
Do as I Do, Not as I Say: Do Contribution
Guidelines Match the GitHub Contribution Process?

Omar Elazhary∗, Margaret-Anne Storey∗, Neil Ernst∗ and Andy Zaidman†
∗University of Victoria, omazhary@uvic.ca, mstorey@uvic.ca, nernst@uvic.ca

†Delft University of Technology, a.e.zaidman@tudelft.nl

Abstract—Developer contribution guidelines are used in social
coding sites like GitHub to explain and shape the process a
project expects contributors to follow. They set standards for
all participants and “save time and hassle caused by improperly
created pull requests or issues that have to be rejected and re-
submitted” (GitHub). Yet, we lack a systematic understanding
of the content of a typical contribution guideline, as well as
the extent to which these guidelines are followed in practice.
Additionally, understanding how guidelines may impact projects
that use Continuous Integration as part of the contribution
process is of particular interest. To address this knowledge gap,
we conducted a mixed-methods study of 53 GitHub projects
with explicit contribution guidelines and coded the guidelines
to extract key themes. We then created a process model using
GitHub activity data (e.g., commit, new issue, new pull request)
to compare the actual activity with the prescribed contribution
guidelines. We show that approximately 68% of these projects
diverge significantly from the expected process.

Index Terms—code contributions, software engineering, au-
tomation.

I. INTRODUCTION

Open source software projects are the epitome of collab-
oration. They represent the amalgamation of the work and
effort of hundreds or thousands of developers coming together
to achieve a single purpose: to create an application that
fulfills user need. However, there is a point where such
a large workforce becomes too difficult to manage. While
public-facing, open source projects encourage contributions
in general, some evidence by Gousios et al. [1] suggests
maintainers can become overwhelmed with new contributions.
These contributions may frequently duplicate one another
or repeat discussions in which the maintainer stated that a
particular design choice was not going to be changed. For
some maintainers, the workload is simply too much.

Social coding sites like GitHub have started offering so-
lutions, such as contribution guidelines and continuous in-
tegration (CI) tools, to get core developers and contributors
on the same page and help unify expectations. Contribution
guidelines and CI tools often go hand in hand. Contribu-
tion guidelines are textual documentation files that document
the contribution expectations of project maintainers. In fact,
GitHub considers contribution guidelines a prerequisite on an
open source project’s pre-launch checklist [2] and provides
a step-by-step tutorial on how to create such guidelines [3].
Additionally, GitHub checks and refers contributors to the
guidelines when they make a contribution [4]. As mentioned

by Steinmacher et al. [5], this form of documentation helps
alleviate some barriers for new contributors.

On the more technical side of things, CI tools offer a way
for developers to pool together their testing practices and eval-
uation criteria when it comes to assessing contributions [6].
Depending on how the tool is configured, it will run tests on
submitted contributions and make those results available to
anyone reviewing them. The use of CI increases the efficiency
of the contribution process and contributes to the quality of
the code [7]. While previous research by Kobayakawa and
Yoshida [8] and another study by Prana et al. [9] attempted to
explore the contents of contribution guideline documentation,
they only focused on the contents of README files. They did
not, however, consider if these guidelines match the reality of
the development process. We do consider if these guidelines
match the contribution process, but focus on projects that use
CI, as we expect the contribution guidelines may be more
prescriptive for those projects. The research questions we
aimed to answer are as follows:

RQ1: What is the content of contribution guidelines for
projects on GitHub?

RQ2: Do projects that use CI tools mention these tools
in their contribution guidelines?

RQ3: To what extent do the actual processes in projects
that use CI tools match their guidelines?

We present preliminary evidence that the contribution process
prescribed in the contribution guidelines differs from what we
observe in reality. We also demonstrate that CI tools are only
discussed as testing mechanisms and generally do not have
documentation describing how they function or what they test.

II. BACKGROUND

We present related research on contribution guidelines and
continuous integration tools.

