
Using the Model of Regulation to Understand Software
Development Collaboration Practices and Tool Support

Maryi Arciniegas-Mendez, Alexey Zagalsky, Margaret-Anne Storey, Allyson F. Hadwin
University of Victoria
Victoria, BC, Canada

{maryia, alexeyza, mstorey, hadwin}@uvic.ca

ABSTRACT
We developed the Model of Regulation to provide a vocab-
ulary for comparing and analyzing collaboration practices
and tools in software engineering. This paper discusses the
model’s ability to capture how individuals self-regulate their
own tasks and activities, how they regulate one another, and
how they achieve a shared understanding of project goals and
tasks. Using the model, we created an “action-oriented” in-
strument that individuals, teams, and organizations can use
to reflect on how they regulate their work and on the various
tools they use as part of regulation. We applied this instru-
ment to two industrial software projects, interviewing one or
two stakeholders from each project. The model allowed us
to identify where certain processes and communication chan-
nels worked well, while recognizing friction points, commu-
nication breakdowns, and regulation gaps. We believe this
model also shows potential for application in other domains.

Author Keywords
Collaboration; Theory; Regulation

ACM Classification Keywords
H.5.3 Group and Organization Interfaces: Computer-
Supported Collaborative Work

INTRODUCTION
Software engineering involves the shared expertise and ef-
fort of multiple stakeholders. It is a highly collaborative ac-
tivity that brings different people together to produce some-
thing better than any participant could conceive of or produce
alone [24]. While software development emphasizes the cre-
ation of software assets, we recognize that the way individu-
als and teams learn to create, capture, collaborate, and manip-
ulate domain artifacts, such as source code or specialized de-
velopment tools, is an important contribution in its own right.

The tools used in software development can significantly im-
pact the success of a project and influence how developers
learn and work together. For these reasons, practitioners and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CSCW ’17, February 25-March 01, 2017, Portland, OR, USA

© 2017 ACM. ISBN 978-1-4503-4335-0/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2998181.2998360

researchers have proposed the creation of or improvements to
novel tools such as task trackers, configuration management
systems, and lightweight messaging tools [26, 14]. Recent
studies [42] have found that developers use a rich and com-
plex constellation of communication and social tools in addi-
tion to their development tools. However, some researchers
argue that the tools developers use still do not adequately sup-
port collaboration: collaboration features have been added to
many tools as complementary components when they should
be at the core of the tool’s functionality [8].

Numerous empirical studies have tried to understand devel-
oper work practices and uncover models, theories, and frame-
works that can be used to describe how developers collabo-
rate and to help improve their tools. However, these models
do not adequately capture how development team members
“regulate” themselves, one another, and their projects. We
borrow the term “regulate” from the learning sciences to refer
to mindful processes developers engage in to determine what
tasks they need to complete and who should be involved, what
their goals are relative to those tasks, how they should meet
their goals, what domain knowledge needs to be manipulated,
and why they use a particular approach or tool. Software
engineering also involves dynamic informal learning where
participants, guided by their various interests, engage in task
coordination and the co-construction of knowledge. How this
multidimensional phenomena takes place needs to be investi-
gated.

In this work, we compose a model—the Model of
Regulation—to capture how individuals self-regulate their
tasks, knowledge and motivation, how they regulate one an-
other, and how they achieve a shared understanding of project
goals and tasks. We use this model to uncover regulation
work practices and understand why and how people use tools
to support regulation. The Model of Regulation borrows con-
structs from the learning sciences and computer supported
collaborative learning literature (CSCL) [17, 15, 30] and
adapts them for the software engineering domain.

Our goal in this paper is to describe a theoretical frame-
work of regulation for gaining actionable insights on the con-
straints and affordances of collaboration practices and tools.
First, we discuss existing models of collaboration that have
been applied to software engineering and motivate the need
for the Model of Regulation. We describe the modes of reg-
ulation in collaborative development (self-, co-, and shared
regulation), the processes of regulation (Task Understanding,

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1049

http://dx.doi.org/10.1145/2998181.2998360

Goal Setting, Enacting, Monitoring & Evaluating, Adapting),
and present a classification system for tools based on their
support for regulation (e.g., Awareness Tools and Guiding
Systems). To describe the Model of Regulation, we use il-
lustrative examples from modern collaborative software en-
gineering projects and tools.

We also introduce a regulation instrument based on the Model
of Regulation—a set of questions that an individual on a
team-based software project can answer to help reflect on how
they and their team members regulate their work and the var-
ious tools they use to support their work practices. Through
this questionnaire, the Model of Regulation can be used by
both researchers and practitioners as a lens for understand-
ing collaboration practices in a project and identifying how
well certain tools, processes, and communication channels
work, as well as for recognizing friction points, communi-
cation breakdowns, and regulation gaps.

This paper showcases the regulation instrument by applying
it to two industrial software projects: using the instrument
questions as an interview guide, we interviewed stakeholders
to learn more about their regulation practices and tools. We
show how the instrument (and indirectly, the model) can be
used to tell a “story” of the regulation processes in a project.
We also discuss how the instrument helped our interviewees
reflect on their regulation practices and tools and how they
could improve them. Our findings lend support for the the-
oretical framework as a means for diagnosing, documenting,
and guiding collaborative work practices and tool design for
researchers and practitioners.

BACKGROUND
Understanding collaboration and how it can be improved with
more effective processes and tools has been a longstanding
challenge in software engineering practice and research. In-
deed, there are many different frameworks and models of
collaboration, each of which considers different contexts and
viewpoints and plays an important role in describing collab-
oration processes. For example, MoCA [27] is a conceptual
framework for characterizing the underlying context where
collaboration takes place, however, this focus on understand-
ing the context (such as size of the group) does not bring
insights on how collaboration occurs nor how it can be im-
proved.

In the following, we discuss some of the more popular models
that have been or could be applied to the software engineering
domain with the purpose of describing and improving collab-
oration. We review models that are technology-centric, fol-
lowed by a review of models that focus on characterizing the
processes and participants involved. (Note that an extended
review of these models is provided in a thesis [1].) We then
propose how our Model of Regulation can complement the
existing models and why it is an important contribution.

Technology-centric collaboration models
In the early days of CSCW, the emphasis was on designing
tools needed to support collaboration rather than on under-
standing practices or developing theories [2]. Thus it is not
surprising that the first models were focused on classifying

systems and tool features. During this time, the term group-
ware was coined and frequently used to describe collaborative
technologies [10].

One of the most widely used taxonomies to classify
groupware—which was proposed by the CSCW research
community—is Johansen’s time-space matrix [23]. He sug-
gested that all collaboration technologies can be classified on
two dimensions: time and space. The space dimension can be
collocated or distributed, while the time dimension can repre-
sent synchronous or asynchronous communication. This ma-
trix was later considered to be incomplete and attempts were
made to extend it by adding predictability [12] and additional
space dimension states [6].

In the software engineering domain, Cook’s 2004 work [4] re-
viewed existing collaboration tools and classified them based
on their support for design, development, management, and
inspection. In 2007, Whitehead [46] introduced a tool clas-
sification with four categories: model-based collaboration
tools (for creating models and artifacts for the different phases
of the software development life cycle), process support tools
(process-centered software development), awareness tools
(informal information), and collaboration infrastructure or
collaborative development environments.

Striving to understand collaboration through tools was a good
initial step, however, collaboration is a complex activity that
cannot be improved by just upgrading technologies. It is also
difficult to productively collaborate when what collaboration
consists of is still undefined. Moreover, as software devel-
opment has become more distributed and dynamic, the com-
munity has experienced a proliferation of technologies—we
now have such a vast array of computer-based tools that it is
hard to list and even more challenging to classify them given
their hybrid and changing nature. Nowadays, understanding
how developers collaborate by considering the tools they use
is similar to trying to understand how a chef cooks by review-
ing the tools used in a modern high-end kitchen.

The inadequacy of using technology-centric approaches to
understand collaboration was noticed by researchers who
then tried to understand collaboration from a more process-
centric approach. We describe these models next.

Towards characterizing collaboration processes and par-
ticipants
As far back as 1991, Ellis et al. [10] investigated computer-
supported group interactions and suggested three key ar-
eas that require attention when studying collaborative work:
Communication, Collaboration, and Coordination. Their
analysis provided the basis for a widely used framework: the
3C Model. In this model, Communication refers to the ex-
change of knowledge within a group and allows for the co-
ordination of group tasks. Coordination refers to the aware-
ness of and agreements made regarding tasks to be completed
through team interactions, as well as any overhead (e.g., plan-
ning) that is necessary for the Collaboration effort itself [10].
Later, Gerosa et al. [11] suggested that the 3C Model be
amended to include Awareness: “an understanding of the
activities of others, which provides a context for your own

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1050

activity.” [7] Although the 3C Model has been used primar-
ily to evaluate collaboration tools in software development
(e.g., [46, 31, 39]), it represents one of the first approaches
allowing for an analysis of collaboration processes.

Van der Hoek et al. [44] explored the notion of Continuous
Coordination for leveraging the benefits from both formal
(process-based) and informal (awareness-based) approaches.
The underlying principle is that humans cannot and must not
have their method of collaboration dictated, but instead they
should be flexibly supported with formal and informal tools
that they can use as they see fit.

Collaboration has also been studied extensively in free and
open source projects. Crowston et al. [5] investigated how
to improve work team effectiveness through the application
of Continuous Coordination principles and the alignment
of task dependencies, team structures, resources, tool sup-
port, and actors. Additionally, Crowston et al. emphasized
that additional work is sometimes required to deal with co-
ordination issues. Likewise, Scacchi’s [36] study of four
OSS communities highlighted eight informal practices that
are key for developing in OSS and showed how they are dif-
ferent from traditional software development. Other studies
of FOSS projects have described development processes [37]
as well as investigated conflict resolution and strategies for
promoting collaboration in the GNU enterprise project [9]
and Netbeans.org community [22]. These findings go beyond
OSS as commercial projects and organizations have started
adopting OSS-like practices and workflows [25]. Moreover,
Kalliamvakou et al. found that industrial developers also use
GitHub pull requests as critical coordination points between
individual work and their team [25].

