
Regulation as an Enabler for
Collaborative Software Development

Maryi Arciniegas-Mendez, Alexey Zagalsky, Margaret-Anne Storey, Allyson F. Hadwin
University of Victoria, Victoria, BC, Canada

{maryia, alexeyza, mstorey, hadwin}@uvic.ca

Abstract—Collaboration has become an integral aspect of
software engineering. The widespread availability and adoption
of social channels has led to a culture where today’s developers
participate and collaborate more frequently with one another.
Awareness is widely accepted as an important feature of collabo-
ration, but exactly what this encompasses and how processes and
tools should be evaluated in terms of their awareness support
remains an open challenge. In this paper, we borrow a theory of
regulation from the Learning Science domain and show how this
theory can be used to provide more detailed insights into how
collaboration tools and processes can be compared and analyzed.

I. INTRODUCTION

Collaboration is crucial for the modern socio-technical

developer. Developers not only write code but also partake in

various socially enabled activities (e.g., mentorship and code

reviewing), and the tools that developers use play a critical role

in promoting and supporting collaboration. A widely accepted

framework for evaluating collaborative tools and processes in

software engineering is the 3C Model [1]. This framework

examines communication, cooperation, and coordination, with

coordination being recognized as a necessity for collaboration.

However, existing models of coordination were proposed

before the development community embraced socially enabled

channels and tools [2]. This adoption caused a cultural shift

and has led to a participatory culture [3] with different

coordination and collaboration needs. Developers more readily

learn from and work with one another in an ad-hoc manner

within a broader community of like-minded peers. That is, the

means by which developers author code today has drastically

changed. This change brings both benefits (e.g., community

authored documentation) and challenges (e.g., feeling over-

whelmed by the vast choice of information and tools one could

use). This participatory culture also brings with it challenges

in terms of understanding which tools developers should use.

These new collaboration work practices call for a richer

framework so that we are able to understand and reason about

the myriad of tools developers use today.

Challenges with coordination and collaboration are not

unique to software engineering—researchers in other knowl-

edge domains are intimately familiar with these challenges

and actively study them. In particular, researchers in the

Learning Science domain have achieved a deeper understand-

ing of collaboration by examining regulation as the adap-

tation of strategic responses to new learning and collabora-

tion challenges. This research suggests three types of reg-

ulation: self-regulation, co-regulation, and shared-regulation.

Self-regulation refers to the individual’s vision of the task, and

represents a necessary condition for successful collaborative

efforts, but one that is insufficient by itself. Co-regulation

allows for recognition of the perspectives of others with

respect to the tasks to be completed. Shared-regulation repre-

sents the last stage of regulation where individual perspectives

have been aligned into a common group vision. The accom-

plishment of co-regulation and shared-regulation are key to

successful collaborative efforts.

In this paper, we enrich the 3C Model by augmenting it

with the Model of Regulation [4]. Using the enhanced 3C

Model, we examined GitHub’s Issues, Graphs, and News feed

features. We find that the Model of Regulation brings new

insights about the collaborative support provided by GitHub.

Our preliminary analysis demonstrates that the application of

this new framework provides better support for evaluating

modern collaborative software development tools and prac-

tices. Furthermore, this new framework provides a common

language for tool builders and practitioners that was previously

lacking.

II. BACKGROUND

We review the evolution of collaborative software devel-

opment research and provide an overview of the 3C Model.

We then discuss the concepts of community and collaboration

from the Learning Science domain as an introduction for the

Model of Regulation, which we present in Section III.

A. Collaborative Software Development

Modern software development is a social and collaborative

process [5] involving groups of individuals that contribute

towards a common goal with each other’s experience and

expertise. The recurrent collaborative activity, fueled by the

need for different skills and perspectives to problem solving,

has led to the formation of communities of practice [6] around

diverse topics of software engineering.

