
al. [17]. The authors discuss the design and requirements

of a mapping language for ontology mediation. The lan-

guage they propose uses an XML syntax, and a Java API has

been provided for parsing and serializing the methods for

mapping. Again, like the previously mentioned approach,

the design of this language is still preliminary and it does

not support many required features for ontology mediation,

such as functional mappings (e.g. splitting and merging).

Due to these limitations, we chose to rely on existing

work from software modeling for transforming/integrating

data from our domain models to our visualization models.

We chose ATL for constructing our transformation rules as

this was successfully used in the Model Driven Visualiza-

tion work that we are extending and libraries exist for auto-

matically executing ATL rules.

6 Future Work

Although we are able to create instance data visualiza-

tions using the current COGZ extensions, there are cases

that are currently not supported without manual manipu-

lation of the ATL rules. For example, there is no visual

support within COGZ to concatenate or split property val-

ues, however, these are supported within ATL. We plan to

692692



continue to enhance support for different types of mappings

both within COGZ and the ATL rule writing engine we have

developed. Also, further extensions are necessary for han-

dling other types of cardinality changes during mapping.

Our current ATL rule writing library supports automatic de-

tection when mapping a many-to-many relation to a one-to-

one, but other cardinality differences may occur.

Also, moving forward, we would like to generate web-

based visualizations. Currently, the supported visualiza-

tions are only available as a native Java application. We

are working on developing a web-based version of COGZ

to integrate with the NCBO’s BioPortal application and we

plan to investigate supporting instance data visualizations

for the web within this system.

Another opportunity for future work is with the construc-

tion of a mapping algorithm tailored to data integration.

PROMPT’s default algorithm does not perform well for this

type of mapping scenario. PROMPT relies primarily on lex-

ical similarities between the models, however, with this par-

ticular application, it is unlikely that the source model will

have concept names lexicographically similar to the view

model. We believe a more appropriate algorithm would put

a higher priority on data type comparison once some con-

cept to concept mappings are manually generated.

7 Conclusion

We extended the COGZ ontology mapping tool to sup-

port the generation and customization of ontology instance

data visualizations. These extensions involved combining

techniques from both software modeling and ontology mod-

eling. We extended work from Model Driven Visualization

by incorporating existing EMF visualization models as our

target OWL view models. We integrated COGZ with the

MDV toolkit for executing ATL rules and generating visu-

alizations. We demonstrated the feasibility of this approach

through a case study where we recreated a previously devel-

oped ontology instance data visualization simply by speci-

fying mappings from a source to target ontology.

We believe this approach is very promising for the spec-

ification and generation of visualizations. This approach

gives us the generality we require for the visualization

toolkit we are developing for BioPortal. Potentially, map-

pings that specify a visualization could be shared in BioPor-

tal and end-users could modify the mappings and property

values to create their own custom visualizations.

References

[1] H. Alani. Tgviztab: An ontology visualisation extension

for protg. In Knowledge Capture (K-Cap’03), Workshop on
Visualization Information in Knowledge Engineering, 2003.

[2] M. M. Allen. Empirical evaluation of a visualization tool

for knowledge engineering. Master’s thesis, University of

Victoria, 2003.
[3] A. Bosca, D. Bomino, and P. Pellegrino. Ontosphere: more

than a 3d ontology visualization tool. In SWAP, the 2nd Ital-
ian Semantic Web Workshop.

[4] F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, and T. J.

Grose. Eclipse Modeling Framework. Addison Wesley,

2003.
[5] R. I. Bull. Model Driven Visualization: Towards a Model

Driven Engineering Approach for Information Visualiza-
tions. PhD thesis, University of Victoria, 2008.

[6] M. Cammarano, X. L. Dong, and J. Talbot. Visualization

of heterogeneous data. IEEE Transactions on Visualization
and Computer Graphics, 13(6):1200–1207, 2007.

[7] Y. Ding and S. Foo. Ontology research and development.

part 2 - a review of ontology mapping and evolving. Journal
of Information Science, 28(5):375–388, 2002.

[8] P. W. Eklund, N. Roberts, and S. P. Green. Ontorama:

Browsing an rdf ontology using a hyperbolic-like browser.

In The First International Symposium on CyberWorlds,

2002.
[9] J. Euzenat, A. Polleres, and F. Scharffe. Processing ontology

alignments with sparql. cisis, 0:913–917, 2008.
[10] S. M. Falconer, T. Yamauchi, and M.-A. Storey. Cogz:

Evaluating cognitive support for semi-automatic terminol-

ogy mapping. Under review, CHI’09.
[11] O. Gilson, N. Silva, P. W. Grant, and M. Chen. From web

data to visualization via ontology mapping. In Proceedings
Eurographics / IEEE VGTC Symposium on Visualization,

2008.
[12] F. Jouault and I. Kurtev. Transforming Models with ATL.

Lecture Notes in Computer Science, Springer Berlin / Hei-
delberg, 3844:128–138, 2006.

[13] P. Mutton and J. Golbeck. Visualization of semantic meta-

data and ontologies. In IV ’03: Proceedings of the Seventh
International Conference on Information Visualization, page

300, Washington, DC, USA, 2003. IEEE Computer Society.
[14] N. F. Noy and M. A. Musen. The PROMPT suite: In-

teractive tools for ontology merging and mapping. Inter-
national Journal of Human-Computer Studies, 59(6):983–

1024, 2003.
[15] OMG/QVT. MOF – Query / View / Transformation (QVT),

2007. available at http://www.omg.org.
[16] OMG/UML. Unified Modeling Language (UML), ver-

sion 2.1.1, (Formal/2007-02-03), 2007. available at

http://www.omg.org.
[17] F. Scharffe and J. de Bruijn. A language to specify mappings

between ontologies. In IEEE SITIS’05, 2005.
[18] B. Selic. The Pragmatics of Model-Driven Development.

IEEE Software, 20(5):19–25, 2003.
[19] B. Selic. Model-Driven Development: Its Essence and Op-

portunities. In Proceedings of the Ninth IEEE International
Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC), pages 313–319, 2006.

[20] M.-A. Storey, N. F. Noy, M. Musen, C. Best, R. Fergerson,

and N. Ernst. Jambalaya: an interactive environment for

exploring ontologies. In IUI ’02, pages 239–239, 2002.

693693