Olson and Olson [32] suggested that distributed teams should
be explored from three different levels: the individual, the
manager, and the organization. This distinction between
individual and team and the importance of the individual’s
role in a collaborative effort was further emphasized by Watts
Humphrey, a software engineer who developed the Personal
Software Process (PSP) to provide structure to and increase
quality in the work of an individual developer [18, 19]. PSP
eventually became the foundation for the Team Software Pro-
cess (TSP), an adaptation of the framework aimed to provide
guidance for development teams while maintaining high pro-
ductivity and quality [20]. One of the main strengths of this
methodology is its applicability: it provides structured sup-
port for development activities by recommending methods
and metrics that allow performance to be analyzed and quan-
tified. However, this methodology focuses on the improve-
ment of productivity and quality through quantitative meth-
ods, not on the analysis or understanding of collaboration.

Motivation for using a “regulation lens” to study collabo-
ration in software development
Collaboration is a complex activity that involves multiple
components. To describe and analyze collaboration, we must
study the tasks involved (what is being done), the participants
in the activity (who is interacting), the methods and strategies
used to achieve the goals (how participants collaborate), and

the knowledge that is manipulated, refined, and created by
the collaborative activity. Moreover, we need to understand
the motivations that drive the participants’ intent (why partic-
ipants do what they do).

Studying only a subset of these collaboration components is
not comprehensive enough to understand the phenomena. For
example, the Transactive Memory System (TMS) approach
can be used to explain how people who perform activities
together (e.g., family members, teammates, organizations)
create a shared store of knowledge [45]. TMS effectively
helps one make sense of how teams manipulate and create
knowledge [49], [28], however, it emphasizes the cognitive
aspects at the expense of other components of collaboration,
such as the motivation for using certain tools or practices.
Likewise, the 3C Model, the Continuous Coordination frame-
work, and the PSP and TSP approaches presented earlier em-
phasize activities, methods, and participants, but do not study
the knowledge shared and the participants’ motivations. Sim-
ilarly, other models of collaboration focus only on a subset of
components, arriving at a partial understanding of collabora-
tion.

One important aspect of collaboration that is not sufficiently
considered by other models is learning, both in terms of
the assets to be created and how tasks and collaboration ac-
tivities are conducted. Learning—or the appropriation of
knowledge—is enabled not only by formal learning where
specific goals are set (e.g., taking courses, reading books),
but also by informal learning where knowledge is acquired
through impromptu processes and ongoing participation (e.g.,
learning by experience). Continuous learning is facilitated
by the way we regulate our past experiences and interpreta-
tion of the context, which allows us to see the results of our
current actions and make strategic decisions to achieve our
goals. Software engineering projects are informal learning
environments and a particularly salient context for the emer-
gence of regulation because they often involve multiple dis-
tributed stakeholders, their evolution is fluid and flexible, and
they challenge conventional notions of a fixed or externally
defined goal or product. For this reason, regulation is essen-
tial for success when managing multiple goals, integrating
code development in cohesive ways, documenting intent and
explaining progress, and maintaining awareness of personal
and collective activity.

We propose that concepts from the learning sciences’ theory
of regulated learning offer a new and promising perspective
for collaboration in software engineering. Regulation is mul-
tifaceted as it not only refers to the tasks involved and their
participants, but it also refers to the methods and strategies
used, the knowledge manipulated, and the motivations for the
participants’ actions. We argue that it is important to un-
derstand how individuals and teams regulate—plan, monitor,
evaluate, and adapt—their activities in order to improve their
processes and tools. Next, we describe the Model of Regula-
tion and its application to the software engineering domain.

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1051

THE MODEL OF REGULATION FOR SOFTWARE ENGI-
NEERING
The Model of Regulation builds on the “theory of regulated
learning” which contains concepts for understanding how
learners strategically appropriate knowledge in their learning
activities [47]. According to this theory, regulation is a key
component of the learning process as it concerns how people
make strategic decisions in the face of change. Changes can
be either external (an activity has not provided the expected
results) or internal (new ideas on how to approach a task have
emerged), and they trigger an action that an individual must
respond to strategically. Regulatory episodes occur in phases
when people attempt to understand a task, set goals, perform
strategic actions or engage in a task, and adapt their current
and future work. These phases are described by Winnie et
al. [47, 48] as processes that support regulated learning (such
as Task Understanding and Goal Setting).

As people tend to learn together as well as contribute to com-
mon projects, the study of regulated learning was extended
to collaborative settings by Hadwin et al.’s [15] investigation
of the modes of regulation beyond self-regulation. While
looking into these social forms of regulated learning (co- and
shared), Hadwin and colleagues found that individuals lack
the skills required to regulate themselves, which prevents a
group’s collaborative potential from being fulfilled [16, 21].
This work has led to an increased focus on harnessing tech-
nology and tools to guide and support individual and group
regulated learning processes in order to help people be more
productive and meet their goals. In particular, Hadwin and
colleagues introduced a tool classification system that labels
a tool’s support for regulation [16, 21].

We introduce the Model of Regulation and describe how it
combines the modes of regulation, regulation processes and
regulation tool support, and how these components work to-
gether to activate regulation. Moreover, we propose that the
Model of Regulation helps document the collaboration life
cycle and can be used to compose a prescription for produc-
tive work. In particular, the model provides a vocabulary for
the different processes and strategic decisions required in a
collaborative activity, and includes a sequential guide that
suggests the order in which these items should occur.

The Model of Regulation presented in this paper went
through several iterations as we applied it to an earlier study
that attempted to describe the collaboration experienced by
the Neo4J open source development community1. During this
two-phase case study, we analyzed Neo4J’s three main com-
munication channels—GitHub, Stack Overflow, and Google
Groups—for traces of regulation over a four-month period.
We do not discuss the Neo4J case study in this paper because
its goal was to gain an understanding of how users regulate an
open source development project, not to evaluate the model.
Yet the case study helped expose the model’s applicability to
software engineering (and gaps) so we could adapt its pro-
cesses. This paper presents the adapted model, while details
on the case study are presented in a thesis [1].

1http://neo4j.com/open-source-project

In the following, we discuss the learning sciences constructs
that led to the Model of Regulation and the adaptations that
were made in order to cover all possible units of collaboration
that one sees in modern development (e.g., software engineer-
ing teams, projects, organizations, and communities). Later,
we discuss how these concepts have evolved from the learn-
ing sciences to the software engineering domain, showcasing
examples to illustrate how the Model of Regulation can be
applied in software engineering.

Before describing the components of the model, it is impor-
tant to note the following points about regulation:

1. Regulation is multifaceted. It is not just about behav-
iors/actions, it is also about perceptions of behavior, know-
ing, motivations, climate, etc.

2. Regulation assumes human agency. Individuals and team
members exercise their capacity to make choices about
tasks, situations, and other factors (e.g., teammates).

3. Regulation is a cyclical adaptation where a set of contin-
gencies (goals, plans, actions) shift and evolve over time
in response to people monitoring and evaluating them-
selves and others. When challenging situations arise, peo-
ple strive to adjust and optimize success, drawing from a
range of internal and external resources (e.g., people, tools,
technologies).

4. Regulation draws from our socio-historical past. We are
never a blank slate—we bring knowledge and mental mod-
els of tasks, tools, domains, and teams to new work situa-
tions, and these beliefs continue to develop over time.

5. Regulation is socially situated and involves a dynamic in-
terplay between tasks, contexts, people, and communities
that create and constrain opportunities for planning, doing,
and reflecting on what we do.

Modes of regulation
The Model of Regulation includes three modes of regulation:
self-regulation, co-regulation, and shared regulation.

Self-regulation refers to an individual’s processes with re-
spect to a task. For instance, if a developer is trying to fix a
bug, one strategic decision they face is to decide if they are
going to understand the nature of the bug by consulting the
logs or looking directly at the source code. In a collaborative
setting, self-regulation is always required but is insufficient
by itself. When collaborating, participants must make indi-
vidual efforts towards a common goal—each person defines
their own assessment of the problem at hand and the possi-
ble solutions. However, social processes are also required to
achieve consensus and unified agreement, gradually refining
each other’s perceptions and leading to a shared understand-
ing among members.

When exercised by participants, co-regulation refers to the
recognition of each other’s perspectives and the alignment
of ideas regarding the tasks to be completed. However, co-
regulation is afforded and constrained by the complete social
context, including people, tools, technologies, and practices.

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1052

http://neo4j.com/open-source-project

When collaborating, this mode of regulation indicates how in-
dividual strategic responses are modeled by the participants’
interactions within the social context. It should be noted that
the term “participant” is used here as a reference to a mem-
ber of the group regardless of their role or their location in the
personnel hierarchy. The purpose of co-regulation is to pro-
vide temporary meta-cognitive support for planning, monitor-
ing, and evaluating, where individual team members or entire
groups support or influence the regulation processes for one
or more members [33, 17]. For instance, discussions among
developers can help detect individual misunderstandings re-
garding a task or can help improve individual work plans.
Continual dialog between users and developers can prevent
the creation of false expectations about a product and keep
people updated about the latest use cases.

Finally, shared regulation involves joint control of a task
through shared (negotiated), iterative fine-tuning of cognitive,
behavioral, motivational, and emotional conditions/states as
needed. Strategic decisions within this scope are intended
to affect the group as a unit, for example, when a participant
suggests the creation of a shared calendar to facilitate meeting
scheduling and other members reply with approbatory com-
ments that contribute to further development of the initiative.