Communities of practice, empowered by the “inexpensive
and low barriers to publish, as well as the rapidly spreading
peer-to-peer, large-scale communications made possible by
social media”, have become an extensive part of software

engineering [3]. The social structure created by the com-

munity supports the co-construction of knowledge for active

participants and learning for all members. Moreover, these

communities are a resource for consulting on and distributing

software development practices, tools, and resources.

2015 IEEE/ACM 8th International Workshop on Cooperative and Human Aspects of Software Engineering

978-1-4673-7031-8/15 $31.00 © 2015 IEEE

DOI 10.1109/CHASE.2015.29

97

The widespread adoption of socially enabled tools and

channels facilitates virtual communities of practice and en-

ables global software teams. Consequently, the availability

of additional communication channels (e.g., micro-blogging)

and a broad catalog of developer tools have increased the

participatory culture among software developers. More im-

portantly, the diversity of these tools and features posits a

challenge in understanding which may be the best composition

or combination of tools that will enhance the productivity of

collaborating developers and motivate broader participation.

B. The 3C Model

Understanding collaboration and how it can be improved

through processes and tools has been a longstanding challenge

in computer science. As far back as 1991, Ellis et al. [7] inves-

tigated computer-supported group interactions and suggested

three key areas that require attention when studying collabora-

tive work: Communication, Collaboration, and Coordination.

Their analysis provided the basis for a framework that has been

widely used to evaluate collaboration tools. This approach is

recognized as the 3C Model.

In this model, the Communication aspect of group work

refers to the exchange of knowledge and allows for the coordi-

nation of group tasks. Coordination refers to the awareness of

and agreements made regarding tasks to be completed through

team interactions, as well as any overhead (e.g., planning) that

is necessary for the Collaboration effort itself [7].

Later, Gerosa et al. [8] suggested that Awareness be added

to the 3C Model. Awareness, as defined by Dourish and

Bellotti [9], is “an understanding of the activities of others,
which provides a context for your own activity”. Gutwin et
al. [10] also found that distributed developers need to maintain

awareness of one another and the entire team, as well as gather

more detailed knowledge of the people they plan to work with.

In this paper, we use and enhance a refined version of the 3C

Model defined by Fuks et al. [11] where they included the

concept of awareness, but also replaced the term collaboration
with cooperation due to a difference in terminology (see top

part of Fig. 1).

C. Knowledge Building Communities

Collaboration involves more than just distributing tasks

across people. It also involves regulation planning, enact-

ing, monitoring, and evaluating processes, ideally producing

something better than any individual could either conceive or

produce alone [12]. Furthermore, coordination and communi-

cation have been shown to represent an important source for

delays in software development projects [13]. The formation

and growth of communities rely on the complex interactions

of its members [3], suggesting that successful collaboration

strongly depends on the social component of the community.

Communities of practice have been the focus of study

in many domains. In Learning Science, researchers refer to

a Knowledge Building Community as a socio-constructivist

pedagogical strategy “that supports discourse and aims to
advance the knowledge of the members collectively while

still encouraging individual growth that will produce new
experts and extend expertise within the community’s domain”1.

The software developer community is a prime example of a

knowledge building community.

III. MODEL OF REGULATION

The Learning Science literature emphasizes that merely

providing opportunities to collaborate does not necessarily

guarantee successful collaboration. Hadwin et al. [14] found

that a group’s collaborative potential may not be fulfilled

by group members due to a lack of regulatory skills, such

as time management, efficient use of resources, and task

distribution. They further found that many learners do not

effectively regulate their activities, neither individually nor

collectively [15].

The theory of regulated learning [16] is an approach to

address the above mentioned problems within a collaborative

learning context. In particular, it refers to strategic control

that allows for the improvement of learning and collaboration

processes. Recent studies [4], [15] have led to the formation of

a Model of Regulation for collaborative tasks which suggests

three different types of regulation, with each type of regulation

requiring different forms of process tool support.

