
Presentations by Programmers for Programmers

Li-Te Cheng Michael Desmond, Margaret-Anne Storey

IBM Research Dept. of Computer Science, University of Victoria

li-te_cheng@us.ibm.com michael.desmond@gmail.com, mstorey@uvic.ca

Abstract

A common form of live technical presentation is that

given by programmers for a programming audience

during conferences, demonstrations, code reviews, and

tutorials. Such presentations require manual switch-

ing between general presentation software and the

integrated development environment (IDE), as well as

reconfiguration of the IDE’s UI to be readable by an

audience. In this paper, we present a novel system that

allows programmers to easily combine traditional

slideware with seamless transitions to user-specified

regions of the IDE along with special effects for live

demonstration.

1. Introduction

Live technical presentations typically involve a

combination of “slideware” materials shown in a tradi-

tional general presentation tool such as Microsoft

Powerpoint and an interactive demonstration. Slide-

ware materials might include images of model schemat-

ics and screenshots from the live demonstration. One

important form of technical presentation that we are

interested in supporting are presentations given by pro-

grammers for a programming audience. Such presenta-

tions could occur during commercial and academic

programming conferences, customer demonstrations,

internal code reviews, and tutorials given in class-

rooms. Such live presentations typically involves

slideware combined with manual switching over to the

integrated development environment (IDE) where the

programmer can walk through programming artifacts

and finally run a demo. Because the IDE is normally

meant for personal use at a desk, the presenter must

reconfigure the user interface of the IDE to be suitable

for presentation to a live audience (e.g. adjust the fonts,

remove unnecessary elements of the user interface,

etc). Alternatively, the presenter can take screenshots

and place edited pictures into the presentation’s slides

(or prepare a movie) to show only the relevant pieces

of information to the audience. Thus, the presenter

must spend significant time and effort to prepare for a

presentation. If screenshots or a movie was used, the

presentation’s demonstration will lose its “liveliness”.

To address this challenge, we present “Tours”, a

novel system specifically designed for presentations

given by programmers for programmers. The system

works within the Eclipse IDE (www.eclipse.org), and

allows presenters to easily construct presentations that

combine slideware from general presentation tools with

transitions that focus on specific user-specified regions

of the IDE. These regions of the IDE are “live”, allow-

ing the programmer to interact with them during the

presentation as if it was a normal programming session,

and yet apply special effects normally associated with

general presentation tools.

In the remainder of this paper, we discuss related

work that helped motivate our system’s features. We

then describe the system that we developed, and close

with a discussion on future directions, including feed-

back from programmers who experienced presentations

given with our system.

2. Motivation and Related Work

Our system is motivated from our previous work

with TagSEA, a system that helps programmers navi-

gate through “waypoints” – locations in source code

tagged with keyword metadata [6]. One feature was

“routes” - the ability to create an order set of waypoints

to navigate through different parts of the code, which is

similar to JTourBus [4]. Our original intention with

routes was to support personal navigation, but this was

not used at all by users in our qualitative study [7],

although NomadPIM integrated TagSEA to provide

“code tours” [2].

The JTourBus work hinted at the potential of routes

for education, guiding students around source code to

help familiarize themselves with programming. The

Gild system also considered how to simplify the

Eclipse IDE for the educator as well as the students for

first year programming courses [8]. However, we

wanted to consider other types of presentation situa-

tions – such as code reviews and programming confer-

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

ence talks. In informal discussions about these situa-

tions with professional programmers and managers in

the IBM organization, some indicated a desire that pre-

sented materials be connected with the actual pro-

gramming artifacts, not frozen screen captures. Also,

there was concern about the amount of work required

to set up for such presentations, as well as the need for

ways to stay focused on relevant artifacts being shown

in the cluttered IDE user interface. This suggested that

simply following a sequence of relevant locations in

source code was not enough for a compelling presenta-

tion.

The missing element was the “spectator experi-

ence”, as described by Reeves et al. [5]. They high-

lighted the importance of considering the “perform-

ance” aspects of public-facing systems, including gen-

eral presentation tools. In the case of general presenta-

tion tools like Powerpoint, they indicated that it would

be desirable for the presenter to “fluidly orchestrate the

show for the spectator and reduce distractions”. Once

the presenter switches over to the IDE, a programmer-

oriented presentation can be fluid, where the presenter

may navigate through programming artifacts and ma-

nipulate them. At any point, the presenter may decide

to make impromptu decisions, or may be prompted by

the audience (e.g. in response to questions during a

code review or tutorial), to deviate slightly from plan,

and maybe even write new source code on the spot.

However, without careful setup, there may be many

distractions along the way (e.g. changing the fonts,

adjusting layouts, removing unnecessary elements).

While we are interested in supporting technical

presentations for programmers, Reeves et al. consider a

broader range of domains, notably the arts. There is

also an artistic analogue for presentations for pro-

grammers – “livecoding” (e.g. [9]). Livecoding re-

quires significant skill, which is part of its appeal: to

create expressive performances from presenters who

are programming on a constantly running application.

