
ATLANTIS - Assembly Trace Analysis Environment

Brendan Cleary, Margaret-Anne Storey,
Laura Chan

Dept. of Computer Science, University of Victoria,
Victoria, BC, Canada

bcleary@uvic.ca, mstorey@uvic.ca, lkchan@uvic.ca

Martin Salois, Frederic Painchaud
Defense Research and Development Canada–Valcartier,

Quebec, QC, Canada
martin.salois@drdc-rddc.gc.ca,

frederic.painchaud@drdc-rddc.gc.ca

For malware authors, software is an ever fruitful source of
vulnerabilities to exploit. Exploitability assessment through
fuzzing aims to proactively identify potential vulnerabilities by
monitoring the execution of a program while attempting to
induce a crash. In order to determine if a particular program
crash is exploitable (and to create a patch), the root cause of
the crash must be identified. For particular classes of
programs this analysis must be conducted without the aid of
the original source code using execution traces generated at the
assembly layer. Currently this analysis is a highly manual,
text-driven activity with poor tool support. In this paper we
present ATLANTIS, an assembly trace analysis environment
that combines many of the features of modern IDEs with novel
trace annotation and navigation techniques to support
software security engineers performing exploitability analysis.

I. INTRODUCTION
A zero-day exploit occurs when a vulnerability in a

software program is discovered and malware exploiting the
flaw is developed and released before a patch is available.
Software security engineers attempt to protect against zero-
day exploits by proactively finding vulnerabilities in
programs before malware authors can develop code that
exploits those vulnerabilities. Exploitability analysis is the
process of determining if a given program may be
susceptible to exploitation. One way of determining if a
program may have a hidden vulnerability is to attempt to
make the program crash and then to analyze the resulting
execution trace. The main steps in this process are: fuzzing,
crash prioritization, root cause analysis and exploitability
assessment. Fuzzing is a process whereby an engineer
attempts to induce a program crash by feeding that program
random or planned program inputs until it crashes [1]. One
of the major limitations with this type of approach is that it
can find too many crashes. Crash prioritization attempts to
identify crashes that are more likely to expose potential
vulnerabilities [2]. While these steps can be somewhat
automated, assessing the actual exploitability of a crash and
performing root cause analysis requires a great deal of
human reasoning.

Software security engineers typically use a combination
of static and dynamic analysis techniques to determine the
cause of a crash and if the program is vulnerable to
exploitation. In cases where access to the source code of the
program under analysis is not available, engineers must
instead rely on analyzing assembly-level execution traces

generated during fuzzing. ATLANTIS is an integrated
assembly trace analysis environment designed to assist
engineers perform and manage this analysis. It provides
engineers with features typical of integrated development
environments as well as novel comment and tagging features
designed to facilitate recording and sharing of analysis
insights.

II. BACKGROUND
There is a large body of related work in the field of

dynamic analysis for reverse engineering and performance
analysis that studies methods and tools for aiding software
engineers in understanding execution traces. However, tools
from these fields tend to assume the availability of source
code and use extra structural information present in the
source (package names, meaningful function and variable
names, etc.) to assist engineers in visualizing, navigating and
understanding a program’s execution trace. More recently,
security researchers have started building tools specifically
for binary security analysis that work directly with the
program executable. For example the BitBlaze platform [3]
provides a set of tools for performing static and dynamic
analysis of binaries as well as tools designed specifically for
analyzing execution traces. ATLANTIS is designed to work
with and present the execution traces generated by these
types of analysis tools, providing security engineers with a
user-friendly environment to explore, perform, record and
share their analysis.

III. ATLANTIS
ATLANTIS is built on the Eclipse Rich Client Platform

(RCP) and provides the following views to support
exploitability and trace analysis; trace view, search view,
regions view, tagging view, comments view and project view
(Figure 1).

The trace view provides users with a familiar way to
view and navigate the trace or traces under analysis. Using
syntax highlighting similar to that found in programming
language editors, the trace view automatically color codes
different parts of each line of the execution trace. If the user
selects a particular memory address in the trace, the trace
view automatically highlights all other references to that
address.