The mode of regulation active at a given time is defined by
the executed action. For instance, when the purpose is to
affect one’s processes, self-regulation is in play. If individ-
ual processes remain the target but the action is initiated by
other participants, then co-regulation is taking place. If the
desire is to realign or adapt joint processes and the action is
collectively promoted by members, shared regulation is in-
volved. The relationships between the three modes of regu-
lation (self-, co-, and shared) are bidirectional, as depicted in
Fig. 1. Good self-regulatory skills contribute to richer expe-
riences in the collaborative context, and co- and shared reg-
ulation are social processes that also provide feedback about
individual regulation [34].

Figure 1. Modes of regulation in the Model of Regulation.
We note that regulation is experienced during every aspect of
collaboration, so it is likely that participants engage in multi-
ple cycles of regulation during a collaborative activity. Regu-
lation can be applied to behavior (e.g., strategic actions, goals,
plans), motivation (e.g., user motivation), cognition (e.g., task
knowledge, self-knowledge, strategy knowledge), and emo-
tion.

Interestingly, these three strategic activities—or modes
of regulation—have already been identified to some de-
gree as “interaction levels” by software engineering re-
searchers [14]. Guzzi et al. named them as individual work,
coordination, and collaboration to represent the activities of

an individual developer, interactions between developers, and
simultaneous work on the same task, respectively. However,
the focus of their study was limited to tool support and the
creation of Guzzi’s model was a way to explain the levels of
support provided by the tool. As far as we know, no further
attempt was made to understand the role of these interactions
in collaborative software development.

Processes of regulation
As mentioned above, the Model of Regulation also includes
processes related to the strategic decisions required to per-
form a task. In particular, regulation in software engineering
consists of five interconnected processes (c.f. Fig. 2):

Figure 2. Processes of regulation in the Model of Regulation. Solid ar-
rows represent outcomes going out of the process, while dashed arrows
indicate feedback going into the process.

Task Understanding: As part of this process, individuals de-
fine their general perceptions of the task at hand and foresee
the way participants will contribute to the completion of the
task [35]. In software engineering, the Task Understanding
process defines how participants invest time to think about
the requirements, purpose, scope, social context and respon-
sibilities, and roles with respect to the task or project. To-
gether, these represent the comprehension or understanding
of a project. More importantly, Task Understanding in soft-
ware engineering is constantly influenced and shaped by dif-
ferent stakeholders and external communities. Monetary in-
terests can change the purpose of a project and user feature
requests can modify initial requirements. Also, an external
community or a company working on a similar product for
the same market represent a direct competition that can alter
the comprehension of one’s project.

Goal Setting: As part of this process, individuals establish
a work plan, including strategies to motivate and engage par-
ticipants [43]. In software engineering, a work plan usually
documents measurable goals, task standards (e.g., deadlines,
acceptable levels of product quality), and resource allocations
(technological and human resources). It also covers strategies
and tools to support collaboration, including resources to ac-
complish tasks (e.g., definition of programming languages),
acquire information (e.g., project wiki, discussions on virtual
channels, books), and facilitate collaboration (e.g., selecting
communication technologies, hosting services).

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1053

Enacting: With this process, group members follow the
guidelines defined in the work plan. For example, develop-
ers follow code standards like adding documentation within
the code and on the project wiki. Participants make proper
use of the established communication channels and use the
selected tool for version control. They also implement strate-
gies to stay motivated and engaged in the task (e.g., reward
systems). For some projects, we see that some or even all of
these project parameters are prescribed in their work plans.

Monitoring and Evaluating: As part of this process, group
members monitor performance and preliminary outcomes
and compare them against goals to detect misalignments.
Monitoring and Evaluating is an important activity in soft-
ware engineering and a key to success in many cases. Be-
cause of software development’s dynamic nature, developers
not only monitor progress, they also constantly scan their en-
vironments to ensure project requirements and scope have not
changed.

Adapting: As part of this process, group members make
purposeful changes in any of the previous processes because
their preliminary outcomes are not as expected—sources of
misalignment between the expected and actual outcomes are
identified, revised, and adapted. For example, a particular
programming language may be selected for a project because
it offers strong support for creating the kinds of artifacts that
are relevant to the project (e.g., in the case of Neo4J, pro-
gramming support for graphs was important). However, when
the implementation begins, developers experience problems
with the selected language. In this case, a strategic decision
about the choice of language is required: they may change
the choice of language or determine they need more training
with the selected language. In either case, they adapt their
goals or tasks accordingly. It should be noted that the Adapt-
ing process is often not sequential and can occur over any of
the other regulation processes as required.

Activating the regulation processes
We have described the different processes that occur in reg-
ulation, but we have not covered how one process leads to
another during collaborative work. Next, we discuss how the
regulation processes activate each other.

For any given task, Task Understanding is executed first as
individuals must first understand what they are required to do
and what the work implies, regardless of whether the task is
given or self-assigned. Note that Task Understanding is in-
fluenced by more than one entity, including customers, stake-
holders, and external communities. Just before moving into
Goal Setting, the Monitoring and Evaluating process is initi-
ated with the preliminary results from the Task Understanding
process. Next, individuals move to define a work plan in Goal
Setting and the active process of Monitoring and Evaluating
ensures the plan is aligned with the project understanding.
Then, individuals are ready to execute the plan in Enacting.
Again, the active process of Monitoring and Evaluating takes
the preliminary outcomes of this activity and compares them
to the established work plan from Goal Setting and the project
understanding results from Task Understanding. If outcomes
are not aligned in any comparison, for example, if the plan is

not aligned with the understanding of a project or the prelim-
inary outcomes from enacting a task are not aligned with the
plan, the Monitoring and Evaluating process triggers a strate-
gic decision through the Adapting process as this process pro-
vides input for any processes that require revision so an up-
date can be performed. For example, a software project’s cus-
tomers requesting new features or changing their minds about
existing features is more often a rule than an exception. These
frequent changes in project requirements lead to changes in
the project’s Task Understanding, Goal Setting, and Enacting
processes.

Now if a task is to be performed by an individual, then regula-
tion processes (e.g., Task Understanding, Goal Setting) only
occur at the individual level: self-regulation. However, if a
task represents a collaborative activity to be performed by
multiple people, then the regulatory processes start at the in-
dividual level (self-regulation), expand to include participant
interactions (co-regulation), and finally are executed within
the entire unit of collaboration (shared regulation). For ex-
ample, developers approach a collaborative software develop-
ment project by individually trying to understand the project’s
requirements and how they will contribute to the final product
(self-regulation of Task Understanding). Eventually, formal
and informal communication that occurs between develop-
ers will help them refine their individual understanding of the
project (co-regulation of Task Understanding), which will al-
low the group members to achieve a shared understanding of
the project (shared-regulation of Task Understanding). That
is, each cycle of regulatory process occurs within the three
modes of regulation. Figure 3 illustrates how the regulation
processes are activated.

Figure 3. Activation of the regulation processes in the Model of Reg-
ulation. Solid arrows represent outcomes of the process, while dashed
arrows indicate feedback going into the process.

Regulation tool support
Our Model of Regulation further articulates how computer-
based tools can be used to support self-, co-, and shared reg-
ulation. Next, we describe the different categories of regula-
tion tool support. Their contribution to self-, co-, and shared
regulation depends on the scope of the information and the

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1054

way it is presented to the user. For instance, GitHub issues
can be used for self-regulation when they are created as self-
reminders, they can be used for co-regulation when they are
created and assigned as a to-do for someone else, or issues
can promote shared regulation when created as an open re-
quest for everyone in the group.

Structuring Support refers to approaches that aim to guide
interactions by designing or scripting a situation before it
begins [38]. Structuring support consists of roles, scripts,
and prompts. Roles are functions intentionally assigned to
each member of the team (e.g., designer, developer, or tester),
while scripts are a list of steps that suggest the correct order
of activities required to complete a bigger task. For example,
the life cycle of a software development project may require
the following order of general activities: requirements gath-
ering, design, implementation, and evaluation. A script could
provide a list of activities that need to be performed with a de-
tailed set of steps for each phase. Finally, prompts are mes-
sages that can be delivered to the team to provide hints and
suggestions about correct processes for a particular activity.
For instance, when code changes are made, a prompt can re-
mind the developer to register the changes in the team’s wiki
or notify other team members. We showcase a few examples
of how structuring support could be provided in a develop-
ment team’s toolset in Fig. 4.

Figure 4. Examples of structuring support. Scripts (top left) refer to a
list of steps shown in the format of If-Then rules. Roles (bottom left)
define functions and responsibilities of a member with respect to a task.
iDoneThis emails (shown on the right) give an example of prompts (mes-
sages) that provide hints about correct processes for a particular task.

Mirroring Support refers to mechanisms that reflect indi-
vidual or collective actions by gathering and summarizing
data [38]. An example of mirroring support used for self-
regulation shows individual actions as a summary of activ-
ities, with completed tasks distinguished by color or some
other cue. When used to support social modes of regulation,
mirroring support can be achieved with a visualization such
as a pie chart or a timeline graph that shows aggregated con-
tributions. In this case, the visualization supports a shared
understanding of the group perspective and creates context
for shared regulation. Several software development environ-
ments provide views to highlight such information. For ex-
ample, GitHub’s profile page shows the frequency of individ-

ual contributions using color cues in a timeline matrix, Trello
shows advances on a plan using a progress bar, WakaTime
shows statistics of activities using graphs, and Codealike
uses visualizations to analyze time invested in development-
related activities (e.g., coding, debugging). The mirroring
features of these tools are illustrated in Fig. 5.

Figure 5. Examples of mirroring support tools that reflect individual or
collective actions by summarizing data: Trello’s progress bar (top left);
WakaTime graphs (top right) show a) total logged time, b) time dedi-
cated to different projects, c) today’s logged time, and d) distribution of
programming languages; Codealike visualizations (bottom left) show a)
distribution of activities and b) statistics and total time per activity; and
GitHub’s frequency of contributions timeline matrix (bottom right).