A. GitHub Contribution Guidelines
As mentioned in Section I, contribution guidelines are a way

for core developers to communicate their expectations, both in
terms of contribution criteria and processes, to developers who
wish to contribute to a software project. As such, contribution
guidelines are considered an important addition to a project’s
overall documentation and many view a project as incomplete
without them [2].

Additionally, contribution guidelines offer a way for new-
comers to orient themselves and learn the project’s building



blocks, processes, and other conventions laid down by devel-
opers. In fact, Steinmacher et al. [5] illustrate that the lack
of such documentation poses a barrier to entry for developers
who wish to contribute to open source projects.

In an effort to bring the importance of contribution guide-
lines to the attention of developers, GitHub uses a re-
minder when creating an empty repository that allows de-
velopers to create a README.md file with a single click.
They explicitly mention: “We recommend every repository
include a README, LICENSE, and .gitignore.” And while
README files do not necessarily give the impression of
something that contains contribution guidelines, Prana et al.
[9] demonstrate that they usually do. Additionally, as men-
tioned previously, GitHub actively reminds contributors of
the existence of contribution guidelines and suggests they be
inspected before making a contribution [4].

Prana et al. [9] manually coded 393 README.md files
and built a machine learning model that predicts the category
a certain text would fall under, such as which part of the
guidelines refers to who, what and why of the contribution
process. They do not consider if these guidelines are followed
nor do they provide details on the contribution process itself.

B. Continuous Integration Tools

CI tools offer a way to run automated checks on contribu-
tions that get submitted to software repositories, and Vasilescu
et al. [7] show they increase contribution review efficiency.
Fowler and Foemmel [10] (and later Fowler and Humble [11])
define the functions of a CI tool as follows:

• It should initiate an automated build once a new change
has been pushed to the shared mainline.

• It should assemble all required dependencies to build the
project on the latest version of the shared mainline.

• It should build the latest version on the shared mainline.
• It should run the tests specified by developers on the latest

version of the shared mainline.
• It should report the build results to developers.

Because of the benefits of using CI tools [7], GitHub now
offers a native, fully integrated CI solution [12]. Yet, other
CI tools are also available, e.g., the popular TravisCI [13]

Due to the role CI plays in evaluating code contributions on
GitHub, developers have started considering CI among their
contribution evaluation criteria [1], [14]. Reviewers consider
build results when reviewing code contributions, while contrib-
utors use them to evaluate their own contributions before sub-
mitting them. It is, however, unclear how CI tools are discussed
in contribution guidelines. Thus, we focus on investigating the
structure and contents of contribution guidelines, as well as
how CI tools are featured in them.

III. METHODOLOGY

For our investigation of GitHub project development prac-
tices and how they make use of continuous integration (CI)
tools, we selected a cohort of GitHub projects from the GHTor-
rent dataset [15]. We coded their contribution guidelines,
as those generally offer documentation about contribution

practices and the expectations core developers have about
contributions. This allowed us to answer RQ1 and RQ2, as
well as determine the contents of the projects’ contribution
guidelines. We also visualized the projects’ activities on
GitHub to observe their contribution processes and determine
what type of development practices they follow. This allowed
us to answer RQ3 and explore the extent to which developers
adhere to the prescribed practices.

A. Project Selection Criteria

In order to filter the large dataset provided by GHTorrent
(about 37 million projects), we followed criteria laid out by
Vasilescu et al. [7], Tsay et al. [16], and Munaiah et al. [17].
The combination of the criteria from the previously mentioned
literature resulted in the following filters:

• Exclude forks: Forks are typically created by a contrib-
utor who wishes to use a copy of the project’s source
code to make a contribution. Excluding them eliminates
duplicates as well as incomplete project histories, as
indicated by Tsay et al. [16] and Kalliamvakou et al. [18].

• Exclude deleted projects: Deleted GitHub projects are
no longer accessible via the GitHub API and have
been inactive for some time. Moreover, according to
Kalliamvakou et al. [18], their activity is deleted.

• Exclude projects with no recent commits: Commits
indicate that a project is active and open to contribution.
We considered projects that have at least one commit the
week before the sampling period [16], [18].

