
Reconstructing Program Memory State from
Multi-gigabyte Instruction Traces to Support

Interactive Analysis
Brendan Cleary, Patrick Gorman,

Eric Verbeek, Margaret-Anne Storey
University of Victoria
Victoria, BC, Canada

bcleary@uvic.ca

Martin Salois, Frederic Painchaud
Defence Research and Development Canada – Valcartier

Quebec, QC, Canada
martin.salois@drdc-rddc.gc.ca

Abstract—Exploitability analysis is the process of attempting
to determine if a vulnerability in a program is exploitable.
Fuzzing is a popular method of finding such vulnerabilities, in
which a program is subjected to millions of generated program
inputs until it crashes. Each program crash indicates a potential
vulnerability that needs to be prioritized according to its potential
for exploitation. The highest priority vulnerabilities need to be
investigated by a security analyst by re-executing the program
with the input that caused the crash while recording a trace of
all executed assembly instructions and then performing analysis
on the resulting trace. Recreating the entire memory state
of the program at the time of the crash, or at any other
point in the trace, is very important for helping the analyst
build an understanding of the conditions that led to the crash.
Unfortunately, tracing even a small program can create multi-
million line trace files from which reconstructing memory state is
a computationally intensive process and virtually impossible to do
manually. In this paper we present an analysis of the problem of
memory state reconstruction from very large execution traces. We
report on a novel approach for reconstructing the entire memory
state of a program from an execution trace that allows near real-
time queries on the state of memory at any point in a program’s
execution trace. Finally we benchmark our approach showing
storage and performance results in line with our theoretical
calculations and demonstrate memory state query response times
of less than 200ms for trace files up to 60 million lines.

I. INTRODUCTION

An exploit occurs when a vulnerability in a software pro-
gram is discovered and malware exploiting the flaw is de-
veloped. Software security analysts attempt to protect against
exploits by proactively finding vulnerabilities in programs
before malware authors find and develop code that exploits
those vulnerabilities.

The process of determining if a given program is suscep-
tible to exploitation is called exploitability analysis. Security
analysts typically use a combination of static and dynamic
analysis techniques to determine if a program is vulnerable
to exploitation. One common method is fuzzing [21], which
attempts to deliberately cause the program to crash by subject-
ing the program to millions of mutated or generated inputs.
Crashes are then prioritized using ad hoc techniques [15] with
the highest priority crashes then analyzed for exploitatibility.

One analysis technique is to re-execute the program with the
input that caused the crash, record a trace of all executed
assembly instructions up to the crash and then perform analysis
on the resulting trace. The resulting execution trace is analyzed
to find the root cause of the crash and to assess if an exploit
could take control of the program’s execution. This last step
requires a great deal of human reasoning.

Currently, security analysts rely on off-the-shelf text editors
and comparison tools when performing manual analysis of
these traces. In previous work [5], we developed the Atlantis
assembly trace analysis environment designed specifically to
work with execution traces generated during exploitability
analysis. Atlantis provides security engineers with a user-
friendly environment to perform, record and share their analy-
ses. An important aspect in these analyses and in determining
a program’s potential explotability from a trace is being able
to quickly rewind the program’s execution to reconstruct the
state of the memory at different points during the execution.
This allows the analyst to observe how the memory state of a
program evolves in response to the instructions executed.

Unfortunately, even for programs of modest size, the traces
generated when performing exploitability analysis can be
hundreds of millions of lines in length with each instruction
possibly causing a change in the memory state of the program.
Reconstructing the memory state of a program at a particular
point in a trace is a computationally intensive process, requir-
ing simulation of all memory operations from the start of the
program’s execution to the desired point in the trace. Aside
from trivially small example programs, doing this calculation
in real-time can take many minutes of processing. This latency
in reconstructing memory state prevents the types of interactive
real time analysis required by security analysts. Removing this
latency has the potential to dramatically enhance the work
practices of security analysts.

In this paper we present a method by which we analyze
all memory and register references captured in a program’s
execution trace to allow us to pre-compute an indexed memory
state for each trace instruction. Pre-computation of the memory
index involves building a structure that we call a memory state

978-1-4799-2931-3/13/$31.00 c© 2013 IEEE WCRE 2013, Koblenz, Germany42



delta tree. This data structure then enables us to serve requests
from a user for the entire memory state of the program at
arbitrary points in the trace in almost real time. This allows
analysts to interactively browse the historical memory state
of a program. Finally, we present benchmarks of the query
response performance of our technique where we demonstrate
response times of less than 200ms for memory state queries
at arbitrary locations in traces of up to 60 million lines.

II. PROBLEM DEFINITION

Atlantis is an integrated assembly trace analysis environ-
ment designed to assist security engineers perform and manage
trace analysis [5]. Atlantis was developed in collaboration
with security analysts to meet their requirements and support
their work practices [22]. To this end, Atlantis supplements
many of the features of modern IDEs with novel annotation
and navigation techniques to support trace-based exploitability
analysis. One of the key features of Atlantis is its ability to
allow users to manipulate very large trace files, in the order of
tens of millions of lines. Another key feature are the Atlantis
memory and register views which allow a user to investigate
the state of the traced program’s memory and registers as they
navigate through these very large traces in real time. This
paper describes the theoretical underpinnings of how these
views are constructed.

Our use case for reconstructing memory and register state
can be summarized as follows. Given a tool such as Atlantis,
when the user selects a particular trace line we want to
present that user with tables of all memory addresses and
registers referenced by the program up to that point in the
trace with their current values. The system must return the
required information quickly enough to allow the user to
interactively navigate through the trace, observing the memory
and register state updating as they navigate. Users should be
able to jump to any point in the trace or “step” through the
trace line by line. To provide an optimal user experience,
results should be displayed in less than 500ms. We chose
this response time target in consultation with our research
client the DRDC and because it was a compromise between
the 100ms response time limit where users perceive a system
as responding instantaneously, and the 1 second response time
limit above which a user’s flow of thought is interrupted [16].