Awareness Tools is a similar category to mirroring sup-
port except that it allows for self-comparison or compar-
isons between group members. For instance, an awareness
tool that invites co-regulation will be restricted to compar-
isons between a small set of members, while shared regula-
tion requires simultaneous performance analysis of the whole
group. Potential examples of awareness tools include a visu-
alization presenting individual timeline graphs per contribut-
ing member (as shown in Fig. 6), or a visualization showing
the lines of code introduced by each member.

Guiding Systems are programs that behave like a virtual
presence, interpreting data and providing instructions when
issues in the collaboration process are detected. For instance,
a guiding system that sends reminders of an individual’s
pending work helps with self-regulatory processes. A guid-
ing system that shows visualizations of ideas not picked up
during previous group discussions supports shared regulation.
Guiding system support in software engineering is relatively
new and is mostly provided in the form of “bots” or “con-
versational bots” integrated into tools used by developers. In
fact, the increased adoption of bots by developer teams [41]
demonstrates the potential for bots in guiding collaboration.

Next, we show how this model can be used to gain further
understanding of today’s collaborative practices and tools.

THE MODEL OF REGULATION IN ACTION
Processes of regulation (e.g., Enacting, Adapting) describe
the set of strategic decisions that must be made while per-

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1055

Figure 6. An example of awareness support provided by GitHub. Aware-
ness support refers to mirroring mechanisms that also allow for self-
comparisons or comparisons between group members. Here, individual
contributions to a GitHub repository are plotted on a timeline per mem-
ber and presented in a two-column format.

forming a task, while the modes of regulation (self-, co-, and
shared regulation) indicate the scope of each regulatory cy-
cle. In this part of the paper, we show one way of applying
the Model of Regulation by transforming it into an action-
oriented instrument for practitioners and researchers.

Creating the instrument
To demonstrate how the theoretical framework can be used,
we developed an instrument—a questionnaire based on the
Model of Regulation—that aims to assist in investigating the
collaboration practices of individuals and groups. The goal of
this instrument is to provide a contextually sensitive diagno-
sis of the regulatory strengths in a collaboration activity and
reveal potential areas for improvement in terms of working
processes, communication channels, and tool use.

The questionnaire was created and refined over a series of it-
erations. First, we used the Model of Regulation to define
a set of questions that referred to all regulation modes and
processes. Then, two domain experts (one from the learn-
ing sciences and one from software engineering) ensured the
questionnaire fit the model and validated that the vocabulary
was clear and appropriate for software engineers. Finally, two
pilot interviews led to the rewording of one of the questions
(this version of the instrument is shown in Table 1). In bold,
we highlight the processes of regulation followed by a short
definition. In subsequent rows, we identify the mode and
scope of regulation: self-regulation refers to individual pro-
cesses; co-regulation describes how individual strategic re-
sponses are modeled by the participants’ interactions within
their social context; and shared regulation refers to the joint
processes experienced by the group. Questions shown in nor-
mal font are designed to ask about the existence of the activ-
ity, while questions in italic font inquire about the documen-
tation and tool support they create or use, respectively.

Using the instrument to reveal work practices and tools
After creating the instrument, we conducted interviews with
three developers currently engaged in collaborative software

development—these are not the same as the pilot interviews
used to create the instrument. First, we interviewed a soft-
ware engineer with approximately four years of experience
in software development (referred to as P1). At the time of
the interview, P1 had been working as a co-op developer and
UX designer for a large technology provider for a period of
seven months. All development-related tasks were of a col-
laborative nature and the work setting was completely virtual
as the team was distributed. P1 worked with a team of around
twenty people on the development of low-level components
of a management system. Next, we interviewed the CEO and
the CTO of a start-up software company (referred to as P2
and P3, respectively)—both were interviewed together. Their
company consisted of sixteen people who work co-located on
the design and implementation of referral program software.

Using the instrument as a guide, the interviews allowed us
to construct a rich profile of collaboration practices for each
case. We present the resulting profiles in the form of a table,
one for each regulation process. We summarize the findings
and observations for both cases side by side (P1’s interview
in the left column of each table, and P2 and P3’s interview in
the right column of each table). For the sake of brevity, we
describe our observations for only two of the processes: Task
Understanding and Monitoring & Evaluating (see Tables 2
and 3), while the others are included as an appendix to this
paper. Further discussion is presented in a thesis [1].

Reflection on the Task Understanding process
The Task Understanding process refers to the way partici-
pants and teams approach a task and how they achieve con-
sensus regarding what needs to be done. Through the ap-
plication of the instrument, we revealed that geographic dis-
tances [3] define how Task Understanding is experienced by
individuals and teams, as illustrated in Table 2.

Interviewees of both projects recognize the critical value of
being aware and having a shared understanding of the tasks
to be executed. However, their methods and strategies to
achieve and ensure team consensus differ due to their phys-
ical settings. P1’s team does not have many opportunities
for informal communication so they have to rely on tool sup-
port, which is reflected in the large number of tools and va-
riety of features they use. They expend extensive effort se-
lecting technologies, coordinating the sharing of knowledge,
and gaining and maintaining awareness of projects. For this
team, the questionnaire helped elicit a friction point that con-
cerns the lack of commitment from some members to make
that extra effort to communicate and share knowledge.

P2 and P3’s team is co-located and their alignment of ideas
with respect to tasks naturally occurs in their daily commu-
nication (formal or informal). In this case, tools are used to
persist information and to keep a record of the agreements
made, rather than just for supporting team interactions (as in
the case of P1).

Reflection on the Monitoring and Evaluating process
In software engineering projects, participants constantly
monitor and evaluate their progress against work plans and
expected results, as well as against changes in their project

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1056

Task Understanding Unifying perceptions about the project/task at hand. Project comprehension or understandings include: require-
ments, purpose, scope, social context, and roles and responsibilities of participants with respect to the task.

Self-regulation: Individual Do you take the time to understand the task at hand and the project within its particular context? Where is it documented?
Co-regulation: Interactions Do you discuss your project comprehension with other team members and search for the alignment of ideas? Where are

those discussions documented?
Shared regulation: Group Does the group hold discussions and reach agreement about their project understanding? Is the result of group discus-

sions documented and available to all members? Where is it?
Goal Setting Establishing a work plan, which includes goals, task standards (e.g., deadlines, product quality), resource alloca-

tion, strategies, methods, and tools to support collaboration and task performance.
Self-regulation: Individual Do you define a personal work plan? Where is it documented?
Co-regulation: Interactions Do you help other team members define or improve their personal work plans? Is the outcome of these conversations

documented? Where?
Shared regulation: Group As a group, do you define and agree on a group work plan? Does the group document the agreement about the work

plan and make it available for all members? Where?
Enacting Following the plan while providing support for motivational engagement.

Plan execution: Following the plan
Self-regulation: Individual Do you follow your personal work plan?
Co-regulation: Interactions Do you support other team members in executing their work plans?
Shared regulation: Group Does the group follow the work plan as defined? I.e., the group effectively uses collaboration strategies, methods, and

computer-based tools as selected in the work plan.
Motivational engagement: Implementing strategies for staying motivated and engaged

Self-regulation: Individual Do you implement strategies to stay motivated and engaged in the face of challenges?
Co-regulation: Interactions Do you help other team members stay motivated and engaged during plan execution?
Shared regulation: Group As a group, do you discuss and agree on strategies for staying motivated and engaged in challenging situations?
Monitoring and Evaluating Tracking and assessment of project comprehension and the work plan.

Checking progress against expected results and work plan.
Self-regulation: Individual Do you monitor and evaluate whether the outcome of your work is aligned with your project understanding and work

plan? Where are the results of your evaluation documented?
Co-regulation: Interactions Do you help other team members monitor and evaluate whether the outcome of their work is aligned with their project

understanding and work plan? Is the result of these conversations documented? Where?
Shared regulation: Group As a group, do you hold discussions to monitor and evaluate whether the outcome of the work is aligned with the group’s

project understanding and work plan? Where is the outcome of discussions documented and available for all members?
Checking the project understanding and work plan are up to date. (I.e., verify that the project requirements are still the
same, check that your responsibilities with respect to the project have not changed).

Self-regulation: Individual Do you monitor and evaluate changes in your project understanding and work plan? Where did you document the
changes detected (if any)?

Co-regulation: Interactions Do you help other team members monitor and evaluate changes in their project understanding and work plan? Where is
the result of this evaluation documented?

Shared regulation: Group Does the group hold discussions to monitor and evaluate changes in the group’s project understanding and work plan?
Where are these discussions documented and available for all members?

Adapting Refining the work plan based on partial outcomes or changes in the project understanding.
Self-regulation: Individual Do you adapt your work plan when the outcome was not as expected or when your project understanding changed?

Where did you document the changes to the original plan and the reasons behind these changes?
Co-regulation: Interactions Do you help other team members adapt their work plans when the outcome was not as expected or when their project

understanding changed? Where did you document the discussions about these adaptations?
Shared regulation: Group As a group, do you adapt your work plan when the outcome was not as expected or when the group’s project understand-

ing changed? Where did you document the modifications to the original plan and the reasons behind these changes?
Table 1. Instrument to profile collaboration: a questionnaire based on the Model of Regulation that helps elicit collaboration practices and tool support
from individuals and teams.

understanding. Checking progress is different from, for ex-
ample, checking if the project requirements have changed.
However, in the case of P1, their requirements change fre-
quently (often within a couple of hours) and plans are con-
stantly modified, meaning no plan is ever complete or stable.
As a result, P1 and their team continually monitor and eval-
uate both the expected results and the changes to task under-
standing at the same time. This can be seen in the left column
of Table 3. In this situation, the instrument helped reveal a
friction point that arose from the abrupt and quick changes
to plans that cause team members to put too much effort into
monitoring progress and in keeping up with changes.

