
Working with ‘Monster’ Traces:

Building a Scalable, Usable Sequence Viewer
Chris Bennett

University of Victoria
cbennet@uvic.ca

Del Myers

University of Victoria

delmyers.cs@gmail.com

Margaret-Anne Storey

University of Victoria

mstorey@uvic.ca

Daniel German

University of Victoria

dmg@uvic.ca

Abstract

In this position paper, we survey and identify tool

features that provide cognitive support for reverse

engineering and program comprehension of very large

reverse engineered sequence diagrams. From these

features we synthesize user requirements for a sequence

diagram viewer, to which we add system requirements

such as memory and processing scalability. We briefly

describe a pluggable sequence viewer that meets these

requirements and discuss some open questions that we

are currently exploring.

1. Introduction

 Sequence diagrams are an aid to understanding

system behaviour in the form of scenarios (the +1 view

in Krutchen’s 4+1 architectural view model [1]). While

originally devised as a notation to capture scenarios

during analysis and design, sequence diagrams can also

aid understanding of existing software through

visualization of execution call traces. Their power lies

in their ability to represent selected behaviour at a

suitable level of abstraction. As Kruchten notes [1],

scenarios illustrate how elements from the four primary

architectural views come together, highlighting the

most important requirements of a system.

 Reverse engineered sequence diagrams based on

call traces are typically huge, sometimes running to

thousands or even hundreds of thousands of calls.

Designing tools that help the user cope with the size

and complexity of such traces is a major problem. In

addition, tools need to be able to physically handle such

traces within the memory and processing constraints of

typical computers. Approaches to address these issues

include reducing information overload through pre-

processing, support for presentation and user

interaction, and techniques to deal with partial

sequences. Automatically reducing arbitrary traces to a

manageable size is probably not realistic.

Consequently, effective user interaction that allows the

user to reduce clutter, navigate the sequence, and focus

on relevant details is critical.

 This position paper is structured as follows.

Section 2 provides a brief background to research on

reverse engineered sequence diagrams. In Section 3 we

describe presentation and interaction features of

sequence diagram viewers as derived from the research

literature. In Section 4 we identify related cognitive

support requirements and categorize features in terms

of the cognitive support they provide. In Section 5 we

address system requirements (such as scalability and

performance issues) that arise from the huge volume of

information contained in a reverse engineered sequence

trace. We end with a brief discussion of a sequence

viewer we designed (called Zest) and propose future

work.

2. Background

 Sequence diagrams used in reverse engineering can

be abstracted at various levels including statement,

object, class, architectural, and inter-thread [2].

Statement-level diagrams include intra-procedural calls

and typically make use of an extended notation that

supports conditions, loops, and branches (e.g., see [3]).

High-level sequence diagrams are typically used as an

aid to program understanding (e.g., see the work of [4]

on filtering utility methods to reduce trace complexity).

Sequence diagrams can be created through static or

dynamic analysis, the advantages of the latter being

increased precision, control over inputs, as well as

resolution of polymorphic behaviour and runtime

binding in object-oriented languages [2]. Regardless of

the creation method or abstraction level represented on

a diagram, there is a need to cope with large amounts of

reverse engineered data. This problem has been

approached primarily in two ways: through pre-

processing to reduce the size of the initial sequence, and

through tool support for user interaction.

Pre-processing techniques include reduction at the

source through data collection techniques and sampling

[2], collapsing similar sequences using pattern

matching (to identify loops, recursion, and non-

contiguous repetitions), and automatic detection of

utility functions (using fan-in/fan-out metrics) [5].

Other pre-processing techniques include removing

abstract operation calls [5], hiding constructors and

getters/setters [6], and limiting the depth of the call tree

[5,6]. While pre-processing may be necessary to reduce

the complexity of a sequence, considerable tool support

is needed to help the user explore and understand the

resulting diagram. We refer to this category of tool

support as “cognitive support” - support that allows the

user to offload some of their cognitive processing, such

as their need to memorize details or to perform tedious

calculations that the tool could do for them [8].

3. Presentation and Interaction Features

 We divide sequence diagram user interface features

into two categories 1) presentation or display facilities,

and 2) features that allow the user to interact with and

explore the diagram. We note that there may be

overlap between presentation and interaction features,

presentation often being both the result of interaction

and a necessary precursor to it (e.g., highlighting and

hiding could be considered interaction as well as

presentation features). In the next subsections, we

survey a number of reverse engineering tools that

display sequence diagrams, summarizing their common

presentation and interaction features.