The search view provides users with regular-expression-
based search functionality allowing them to define and
execute queries over the execution trace. When the user

2012 19th Working Conference on Reverse Engineering

1095-1350/91 $25.00 © 4891 IEEE

DOI 10.1109/WCRE.2012.62

505

executes a search, matching occurrences of the search string
are automatically highlighted in the trace view, while the
search results view shows all occurrences as an easily
navigable list. Users can use keyboard or navigation buttons
in the search results view to quickly navigate between
results.

The regions view allows a user to right click in the trace
view to create a new region based on the selected section of
trace. The regions view then provides a hierarchical list of all
regions defined in the trace. Regions can be used by security
engineers to collapse or hide all non-relevant parts of a trace
after successfully performing a root cause analysis or to
single out parts of the trace that are of interest.

The commenting and tagging views provide a way for
users to quickly record hypotheses as they traverse the trace.
Building on previous work on tagging in software
development [4], tags allow a user to annotate a particular
line and column (or entire sections) in the trace. There can be
multiple occurrences of a tag. Using the tags view, the user
can navigate between all occurrences of a tag. Tags can also
be grouped. Comments function in a similar way but are
unique and allow a user to express more complex ideas about
a particular location or section of trace. Unlike traditional
source code editors, where comments and tags are expressed
in-line with the source, in ATLANTIS comments and tags
are displayed in a layer floating above the trace view. This
allows the user to selectively display only particular groups
of comments and tags. For example, a user analyzing a trace
might have different comment groups for different features
they are investigating in the trace. Comment and tag layering
allows a user to quickly show or hide all comments from one
or both of those features.
Often users will not be concerned with analyzing a single
trace but rather multiple related traces. To accommodate this,
we have implemented a project view that allows users to
treat multiple traces as part of a single project. Another
feature provided by this view is the ability to import
comment and tag files from other users who might be
analyzing the same trace file. This feature enables

lightweight collaboration in an environment where, due to
the sometime dangerous and disconnected nature of the work
(e.g. where one does not want to accidentally release
malware), sharing information and collaboration across
networks can be difficult.

IV. CONCLUSION
This paper presents ATLANTIS, a tool designed to assist

software security engineers with identifying potentially
exploitable programs based on analysis of their execution
traces. In our previous work [5], we reported on a first-of-its-
kind field study of the work practices of software security
engineers where we identified the tools and processes used,
as well as the unique constraints and challenges those
engineers face. ATLANTIS directly follows from that
research and has been designed in collaboration with
software security engineers to meet their requirements.
Future work will add features such as trace comparison,
visualization and investigate integration of software
understanding techniques like software reconnaissance. We
will also perform empirical studies on how well this tool
assists engineers performing trace and exploitability analysis.

REFERENCES
[1] Sutton, M., Greene, A., Amin, P., “Fuzzing: Brute Force

Vulnerability Discovery”, Addison-Wesley, 2007.
[2] Microsoft, “!exploitable Crash Analyzer - MSEC Debugger

Extensions”, http://msecdbg.codeplex.com/, 7/11/2012
[3] Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.,

Liang, Z., Newsome, J., Poosankam, P., Saxena, P., Sekar, R., Pujari,
A., “BitBlaze: A New Approach to Computer Security via Binary
Analysis” Book Title: Information Systems Security, Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, 2008, pp. 1-15.

[4] Storey, M.A., Ryall, J., Singer, J., Myers, D., Li-Te Cheng, Muller,
M., “How Software Developers Use Tagging to Support Reminding
and Refinding”, IEEE Transactions on Software Engineering, Vol 43,
No 4, July-Aug 2009.

[5] Treude, C., Figueira Filho, F., Storey, M.A., Salois, M., "An
Exploratory Study of Software Reverse Engineering in a Security
Context", 18th Working Conference on Reverse Engineering
(WCRE), pp. 184-188, 2011.

Figure 1 - ATLANTIS User Interface

506