We are focused on a presentation tool accessible to

most programmers that may not require a constantly

running application.

We summarize related work in Table 1, which is

classified across two dimensions: synchro-

nous/asynchronous versus live content/frozen content.

A synchronous system is mainly intended to be given

during a presentation with the audience co-located at

the same time, whereas an asynchronous system is in-

tended to be reviewed offline. A presentation with live

content remains consistent regardless of any change of

its demonstrated programming artifacts, and the arti-

facts can be altered during the presentation, whereas a

presentation with frozen content does not (e.g. a

screenshot of the source code). We are targeting our

work towards a synchronous / live content experience,

with some asynchronous support.

3. Tours: Enhanced Routes for TagSEA

Tours is an Eclipse IDE plugin that allows pro-

grammers to create and present technical talks about

their work to a programming audience. Creating and

presenting with the Tours system is similar to using a

general presentation tool like Microsoft Powerpoint,

including the notion of adding special effects. But in

addition to slides, a tour (a presentation created by

Tours) can include pieces of source code, which fol-

lows from the Routes concept and similar notions de-

scribed in the previous section, as well as user interface

elements in the IDE that can be manipulated by the

presenter during the talk. In this section, we describe

the Tours interface.

3.1. Designing a Tour

A tour is created like any other file in the Eclipse

IDE – via the “File/New” menu. A “.tour” file is gen-

erated, and an editor is presented to the user. Figure 1

shows an example tour file called “action.tour”. The

editor consists of several collapsible sections: “Meta-

data Information”, “Contents”, “Tour Palette”, and

 Synchronous Asynchronous

Live Content JTourBus [4]

Livecoding (e.g.

[9])

General screen-

sharing (e.g.

VNC)

Gild [8]

Code review tools

(e.g. [10])

Help Systems (e.g.

Eclipse IDE Cheat

Sheets)

Scripts/Macro

recordings

(e.g.Netbeans

IDE macro re-

corder)

JTourBus [4]

NomadPIM [2]

TagSEA Routes

[6]

Gild [8]

Guides [1]

Frozen

Content

General presen-

tation tools (e.g.

Powerpoint)

General presenta-

tion tools (e.g.

Powerpoint)

Screencam movies

(e.g. Camtasia)

Table 1: Summary of Related Work

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

“Notes”. Any changes made to the tour file can be

saved by the “File/Save” menu.

The “Metadata Information” section contains gen-

eral information about the tour – the name, description,

and author – which is presented as a form. By clicking

on the triangle beside “Metadata Information”, the

form can be collapsed.

The “Contents” section contains a sequential outline

of what will occur during the presentation, which is

represented as a single level tree. Right-clicking on

“Contents” will allow the user to configure the overall

presentation setup, such as set up a time limit for the

talk.

The elements under “Contents” can be references to

Powerpoint slides (e.g. the first element in Figure 1 is a

reference to the first 3 slides of a Powerpoint presenta-

tion), references to programming artifacts (e.g. the

fourth element in Figure 1 is a reference to the “run”

method of the Java class, SampleAction), references to

web pages, and references to IDE user interface ele-

ments (e.g. “Show Java Perspective”), and special ef-

fects (e.g. “Set Java Editor Font…”, “Fade to Black”,

etc). The user can add any of these elements and rear-

range them by drag and drop. The various references

(slides, programming artifacts, web pages) are dragged

from other parts of the Eclipse IDE user interface (e.g.

the various file browser-like interfaces such as “Pack-

age Explorer” and “Resource Navigator”; program-

ming-specific interfaces such as the “Java Outline

View”, “Class Hierarchy View”, etc). We also support

dragging in “waypoints” from the TagSEA tool, which

is similar to dragging in programming artifacts. Spe-

cial effects are dragged from the “Tour Palette” on the

right. Double-clicking on elements brings up a dialog

to configure how they will be presented (e.g. selecting

specific slides, selecting fonts, etc).

Specific blocks of code can also be added to the

Contents of a tour. The user can select a block of code

in any editor window and select a right-click menu op-

tion. This works for any text-based editor supported in

Eclipse.

The “Tour Palette” contains the set of special effects

that can be applied on the entire desktop (e.g. “Fade to

Black”) and the Eclipse IDE (e.g. “Spotlight the Work-

bench”). A textbox on the top allows the user to type

the first few characters of any special effect name to

filter down the long list of special effects. The palette

can be collapsed like a sliding drawer by clicking on

the dividing vertical sash.

Each element in the Content section can have presenta-

tion notes associated with it. Typing in the text box in

the “Notes” will associate what is typed with the cur-

rently selected element.