• Exclude projects that have less than 10 recent pull
requests: Pull requests, be they open or closed, represent
contributions to a project, and thus represent project
activity, as indicated by Gousios et al. [14] and Vasilescu
et al. [7]. We focused on projects where a contributor—
particularly one who has no write privileges to the source
repository—has access to the build results.

• Exclude projects that have less than three unique
contributors: This is an indicator of the project having
a tightly-knit community of developers that are actively
collaborating but are less inclined to accept external
contribution, as discussed by Munaiah et al. [17].

• Exclude projects that do not have at least one recently
merged pull request: According to Kalliamvakou et al.
[18], having a pull request does not indicate that it was
merged. This criterion focuses on recently merged pull
requests as a sign of a project accepting contributions.

We determined how recent a commit or pull request was
by whether or not it occurred in the week prior to the
sampling phase. The above combined criteria reduced the
population to 41,642 projects that are non-duplicates, active,
accept pull requests from contributors, and have a community
of developers (or at least a team) supporting them.

The next step was to determine which projects use a CI tool.
We cloned the 41,642 projects that resulted from applying the
previous filters to GHTorrent and mined their repositories for
common CI tool configuration files (e.g., .travis.yml). Based
on this, the repositories were divided into two sets: those that



use a CI tool (28,904 projects), and those that may not (12,738
projects). While we followed the process outlined by Zampetti
et al. [19], we do note that some repositories may not have
included a CI tool configuration file yet still use a CI tool.

The previously listed criteria, however, do not guarantee the
selection of a reasonably active project with a reasonably large
community to accommodate the amount of activity we need
for exploratory analysis. To address this, we used GitHub’s
method of ranking open source repositories1 by contributors.
We sorted the set of projects that use CI by the number of
unique contributors and selected the top 100 projects.

For the most active projects that use CI tools, we coded their
contribution guidelines. We looked for a CONTRIBUTING.md
file first, and if that was not available, we then looked for a
README.md file. We used those files as proxies for process
documentation. We excluded 28 of these 100 projects based
on the following criteria:

• The guideline file for a project is too small; less than 2
KB of data, similar to the filtering criteria used by Prana
et al. [9].

• The project guideline file contains no actual guidelines,
rather it is only a link to an external source (typically
style guides for particular languages)2.

This left us with a final sample of 72 projects with high
contribution activity that use CI tools and have substantive
guidelines within their GitHub repositories.

B. Guideline Coding

In order to understand how project team members envision
their contribution processes, we examined their contribution
guidelines (CONTRIBUTING.md). If the file did not exist in
the repository, we inspected the project’s basic documentation
instead (README.md). We used thematic coding described
by Creswell [20] in an inductive fashion to allow themes to
emerge naturally. For each of the 72 projects in our remaining
sample, we went through their contribution guidelines, manu-
ally labeling every statement based on the topic it addressed.
For instance, “If the code change needs to be applied to
other branches as well (for example a bugfix needing to be
backported to a previous version), one of the team members
will either ask you to submit a PR with the same commit
to the old branch, or do this for you.” was assigned to the
“How to Submit Bugfixes” category. And “Please sign our
Contributor License Agreement (CLA) before sending PRs. We
cannot accept code without this.” fell under the “Signing a
CLA” category. As such, we constructed a coding index that
grew with each file until we reached saturation after 50 files
(we coded all 72 files, yet no additional codes emerged in
our coding index). The full index is available as part of our
reproducibility package3.

1https://octoverse.github.com/projects#repositories
2Also similarly to Prana et al. [9], we chose to only focus on files that

GitHub initializes automatically. While it is possible that some may refer to
an external source, these are usually much less common.

3https://figshare.com/s/c0d3321053380840d8fa

Additionally, we compared our list of identified codes to
those observed by Prana et al. [9] when they performed a
similar activity (labeling README file contents for content
classification via machine learning), as well as to the con-
tribution process information gathered by Gousios et al. [1],
[14] when they surveyed GitHub reviewers and contributors
regarding their reviewing and contributing practices. The codes
we found were of a finer grain than those found by Prana et
al. [9], and as such, we were able to fit our codes into their
higher-level categories. Our codes also aligned with the results
reported by Gousios et al. [1], [14] concerning pull request
contributions.