3.1. Presentation

 We first consider the presentation features these

tools provide. Presentation concerns the layout of the

diagram, as well as facilities for showing multiple

views, hiding information and making the most

effective use of animation and visual attributes.

3.1.1. Layout. Perhaps the most important presentation

feature is the layout of sequence diagrams according to

some notational standard. Many research tools use their

own layout format or some variation on a standard

format (e.g., UML 2.1), perhaps adding proprietary

extensions to address a specific problem (e.g., how to

capture conditional branches). Scene [9] produces

sequence diagrams according to Rumbaugh’s OMT

notation [10]. SCED [11] uses its own UML-like

notation that provides constructs for nested sub-

scenarios and repetition. TPTP [12] also uses UML.

3.1.2. Multiple Linked Views. It is often necessary to

provide multiple views [1] as well as an overview of an

underlying model. Views can be of the same type (e.g.,

to allow comparison of different parts of a trace) or

different types (e.g., linked class diagram and sequence

diagram views). Ovation [13] adopts an approach to

viewing sub-trees, whereby a subtree may be rendered

using a number of alternative ‘charts’, including a static

class list or a class communication graph. SCED

supports sequence diagrams as well as state charts that

show transitions within a selected object.

 Linking these views so that they remain

synchronized and can be easily navigated is another

useful feature. SEAT [7] provides links between

sequence and source code views. Similarly, Scene links

between sequence views and static class diagrams or

source code views. An overview is provided by many

tools. ISVis [14] provides a two-window scenario view

consisting of an information mural overview and a

temporal message-flow diagram and Scene displays a

summary call matrix view alongside a sequence view.

3.1.3. Highlighting. Highlighting a section of a

sequence diagram is often the expected visible outcome

of a user selection or search. Tools that support manual

selection of components usually use highlighting to

indicate selection. Highlighting can go beyond single

components to show related objects or messages.

3.1.4. Hiding. Hiding selected information is

commonly used for controlling complexity in sequence

diagram tools. Hiding supports abstraction by removing

detailed sub-message calls from below a parent call.

Components can be hidden following pre-processing, a

search (filtering), or a manual selection. ISVis supports

hiding of classifiers within a subsystem, SEAT supports

manual hiding, and VET [15] hides elements following

filtering. Similarly, when grouping occurs (described in

more detail below) the grouped elements are hidden

‘under’ a summary element [2]. When components are

hidden as a result of filtering, it is important to indicate

this so that the user can redisplay these components if

required. There should also be an indication of why a

set of components was hidden (e.g., as a result of loop

detection or pruning of utility functions) [5]. The

authors in [6] propose hiding null return values or

abbreviating return values and parameter lists.

3.1.5. Visual Attributes. Colour and shape are useful

ways to code additional information about a sequence.

Ovation uses colour to differentiate objects and

bevelling to indicate that components are grouped

(hidden) under the bevelled component. TPTP uses

colour to indicate the length of time spent inside a

method execution.

3.1.6. Labels. Classifiers, messages, and return values

are usually labelled. Occlusion and legibility are

challenges when displaying larger sequences.

Techniques to cope with this include hiding labels,

replacing them with rectangles when zoomed out (e.g.,

as implemented by the VET tool), or using mouse

hovers (e.g. as in Ovation).

3.1.7. Animation. Many tools support animation. This

comes in two varieties – one that supports stepping

through a sequence diagram, message by message, and

another that uses animation to morph between diagram

states to help the user maintain context. Scene supports

single step animation between trace calls and AVID

supports animation between component groupings.

3.2. Interaction

Interaction features allow the user to communicate with

the tool while they navigate, query, and manipulate the

sequence diagram to improve their understanding.

3.2.1. Selection. Manual selection of elements is a

prerequisite for further interaction such as

manipulation, filtering, and slicing. This is supported by

most tools.

3.2.2. Navigation. Rapid, simple movement between

components (traversing the call tree) is important to

usability [5] as is the ability to move between instances

of the same type of pattern (e.g., subscenarios) in tools

that support grouping of similar patterns (e.g., SEAT).