A. Three Types of Regulation

The Model of Regulation includes the following objects of

regulation: task knowledge, self knowledge, goals and plans,

strategy knowledge and use, motivation and emotions, and

tools and context. Each regulation type (self, co, shared)

is defined in terms of its relationship with the objects of

regulation. In particular, self-regulation is an activity per-

formed by an individual that assists with self-awareness of

their contributions to the objects of regulation. Once the

participant in the collaborative activity is aware of their own

comprehension of the work, they are able to move onto the

second type of regulation. Co-regulation is an activity that

leads to the recognition of each other’s understanding of the

objects of regulation, and represents the beginning of the

alignment between the individual and the group’s perspectives.

Finally, when each other’s understanding has been recognized

and aligned into one group vision, then shared-regulation has

been reached and represents the “we perspective”.

B. Regulation Process Support

When Jarvela and Hadwin [15] investigated the Model of

Regulation, they articulated how computer-based tools can

be used to support self-, co-, and shared-regulation within a

learning context. Below we describe the different categories

of regulation tool support, however, their contribution to

self-, co-, and shared-regulation depends on the scope of the

information and the way it is presented to the user. Within each

category, we provide a description of the type of regulation it

can support from a software engineering perspective.

1http://edutechwiki.unige.ch/en/Knowledge-building community model

98

1) Structuring Support: refers to approaches that aim to

guide interactions by designing or scripting a situation before

it begins [17]. Structuring support consists of roles, scripts,

and prompts. Roles are functions intentionally assigned to each

member of the team (e.g., designer, developer, or tester). While

scripts are a list of steps that suggest the correct order of

activities required to complete a bigger task. For example, the

life cycle of a software development project may require the

following order of general activities: requirements gathering,

design, implementation, and evaluation. A script could provide

the list of activities with a detailed set of steps for each

phase. Finally, prompts are messages that can be delivered

to the team to provide hints and suggestions about correct

processes for a particular activity. For instance, when code

changes are made, a prompt can remind the developer to

register the changes in the team’s Wiki or notify the other

team members. All three types of structuring support aid

in the strategic control of individual performance within the

collaborative activity, thus supporting self-regulation.

2) Mirroring Support: refers to mechanisms that reflect

individual or collective actions by gathering and summarizing

data [17]. Depending on the scope of the information presented

by the tool, it can promote self-, co- or shared-regulation.

An example of mirroring used for self-regulation can consider

individual actions as a summary of activities, with completed

tasks distinguished by color or some other cue. In addition,

mirroring support can be achieved with a visualization, such

as a pie chart or a time-line graph that shows aggregated

contributions. In this case, the visualization supports a shared

understanding of the group perspective and creates context for

shared-regulation. Several software development environments

provide views to highlight such information (e.g., Trello).

3) Awareness Tools: is a similar category to mirroring

support, except that it allows for self comparison or compar-

isons between group members. The scope of the information

included within the tool determines whether it promotes co-

regulation or shared-regulation. For instance, an awareness

tool that invites co-regulation will be restricted to comparisons

between a small set of members, while a context for shared-

regulation requires simultaneous performance analysis of the

whole group. Potential examples of awareness tools include a

visualization presenting individual time-line graphs per con-

tributing member, or a visualization showing the lines of code

introduced by each member.

4) Guiding Systems: are programs that behave like a virtual

presence interpreting data and providing instructions when

issues in the collaboration process are detected. A guiding sys-

tem can promote all three types of regulation depending on the

context. For instance, a guiding system that sends reminders of

an individual’s pending work is helping with self-regulatory

processes. If the guiding system provides instructions on a

subtask designated for a set of members, it supports co-

regulation. Whereas a guiding system that shows visualizations

of ideas not picked up during previous group discussion creates

context for shared-regulation. To the best of our knowledge,

guiding system support in software engineering has not been

explored much, but we see it as a prominent future research

direction.

IV. ENHANCING THE 3C MODEL

We argue that the collaborative nature of software develop-

ment can only reach its full potential if we can clearly identify

which components of group interaction are supported by the

myriad of tools and resources that are used today. To address

this, we propose to enhance the “awareness” component of

the 3C Model (the Enhanced 3C Model) with the Model of

Regulation (Fig. 1), highlighting that regulation provides the

foundation for collaboration. As far as we know, there is no

research that considers this approach in software engineering.