3.2. Presenting a Tour

Right-clicking on the .tour file in the Eclipse file

browser and selecting “Run tour”, or clicking on the

“Run Tour” button in the main Eclipse toolbar will

begin the presentation of the tour. An example of a

running Tour is shown in Figure 2.

On the very top of the desktop (Figure 2A) is the

“Runner” widget that remains on top of the desktop

regardless of whatever is being currently shown in the

tour. This widget has controls to advance to the next

element or reverse to the previous element in the pres-

entation, as well as indicators showing what element is

being shown (e.g. name of the Powerpoint file), how

far the presenter is in the presentation (how many ele-

ments have been shown versus total number of ele-

Figure 1: The Tour Editor

Figure 2: Running a Tour inside the IDE

A
B

C

D

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

ments, as well as a stopwatch indicator), and button to

abort the presentation. The widget uses a tabbed inter-

face, because Tours supports running multiple presen-

tations simultaneously (each running tour will create a

new tab). The user can collapse this widget by clicking

on the “drawer” sash on the bottom.

On the very bottom of the desktop (Figure 2D) is the

Notes widget that shows the presentation notes associ-

ated with the currently shown element. The user can

type in this widget and change the notes during the

presentation, and these changes are saved with the tour

file. Right clicking in this widget brings up options to

increase or decrease the font of the presentation notes.

Like the Runner widget, the user can collapse this wid-

get by clicking on a “drawer” sash (on the top of the

widget).

As the user steps through the tour, slides, files, and

effects will be shown. Figure 2 shows a block of code

in a Java program with a “letterbox” animation effect

(darkening regions of the desktop with an alpha blend-

ing as seen in Figure 2B). The tour was set up to

maximize the source code editor, increase the font size

of the editor and highlight the desired block of code in

yellow (Figure 2C). As a result, the tour provides a

clear view of what the presenter wants to show to the

audience, without the extraneous bits of the rest of the

Eclipse IDE. Other special effects are available for

more “focused” views of the programming environ-

ment, such as “focus”, which blacks out everything

except the a predefined targeted section of the IDE, and

“spotlight”, which lets the user click, during the live

presentation, on arbitrary windows and toolbars in the

Eclipse user interface and automatically highlight them

and fade everything else out on the screen.

4. Future Directions

The Tours system offers an opportunity for pro-

grammers to give live technical presentations that

weave together static slides with dynamic content. The

user can interact directly with software artifacts, as well

as fade out the uninteresting pieces.

We plan to deploy the tool for user evaluation and

refine the design. But already we have created and

shown a few tours to colleagues, and our informal

feedback was quite positive. This included participants

from our qualitative study of TagSEA, who were inter-

ested in using the Tours system to help in code reviews,

technical talks, as well as write documentation. One

participant remarked that Tours was like Routes, but

with a tour guide equipped with a flashlight and a

dimmer switch.

We are also planning to explore how Tours can op-

erate in remote presentations. One idea is to also sup-

port audience participation – viewers can annotate the

Notes widget, as well as bookmark interesting pieces

shown during the presentation. We are also exploring

integration with Dogear, a social bookmarking system

[3].

5. References
[1] Dagenais, B. and Ossher, H. Guidance through Active

Concerns. In Proc. Eclipse Technology Exchange Work-

shop, OOPSLA 06, ACM Press (2006).

[2] Grammel, L. NomadPIM.

http://nomadpim.sourceforge.net

[3] Millen, D.R., Feinberg, J., and Kerr, B. Social book-

marking in the enterprise. In Proc. CHI 06, ACM Press

(2006), 111-120.

[4] Oezbek, C. and Prechelt, L. JTourBus - Simplifying

Program Understanding by Documentation that Provides

Tours Through the Source Code, Intitut fuer Informatik,

Freie Universitaet Berlin, http://projects.mi.fu-

berlin.de/w/bin/view/SE/JTourBus

[5] Reeves, S., Benford, S., O’Malley, C., and Fraser, M.

Designing the spectator experience. In Proc. CHI 05,

ACM Press (2005), 741-750.

[6] Storey, M.A., Cheng, L., Rigby, P., and Bull, I. Shared

Waypoints and Social Tagging to Support Collaboration

in Softare Development. In Proc. CSCW 06, ACM Press

(2006).

[7] Storey, M-A., et. al. Turning Tags into Waypoints for

Code Navigation. Submitted to CHI 07.

[8] Storey, M-A., et. al. Improving the Usability of Eclipse

for Novice Programmers. In Proc. 2003 OOPSLA Work-

shop on Eclipse Technology Exchange Program, ACM

Press (2003).

[9] Wang, G. and Cook, P. On-the-fly Programming: Using

Code as an Expressive Musical Instrument. In Proc. New

Interfaces for Musical Expression 04, Hamamatsu, Japan,

2004.

[10] Yamashita, T. and Kou, H. Jupiter. University of Ha-

waii, http://csdl.ics.hawaii.edu/Tools/Jupiter/

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007