3.2.3. Focusing. User focusing has been identified as a

problem when dealing with large traces [2]. The authors

of the Scene tool note that it can be solved by

techniques such as collapsing calls, partitioning

sequences into manageable chunks, and selecting an

object such that only related messages are shown.

Single-step animation can also be used to focus on

individual messages.

3.2.4. Zooming and Scrolling. Zooming and scrolling

are standard techniques to cope with more information

than can be legibly shown in a single window. VET,

Ovation, TPTP and Jinsight [16] support zooming and

scrolling [2].

3.2.5. Queries and Slicing. Queries identify and

optionally filter information within a sequence.

Scenariographer [17] supports both relational SQL and

set-based SMQL (Software Modelling Query

Language) queries on underlying structured data. ISVis

allows exact, inexact, and wild-card searches. VET

provides graphical support for selection of objects

based on class and name as well as selection of methods

by method type or time range. While these are more

limited than language-based queries they provide a

much simpler solution. Slicing can be performed on

either objects or methods and is a specific form of

query that selects only objects or methods related to the

selected component (a slice through the sequence flow).

3.2.6. Grouping. Grouping can be the result of slicing

or it can be done manually (e.g., AVID’s manual

clustering and Ovation’s flattening and underlaying).

This is usually indicated by some sort of icon or visual

attribute of the summary component (behind which

grouped components are hidden). Grouping of objects

will result in collapsing the sequence horizontally but

may leave all messages visible (no vertical

compaction). However, Cornelissen et al. [6] describe a

technique to collapse lifelines that would eliminate calls

between the merged objects. Grouping at the message

level will hide messages called by the summary

message (vertical compaction). Grouped items can also

be annotated with a label (and optionally comments)

describing the grouped abstraction. Riva and Rodriguez

propose a technique to collapse packaging activations

within these packages [18]. In addition to preprocessing

to detect repeating patterns, interaction support can

allow manual selection and collapsing of repeated

patterns such as loops. TPTP supports grouping of life

lines using pre-determined levels of abstraction (host,

process, thread, class, and object), grouping of method

calls, and arbitrary user-defined groupings.

3.2.7. Annotating. Annotating can be used for many

purposes: to describe why components were grouped

[4], to capture user understanding during exploration of

a sequence diagram, and to provide waypoints [19] and

messages to oneself and others when the diagram is to

be shared. Few tools provide annotation mechanisms,

but our initial experiences show this to be a useful

feature.

3.2.8 Saving views. Saving views, either to share or to

revisit, is also important when documenting a user’s

understanding of the diagram. A tool should be able to

save the entire state of the visualization so it can be

restored at a later time. Together with annotations, a

saved view can tell a story about the diagram being

visualized. In [5] the authors discuss the need to save

both the original trace and the transformations that were

applied to reduce its complexity, although saving a

record of user interactions is not discussed.

4. Cognitive support requirements for tools

that present very large sequence diagrams

Even after preprocessing, interacting with and

understanding a reverse engineered sequence diagram

can be a daunting task. Tools should provide cognitive

support for the user to effectively and efficiently

explore and interact with the sequence diagram view.

Through our experiences developing and using

customized sequence diagram views, and an extensive

review of the literature, we have synthesized six high

level cognitive support requirements that these tools

should meet: (1) The tool needs to present a diagram

that is intuitive and coherent to the end user. Since

these diagrams are typically large and screen space is

limited, the layouts need to use available visual

attributes, such as position, size and color effectively

and efficiently. (2) The tool should present multiple

perspectives of the underlying sequence. It may be

necessary to display a related static view (e.g., a class

diagram) in addition to the dynamic sequence view, or

some combination of the two. (3) The user needs to be

able to navigate the diagram and explore a focus area

or navigate to other elements on or off the screen.

During navigation, the tool should help the user

maintain context and help build and maintain a mental

model of the navigated sequence. (4) Since sequence

diagrams are typically very large, the user needs tool

assistance as they filter and drill down on the salient

features they wish to understand. Filtering can be

supported through interactive querying techniques and

presentation facilities for hiding information. (5)

Related to filtering, the user may need to abstract

details in the viewer. This will remove visual details

but maintain some visual cues on the abstractions

created during the understanding process. (6)

Documenting the user’s understanding for future use

or to share with colleagues is also an important feature.