Fig. 1. Enhancing the 3C Model (shown in the top half of this figure) with
the Model of Regulation (shown in the bottom half).

The inclusion of the Model of Regulation within the 3C

Model leads to a richer framework. It provides terminology

that we found was lacking when we attempted to clearly de-

scribe and distinguish commonly used collaborative software

development tools. To demonstrate how the model can be

applied, we examine three features of GitHub, a popular social

coding environment: Issues, Graphs, and News feed2.

Issues are defined as work items that “can be labeled and
assigned to a user”. This definition suggests that the feature

offers context primarily for co-regulation, but in practice, users

use this feature to contribute to each of the three types of

regulation. When an Issue is intended for the same member

that created it, it is used as a self-reminder and supports self-

regulation. But if the Issue is assigned as a to-do item for

someone else, then co-regulation is supported. Also, issues

can be created as an open request for everyone in the group

(e.g., bug report or feature request). This case supports shared-

regulation as any member has the opportunity to comprehend

the collective state of the group. As mentioned previously, how

2https://help.github.com/articles/github-glossary/

99

a tool is used and what information it can manage affects the

type of regulation it supports. Regarding the classification of

Issues within the categories of regulation tools, we place it in

mirroring support.

Graphs allow team members to visualize individual and

collective statistics (e.g., contributor activities, number and

time of commits) for a particular repository. For contributor

activities, the Graphs feature presents two approaches. The

first shows a graph of aggregated contributions to the project

whereby individual work is not identified. In this case, the

visualization supports the foundation for shared-regulation.

Since it is not possible to make comparisons between individ-

ual contributions, this feature is classified as mirroring support.

The second approach creates the context for co-regulation

and provides awareness support as it shows individual graphs

per contributing member and permits comparison across all

members.

News feeds show a list of recent activities related to the

people or projects the user is working with or following. This

feature provides mirroring support and can be used to promote

shared-regulation because it shows an overview of work being

completed towards the shared collaborative vision. But it can

also be used to provide co-regulation for individual members

watching the activity of close collaborators.

V. DISCUSSION AND FUTURE WORK

In the previous section, we demonstrated how the enhanced

3C Model provides a more detailed approach and improved

terminology for evaluating, classifying, and comparing fea-

tures within a software development tool or environment. Our

use of the enhanced 3C Model helps to reveal and label

areas of tool support that may be lacking. For example, more

guidance about pending tasks for individuals and groups could

be very helpful in building awareness about a project’s trajec-

tory towards a milestone. Indeed, in our studies of software

developers, we see collaborative software teams using tools

such as Trello taskboards to provide additional support for

co- and shared-regulation.

For future work, we plan to apply the extended model

to additional software development tools, including socially-

enabled code hosting tools (e.g., BitBucket), management

and collaboration task boards (e.g., Trello, ZenHub), soft-

ware development-focused communication tools (e.g., Slack,

HipChat), and personal & team metric tools (e.g., WakaTime).

Considering that the Model of Regulation was incorporated

with the 3C Model in its original form, further research is

required to determine if this framework accurately represents

collaborative software development processes.

Moreover, when discussions over a broader context of

collaboration in software engineering are included, such as

virtual teams and global software development, constraints like

time zones, culture, and language must be taken into account

in order to refine the framework. Future work will include

application of the theory of regulation using software teams

as the unit of analysis. We expect that the model will evolve as

we conduct these studies and learn more about the nuances of

regulation and the tools that support it in software engineering.
Finally, van der Hoek et. al [18] also propose a Continu-

ous Coordination model that integrates informal and formal

communication practices, paying special attention to the need

for ongoing coordination in the lifecycle of a project. We

emphasize that the approach we proposed can also be applied

to other collaboration frameworks and models, such as the

Continuous Coordination model.
Acknowledgment: We thank Cassandra Petrachenko, Mariel

Muller, and Daniel German for providing feedback on our

paper.