In the case of P2 and P3, the team also experiences modifi-
cations to their work plans, customers change requirements,
and approaches they use do not always work out as expected.

However, these changes are often distributed over time which
makes it easier for the team to clearly distinguish between
monitoring and evaluating their progress against the planned
results with monitoring and evaluating changes to their task
understanding.

Interestingly, all reflections on the processes of regulation for
both projects share the following pattern. For P1, the model
(through the instrument) was a mechanism to frame their col-
laboration friction points. While for P2 and P3, the model
allowed them to describe their practices and provided a theo-
retical foundation for their existing activities.

Reflection on the Model of Regulation
The application of the model allowed us to have a rich discus-
sion about affordances and constraints of team collaboration

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1057

Distributed Team Practices and Tool Support Co-Located Team Practices and Tool Support
Task Understanding
Observation This team is geographically distributed and they find it dif-

ficult to engage with each other. Their virtual environment
presents extra challenges when trying to understand and
reflect on tasks. “There is no way you can just pop over the
cubicle and say ‘hey, what are you working on?’ ” [P1]

This team is co-located and routinely takes the time needed
to understand tasks because it is easy to discuss things in
person. However, they tend to dedicate less time to reflect
as task understanding is more routine and easy to engage
in.

Self-regulation P1 makes sure to take the time needed to understand the task
at hand and create sketches of possible solutions.
Tools: Flowcharts, personal notes.

P2 and P3 think about tasks before formulating a plan. They
create formal documentation if a task is perceived as complex.

Co-regulation The team uses specific communication tools due to their geo-
graphic distribution.
Tools: Slack, Google Hangouts.

The team discusses matters at a product start-up meeting,
which is the first meeting held with the team after a project
has been accepted.
Tools: Face-to-face discussions, Slack.

Shared regulation The team holds video conference kick-off meetings shortly af-
ter starting a task. This usually fails because teammates do not
review the tasks ahead of time.
Tools: Slack (if the discussion is not overly complex), other-
wise video calls through Google Hangouts. Formal documen-
tation is created “if the task involves management and we are
going to need a reference in the future or it is the kind of task
that I can see us forgetting.” [P1] Documentation exists on the
company internal/external wiki or on Google Docs, depending
on the target audience.

Collective understanding is achieved in group meetings. The
complexity of the project determines the length and number of
meetings—the more complex the project, the longer it takes
to reach consensus. Also, meetings can be internal or open
to stakeholders who “come in [to share] problems, what’s go-
ing on, and how customers are using the system.” [P2] Tools:
Slack is the main communication tool and the source of raw
documentation. Agreements are documented on Google Docs
where they usually have a document that captures the final
ideas and what was agreed on. “Quite often there’s sort of
a requirement sheet, but it’s not like a very strict format of re-
quirements.” [P3]

Table 2. Task Understanding, the Model of Regulation in action: work practices and tool support of practitioners in two different organizations. P1
works on a distributed team and P2 & P3 work on a co-located team.

practices and tool support, which we share through the exam-
ples presented in this section (see the Appendix and Thesis [1]
for more details). Through the instrument, the Model of Reg-
ulation was presented to the interviewees, who found its com-
mon language to be useful: “Often we find that a common
language is what’s needed to have a constructive conversa-
tion. Once you build a language you can start talking about
how to move from one step to the other and how improving
what we’re doing in one step... we have a way to verbalize it
formally.” [P2]

P3 recognized that using the instrument to reflect on their
work practices and tool choices does not add new steps to
their daily work. It instead provides a mechanism to formal-
ize and structure how they discuss their existing practices as
the concepts of the model were “something that you kinda un-
derstand at some level, like in an abstract way... when you see
[the model], you start to see how it fits with things you’ve al-
ready experienced.” Furthermore, P2 appreciated the ability
to formalize the modes of regulation (self-, co-, and shared)
because “it removes the ability to kinda escape ownership of
the work... some people are used to say[ing] ‘I don’t really
know my work plan, but my group’s got it figured it out, I’m
sure it’s fine’.”

More interestingly, P1 commented in a follow-up discussion
shortly after their interview that they had started thinking
about their collaboration issues in terms of the model. P1
used the vocabulary of the model learned from the interview
to describe the reasons for the friction and breakdowns they
experienced with their team. For example, P1 mentioned
that a coworker “was very bad at spending the least amount
of time possible to understand the task. They would auto-
matically assume they understood exactly what needed to be

done and would go off on their own and work away...usually
they had completely misunderstood the task.” P1 admits the
coworker “obviously had some sort of disconnect with task
understanding and it wound up costing a lot of time / re-
sources.”

DISCUSSION
In this section, we first discuss how the concepts we com-
bined into the Model of Regulation are interpreted and ap-
plied differently in a software engineering context compared
to a learning context. We also speculate how the model could
be applied to other knowledge worker domains. Next, we
look beyond the team to see how the model can be applied
at the organization or community level, areas where we feel
there is great potential.

As presented earlier, current collaboration models that have
been applied to software engineering emphasize only a partic-
ular subset of collaboration concerns. Our goal in composing
the Model of Regulation was to arrive at a model that con-
sidered more of the important dimensions of collaboration—
behavior, cognition, and motivation. We finally discuss how
this more comprehensive model provides the insights and vo-
cabulary needed to capture the theoretical underpinnings of
why certain tools and practices are used.

From learning to software engineering and beyond
We borrowed and adapted regulation constructs from the
learning science domain and applied them to the software en-
gineering domain. While learning is crucial for facilitating
the emergence of regulation in both domains, there are im-
portant differences in the way regulation is experienced (cf.
Winne and Hadwin [48]). In software engineering, tasks tend
to be more open-ended and evolve constantly. The complex

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1058

Distributed Team Practices and Tool Support Co-Located Team Practices and Tool Support
Monitoring & Evaluating
Against expected results and work plan
Observation The team finds it difficult to monitor and evaluate progress

as project scope is typically unknown and requirements
are constantly changing. “It’s weird because no one knows
anything, not even what the project is going to look like in a
month.” [P1]

Team awareness is facilitated by computer-based tools,
which play a major role in collaboration. “Anyone in the
company can go and see in the [Waffle.io] board where the
project is, and that actually helps to reduce a lot of communi-
cation overhead.” [P2]

Self-regulation P1 monitors critical channels on Slack where developers, prod-
uct owners, and people that make feature requests talk to “sum-
marize all that into some sort of idea of what’s going on with
the application”. To make this monitoring task more efficient,
P1 configured Slack with a list of keywords so that they are
notified when any of those words are mentioned in a conversa-
tion.

For P2 and P3, individual regulation is accomplished by mon-
itoring the progress of others, which is perceived as a natural
task that takes place in every open conversation and meeting:
“It’s an implicit and unspoken process.” [P2]

Co-regulation With keywords configured in Slack, P1 has created “a news-
feed for every time any of those things get mentioned”, which
allows them to easily get context around each notification and
jump in to provide direction if something wrong or incomplete
is detected in team conversations.

The size and makeup of the team facilitates the monitoring of
tasks as “people are just interested in each other... we are still
a small team, most people know roughly the plan for anyone in
the project.” [P2]

Shared regulation The size of a project can make it challenging to monitor, so P1
and the other product designers on the team strategically off-
load certain things between each other. “When talking to the
three of us, you can probably get a good idea of what the entire
picture of the project is.” [P1] In case changes are required, the
approach is top down: “Usually the big bosses decide what
they want changed, then the top managers talk about it. Then
they call the design team in and maybe two developers to ask
‘what do you guys think?’ Once we have an agreement, a new
plan is created.” [P1]

P2 and P3 have a 3-dot system to monitor their projects. Once
a month “we report if [the project] is red, yellow, or green—
meaning ‘way off track’, ‘on track’, or ‘it’s done’.” [P2] At a
lower level, the team also uses Waffle.io to visualize the status
of their GitHub issues.

Of changes in project understanding or work plan
Observation Due to the frequency of changes to requirements, the

team’s monitoring and evaluation of planned progress and
changes in task understanding occur at the same time.

Open communication between teammates and stakehold-
ers allows participants to stay in the loop as the under-
standing of the project evolves.

Self-regulation Same as the self-regulation mode in ‘Monitoring and Evaluat-
ing - Against expected results and work plan’.

P2 and P3 continuously monitor changes in their task under-
standing. “Something comes up, and you react, and you keep
reacting.” [P2]

Co-regulation Same as the co-regulation mode in ‘Monitoring and Evaluating
- Against expected results and work plan’.

The team monitors and evaluates in an organic way as “the
conversations between two counterparts kind of naturally
leads to checking in with the understanding and plans.” [P3] In
addition, “we may review a project and then through that pro-
cess discover ‘oh you just said something that sounds different
to me’, and we would follow up on that.” [P2]

Shared regulation Same as the shared-regulation mode in ‘Monitoring and Eval-
uating - Against expected results and work plan’.

Any new agreements are shared with the team and docu-
mented.

Table 3. Monitoring & Evaluating, the Model of Regulation in action: work practices and tool support of practitioners in two different organizations.
P1 works on a distributed team and P2 & P3 work on a co-located team. See Appendix for a summary of all processes.

nature of the tasks and knowledge manipulated as well as
the diversity of stakeholders involved and their motivations to
participate in projects vary widely. For instance, in the learn-
ing science domain, regulation has been studied only between
students, while in software engineering, we recognize a large
diversity of stakeholders that define the way regulation is ex-
perienced. Also, to study regulation processes (e.g., Task Un-
derstanding, Enacting) in software engineering contexts, the
typical characteristics of the domain artifacts manipulated in
each process needed to be identified. While the Task Un-
derstanding process in formal learning environments refers to
the comprehension of the tasks assigned, in software engi-
neering, this process refers to the understanding of project re-
quirements, project purpose, scope, social context, etc. These
differences appear to be rather subtle—or may appear to be
variations along a common continuum—but they forced us to
change the definitions of the modes and processes of regula-
tion and to consider many different types of tools that support

regulation in the software engineering domain (such as con-
figuration management systems).