Figure 1: A portion of a sequence diagram in the Zest Sequence

Viewer with an overview of the sequence on the right

 Hamou-Lhadj et al. have also discussed high level

user requirements, specifically requirements to support

exploration, abstraction and filtering [2].

In Table 1 we map the tool features identified in

Section 3 with these cognitive support requirements.

The main advantage of this approach is that it organizes

requirements into different groups, linking each tool

feature with a clear cognitive support goal. This

mapping may also be useful when comparing tools that

might not have the same feature set, but attempt to

solve similar problems. In particular, we have used this

table to identify and prioritize the features of the Zest

sequence diagram viewer (described below).

5. System requirements for coping with

very large sequence diagrams

 While computer systems continue to increase in

processing and memory capabilities, large diagrams of

any kind can be taxing on even very powerful

machines. This leads to the question of whether it is

even possible to render the diagrams that we would like

to see. With the right optimizations, many of the

interaction features previously described can reduce

memory load and improve performance. Techniques

such as lazy-loading of visual elements can be

combined with grouping and filtering. However, trade-

offs between performance and memory requirements

must then be made and it is difficult to find an optimal

solution.

 Large diagrams require massive amounts of

memory to render – sometimes more than is available

with, for example, a Java virtual

machine. Caching visible pages for the

display can help, but it is not obvious if

it is useful to display more information

than a modern machine can handle at

one time. The cognitive load on the

human may be the limiting factor.

6. The Zest Sequence viewer

 In the previous sections, we

synthesized a list of features and

requirements that are needed to build a

general, scalable sequence diagram

viewer that can be used across different

applications. In order to explore the

effectiveness and completeness of this

list, we developed and are now

evaluating the Zest Sequence Viewer (see Figure 1).

 The Zest Sequence Viewer was designed from the

outset to be easily pluggable into various end-user

applications. The viewer is written in Java, using the

SWT framework [20], so it can be plugged into any

SWT application. We have explored using it as a

viewer for visualizing dynamic program traces and for

visualizing debug stack states. The Zest Sequence

Viewer has been used to load upwards of a thousand

objects, but trace size is limited by the memory required

Cognitive Support

Requirements

Presentation and Interaction

Tool Features

1. Visualize diagram Layout (positioning)

 Visual attributes such as

Colour and shape

 Labels

2. Multiple

perspectives
 Multiple and linked views

(e.g., overview views,

split panes, static and

dynamic views)

3. Navigating (while

maintaining context)
 Selection

 Highlighting

 Focusing

 Multiple and linked views

 Zooming

 Scrolling

4. Filtering Querying

 Hiding information

5. Abstracting Grouping

 Annotating

6. Documenting

(e.g., for sharing)
 Annotating

 Saving views

Table 1: Mapping presentation and interaction

features to the cognitive support requirements for

sequence diagram views

to render large drawing areas. Such graphs can require

hundreds of megabytes of memory, and may be larger

than the Java virtual machine will allow.

7. Discussion

 Our preliminary exploration has demonstrated the

usefulness of the Zest Sequence Viewer. It has also

helped us understand important requirements and tool

features. However, more research must be done on the

limitations of visualizing large sequences. A number of

questions need to be resolved, e.g., what is the limiting

factor: computer memory or human cognitive load?

What kinds of visual inconsistencies can users cope

with when displaying an incomplete sequence (e.g.,

changes in layout, hiding of visual elements)? Are

humans able to understand and/or remember what

elements have been hidden from the view? If not, what

additional support can we provide for this? We are

currently designing a case study that will involve

observing professionals in their reverse engineering

tasks using the Zest Sequence Viewer. We wish to

observe their response to the viewer so that we can

evaluate its usefulness and determine human factors in

understanding sequence traces. We expect the results

from this case study to further inform the cognitive

support requirements for sequence diagram viewers.

Acknowledgments

 We are grateful to Martin Salois, David Ouellet

and Philippe Charland of Defence Research and

Development Canada (DRDC) for their input into and

review of this work. This work was funded by DRDC

contract W7701-52677/001/QCL.

References

[1] P. Kruchten, “The 4+1 view model of architecture”

IEEE Software, vol. 12, no. 6, Nov. 1995, pp. 42-50.

[2] A. Hamou-Lhadj and T. C. Lethbridge, “A survey of

trace exploration tools and techniques”, in Proceedings

of the 2004 Conf. of the Centre For Advanced Studies on

Collaborative Research, IBM Press, 2004, pp. 42-55.