REFERENCES

[1] I. Steinmacher, A. P. Chaves, and M. A. Gerosa, “Awareness support
in global software development: a systematic review based on the 3c
collaboration model,” in Collaboration and Technology. Springer, 2010,
pp. 185–201.

[2] P. Tell and M. Ali Babar, “A systematic mapping study of tools for
distributed software development teams,” IT-Universitetet i København,
Tech. Rep., 2012.

[3] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, and A. Zagalsky,
“The (r) evolution of social media in software engineering,” in Proc.
of the 36th Intl. Conf. on Software Engineering, Future of Software
Engineering (FOSE ’14). ACM, 2014, pp. 100–116.

[4] A. F. Hadwin, S. Järvelä, and M. Miller, “Self-regulated, co-regulated,
and socially shared regulation of learning,” Handbook of self-regulation
of learning and performance, pp. 65–84, 2011.

[5] P. Layzell, O. P. Brereton, and A. French, “Supporting collaboration in
distributed software engineering teams,” in Software Engineering Conf.,
APSEC 2000. Proc. 7th Asia-Pacific. IEEE, 2000, pp. 38–45.

[6] M. McLure Wasko and S. Faraj, “it is what one does: Why people
participate and help others in electronic communities of practice,” The
J. of Strategic Information Systems, vol. 9, no. 2, pp. 155–173, 2000.

[7] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: some issues and
experiences,” Communications of the ACM, vol. 34, pp. 39–58, 1991.

[8] M. A. Gerosa, “Analysis and design of awareness elements in col-
laborative digital environments: A case study in the aulanet learning
environment,” Journal of Interactive Learning Research, vol. 14, no. 3,
pp. 315–332, 2003.

[9] P. Dourish and V. Bellotti, “Awareness and coordination in shared
workspaces,” in Proceedings of the 1992 ACM conference on Computer-
supported cooperative work. ACM, 1992, pp. 107–114.

[10] C. Gutwin, R. Penner, and K. Schneider, “Group awareness in distributed
software development,” in Proceedings of the 2004 ACM conference on
Computer supported cooperative work. ACM, 2004, pp. 72–81.

[11] H. Fuks, A. B. Raposo, M. A. Gerosa, and C. J. Lucena, “Applying
the 3c model to groupware development,” International Journal of
Cooperative Information Systems, vol. 14, no. 02n03, pp. 299–328, 2005.

[12] D. W. Johnson and R. T. Johnson, Cooperation and competition: Theory
and research. Interaction Book Company, 1989.

[13] J. Herbsleb and D. Moitra, “Global software development,” Software,
IEEE, vol. 18, no. 2, pp. 16–20, Mar 2001.

[14] A. Hadwin, M. Miller, and E. Webster, “Promoting and researching
adaptive regulation in cscl: Scripting, visualization, and awareness
tools,” Conf. of the European Association for Research on Learning
and Instruction, September 2013.

[15] S. Järvelä and A. F. Hadwin, “New frontiers: Regulating learning in
cscl.” Educational Psychologist, vol. 48, no. 1, pp. 25–39, 2013.

[16] B. J. Zimmerman, “Academic studing and the development of personal
skill: A self-regulatory perspective,” Educational psychologist, vol. 33,
no. 2-3, pp. 73–86, 1998.

[17] A. Soller, A. Martı́nez, P. Jermann, and M. Muehlenbrock, “From
mirroring to guiding: A review of state of the art technology for
supporting collaborative learning,” Int. J. Artif. Intell. Ed., vol. 15, pp.
261–290, Dec. 2005.

[18] A. van der Hoek, D. Redmiles, P. Dourish, A. Sarma, R. Silva Filho,
and C. De Souza, “Continuous coordination: A new paradigm for
collaborative software engineering tools,” in Workshop on Directions
in Software Engineering Environments. IET, 2004, pp. 29–36.

100