While the processes of regulation describe the steps one goes
through when facing a challenge, the modes (self-, co-, and
shared) allow us to reveal the different ways regulation is ex-
perienced and expose how these relate to and shape group
interactions. In the co-located group studied, the modes of
regulation allowed us to describe how, building on individ-
ual regulatory activities (self-regulation), team members re-
fined their approaches through formal and informal interac-
tions (co-regulation) to finally arrive at a form of group reg-
ulation (shared regulation). While with the distributed team,
the modes of regulation allowed us to discover how the lack
of individual regulatory actions on behalf of some members
affected the group’s overall performance.

These constructs—modes, processes, tool support—have
been discussed in the learning science literature, but this pa-

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1059

per combines them into a single model, adapts them to fit the
software engineering domain, and explicitly discusses how
the different processes activate other processes. We’d like
to stress that the regulation processes and their connections
to each other are complex. It is important to understand not
only the pieces involved but also how they work together—
this is achieved by the modes of regulation. We also used
the model to derive an “action-oriented” instrument for elic-
iting how regulation occurs in software development teams.
Our colleagues in the learning sciences have indicated to us
that a similar instrument could prove to be very useful in the
learning domain. Thus, composing the model and adapting it
to software engineering has brought potential benefits to the
learning domain as well.

Moving forward, we believe the model could be adapted for
other knowledge work domains. Indeed, software developers
are often described as the “prototype of the future knowledge
worker”2 as they tend to innovate and adopt tools before other
knowledge workers do (e.g., email, Wikipedia, and GitHub).
We suggest that adapting and applying the model and instru-
ment to other domains would bring other important insights.

Beyond the team: Understanding collaboration in organi-
zations and communities
We propose that the Model of Regulation can be used to de-
scribe collaboration practices across any unit of collabora-
tion, from small teams, to project-wide teams, to commu-
nities of thousands of participants (e.g., the Ruby on Rails
project has more than 2,700 contributors3). In this paper, we
have discussed how the model can be applied to small indus-
trial teams. However, as part of our larger research project,
we have applied the Model of Regulation to the Neo4J open
source development community and explored how stakehold-
ers from a wider community can “regulate” development ac-
tivities. For example, users of the Neo4J graphing technology
(through GitHub and their Google Groups channels) give in-
put to and request features from core Neo4J developers [1].

Through our industrial case studies, the vocabulary provided
by the model allowed us and the practitioners we interviewed
to have rich discussions about collaboration as we could make
reference to very specific processes related to an activity (e.g.,
Task Understanding, Enacting) at different levels (self-, co-,
shared). These discussions allowed us to reflect on collabora-
tion beyond the individual and team levels and understand
where practices and tools could be improved. One of our
interviewees mentioned they found many benefits from us-
ing this vocabulary and that they continued to reflect on their
practices and tool use some time after their interview with us.

From a theory to actionable principles, work practices,
and tools
The model we present in this paper is based on the concept of
regulation, which considers collaboration at a metacognitive
level and explores behaviour, cognition, and motivation. Our

2http://allankelly.blogspot.ca/2014/04/
theprototype-of-future-knowledge.html
3https://github.com/rails/rails

Model of Regulation can be used as a descriptive model be-
cause it allows one to describe how regulation occurs within
a collaboration unit and how tools support regulation. How-
ever, we believe that the model also shows promise as a pre-
scriptive model that can be used to guide processes and suit-
able tool support for practitioners. The modes of regulation il-
lustrate how collaboration requires individual efforts, interac-
tions with other participants, and an awareness of the group’s
state (an important factor as discussed by Gutwin et al. [13]).

The processes of regulation provide a high-level guideline for
tasks and suggest how tools can help support regulation. We
propose that the model’s tool support component helps con-
nect the theory with tool design principles, which is some-
thing we wish to explore in future work. Furthermore, we
believe the instrument drawn from the model can be used
to guide tools evaluations and comparisons of collaborative
practices within or across a single or multiple units of collab-
oration.

While the theory is an important product of our research, we
are particularly excited about the action-oriented principles
and insights it provides regarding the practices and tools re-
quired to support regulation in software development. For
example, regulation tool support—an important part of the
model—can be used to provide explanations as to why a par-
ticular technological ecosystem is formed around a task, al-
lowing us to understand the role of specific tools, something
we have struggled with (such as why developers use Slack in
addition to many other communication channels [29]).

Using our model, tools and channels can also be analyzed and
classified based on the processes of regulation they support.
For instance, Trello is effective for Goal Setting processes
through mirroring and awareness mechanisms, while Slack
supports conversations that lead to the alignment of ideas,
thus providing support for Task Understanding.

LIMITATIONS
We recognize that our Model of Regulation may need fur-
ther refinements when applied to future software engineering
projects and development contexts. In particular, the model
does not include considerations for the different stakehold-
ers that may be involved (such as testers) and it may not in-
clude concepts that encompass the diverse nature of interac-
tions that take place in a project nor consider other factors
(such as time zones, cultural issues, and language in global
software development [3]). However, the iterative refinement
of the model presented in this paper was effective at helping
us understand the benefits of the many different tools devel-
opers use (as discussed earlier in the paper) and the regulation
activities of users in an open source community. Although we
lack space to discuss the open source community case study
we performed, we refer the interested reader to a related the-
sis for more details and insights about how the model was
adapted and applied [1].

The usefulness of the model was validated in part by applying
the derived instrument through the case studies we discussed
in this paper. The instrument was able to bring insights on
how regulation activities occurred across these two contrast-

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1060

http://allankelly.blogspot.ca/2014/04/theprototype-of-future-knowledge.html
http://allankelly.blogspot.ca/2014/04/theprototype-of-future-knowledge.html
https://github.com/rails/rails

ing projects (one co-located setting and one distributed set-
ting). However, we note that two case studies means we can-
not generalize the application of the model. However, we
strived to offset this limitation by checking the completeness
of the instrument with two domain experts as we developed
it, as well as piloting the instrument with two other develop-
ers before conducting our two case studies. As we conduct
future interviews, we expect the instrument to go through at
least some minor refinements in the questions it asks, which
may in turn lead to changes in the model itself.

Through our research to date, we recognize the model does
not have mechanisms to conduct a quantitative analysis of
productivity, but perhaps integrating methods from the PSP
and TSP approaches [19, 20] can help overcome this limita-
tion. Using the Model of Regulation may help reveal vari-
ables of interest (e.g., how frequently tools are used to regu-
late activities) that could be measured quantitatively.

Finally, this paper has shown how the instrument (and in turn,
the model) can be used as a descriptive theory. Our future
work will aim to investigate whether the model can be used
to provide prescriptive recommendations and to then validate
those in other studies.

CONCLUSIONS
Collaboration has become an integral aspect of software en-
gineering. The widespread availability and adoption of social
channels has led to a participatory culture where developers
frequently collaborate with and learn from one another [42].
While collaboration in software engineering has been studied
extensively, gaining an understanding of collaboration in to-
day’s participatory development culture is challenging as cur-
rent models and frameworks were developed before the com-
munity embraced socially enabled channels [40]. Moreover,
many of today’s development contexts occur beyond the con-
fines of a team or organization, and how the individual, team,
and community regulate development and learning activities
is critical to a project’s success.

This paper described how we adopted and adapted concepts
from the theory of regulated learning from the learning sci-
ences to form a Model of Regulation. We demonstrated how
the model, through a questionnaire instrument we developed,
can be used to gain insights into the work practices, tool
needs, and friction points of two contrasting development
teams. In comparison to other collaboration models applied
in a software development context, our model is potentially
highly prescriptive as well as descriptive. We discussed how
the model could lead to actionable outcomes for a software
development team or project.

Developers now use a complex constellation of tools to sup-
port their work [42]—not just development tools, but also
a wide array of productivity, communication, and social
tools—and understanding and articulating why these tools are
used is challenging. We propose that the Model of Regu-
lation provides a theoretical basis for evaluating and com-
paring the affordances and friction points of the tools used
and can bring insights into collaborative work practices. Un-
derstanding how individuals and teams of developers can be

more productive is something companies and researchers care
deeply about. We anticipate that the Model of Regulation can
be used as a canvas for understanding productivity gains and
challenges.

Finally, we believe this model can be applied to knowledge
work domains outside of the learning sciences and software
engineering. We believe that the Model of Regulation plays a
complementary role to other models and frameworks offered
by the CSCW community and will bring insights into how
knowledge workers regulate their work and learning activities
and how they collaborate with one another.

ACKNOWLEDGMENTS
The authors would like to thank Cassandra Petrachenko for
her editing support and insightful comments that contributed
to this work, as well as the developers that provided feedback
on our instrument and participated in our interviews. We’re
especially thankful to Christoph Treude for his valuable ad-
vice and insightful feedback. Also, we thank the CSCW re-
viewers whose constructive comments greatly helped to im-
prove this paper.

REFERENCES
1. Maryi Arciniegas-Mendez. 2016. Regulation in

Software Engineering. M.Sc. thesis (2016).

2. Liam J Bannon and Kjeld Schmidt. 1989. CSCW-four
characters in search of a context. DAIMI Report Series
18, 289 (1989).

3. Elizabeth Bjarnason, Kari Smolander, Emelie Engström,
and Per Runeson. 2016. A Theory of Distances in
Software Engineering. Inf. Softw. Technol. 70, C (Feb.
2016), 204–219. DOI:
http://dx.doi.org/10.1016/j.infsof.2015.05.004

4. Carl Cook. 2004. Collaborative software engineering:
An annotated bibliography. Technical Report.
Department of Computer Science and Software
Engineering, University of Canterbury.