More formally, given a program P and a trace T consisting
of an ordered set of n executed instruction records (trace lines)
T = {i1, i2, i3...in} generated by the tracing of P , we want
to compute M , the state of the memory of P at instruction
record ix in T . Where M is a set of memory address and
value pairs: M = {{a1, v1}, {a2, v2}, {a3, v3}...{am, vm}}.
To calculate M we require that the order of the sequence
of trace instruction records in T reflects the exact order of
execution regardless of which thread they were executed in
(that is, we require that the trace be totally sequential, without
concurrent constructs), and that each instruction record details
all memory addresses and registers modified by that instruction
and the values assigned.

As an example consider the sample trace file in Table I.
Here we see six instruction records where each contains a
unique sequential instruction record id, the instruction dis-
assembly, and the sets of registers and memory addresses
modified by that instruction along with the values assigned
to those addresses by the instruction.

After a user selects a line of the trace, we want to generate
two tables, one containing the memory addresses referenced by
the program with their current values, and a second containing
the registers and their values. Tables II and III depict how
the contents of these memory and register tables would evolve
if the user were to navigate line by line through the example
trace in Table I. Constructing these tables for a small example
is not complex. Reading the trace from start to finish, as we
encounter references to memory addresses and registers and
if we have not already seen a reference to that address or
register, we add it to the table. If we have already seen that
address or register, we update its value. For example, line 5 of
the example trace changes the value of an already referenced
memory address. In this case we simply update the value in
the memory state table rather than adding a new row.

While constructing the memory and register reference tables
in this manner for small examples is trivial, it is not possible
to construct these tables for large multi-gigabyte program
traces so that users can step through the trace while observing
memory and register state updates in real time (that is, within
the response time threshold of 500ms required by our use
case).

III. MEMORY STATE RECONSTRUCTION STRATEGIES

There are many possible approaches to reconstructing a
program’s entire memory state at a given location in a trace. In
this section we summarize some of these strategies, illustrating
how each would work and then discussing the advantages and
drawbacks of each approach in the context of very large traces.

A. Linear Reconstruction

Linear Reconstruction (LR) is the most naive method of
reconstructing memory state and operates similarly to the
example method described in section II. The LR strategy
computes the memory state at instruction record ix through
a simple linear traversal of the trace from instruction i0 to
instruction ix. Storing references to memory addresses or
registers in an in-memory data structure that represents the
memory state of the program under study. This simple strategy
can compute the memory state of the program in O(x). While
this translates to very fast response times for very small traces
entirely held in memory, as x increases to tens of millions
of instructions that need to be paged from disk and parsed,
the response time quickly becomes too great for real-time
interactivity.

Another problem with the LR approach is the lack of a
caching strategy. Using this strategy, each time the user selects
a new target trace instruction record, the memory state has
to be recomputed. When the new target instruction record is
later in the trace than the previous target instruction record, the

43



TABLE I
EXAMPLE TRACE FILE EXCERPT

Id Disassembly Registers Memory
1 (672ca571) mov ebp, esp EBP=0012f9d0
2 (672ca573) sub esp, 0x8 ESP=0012f9c8
3 (672ca576) cmp dword ptr [0x672cb524], 0x0 [672cb524]=00000000
4 (672ca57d) jnz 0x672ca58e
5 (672ca57f) mov dword ptr [0x672cb524], 0x1 [672cb524]=00000001
6 (672ca589) call 0x672ca520 ESP=0012f9c4 [0012f9c4]=672ca58e

existing computed state can be reused with just the instruction
records between the old target and new target needing to
be traversed. However, when the target instruction record is
earlier in the trace than the previous target, the memory state
has to be recomputed by un-applying memory references from
the now irrelevant trace instruction records. In the worst case,
both these situations will require that the memory state be
completely recomputed from i0 to ix. Further, due to the
simplistic memory model, previously computed state is not
stored. For example, the memory state calculated for the entire
trace from i0 to in will be overwritten by the memory state
for i0 to i1, requiring subsequent queries for i0 to in to be
recomputed entirely.

A third issue with the LR strategy is the amount of
redundant computations that are not of interest to the user.
For a given location in the trace, the corresponding memory
state can only have a single value for each memory address
and each register (the last value stored in that location prior
to and including ix). Yet under the naive LR strategy, each
memory address and register value has to be calculated for all
trace instructions from i0 to ix. This means that a lot of the
work carried out may ultimately end up being redundant to
the memory state at ix as memory addresses are reused and
updated. Reverse traversal of the trace, from ix to i0, does
not entirely solve this issue either, as in the worst case it still
requires a complete traversal.

This naive LR strategy can be improved using a more com-
plex memory state model that allows for caching of previously
calculated state. However, depending on the memory footprint
of the program under study, this may quickly exceed the
available system memory and would need to be paged to disk,
at which point the LR strategy evolves into a class of more
complex strategies.

B. Cached Snapshots

The Cached Snapshots (CS) strategy uses a single linear
traversal of the trace from beginning to end to calculate the
entire memory state of the program under study at each line
and then stores that set of memory states to disk as individual
snapshots. In the worst case, this strategy results in n cached
snapshots of the memory state, where n is the number of trace
instruction records (trace lines). Restoring the memory state
for a given trace instruction record ix is then a simple reading
of the corresponding snapshot from disk into memory and
presenting it to the user. This method also has the advantage
that portions of a memory state snapshot can be paged into

main memory on demand, which means that the program
under study can have a larger memory footprint than the
analyst’s workstation.

The drawbacks of this approach are the potentially large
amounts of disk space required to store the memory state
snapshots and the large amount of disk IO in the preprocessing
step. Estimating the total disk space required (without any
compression or diff-ing of snapshots) requires knowing the
maximum memory footprint of the program under study and
the point in the trace at which all relevant memory addresses
have been referenced.