[3] A. Rountev, O. Volgin, and M. Reddoch, “Static control-

flow analysis for reverse engineering of UML sequence

diagrams”, SIGSOFT Softw. Eng. Notes 31, 1, Jan. 2006,

pp. 96-102.

[4] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the

content of large traces to facilitate the understanding of

the behaviour of a software system”, in Proceedings of

the 14th IEEE international Conference on Program

Comprehension, Washington, DC, 2006, pp. 181-190.

[5] A. Hamou-Lhadj, T.C. Lethbridge, and L. Fu,

"Challenges and requirements for an effective trace

exploration tool", in Proceedings of the 12th IEEE

International Workshop on Program Comprehension,

Washington, D.C., 2004, pp. 70- 78.

[6] B. Cornelissen, A. van Deursen, L. Moonen, and A.

Zaidman, "Visualizing test-suites to aid in software

understanding", in Proceedings of the 11th European

Conference on Software Maintenance and

Reengineering, 2007, pp. 213-222.

[7] A. Hamou-Lhadj, T. C. Lethbridge, and L. Fu, “SEAT: a

usable trace analysis tool”, in Proceedings of the IEEE

13th international Workshop on Program

Comprehension, Washington, DC, 2005, pp. 157-160.

[8] A. Walenstein, “Cognitive support in software

engineering tools: a distributed cognition framework”,

Ph.D. dissertation, Simon Fraser University, B.C.,

Canada, 2002, p. 87.

[9] K. Koskimies and H. Mössenböck, “Scene: using

scenario diagrams and active text for illustrating object-

oriented programs“, Proceedings of the IEEE 18th

international Conference on Software Engineering ,

Washington, DC, 1996, pp. 366-375.

[10] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.

Lorensen, Object-Oriented Modeling and Design, 1990,

Prentice Hall.

[11] T. Systä, “Understanding the behavior of Java

programs”, Proceedings of the Seventh Working

Conference on Reverse Engineering , IEEE Computer

Society, Washington, DC, 2000, p. 214.

[12] The Eclipse Foundation, “Help—eclipse SDK: using

UML2 trace interaction views”,

http://help.eclipse.org/help33/index.jsp?topic=/org.eclips

e.tptp.platform.doc.user/tasks/tesqanac.htm [Sept. 2007]

[13] W. DePauw, D. Lorenz, J. Vlissides, and M. Wegman,

“Execution patterns in object-oriented visualization”, in

Proceedings Conference on Object-Oriented

Technologies and Systems , USENIX, 1998, p. 9.

[14] D. Jerding, J. Stasko, and T. Ball, “Visualising

interactions in program executions”, in Proceedings of

the 19th International Conference on Software

Engineering, Boston, USA, 1997, pp. 360-370.

[15] M. McGavin, T. Wright, and S. Marshall,

“Visualisations of execution traces (VET): an interactive

plugin-based visualisation tool”, in Proceedings of the

7th Austr-alasian User interface Conference–Vol. 50,

2006, pp. 153-160.

[16] W. D. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M.

Vlissides, and J. Yang, “Visualizing the execution of

Java programs”, Lecture Notes In Computer Science;

Vol. 2269, Springer-Verlag, London, 2001, pp.151-162.

[17] M. Salah, T. Denton, S. Mancoridis, A. Shokoufandeh,

and F. I. Vokolos, “Scenariographer: a tool for reverse

engineering class usage scenarios from method

invocation sequences”, 21st IEEE Int. Conference on

Software Maintenance, 2005 pp. 155-164.

[18] C. Riva and J. V. Rodriguez, “Combining static and

dynamic views for architecture reconstruction”,

Proceedings of the 6th European conference on Software

Maintenance and Reengineering, 2002, pp. 47-55.

[19] M. Storey, L. Cheng, I. Bull, and P. Rigby, “Shared

waypoints and social tagging to support collaboration in

software development”, Proceedings of the 2006 20th

Anniversary Conference on Computer Supported

Cooperative Work, 2006, pp. 195-198.

[20] S. Northover and M. Wilson, SWT: The Standard Widget

Toolkit, Volume 1 (The Eclipse Series), New York:

Addison-Wesley Professional, 2004.