C. Project Workflow Mining and Visualization

In order to better grasp a project’s workflow in a way that
accurately reflects the reality of the process as opposed to the
documented version of the process, we mined the data from the
GitHub events API. Unfortunately, only 53/72 projects were
accessible via the API. We mined these 53 projects over a
period of four weeks because inspecting the project workflows
after that point showed little to no variation in terms of how a
project processes contributions. Over that period, we queried
each projects’ events API for events that happened throughout
this period. Such events included, but were not limited to:

• opening/closing an issue;
• opening/closing a pull request;
• pushing a commit; and
• commenting on an issue/pull request/commit.
To get a better sense of each project’s contribution process

and determine if it matched the workflow prescribed in their
contribution guidelines, we visually represented it as a process
map. We connected the various entities (issues, pull requests,
commits, etc.) within the event logs already harvested to form
a string of consecutive actions. Where possible, we connected
commits to their corresponding pull requests and pull requests
to their corresponding issues based on the references develop-
ers made in the documentation of each artifact.

To visualize the contribution process for each project, we
used the process mining tool disco4, which constructs process
maps out of process logs to facilitate analysis. An example of
the various paths a contribution can take is shown in Fig. 1.
For instance, a contribution can be in the form of a commit
directly made to the master branch, as illustrated by the push
commit(s) step. Some commits are also included as part of a
pull request and elicit a code review. Alternatively, a commit
can be made to a pull request, which then results in the pull
request’s closure. Similarly, reviews can also result in the
closure of a pull request.

IV. RESULTS

Based on the methods we described, we were able to discern
the contents of a typical contribution guideline file. We also
compared the prescribed contribution process to the actual
process for the 53 projects of which we could mine the event
API and that had substantive guideline documents.

4https://fluxicon.com/disco/



Fig. 1. Excerpt from the Apache Camel process map.

RQ1: What is the content of contribution guidelines for
projects on GitHub?

Contribution guidelines embody the expectations integra-
tors have for contributions to their projects. We found five
main categories of contribution guidelines: Project Orientation,
Contribution Workflow, Pull Request Acceptance Criteria,
Continuous Integration Tools, and Traceability.

The first category includes guidelines to introduce newcom-
ers to a project and familiarize them with internal processes
and workflows. Example sub-categories are details on how to
submit issues and what sort of documentation is sufficient.
The second category, Contribution Workflow, typically walks
contributors through the process of successfully submitting a
pull request to a project. Examples include how and when to
create a new branch, how to create a pull request, and whether
a Contributor License Agreement needs to be signed. Under
the category of Pull Request Acceptance Criteria we include
statements that describe what reviewers consider to be an ideal
pull request, using criteria such as contribution size, testability,
and documentation. The Continuous Integration Tools category
includes themes about the usage of CI tools within the project’s
contribution process. And finally, the Traceability category en-
compasses the theme of linking contribution process artifacts
to each other. Table I illustrates some of the most common
themes across our sample.

TABLE I
EXAMPLE OF DOCUMENTATION CATEGORY FREQUENCY

5

Content Category Featuring Projects

Pull Request Acceptance Criteria
Contribution Style 72.22%
Contribution Includes Test Cases 52.78%
Contribution Documentation 47.22%
Project Orientation
How to Open an Issue 69.44%
How to Set up a Local Development Environment 48.61%
General Technical Knowledge 38.89%
Contribution Workflow
Submitting a Pull Request 73.61%
How to Branch in a Repository 56.94%
How to Fork/Clone a Repository 52.78%
Continuous Integration Tools
Testing by CI Tool 30.56%
Traceability
Artifact Linking for Traceability 19.44%

RQ2: Do projects that use CI tools mention these tools in their
contribution guidelines?