For example, if the first y instruction records in a trace
each reference a single unique memory address and if each
subsequent instruction in the trace operates on one of those
addresses, then the number of address-value pairs required to
represent the memory state for a trace of n instruction records
can be calculated by the following formula:

(y + 1)y

2
+ ((n− y)y)

The first part in this formula represents the minimum
number of address-value pairs required to represent memory
states of a program initializing a set amount of memory using
y instructions. The second part is the worst case number of
address-value pairs that we need to represent the memory
states of the rest of the program if every instruction from
y to n modifies some memory address. For example, given
a program with a memory footprint of 1MB and a 60M line
trace, and assuming that 131,072 assembly instructions (1MB
/ 8-bytes per instruction) are required to initialize the 1MB
of memory used by the program, and that each subsequent
instruction modifies some memory address, then the total
number of memory address-value pairs that need to be stored
are approximately 7.8 x 1012 or 7.8 trillion. To calculate
the amount of space required to store this information on
disk, if we assume each address-value pair requires 8-bytes
for address plus 8-bytes for value, then the total amount of
space required would be 7.8 trillion times 16 bytes which
equals approximately 114TB. Estimating disk usage for real
world examples is made more difficult by the fact that not all
instructions will make references to memory addresses and the
instruction in the trace at which all referenced addresses have
been observed will be variable. Estimated disk IO times in the
preprocessing step can be calculated similarly. For example, if
a program has a memory footprint of 1MB with approximately
60M snapshots referencing the full 1MB memory footprint

44



TABLE II
EXAMPLE MEMORY STATE BY TRACE LINE

Line 1 Line 2 Line 3
Address Value Address Value Address Value

672cb524 00000000

Line 4 Line 5 Line 6
Address Value Address Value Address Value
672cb524 00000000 672cb524 00000001 672cb524 00000001

0012f9c4 672ca58e

and given a disk write speed of 481MB/s (2012 Solid State
Disk benchmark [9]), we could write 481 snapshots to disk
per second. To sequentially write 55M snapshots would take
124,740 seconds or approximately 1.4 days!

The CS strategy as described is, like the LR strategy, quite
naive and not practical. An area for improvement is removing
the redundancy between subsequent memory state snapshots
by storing just the differences or deltas of previous snapshots
rather than the whole snapshot. This would dramatically
reduce both disk storage and IO but at the cost of increasing
preprocessing complexity and reducing read performance by
having to reconstruct memory state from deltas. The next
section looks at a smarter snapshotting strategy that attempts
to balance preprocessing costs, disk space and response times.

C. Block Snapshot Deltas

The LR and CS strategies mark two extremes on a memory
state reconstruction computation - IO spectrum. The LR strat-
egy being computationally intensive but not IO bound, and
the CS strategy being storage and IO intensive but capable of
very fast response times. In this section we discuss a middle
ground strategy that attempts to combine both approaches in
an effort to satisfy our use case of keeping response times in
the sub-500ms category while balancing storage and IO costs.

One of the ways in which the LR strategy could be best
improved is to introduce some kind of memory state caching
to reduce the amount of irrelevant computation and prevent
the need for memory state to be calculated more than once.
However, as we see with the CS strategy, too much caching
can result in very high storage and IO requirements. Likewise,
one of the ways to improve the CS strategy is to store
snapshot deltas rather than full snapshots, again attempting to
avoid storing too many deltas which would require significant
computation to reconstruct. This strategy, which we call Block
Snapshot Deltas (BSD), achieves these goals by combining
snapshotting, snapshot deltas and a limited amount of linear
calculation.

Conceptually this approach divides the trace into fixed size
blocks. Then we proceed to calculate the memory state for the
trace line by line. When we reach the end of each trace block,
we create and save a memory snapshot delta for that block
to disk as a set of textual address-value pairs. Reconstructing
the memory state for a given instruction record ix is then a
process of retrieving all snapshot deltas for blocks preceding
ix and then calculating the memory state between the end of

TABLE III
EXAMPLE REGISTER STATE BY TRACE LINE

Line 1 Line 2 Line 3
Address Value Address Value Address Value
EBP 0012f9d0 EBP 0012f9d0 EBP 0012f9d0

ESP 0012f9c8 ESP 0012f9c8

Line 4 Line 5 Line 6
Address Value Address Value Address Value
EBP 0012f9d0 EBP 0012f9d0 EBP 0012f9d0
ESP 0012f9c8 ESP 0012f9c8 ESP 0012f9c4

Fig. 1. Calculating Memory State Using Block Snapshots Deltas

the last block and ix. Figure 1 illustrates this approach for an
example trace. Here we see a trace with two blocks defined, A
and B. Calculating the memory state at instruction ix requires
retrieving the snapshots for blocks A and B and combining
the deltas into a memory state for the end of block B. Using
this memory state for the end of block B as a basis we can
calculate the memory state at ix by a simple linear traversal
from the end of block B to ix.

This strategy has several advantages over both LF and CS.
First, in comparison to the LF strategy, by making use of
cached snapshots, instead of a complete traversal from i0 to
ix we limit the number of trace instruction records for which
we have to recalculate memory state to x minus the end of
the previous block y. Second, if we change ix, we don’t have
to discard our entire memory state. For example, if ix was to
move earlier in the trace into block B, instead of recalculating
from i0 we just calculate memory state from the end of block
A to the new value of ix in B. Likewise if ix moves to later
in the trace, we just read in the additional required blocks
that have not already been read into memory. This strategy
effectively limits the number of trace instruction records whose
memory state has to be re-computed to <= blocksize, where
blocksize is the number of trace instruction records which we
choose to define as a block. As such, blocksize is an adjustable
parameter of the BSD strategy and can be used to balance

45



processing and IO costs. For example, setting blocksize to a
lower value will result in a larger number of smaller snapshots,
while increasing it will create a smaller number of larger
snapshots, resulting in a knock-on effect on processing, storage
and IO costs.