5. Kevin Crowston, Hala Annabi, James Howison, and
Chengetai Masango. 2004. Effective Work Practices for
Software Engineering: Free/Libre Open Source
Software Development. In Proceedings of the 2004
ACM Workshop on Interdisciplinary Software
Engineering Research (WISER ’04). 18–26.

6. Alan Dix, Janet E. Finlay, Gregory D. Abowd, and
Russell Beale. 2003. Human-Computer Interaction (3rd
Edition). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

7. Paul Dourish and Victoria Bellotti. 1992. Awareness and
coordination in shared workspaces. In Proceedings of
the 1992 ACM conference on Computer-supported
cooperative work. ACM, 107–114.

8. Kevin Dullemond, Ben van Gameren, and Rini van
Solingen. 2012. Collaboration should become a
first-class citizen in support environments for software
engineers. In Collaborative Computing: Networking,

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1061

http://dx.doi.org/10.1016/j.infsof.2015.05.004

Applications and Worksharing (CollaborateCom), 2012
8th International Conference on. 398–405.

9. Margaret S. Elliott and Walt Scacchi. 2003. Free
Software Developers As an Occupational Community:
Resolving Conflicts and Fostering Collaboration. In
Proceedings of the 2003 International ACM SIGGROUP
Conference on Supporting Group Work (GROUP ’03).
ACM, New York, NY, USA, 21–30. DOI:
http://dx.doi.org/10.1145/958160.958164

10. Clarence A Ellis, Simon J Gibbs, and Gail Rein. 1991.
Groupware: some issues and experiences. Commun.
ACM 34, 1 (1991), 39–58.

11. Marco Aurélio Gerosa. 2003. Analysis and design of
awareness elements in collaborative digital
environments: A case study in the AulaNet learning
environment. Journal of Interactive Learning Research
14, 3 (2003), 315–332.

12. Jonathan Grudin. 1994. Computer-supported cooperative
work: History and focus. Computer 5 (1994), 19–26.

13. Carl Gutwin, Reagan Penner, and Kevin Schneider.
2004. Group awareness in distributed software
development. In Proceedings of the 2004 ACM
conference on Computer supported cooperative work.
ACM, 72–81.

14. Anja Guzzi, Alberto Bacchelli, Yann Riche, and Arie
van Deursen. 2015. Supporting Developers’
Coordination in the IDE. In Proceedings of the 18th
ACM Conference on Computer Supported Cooperative
Work & Social Computing. ACM, 518–532.

15. Allyson Fiona Hadwin, Sanna Järvelä, and Mariel
Miller. 2011. Self-regulated, co-regulated, and socially
shared regulation of learning. Handbook of
self-regulation of learning and performance 30 (2011),
65–84.

16. Allyson Fiona Hadwin, Mariel Miller, and Elizabeth
Webster. 2013. Promoting and researching adaptive
regulation in CSCL: Scripting, visualization, and
awareness tools. Conf. of the European Association for
Research on Learning and Instruction (September
2013).

17. Allyson Fiona Hadwin, Mika Oshige, Carmen LZ Gress,
and Philip H Winne. 2010. Innovative ways for using
gStudy to orchestrate and research social aspects of
self-regulated learning. Computers in Human Behavior
26, 5 (2010), 794–805.

18. Watts S Humphrey. 1995. A discipline for software
engineering. Addison-Wesley Longman Publishing Co.,
Inc.

19. Watts S Humphrey. 1996. Introduction to the personal
software process (sm). Addison-Wesley Professional.

20. Watts S Humphrey. 2000. Team Software Process (TSP).
Wiley Online Library.

21. Sanna Järvelä and Allyson Fiona Hadwin. 2013. New
Frontiers: Regulating Learning in CSCL. Educational
Psychologist 48, 1 (2013), 25–39.

22. Chris Jensen and Walt Scacchi. 2005. Collaboration,
leadership, control, and conflict negotiation and the
netbeans. org open source software development
community. In System Sciences, 2005. HICSS’05.
Proceedings of the 38th Annual Hawaii International
Conference on. IEEE, 196b–196b.

23. Robert Johansen. 1988. Groupware: Computer support
for business teams. The Free Press.

24. David W Johnson and Roger T Johnson. 1989.
Cooperation and competition: Theory and research.
Interaction Book Company.

25. Eirini Kalliamvakou, Daniela Damian, Kelly Blincoe,
Leif Singer, and Daniel M German. 2015. Open
source-style collaborative development practices in
commercial projects using github. In Proceedings of the
37th International Conference on Software
Engineering-Volume 1. IEEE Press, 574–585.

26. Filippo Lanubile, Christof Ebert, Rafael Prikladnicki,
and Aurora Vizcaino. 2010. Collaboration Tools for
Global Software Engineering. Software, IEEE 27, 2
(March 2010), 52–55.

27. Charlotte P Lee and Drew Paine. 2015. From The
Matrix to a Model of Coordinated Action (MoCA): A
Conceptual Framework of and for CSCW. In
Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing.
ACM, 179–194.

28. Kyle Lewis. 2004. Knowledge and performance in
knowledge-worker teams: A longitudinal study of
transactive memory systems. Management science 50,
11 (2004), 1519–1533.

29. Bin Lin, Alexey Zagalsky, Margaret-Anne Storey, and
Alexander Serebrenik. 2016. Why Developers Are
Slacking Off: Understanding How Software Teams Use
Slack. In Proceedings of the 19th ACM Conference on
Computer Supported Cooperative Work and Social
Computing Companion. ACM, 333–336.

30. Mariel Miller and Allyson Fiona Hadwin. 2015.
Scripting and awareness tools for regulating
collaborative learning: Changing the landscape of
support in CSCL. Computers in Human Behavior 52
(2015), 573–588.

31. Felipe F Oliveira, Julio CP Antunes, and Renata SS
Guizzardi. 2007. Towards a collaboration ontology. In
Proc. of the Snd Brazilian Workshop on Ontologies and
Metamodels for Software and Data Engineering.

32. Judith S Olson and Gary M Olson. 2014. How to make
distance work work. interactions 21, 2 (2014), 28–35.

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1062

http://dx.doi.org/10.1145/958160.958164

33. Nancy Perry. 2013. Understanding classroom processes
that support children’s self-regulation of learning. In D.
Whitebread, N. Mercer, C. Howe, & A. Tolmie (Series
Eds.), British Journal of Educational Psychology
Monograph Series II: Part 10. Self-regulation and
dialogue in primary classrooms (pp. 45-68). Leicester,
UK: British Psychological Society. (2013).

34. Nancy E Perry and Ahmed Rahim. 2011. Studying
self-regulated learning in classrooms. Handbook of
self-regulation of learning and performance (2011),
122–136.

35. Toni Kempler Rogat and Lisa Linnenbrink-Garcia.
2011. Socially shared regulation in collaborative groups:
An analysis of the interplay between quality of social
regulation and group processes. Cognition and
Instruction 29, 4 (2011), 375–415.

36. Walt Scacchi. 2002. Understanding the requirements for
developing open source software systems. In Software,
IEE Proceedings-, Vol. 149. IET, 24–39.

37. Walt Scacchi, Joseph Feller, Brian Fitzgerald, Scott
Hissam, and Karim Lakhani. 2006. Understanding
free/open source software development processes.
Software Process: Improvement and Practice 11, 2
(2006), 95–105.

38. Amy Soller, Alejandra Martínez, Patrick Jermann, and
Martin Muehlenbrock. 2005. From Mirroring to
Guiding: A Review of State of the Art Technology for
Supporting Collaborative Learning. Int. J. Artif. Intell.
Ed. 15, 4 (Dec. 2005), 261–290. http:
//dl.acm.org/citation.cfm?id=1434935.1434937

39. Igor Steinmacher, Ana Paula Chaves, and
Marco Aurélio Gerosa. 2013. Awareness support in
distributed software development: A systematic review
and mapping of the literature. Computer Supported
Cooperative Work (CSCW) 22, 2-3 (2013), 113–158.

40. Margaret-Anne Storey, Leif Singer, Brendan Cleary,
Fernando Figueira Filho, and Alexey Zagalsky. 2014.
The (R) Evolution of social media in software
engineering. In Proceedings of the on Future of Software
Engineering. ACM, 100–116.

41. Margaret-Anne Storey and Alexey Zagalsky. 2016.
Disrupting Developer Productivity One Bot at a Time. In

To appear at the 2016 International Symposium on the
Foundations of Software Engineering. ACM.

42. Margaret-Anne Storey, Alexey Zagalsky, Fernando
Figueira Filho, Leif Singer, and Daniel M. German.
2016. How Social and Communication Channels Shape
and Challenge a Participatory Culture in Software
Development. To appear in the Transactions on
Software Engineering (2016).

43. Gregory Trevors, Melissa Duffy, and Roger Azevedo.
2014. Note-taking within MetaTutor: interactions
between an intelligent tutoring system and prior
knowledge on note-taking and learning. Educational
Technology Research and Development 62, 5 (2014),
507–528. DOI:
http://dx.doi.org/10.1007/s11423-014-9343-8

44. André Van Der Hoek, David Redmiles, Paul Dourish,
Anita Sarma, Roberto Silva Filho, and Cleidson
De Souza. 2004. Continuous coordination: A new
paradigm for collaborative software engineering tools.
In Workshop on Directions in Software Engineering
Environments. Citeseer, 29–36.

45. Daniel M Wegner, Toni Giuliano, and Paula T Hertel.
1985. Cognitive interdependence in close relationships.
In Compatible and incompatible relationships. Springer,
253–276.

46. Jim Whitehead. 2007. Collaboration in Software
Engineering: A Roadmap. In 2007 Future of Software
Engineering (FOSE ’07). IEEE Computer Society,
Washington, DC, USA, 214–225. DOI:
http://dx.doi.org/10.1109/FOSE.2007.4

47. Philip H Winne and Allyson F Hadwin. 1998. Studying
as self-regulated learning. Metacognition in educational
theory and practice 93 (1998), 27–30.