Based on the results we discussed above in Table I, we
found that CI tools were mentioned in only 31% of our sample
of contribution guideline documents. When mentioned, it was
only as a vehicle for running and passing tests as part of
submitting a contribution. There was no indication in the
contribution guidelines as to whether a project followed the
CI practice in terms of development workflow. There was
also no documentation regarding what these tools actually
do or the scripts they run, compared to the dense amount of
documentation that we found on other topics, including how
to set up a development environment, and project structure.

RQ3: To what extent do the actual processes in projects that
use CI tools match the processes in their guidelines?

With respect to the contribution process workflow, we found
that the actual activity trace data of the projects in our sample
differed from the guidelines in the following ways:

• Some projects made use of contribution practices that
were not documented in the contribution guidelines, e.g.,
51% of the projects in our sample reopen issues, and 68%
reopen pull requests. However, the contribution guidelines
offered no guidance on when or why a developer should
reopen a previously closed issue or pull request.

• Fourteen projects (19.5%) prescribed linking artifacts to
each other for traceability reasons (see Table I), yet we
rarely observed occurrences of this happening.

• Although about 68% of the projects whose activity we
had access to described their contribution process in
the form of creating and submitting pull requests, the
contribution activity of all but one (i.e., 52/53 projects)
involved direct commits to the master branch that were
not linked to pull requests. Across all 53 projects, we
found that the mean number of direct commits is 93%,
with a standard deviation of 11% and a median of 99%.

V. DISCUSSION

Contribution guidelines are meant to be the first point of
contact for developers who want to learn about the process
a project team uses for development [3]. They are designed
to guide new developers and orient them around the project,
telling them about the tools they need in order to make
contributions effectively and efficiently. However, our study of
53 active GitHub projects that use CI (and that we could mine)
shows two major shortcomings in contribution guidelines:
they do not accurately reflect all the agreed-upon methods
of contribution, and they focus more on automatable details
that a tool can check for than they do on the specifics of how
to contribute. The overwhelming majority (72%) of projects
we studied include guidelines about code style and other
technical information. Most of these details are automatable:
code style, for example, can be efficiently checked with linters

5This table does not contain all coded themes. The full list can be found in
the reproducibility package at https://figshare.com/s/c0d3321053380840d8fa.



like Checkstyle. This document real estate could be better used
to surface and make explicit the tacit knowledge that core team
members have about their processes and internal workflows.

Steinmacher et al. [5] suggest this tacit knowledge is more
useful, as they found that a lack of knowledge regarding
project components and processes is one of the barriers faced
by newcomers. This barrier could be alleviated by contribution
guidelines that contain information on the contribution work-
flow. For example, we noticed a lack of CI tool documentation
except for how to run the CI tool—there was no information
on how the CI tool fits within the project’s workflow. While
some projects include detailed information on the project’s
structure, dependencies, and the process one should follow in
order to contribute effectively, several projects in our sample
do not include adequate information. About a quarter (26.4%)
of the sample projects do not prescribe workflow guidelines
at all, and do not include any information on submitting pull
requests or developer branching conventions.

Our future research will focus on the ways in which
guideline documents, such as README files [9], can assist
new developers. In particular, it is not clear to what extent the
mandatory use of CI tools improves the process of contributing
code to a new project. We need to understand why contribution
guidelines exist in the form they do now, and whether con-
tributors consider them adequate sources of information. We
also need to explore why core team members do not adhere
to the contributions they prescribe.

VI. THREATS TO VALIDITY

The limitations from our work include generalizability, in
that we were limited to mining the workflow data from only
53 projects of the candidate 72 projects we considered in
this research. Our coding process may also be subject to
bias, which we mitigated by referencing previous work on
contribution guidelines [9].

Our interpretation of the actual workflow process also relies
on the Disco mining tool we used, however, we manually
checked the results it produced. We also use the contribution
guidelines as a proxy for contribution process documentation,
which should apply to both core team members as well as
external contributors. However, this is not always the case
[21]. Finally, it is possible that some projects define their
contribution guidelines in other resources, but we tried to
address this by following a similar process by Prana et al. [9]
to exclude these projects in our analysis.