In comparison to the CS strategy, our approach dramatically
reduces the amount of IO and disk space used to cache
memory state snapshots. This is accomplished in two ways.
First, by increasing the granularity of when we choose to make
snapshots we can control the number of snapshots that have
to be written to disk. Second, by storing snapshot deltas rather
than complete snapshots, we reduce both the number of IOs
and the amount of disk space required to store those snapshots.
While this strategy produces significant savings both in terms
of preprocessing time and disk usage, it will of course result
in slower response times compared to the pure CS strategy.
Further, whereas the CS strategy will read a memory state in
constant time for any location in the trace (limited by disk IO
speed and the size of the memory state), our strategy has to
read the snapshot deltas preceding x and then use the deltas
to reconstruct the memory state. However, while providing
slower response times when compared to the pure CS strategy,
our approach gives us much more control over how we balance
preprocessing costs, disk utilization and query response times.

IV. MEMORY STATE DELTA TREE

In the previous section we compared competing strategies
for computing memory states from a trace. We also demon-
strated how the BSD approach potentially offers a compromise
between calculating memory state entirely on demand or pre-
computing state for each trace instruction. In this section we
describe how the BSD strategy can be further improved by
using a special type of B-tree to reconstruct memory state for
ix based on a traversal of that tree.

In Figure 1, we demonstrate how to represent a trace
as a linear set of block snapshots. Taking this idea further,
these snapshots can be aggregated into higher order blocks
which cover even larger sections of the trace. This process
can be repeatedly applied, until a tree is built whose root
node covers the entire trace. This structure is what we term
a memory state delta tree. Figure 2 depicts a partial delta
tree for a 1M line trace. Each node contains a startline and
endline along with a snapshot delta for the section of the trace
from startline to endline. From our discussion of the BSD,
endline here effectively corresponds to the last line of a trace
block. The overall design of this data structure is to start with
the root node containing the memory state difference between
the first and last line in the trace. The next level in the tree
increases the granularity (e.g., between the 1st and 1000th
line, then the 1001st line to 2000th, and so on). Additional
levels of granularity are introduced until nodes are created that
correspond to the differences between adjacent lines. In this
example, tree fan-out (the number of child nodes per parent
node) is arbitrarily set to 1000 nodes. Tree fan-out is equivalent
to the blocksize parameter in the BSD strategy and performs
a similar function controlling the structure of the delta tree.

Fig. 2. Delta Tree

Reconstructing memory state at instruction ix using a delta
tree requires a simple traversal of the tree. Given a delta tree
representing the cached memory state of a program and asked
to reconstruct the memory state at x, we do the following
traversal. Starting at the root, if x = endline, then we have
found the node containing the last snapshot delta we require
to reconstruct the memory state at x. If x > endline, then
we know that node contains a snapshot delta that we need to
reconstruct the state at x, so we traverse to the next sibling
and continue our traversal. If x < endline, we traverse to
that node’s first child and so on until we find a node where
x = endline.

We illustrate this with a simple example. If given the delta
tree in Figure 2 and asked to reconstruct the memory state for
instruction record ix where x = 10, we would do the following
traversal. Starting at the root R, we check if x <= endline.
As 10 <= 1000000, we know that R’s snapshot is for a later
point in the trace, so we investigate its first child, in this case
A. Again we check if x <= endline and again the answer
is yes (10 <= 1000). However, when we visit A’s first child,
we see that 10 <= 1 is false. We now know that this node
contains a snapshot delta relevant to our query, so we save
that node’s delta and then traverse to the next sibling until we
reach a node where endline = 10. Having reached a node
where x = endline, we save that node’s delta, and as we now
know we have visited all nodes we need to reconstruct the
memory state at instruction record ix, we stop our traversal of
the delta tree.

As another example, for x = 2002 the sequence of nodes
visited would be as follows: R,A,B,C,C2001, C2002. Of
these nodes, only A,B,C2001, C2002 contain snapshot deltas
required to reconstruct the memory state at x = 2002.
In this example, A and B’s children are not visited as A
and B already contain the aggregated deltas of all their
child nodes. This summarization property of child nodes is
a significant feature of the delta tree, effectively caching
delta computation for sets of trace instruction records and
significantly reducing the computations required to reconstruct
a memory state. In the worst case scenario, the maximum
number of nodes needed to reconstruct a program’s memory
state is ((blocksize − 1)treedepth). And as can be seen in
the example in Figure 2, a tree depth of 3 and blocksize of
1000 can represent a 1M line trace, while a tree depth of 4
can represent a 1B line trace. The number of trace instructions

46



that can be represented by a delta tree of treedepth is given
by (blocksize)treedepth−1.

The space required to store a delta tree is based on the total
number and size of the snapshot deltas that are stored in each
level of the tree and the number of memory address-value
pairs contained in each. To determine this we first calculate
the total size of all deltas stored in a delta tree as:

deltasize = (blocksizedepth−1)depth = n(depth)

For example, if we consider a 1M line trace delta tree as
per Figure 2. The bottom most layer of this tree contains 1M
snapshot deltas, each containing a single memory reference,
corresponding to the 1M trace instructions. The layer of nodes
above this contains 1000 snapshot deltas each representing
1000 trace lines. The root layer then contains 1 snapshot
delta containing 1M references. Therefore, the total number
of memory references stored in the delta tree is 3M, 1M per
level.

If we assume that each memory reference contains an 8-
byte address and an 8-byte value, then the total disk space
required to store all the deltas for a 1M trace file is 48MB.
The space requirement for the delta tree grows as the delta
tree’s depth increases corresponding to this formula:

n(depth) = ndlogblocksize(n)e

For example a 1 billion line trace with depth = 4 and a
blocksize = 1000 would require 64GB. Similarly, a 1 trillion
line trace with a delta tree depth = 5 and a blocksize = 1000
would require 80TBs to store the worst case delta tree. While
these are obviously very large storage requirements when
considered in terms of a single workstation use case, they
become quite modest if considered in terms of a distributed
computing infrastructure.