48. Philip H Winne and Allyson F Hadwin. 2008. The
weave of motivation and self-regulated learning.
Motivation and self-regulated learning: Theory,
research, and applications (2008), 297–314.

49. Zhi-Xue Zhang, Paul S Hempel, Yu-Lan Han, and Dean
Tjosvold. 2007. Transactive memory system links work
team characteristics and performance. Journal of
Applied Psychology 92, 6 (2007), 1722.

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1063

http://dl.acm.org/citation.cfm?id=1434935.1434937
http://dl.acm.org/citation.cfm?id=1434935.1434937
http://dx.doi.org/10.1007/s11423-014-9343-8
http://dx.doi.org/10.1109/FOSE.2007.4

Appendix

Reflection on the Goal Setting process
Continuous changes to the project prevents P1’s team from creating long-term plans. Therefore, their Goal Setting process
focuses on immediate tasks. In the case of P2 and P3, their Goal Setting process is defined at both high and low levels, and
their working culture defines how to approach each aspect of their planning. Details about the interviewees’ experiences for this
process of regulation are presented in Table 4.

Interestingly, interviewees declared that their current working culture slowly emerged over time, and today, the shared agreements
(e.g., quality standards, regular procedures) followed by all members make the work easier.

Distributed Team Practices and Tool Support Co-Located Team Practices and Tool Support
Goal Setting
Observation The team does not have access to higher-level strategic

plans and their requirements change rapidly. Because of
this, they must create small, specific goals.

The team places a greater focus on product quality rather
than making a deadline. “If it takes an extra day, but you
will feel happier with the quality and this is acceptable for the
customers, go for it.” [P3]

Self-regulation In preparation for each daily stand-up meeting, P1 creates a
report.
Tools: Personal notes, to-do lists on Wunderlist, and configu-
ration of task reminders through a Slack bot.

P2 and P3 described that “at the higher levels, responsibilities
are weighed out and we know what are we going to do, and at
the lower level, what comes out is that each task is assigned
to a person and it’s documented by the leader they work with.”
[P2]

Co-regulation Using Slack, P1 checks on everyone’s planning activities and
has a record of the conversations that have occurred. This
checking is more likely to happen when there are dependen-
cies between P1’s tasks and someone else’s work.
Tools: Slack, Google Hangouts (usage criteria is the same as
the Task Understanding process), some people use a tool simi-
lar to Trello.

The team holds weekly meetings and the team leaders check
in through Slack daily. If team members need help, they cre-
ate a direct message through Slack or request a face-to-face
meeting.
Tools: Face-to-face discussions, Slack.

Shared regulation The team holds daily stand-up meetings in which each partic-
ipant discusses the tasks they completed the previous day and
describes their plans for the current day.
Tools: Slack, Google Hangouts. Formal documentation fol-
lows the same criteria as the Task Understanding process.

Each team leader creates a work plan, and in the weekly meet-
ing each team member describes what they will get done dur-
ing the week. Both P2 and P3 reported having defined quality
standards which make their work flow a lot easier, however,
“coming into that standing order was a 3-hour debate back in
the day.” [P2] Plans are divided into individual goals: Git is-
sues are then created for each goal and later visualized using
Waffle.io.
Tools: GitHub issues, Waffle.io.

Table 4. Goal Setting, the Model of Regulation in action: work practices and tool support of practitioners in two different organizations. P1 works on a
distributed team and P2 & P3 work on a co-located team.

Reflection on the Enacting process
In both projects, interviewees highlighted that their team purpose is to always follow the plan, however, unexpected things
usually come up. This situation was experienced more often by P1’s team. Also, all interviewees reported actively using Slack
to support individual work and their teammates’ work. In both projects, participants use a specific Slack channel as an internal
question-answer system, where anyone can get help or provide prompt feedback.

When discussing strategies for motivational engagement, P1 reported having a supportive team culture although this was never
explicitly discussed among members. P2 and P3 mentioned that all team members openly contribute with strategies for main-
taining motivation and engagement. Table 5 presents the Enacting work practices of both projects.

Reflection on the Adapting process
Software projects are characterized by their changing nature and loosely defined scope, which sometimes requires adjustments to
the work even after a plan has been set. The interviewees showed they were aware of this fact and reported established practices
they follow to make adaptations to their work, as shown in Table 6. Also, P2 and P3 said that documentation about changes is
not always created, and if it is, the rationale of the change or adaptation is often omitted.

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1064

Distributed Team Practices and Tool Support Co-Located Team Practices and Tool Support
Enacting
Plan execution
Observation The team’s goal is to follow the plan agreed upon in the

daily stand-up meeting, however, it is not unusual to en-
counter unexpected problems.

Even though the plan is accurate, things are sometimes
modified during plan execution due to the dynamic nature
of the software projects. “The important thing that I bring
out immediately is that we have this plan, something that we
are meant to do, and then without fail something will come up.”
[P2]

Self-regulation P1 tries to follow their work plan, however, requirements tend
to change often (within hours), which also changes the ex-
pected output of their work.

P2 and P3 spend time each day making sure everyone on the
team is on track, which is expected from their administrative
positions.

Co-regulation Team members use a ‘help request’ Slack channel to “report
issues if we are stuck and having troubles with the task we said
we were going to complete that day.” [P1]

The team helps each other execute their individual tasks using
a ‘developer channel’ Slack channel which was designed for
“Trying to encourage people to broadcast what they are doing
and encourage feedback and cross-communication.” [P3]

Shared-regulation Same as the co-regulation mode for Enacting - Plan execution. Same as the co-regulation mode for Enacting - Plan execution.
Motivational engagement
Observation There is no explicit agreement on strategies for staying en-

gaged and motivated, however, the team appears to believe
in mutually supporting each other.“Feeling everybody wants
to help you is what makes it good [...] knowing that you’re not
given a task and sent alone to a room helps.” [P1]

All team members contribute with strategies and support
for motivational engagement. “People are very crucial—to
help each other and even feel sympathetic when it is really
shitty.” [P2]

Self-regulation P1 tries to keep a positive attitude. P3 tries to do things in a creative way and regularly thinks of
the motto ‘action precedes motivation’: “It’s basically I really
don’t feel like doing something but just do it for five minutes
and usually after that five-minute period all of a sudden you’re
like in the groove.” P2 uses the 30-minute Pomodoro Tech-
nique: “You tell yourself I have to work for 30 minutes and
after 30 minutes I get a treat... although to be honest, at the
end of that, I’m in the zone so much I don’t stop.”

Co-regulation All teammates help each other, promptly answering questions
on Slack, providing guidance when needed, celebrating when
the work is done, and trying to keep everybody engaged in long
video calls.

The team has a culture of mutual support. “It’s uncompeti-
tive and so people are very much willing to help and they care
about each other’s happiness.” [P3]

Shared-regulation There is no collective discussion about motivational and en-
gagement strategies, but all teammates help to maintain the
supportive culture.

“In regular communication we try to decide if [the employees]
are happy with the things they are working on. If not, what
would make them happy and try to find opportunities...” [P3]
Team members also encourage a culture of mutual support:
“trying to use a bit of thanks and cheering upon the [Slack]
channel when things are going well.” [P2]

Table 5. Enacting, the Model of Regulation in action: work practices and tool support of practitioners in two different organizations. P1 works on a
distributed team and P2 & P3 work on a co-located team.

Distributed Team Practices and Tool Support Co-Located Team Practices and Tool Support
Adapting
Observation The team’s task understanding and plans are re-adapted

every couple of hours due to constant changes in project
requirements.

Adaptations are made everyday, however, not every change
is documented. This depends on the possible number of
people the change affects and whether the information
might be important in the future.

Self-regulation Constant changes to the project require P1 to also adapt their
individual plans.
Tools: Slack and Google Hangouts to communicate changes
and updates.

Individual adaptation was not explicitly discussed during the
interviews.

Co-regulation Same as the self-regulation mode listed above. If a change is required, it is implemented but documentation is
created only if “we think it’s important and useful for others to
know.” [P3]

Shared-regulation New plans or adaptations are defined by the project managers.
If an adaptation is required, the practice is to record notes at
the bottom of the applicable documents or create visible com-
ments on the specific part. However, “sometimes they would
not have done the proper homework ahead of time”, meaning
the original plan is incomplete and it looks bad for them to
leave specifications as visible changes. So, “they directly edit
the original bit, which won’t show the change.” [P1]

Adaptations are documented on Google Drive most of the time:
“We would document changes with comments and stuff like
that, we would annotate or just change the document... We
would document what we wanted to do, but not necessarily
why, unless it’s really important to the future task understand-
ing.” [P3] Interestingly, the increasing team complexity (team
size) is affecting how much documentation is produced: “As
we are growing, we are doing more documentation.” [P3]

Table 6. Adapting, the Model of Regulation in action: work practices and tool support of practitioners in two different organizations. P1 works on a
distributed team and P2 & P3 work on a co-located team.

Session: Models & Language in Work & Investment CSCW 2017, February 25–March 1, 2017, Portland, OR, USA

1065

	Introduction
	Background
	Technology-centric collaboration models
	Towards characterizing collaboration processes and participants
	Motivation for using a ``regulation lens'' to study collaboration in software development

	The Model of Regulation for Software Engineering
	Modes of regulation
	Processes of regulation
	Activating the regulation processes
	Regulation tool support

	The Model of Regulation in Action
	Creating the instrument
	Using the instrument to reveal work practices and tools
	Reflection on the Task Understanding process
	Reflection on the Monitoring and Evaluating process
	Reflection on the Model of Regulation

	Discussion
	From learning to software engineering and beyond
	Beyond the team: Understanding collaboration in organizations and communities
	From a theory to actionable principles, work practices, and tools

	Limitations
	Conclusions
	Acknowledgments
	References
	Reflection on the Goal Setting process
	Reflection on the Enacting process
	Reflection on the Adapting process