VII. CONCLUSION

Contribution guidelines embody a software project’s contri-
bution process, however, there has yet to be an exploration
of what they contain and whether projects adhere to the
workflows they prescribe. We demonstrate that the most active
projects that use CI in fact do not follow their own guidelines
(if they have any) by conducting a mixed-methods study of
these 53 GitHub projects using thematic coding of guideline
documents and process mining of GitHub event streams. Fur-
thermore, we speculate that the current contribution guideline

structure may be written to suit project maintainers more
than new contributors. A more in-depth study of both process
documentation and developer perceptions is needed in order
to determine how effective the current guideline format is and
whether it needs to be optimized for the contributor.

ACKNOWLEDGMENT

This research is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC). We thank
Cassandra Petrachenko for her help with this study.

REFERENCES

[1] G. Gousios, M.-A. Storey, and A. Bacchelli, “Work practices and
challenges in pull-based development: the contributor’s perspective,” in
ICSE. IEEE, 2016, pp. 285–296.

[2] “Open source project guides,” https://opensource.guide/
starting-a-project/#your-pre-launch-checklist, accessed: 2019-06-10.

[3] “Setting guidelines for repository contributors,” https://help.github.
com/en/articles/setting-guidelines-for-repository-contributors, accessed:
2019-06-10.

[4] “Contributing guidelines,” https://github.blog/
2012-09-17-contributing-guidelines, accessed: 2019-06-10.

[5] I. Steinmacher, M. A. G. Silva, M. A. Gerosa, and D. F. Redmiles, “A
systematic literature review on the barriers faced by newcomers to open
source software projects,” IST, vol. 59, pp. 67–85, 2015.

[6] M. Beller, G. Gousios, and A. Zaidman, “Oops, my tests broke the build:
an explorative analysis of Travis CI with GitHub,” in MSR. IEEE, 2017,
pp. 356–367.

[7] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and
productivity outcomes relating to continuous integration in github,” in
FSE. ACM, 2015, pp. 805–816.

[8] N. Kobayakawa and K. Yoshida, “How github contributing.md con-
tributes to contributors,” in COMPSAC. IEEE, 2017, pp. 694–696.

[9] G. A. A. Prana, C. Treude, F. Thung, T. Atapattu, and D. Lo, “Catego-
rizing the content of github readme files,” EMSE, pp. 1–32, 2018.

[10] M. Fowler and M. Foemmel, “Continuous integration (original version),”
available from, http://www.martinfowler.com/) Accessed: 2019-06-07.

[11] “Continuous integration certification,” https://martinfowler.com/bliki/
ContinuousIntegrationCertification.html, accessed: 2019-06-07.

[12] “Github actions,” https://github.com/features/actions, accessed: 2019-06-
10.

[13] “Github welcomes all ci tools,” https://github.blog/
2017-11-07-github-welcomes-all-ci-tools/, accessed: 2019-06-11.

[14] G. Gousios, A. Zaidman, M.-A. Storey, and A. van Deursen, “Work
practices and challenges in pull-based development: the integrator’s
perspective,” in ICSE. IEEE, 2015, pp. 358–368.

[15] G. Gousios, “The GHTorrent dataset and tool suite,” in Working Conf.
on Mining Software Repositories (MSR). IEEE, 2013, pp. 233–236.

[16] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in ICSE. ACM, 2014,
pp. 356–366.

[17] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github
for engineered software projects,” EMSE, vol. 22, pp. 3219–3253, 2017.

[18] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining github,” in MSR.
ACM, 2014, pp. 92–101.

[19] F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and M. Di Penta,
“How open source projects use static code analysis tools in continuous
integration pipelines,” in MSR. IEEE, 2017, pp. 334–344.

[20] J. W. Creswell and J. D. Creswell, Research design: Qualitative,
quantitative, and mixed methods approaches. Sage publications, 2017.

[21] G. Avelino, L. Passos, A. Hora, and M. T. Valente, “Measuring and
analyzing code authorship in 1+ 118 open source projects,” Science of
Computer Programming, vol. 176, pp. 14–32, 2019.