Fig. 3. A Small Delta Tree

V. IMPLEMENTING THE DELTA TREE

We could conceivably implement a delta tree as an in-
memory data structure for smaller traces, however, as the
trace size increases, we would quickly exceed the memory
capacity of the typical analyst workstation with just one delta
tree. Further, as the fuzzing process can potentially generate

hundreds or thousands of traces for a single program, we
require a method that allows us to store and quickly query
thousands of multi-gigabyte delta trees. The scale of the
dataset requires a reconceptualizing of the trace analysis prob-
lem and the generation and querying of delta trees from a local
process on a single analyst’s workstation to a remote service
on a distributed computing infrastructure. In this section we
describe how we implemented delta trees using an off-the-
shelf relational DBMS. Our rationale for choosing a database
to implement a delta tree was influenced by the fact that the
Atlantis trace analysis tool is already able to query traces
stored in a database but also by a desire to allow multiple users
to simultaneously access the data set. While we ultimately
see delta trees as being implemented as a custom distributed
computing binary data structure, a relational database serves as
a conservative stepping stone to a truly distributed architecture.

To encode our delta tree in a database, we create a sin-
gle database record for each node in the tree, storing the
corresponding delta snapshot for a node as a blob object on
the record. Reconstructing the memory state for a particular
instruction record in the trace is then a process of querying the
database for the relevant set of records (nodes) and combining
the blobs (delta snapshots). To allow us to perform this query
efficiently, when constructing the database, we label each node
in our delta tree with a unique sequential identifier. The nodes
are labeled incrementally from left to right, bottom to top,
using a zero-based index. For example, to represent the tree
in Figure 3, in the database we would assign the leaf nodes
ids 0 through 8, nodes in level 2 would be assigned 9 to 11,
and the root node would be assigned the id 12, resulting in the
record structure in Figure 4. Conceptually we also label each
node with a level-position pair that corresponds to its level in
the tree and its index in that level of the delta tree.

Using this labeling scheme, querying the database for a
trace instruction record can then be decomposed into a set
of max treedepth sequential queries for the relevant set of
records (one query per tree level). For example, to query a
database corresponding to Figure 4 for the snapshots required
to reconstruct memory state at instruction record 5 in the trace
would require two queries for the records in the positions
{(2,0)} and {(3,3) (3,4)}, while a query for trace instruction
record 7 would require queries for {(2,0), (2,1)} and {(3,6)}.
If we know the branchfactor of the tree, which in this case
corresponds to blocksize, we then convert these level position
pairs into their respective record ids, which can be done using
the following formula:

id(level, position) =(treeheight−level)∑
i=1

branchfactor(treeheight−i)

+ position

VI. BENCHMARKING

Closely related techniques for reconstructing memory state
such as [12] and [18] are designed to reconstruct the state of
either single memory locations or subsets of memory. As our

47



technique reconstructs the entire memory state of the program
under study, these techniques are not directly comparable.
Therefore, in order to evaluate our memory reconstruction
technique we chose a benchmarking approach instead of a
direct comparison.

Fig. 4. Delta Tree Database Node Labeling

To benchmark our approach we performed an analysis of
both the preprocessing time required to construct the memory
state database and the time required to perform queries for
different locations in the trace. We performed our analyses
for a selection of trace sizes ranging from 600K to 60M
lines (50MB to 5GB trace file sizes). All benchmarking was
performed on a typical analyst workstation consisting of an
Intel core i7 quad core processor running at 2.8GHz with
8GB of RAM and a 1TB 7200RPM hard disk. Our memory
state database was implemented in a MySQL database. The
database and the client-testing application were hosted on the
same workstation to limit the impact of network latency on the
test. When deployed to production, the memory state database
could be hosted on a remote server and this network latency
would have an impact on perceived query response times.
However, because our technique allows us to page a relatively
small quantity of memory state data at any one time, the
impact on response times from network speed will be low
and is not considered relevant to this test.

Table IV presents the results of our preprocessing analysis.
From this table we see that the total time taken to process
a 60M line trace file and store it in the database is just a
little over 30 minutes. Given that this preprocessing step will
be part of a larger automated batch trace generation process,
this time is well within the requirements for our main use
case. However, this analysis also shows that for smaller trace
sizes our technique could conceivably be used by an analyst
in a more interactive scenario, processing and indexing a 6M
line trace file on demand in only a few minutes. Table IV
also shows that Indexing Time, the amount of time taken to
create the database index needed to support our record range
queries, is a significant component of the total preprocessing
time. As trace size increases, approximately 50% of the total
preprocessing time is consumed by creating the index. If we
divide the number of seconds taken to perform preprocessing
by the number of trace instruction records (trace lines), we get

TABLE IV
PREPROCESSING BENCHMARK

Trace Size (lines) 600K 1.2M 6M 12M 60M
File Size (MB) 50MB 100MB 500MB 1GB 5GB
DB Insert Time (sec) 9 19 97 208 1,077
Indexing Time (sec) 2 4 70 141 885
Total (sec) 11 23 167 349 1,962

TABLE V
MEMORY SNAPSHOT DELTA DATABASE SIZE

File Size Data Data (MB) Index (MB) Total (MB)
50MB 37 19 56
100MB 77 38 115
500MB 381 191 572
1GB 812 382 1,194
5GB 4,116 1,943 6,059

the number of seconds taken to process a single instruction
record. Figure 5 shows that for database inserts, this figure
is approximately constant over the range of trace file sizes.
However, as the number of trace lines increases, we see a
corresponding increase in the indexing time and the total
processing time. This increase in indexing time is to be
expected given the increase in the number of deltas that need
to be indexed as trace file size grows. Interestingly, a hundred-
fold increase in trace file size (from 600k to 60M trace lines)
only results in an approximate three-fold increase in the index
creation time per trace line (from 0.000005 to 0.000015). Table
V presents an analysis of the memory snapshot data and index
sizes for the different trace file sizes. As we can see, the space
required to store the memory snapshot data in a database is
not insignificant, however, it is consistent with the trace file
size and well within our use case.

Fig. 5. Processing Time Per Instruction

When preforming the query response analysis, and in an
attempt to accurately characterize the performance of our
technique, we tested memory state reconstruction performance
for a range of different size trace files and at multiple points
in those files. Table VI presents the results of our query
response analysis. These results were attained by making
memory reference queries from a Java test harness program

48



TABLE VI
QUERY RESPONSE BENCHMARK

Trace Size (lines) 600K 1.2M 6M 12M 60M
File Size (MB) 50MB 100MB 500MB 1GB 5GB
Line at 10% (ms) 4.67 7.27 20.80 14.07 27.07
Line at 20% (ms) 5.70 9.40 14.03 18.70 32.73
Line at 30% (ms) 6.77 13.00 32.23 22.90 41.60
Line at 40% (ms) 8.83 16.63 19.77 27.03 42.67
Line at 50% (ms) 11.47 18.70 23.40 27.57 62.93
Line at 60% (ms) 13.50 24.47 23.43 18.20 55.67
Line at 70% (ms) 15.10 26.50 14.53 23.40 67.07
Line at 80% (ms) 15.60 29.13 27.57 30.67 78.53
Line at 90% (ms) 17.67 10.40 20.30 34.83 90.47
Line at 100% (ms) 19.23 13.53 22.87 41.10 88.90

to our MySQL database. Across the five trace file sizes, ten
different target lines were queried against. The target lines
were at every 10% increment of the number of lines in the
trace file. To ensure that we were not hitting best case scenarios
for the database index, target lines were not directly queried;
30 samples were taken for each query, adjusting the target line
randomly by an amount equal to the target line, +/- rand(-0.5,
0.5) * 1000 lines. Timing was begun just prior to computation
of the query arguments, and ended after return of the query
results to the Java program. Timing is thus closer to real world
interaction, including same-machine transmission time. As can
been seen in Table VI, the response times for all queries in
all trace files were significantly under our target response time
of 500ms. The median response time for the 600k line trace
file was 12.4ms, while the median response time for the 60M
line trace was 59.3ms, representing a less than 5x increase in
response time for a 100x increase in trace file size.

VII. DISCUSSION AND FUTURE WORK

The goal of this research is to investigate methods for
reconstructing memory state from very large assembly traces
so as to allow analysts to interactively query the memory state
of a program in real time. Our analysis of the problem of
memory state reconstruction and the memory state delta tree
memory reconstruction approach that we present in this paper
represent novel and significant contributions to the state of the
art in assembly trace analysis techniques. We also present an
analysis of the computational and storage costs associated with
the delta tree approach demonstrating its practicality. Finally,
we present a method where we implement the memory state
delta tree using a commercial off-the-shelf DBMS allowing us
to benchmark our approach and to evaluate its performance
against our theoretical performance calculations.

The benchmarks presented in the previous section demon-
strate that our delta tree technique for reconstructing memory
state for very large traces delivers storage and query response
performance in line with our theoretical calculations and
significantly below our target average response time of 500ms.
While we do see increases in the average response time as the
size of the trace file increases, the rate of increase in response
time is significantly lower than the rate at which the trace
file itself increases. While this satisfies our current response

time goal (for extremely large files, such as a billion line plus
trace), there is a possibility that our technique as described
would not be able to maintain these response times.

In future work we intend to investigate strategies for dis-
tributing memory state queries over multiple server instances,
as well as methods for distributed indexing of trace files
which should offer dramatic reductions in indexing time for
large trace files. We also intend to investigate methods for
performing higher-level analyses over the memory state delta
tree which may be useful to analysts. For example, using
the delta tree we could quite easily calculate all the values
assigned to a memory location over the course of an execution
trace, allowing an analyst to ask questions such as “show
all lines in the trace where this address is assigned this
value” and receive responses in real time. Finally, the memory
state reconstruction approach presented in this paper makes
a powerful new tool available to security analysts perform-
ing exploitability analysis, one which dramatically reduces
the time required to get answers to questions compared to
previous tools. To assess what impact this has and to gather
requirements for other higher-level types of analyses that
might now become practical, we intend to perform qualitative
and quantitative evaluations of the impact of Atlantis and the
delta tree memory state reconstruction approach on security
analysts’ work practices by studying those analysts while they
use these tools.

VIII. RELATED WORK

There is a large body of work in dynamic analysis for
reverse engineering and performance analysis that studies
methods and tools for aiding software engineers in understand-
ing the dynamic behavior of programs and systems [6], [23].
However, many tools from these fields tend to assume the
availability of high-level source code and use extra structural
information present in the source (package names, meaningful
function, variable names, objects etc.) to assist in visualizing,
navigating and understanding a program’s trace and memory
state. For analysts performing binary exploitability analysis,
much of this higher-level information may not be available
and so these tools and the visualization and summarization
techniques employed by them are not usually readily applica-
ble.

Reverse debugging, also called replay debugging [13],
[17], is another closely related field of research and practice.
Reverse debuggers record the history of instructions executed
by a program while debugging to allow users to step forwards
and backwards in the program’s instruction history. Two
popular debuggers, Microsoft’s IntelliTrace [14] and GDB
[8], both allow users to pause, rewind and resume programs
while debugging and to interrogate the memory state of the
debugged program while stepping through it. Compared to the
trace analysis tools discussed in this paper reverse debuggers
differ principally in their intended use case. Reverse debuggers
are primarily intended to support development and debugging
as well as some reverse engineering tasks. Reverse debuggers
can be classified as supporting interactive online analyses, that

49



is, they are typically used to perform a single analysis or
answer a single question at a time. On the other hand, trace
analysis tools support offline analysis techniques, allowing
users to jump to arbitrary points in the trace, and supporting
queries and analyses defined over either the entire history
of the program’s execution, such as reconstructing the entire
programs memory state.

Typically, memory visualization tools are designed to assist
programmers in understanding how memory is being used
by their program [1], [19]. Principally, these tools are used
by developers to perform performance optimization of their
programs. However, they can also be used for developer
education and training. The Memory Trace Visualizer [3]
typifies these tools providing animated views of memory
accesses performed by a program as the user steps through
the program’s instructions. These views help the user identify
potential performance optimizations that might result from
using improved memory access patterns. These tools, like
reverse debuggers, require a traversal of intervening program
states to allow users to jump from one part of a program’s exe-
cution to another. As such these tools are principally applicable
for performing online analyses. However, the visualizations
used by these types of tools do present interesting possible
opportunities for improving how memory state is presented
and visualized in trace analysis tools like Atlantis.

More recently, with increasing focus on low-level software
security, researchers and organizations have started building
tools specifically for binary security analysis that work directly
with the program’s executable at the assembly level. For
example the BitBlaze [20] and BAP [2] platforms provide a
comprehensive set of tools for performing static and dynamic
analysis of binaries. The TEMU tool (part of BitBlaze) and
Intel’s Pin [11] use different approaches to generate execution
traces, however, both can record effects on the state of a
program’s memory and registers at each instruction. Dynamic
analysis platforms like TEMU and Pin are used to generate the
types of traces that are then analyzed by tools like Atlantis.

The popular disassembler and debugger IDA Pro provides
a ‘Trace Replayer’ [10] feature that allows users to enter
into a pseudo-debugger mode and replay traces of programs
captured while being debugged. Along with the disassembly
of the instructions executed, IDA Pro also allows the user to
observe the effects of instructions on register values based
on linear reconstruction of the register state. Similarly, the
Malfare Plugin [7], a prototype plugin developed for IDA
Pro, uses traces generated by the TEMU dynamic analysis
platform to allow users to step back through a program trace
within the IDA Pro interface. Like the work we present in this
paper, Malfare also allows users to reconstruct the memory and
register state of the program at any point the trace, however,
Malfare only reconstructs the memory state on demand in
a linear fashion when requested by the user, requiring a
recalculation of the state each time a request is made.

TaintBochs [4] is a whole system taint analysis frame-
work designed to help identify how sensitive information
like passwords and credit card information, once read into

memory, propagates through a system and how long it resides
in memory. TaintBochs allows users to reconstruct the memory
state of the system at any point in a program’s execution by
taking a full snapshot of the state of the memory of the system
when logging beings. Using this snapshot and an execution log
that records all memory references, TaintBochs is then able to
reconstruct memory state by applying instructions from the
execution log to the initial snapshot until the desired point
in the execution log is reached. The memory reconstruction
approach taken by TaintBochs could be described as an
example of the LR method discussed in section 3.

Tralfamadore [12] is a platform for performing whole
system execution trace recording and offline analysis. Like
Atlantis it aims to decouple trace generation and indexing
from the analysis stage, allowing analysts to execute multiple
queries against a cached trace interactively. To accomplish
this, Tralfamadore indexes various aspects of the trace in an
attempt to speed up query response times by reducing the
amount of trace that needs to be traversed to evaluate a query.
For example, a query for all the values of a memory address
would query an index for memory allocations, identify the
trace lines that affect that memory location and then do a
traversal of those trace lines to reconstruct the memory state of
that address over the lifetime of the execution. This approach
allows queries for slices of memory state to be computed
relatively efficiently (on the order of seconds). The memory
state indexing and reconstruction approach that we present in
this paper differs in that our index actually stores snapshots of
the entire state of the program under analysis. This approach
allows us to compute the entire state of memory of a program
at any point in a trace without having to do a traversal of
the trace. Both approaches have merits and should be seen
as complimentary; the Tralfamadore approach requires much
smaller index sizes but will result in slower response times
and will only support queries for a subset of the memory state
of the program. The approach presented in this paper requires
larger index sizes but will be able to respond to queries faster
and better support queries for the entire memory state of the
program.

In [18], the authors present STIQ (Summarized Trace
Indexing and Querying), a disk-based reverse debugging ap-
proach that allows users to capture, index and interactively
navigate large java execution traces while also allowing users
to query the state of memory locations at arbitrary points
in the trace. Like the approach we present in this paper,
STIQ uses a snapshotting technique to segment an execution
trace and allow efficient reconstruction of control flow and
program state. However, while the two approaches are out-
wardly similar, the STIQ approach differs from the approach
presented in this paper in several important ways. Firstly,
STIQ is optimized so that the indexing and tracing operations
can be done in relatively interactive time scales to allow for
developers performing debugging/development use cases. The
exploitability analysis use case our technique is design to
support does not require that trace generation and indexing
happen in interactive time scales which allows higher fidelity

50



traces to be captured and more complex indexes to be created.
Secondly, the STIQ approach to memory state reconstruction
is similar to that of the Tralfamadore approach, using indexes
to allow efficient linear reconstruction of the state of a single
memory location at a time. This approach differs significantly
from the type of memory state reconstruction discussed in this
paper where we reconstruct the entire memory state of the
program under study by combining snapshot deltas and by
performing some limited linear reconstruction. This capability
is required by the exploitability analysis use case and while
our approach obviously requires much more storage space
when compared to these other approaches, it does allow us
to reconstruct the entire memory state of the program under
study in not much more time than other approaches reconstruct
the state of a single memory location.

IX. CONCLUSION

In our previous work [22], we reported on a first-of-its-
kind field study of the work practices of software security
engineers where we identified the tools and processes used, as
well as the unique constraints and challenges those engineers
face. Based on that work we developed the Atlantis trace
analysis environment [5] to assist engineers in performing
exploitability analysis of multi-gigabyte assembly execution
traces. In this paper, we present a novel preprocessing method
for reconstructing the memory state of a program from its
execution trace. We show that our technique allows security
analysts to perform real-time queries about the memory state
of a program at any point in its execution for very large
traces. This new capability will, we hope, dramatically de-
crease the time spent by analysts in calculating memory state
and improve the trace analysis work flow. In future work
we intend to perform an empirical evaluation of how our
tools, and this technique in particular, impacts security analyst
work practices. We also intend to investigate methods for
implementing our memory state reconstruction approach using
a distributed computing infrastructure.

X. ACKNOWLEDGMENTS

We wish to thank Defence Research and Development
Canada and Cassandra Petrachenko for assisting with this re-
search. This research is funded through NSERC grant DNDPJ
380607-09 and DRDC Valcartier.

REFERENCES

[1] Edward E. Aftandilian, Sean Kelley, Connor Gramazio, Nathan Ricci,
Sara L. Su, and Samuel Z. Guyer. Heapviz: interactive heap visualization
for program understanding and debugging. In Proceedings of the 5th
international symposium on Software visualization, SOFTVIS ’10, pages
53–62, New York, NY, USA, 2010. ACM.

[2] David Brumley, Ivan Jager, Thanassis Avgerinos, and EdwardJ.
Schwartz. Bap: A binary analysis platform. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, Computer Aided Verification, volume 6806
of Lecture Notes in Computer Science, pages 463–469. Springer Berlin
Heidelberg, 2011.

[3] A. N. M. Imroz Choudhury, Kristin C. Potter, and Steven G. Parker.
Interactive visualization for memory reference traces. In Proceedings of
the 10th Joint Eurographics / IEEE - VGTC conference on Visualization,
EuroVis’08, pages 815–822, Aire-la-Ville, Switzerland, Switzerland,
2008. Eurographics Association.

[4] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel
Rosenblum. Understanding data lifetime via whole system simulation.
In Proceedings of the 13th conference on USENIX Security Symposium -
Volume 13, SSYM’04, pages 22–22, Berkeley, CA, USA, 2004. USENIX
Association.

[5] Brendan Cleary, Margaret-Anne Storey, Laura Chan, Martin Salois, and
Frederic Painchaud. Atlantis - assembly trace analysis environment.
Reverse Engineering, Working Conference on, 0:505–506, 2012.

[6] Wim De Pauw and Steve Heisig. Zinsight: a visual and analytic
environment for exploring large event traces. In Proceedings of the
5th international symposium on Software visualization, SOFTVIS ’10,
pages 143–152, New York, NY, USA, 2010. ACM.

[7] Dominic Fischer and Daniel Jordi. Malfare plugin for IDA Pro.
Available online: https://www.hex-rays.com/contests/2011/index.shtml.
Last access: 6/7/2013, June 2013.

[8] GNU. Gdb: The gnu project debugger. Available online:
http://www.gnu.org/software/gdb/. Last access: 6/7/2013, June 2013.

[9] Toms Hardware. 2012 ssd benchmarks. Available online:
http://www.tomshardware.com/charts/ssd-charts-2012/AS-SSD-
Sequential-Write,2783.html. Last access: 6/28/2013, June 2013.

[10] HexRays. IDA Pro: The trace replayer. Available online:
http://www.hexblog.com/?p=669. Last access: 6/7/2013, June 2013.

[11] Intel. Pin - a dynamic binary instrumentation tool. Available
online: http://software.intel.com/en-us/articles/pin-a-dynamic-binary-
instrumentation-tool. Last access: 6/7/2013, June 2013.

[12] Geoffrey Lefebvre, Brendan Cully, Christopher Head, Mark Spear, Norm
Hutchinson, Mike Feeley, and Andrew Warfield. Execution mining. In
Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual
Execution Environments, VEE ’12, pages 145–158, New York, NY,
USA, 2012. ACM.

[13] Bil Lewis and Mireille Ducasse. Using events to debug java programs
backwards in time. In Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and
applications, OOPSLA ’03, pages 96–97, New York, NY, USA, 2003.
ACM.

[14] Justin Marks. Debugging applications with intellitrace. MSDN magazine,
page 36, 2010.

[15] Microsoft. ”!exploitable crash analyzer - msec debugger extensions.
Available online: http://msecdbg.codeplex.com. Last access: 6/4/2012.

[16] Jakob. Nielsen. Usability engineering. Elsevier, 1994.
[17] G. Pothier and E. Tanter. Back to the future: Omniscient debugging.

Software, IEEE, 26(6):78–85, 2009.
[18] G Pothier and E Tanter. Summarized trace indexing and querying for

scalable back-in-time debugging. In ECOOP 2011 Object-Oriented
Programming, volume 6813 of Lecture Notes in Computer Science,
pages 558–582. Springer Berlin Heidelberg, 2011.

[19] George G. Robertson, Trishul Chilimbi, and Bongshin Lee. Allocray:
memory allocation visualization for unmanaged languages. In Pro-
ceedings of the 5th international symposium on Software visualization,
SOFTVIS ’10, pages 43–52, New York, NY, USA, 2010. ACM.

[20] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan
Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin
Poosankam, and Prateek Saxena. BitBlaze: A new approach to computer
security via binary analysis. In Proceedings of the 4th International
Conference on Information Systems Security. Keynote invited paper.,
Hyderabad, India, December 2008.

[21] M. Sutton, A. Greene, and P. Amin. Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley, 2007.

[22] C. Treude, F. Figueira Filho, M.-A. Storey, and M. Salois. An
exploratory study of software reverse engineering in a security context.
In 18th Working Conference on Reverse Engineering (WCRE 2011),
pages 184–188, 2011.

[23] Jonas Trümper, Johannes Bohnet, and Jürgen Döllner. Understanding
complex multithreaded software systems by using trace visualization.
In Proceedings of the 5th international symposium on Software visu-
alization, SOFTVIS ’10, pages 133–142, New York, NY, USA, 2010.
ACM.

51


